slub.c 110 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. #include <trace/events/kmem.h>
  30. /*
  31. * Lock order:
  32. * 1. slab_lock(page)
  33. * 2. slab->list_lock
  34. *
  35. * The slab_lock protects operations on the object of a particular
  36. * slab and its metadata in the page struct. If the slab lock
  37. * has been taken then no allocations nor frees can be performed
  38. * on the objects in the slab nor can the slab be added or removed
  39. * from the partial or full lists since this would mean modifying
  40. * the page_struct of the slab.
  41. *
  42. * The list_lock protects the partial and full list on each node and
  43. * the partial slab counter. If taken then no new slabs may be added or
  44. * removed from the lists nor make the number of partial slabs be modified.
  45. * (Note that the total number of slabs is an atomic value that may be
  46. * modified without taking the list lock).
  47. *
  48. * The list_lock is a centralized lock and thus we avoid taking it as
  49. * much as possible. As long as SLUB does not have to handle partial
  50. * slabs, operations can continue without any centralized lock. F.e.
  51. * allocating a long series of objects that fill up slabs does not require
  52. * the list lock.
  53. *
  54. * The lock order is sometimes inverted when we are trying to get a slab
  55. * off a list. We take the list_lock and then look for a page on the list
  56. * to use. While we do that objects in the slabs may be freed. We can
  57. * only operate on the slab if we have also taken the slab_lock. So we use
  58. * a slab_trylock() on the slab. If trylock was successful then no frees
  59. * can occur anymore and we can use the slab for allocations etc. If the
  60. * slab_trylock() does not succeed then frees are in progress in the slab and
  61. * we must stay away from it for a while since we may cause a bouncing
  62. * cacheline if we try to acquire the lock. So go onto the next slab.
  63. * If all pages are busy then we may allocate a new slab instead of reusing
  64. * a partial slab. A new slab has noone operating on it and thus there is
  65. * no danger of cacheline contention.
  66. *
  67. * Interrupts are disabled during allocation and deallocation in order to
  68. * make the slab allocator safe to use in the context of an irq. In addition
  69. * interrupts are disabled to ensure that the processor does not change
  70. * while handling per_cpu slabs, due to kernel preemption.
  71. *
  72. * SLUB assigns one slab for allocation to each processor.
  73. * Allocations only occur from these slabs called cpu slabs.
  74. *
  75. * Slabs with free elements are kept on a partial list and during regular
  76. * operations no list for full slabs is used. If an object in a full slab is
  77. * freed then the slab will show up again on the partial lists.
  78. * We track full slabs for debugging purposes though because otherwise we
  79. * cannot scan all objects.
  80. *
  81. * Slabs are freed when they become empty. Teardown and setup is
  82. * minimal so we rely on the page allocators per cpu caches for
  83. * fast frees and allocs.
  84. *
  85. * Overloading of page flags that are otherwise used for LRU management.
  86. *
  87. * PageActive The slab is frozen and exempt from list processing.
  88. * This means that the slab is dedicated to a purpose
  89. * such as satisfying allocations for a specific
  90. * processor. Objects may be freed in the slab while
  91. * it is frozen but slab_free will then skip the usual
  92. * list operations. It is up to the processor holding
  93. * the slab to integrate the slab into the slab lists
  94. * when the slab is no longer needed.
  95. *
  96. * One use of this flag is to mark slabs that are
  97. * used for allocations. Then such a slab becomes a cpu
  98. * slab. The cpu slab may be equipped with an additional
  99. * freelist that allows lockless access to
  100. * free objects in addition to the regular freelist
  101. * that requires the slab lock.
  102. *
  103. * PageError Slab requires special handling due to debug
  104. * options set. This moves slab handling out of
  105. * the fast path and disables lockless freelists.
  106. */
  107. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  108. SLAB_TRACE | SLAB_DEBUG_FREE)
  109. static inline int kmem_cache_debug(struct kmem_cache *s)
  110. {
  111. #ifdef CONFIG_SLUB_DEBUG
  112. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  113. #else
  114. return 0;
  115. #endif
  116. }
  117. /*
  118. * Issues still to be resolved:
  119. *
  120. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  121. *
  122. * - Variable sizing of the per node arrays
  123. */
  124. /* Enable to test recovery from slab corruption on boot */
  125. #undef SLUB_RESILIENCY_TEST
  126. /*
  127. * Mininum number of partial slabs. These will be left on the partial
  128. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  129. */
  130. #define MIN_PARTIAL 5
  131. /*
  132. * Maximum number of desirable partial slabs.
  133. * The existence of more partial slabs makes kmem_cache_shrink
  134. * sort the partial list by the number of objects in the.
  135. */
  136. #define MAX_PARTIAL 10
  137. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  138. SLAB_POISON | SLAB_STORE_USER)
  139. /*
  140. * Debugging flags that require metadata to be stored in the slab. These get
  141. * disabled when slub_debug=O is used and a cache's min order increases with
  142. * metadata.
  143. */
  144. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  145. /*
  146. * Set of flags that will prevent slab merging
  147. */
  148. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  149. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  150. SLAB_FAILSLAB)
  151. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  152. SLAB_CACHE_DMA | SLAB_NOTRACK)
  153. #define OO_SHIFT 16
  154. #define OO_MASK ((1 << OO_SHIFT) - 1)
  155. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  156. /* Internal SLUB flags */
  157. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  158. static int kmem_size = sizeof(struct kmem_cache);
  159. #ifdef CONFIG_SMP
  160. static struct notifier_block slab_notifier;
  161. #endif
  162. static enum {
  163. DOWN, /* No slab functionality available */
  164. PARTIAL, /* Kmem_cache_node works */
  165. UP, /* Everything works but does not show up in sysfs */
  166. SYSFS /* Sysfs up */
  167. } slab_state = DOWN;
  168. /* A list of all slab caches on the system */
  169. static DECLARE_RWSEM(slub_lock);
  170. static LIST_HEAD(slab_caches);
  171. /*
  172. * Tracking user of a slab.
  173. */
  174. struct track {
  175. unsigned long addr; /* Called from address */
  176. int cpu; /* Was running on cpu */
  177. int pid; /* Pid context */
  178. unsigned long when; /* When did the operation occur */
  179. };
  180. enum track_item { TRACK_ALLOC, TRACK_FREE };
  181. #ifdef CONFIG_SYSFS
  182. static int sysfs_slab_add(struct kmem_cache *);
  183. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  184. static void sysfs_slab_remove(struct kmem_cache *);
  185. #else
  186. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  187. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  188. { return 0; }
  189. static inline void sysfs_slab_remove(struct kmem_cache *s)
  190. {
  191. kfree(s->name);
  192. kfree(s);
  193. }
  194. #endif
  195. static inline void stat(struct kmem_cache *s, enum stat_item si)
  196. {
  197. #ifdef CONFIG_SLUB_STATS
  198. __this_cpu_inc(s->cpu_slab->stat[si]);
  199. #endif
  200. }
  201. /********************************************************************
  202. * Core slab cache functions
  203. *******************************************************************/
  204. int slab_is_available(void)
  205. {
  206. return slab_state >= UP;
  207. }
  208. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  209. {
  210. return s->node[node];
  211. }
  212. /* Verify that a pointer has an address that is valid within a slab page */
  213. static inline int check_valid_pointer(struct kmem_cache *s,
  214. struct page *page, const void *object)
  215. {
  216. void *base;
  217. if (!object)
  218. return 1;
  219. base = page_address(page);
  220. if (object < base || object >= base + page->objects * s->size ||
  221. (object - base) % s->size) {
  222. return 0;
  223. }
  224. return 1;
  225. }
  226. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  227. {
  228. return *(void **)(object + s->offset);
  229. }
  230. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  231. {
  232. *(void **)(object + s->offset) = fp;
  233. }
  234. /* Loop over all objects in a slab */
  235. #define for_each_object(__p, __s, __addr, __objects) \
  236. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  237. __p += (__s)->size)
  238. /* Scan freelist */
  239. #define for_each_free_object(__p, __s, __free) \
  240. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  241. /* Determine object index from a given position */
  242. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  243. {
  244. return (p - addr) / s->size;
  245. }
  246. static inline struct kmem_cache_order_objects oo_make(int order,
  247. unsigned long size)
  248. {
  249. struct kmem_cache_order_objects x = {
  250. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  251. };
  252. return x;
  253. }
  254. static inline int oo_order(struct kmem_cache_order_objects x)
  255. {
  256. return x.x >> OO_SHIFT;
  257. }
  258. static inline int oo_objects(struct kmem_cache_order_objects x)
  259. {
  260. return x.x & OO_MASK;
  261. }
  262. #ifdef CONFIG_SLUB_DEBUG
  263. /*
  264. * Debug settings:
  265. */
  266. #ifdef CONFIG_SLUB_DEBUG_ON
  267. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  268. #else
  269. static int slub_debug;
  270. #endif
  271. static char *slub_debug_slabs;
  272. static int disable_higher_order_debug;
  273. /*
  274. * Object debugging
  275. */
  276. static void print_section(char *text, u8 *addr, unsigned int length)
  277. {
  278. int i, offset;
  279. int newline = 1;
  280. char ascii[17];
  281. ascii[16] = 0;
  282. for (i = 0; i < length; i++) {
  283. if (newline) {
  284. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  285. newline = 0;
  286. }
  287. printk(KERN_CONT " %02x", addr[i]);
  288. offset = i % 16;
  289. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  290. if (offset == 15) {
  291. printk(KERN_CONT " %s\n", ascii);
  292. newline = 1;
  293. }
  294. }
  295. if (!newline) {
  296. i %= 16;
  297. while (i < 16) {
  298. printk(KERN_CONT " ");
  299. ascii[i] = ' ';
  300. i++;
  301. }
  302. printk(KERN_CONT " %s\n", ascii);
  303. }
  304. }
  305. static struct track *get_track(struct kmem_cache *s, void *object,
  306. enum track_item alloc)
  307. {
  308. struct track *p;
  309. if (s->offset)
  310. p = object + s->offset + sizeof(void *);
  311. else
  312. p = object + s->inuse;
  313. return p + alloc;
  314. }
  315. static void set_track(struct kmem_cache *s, void *object,
  316. enum track_item alloc, unsigned long addr)
  317. {
  318. struct track *p = get_track(s, object, alloc);
  319. if (addr) {
  320. p->addr = addr;
  321. p->cpu = smp_processor_id();
  322. p->pid = current->pid;
  323. p->when = jiffies;
  324. } else
  325. memset(p, 0, sizeof(struct track));
  326. }
  327. static void init_tracking(struct kmem_cache *s, void *object)
  328. {
  329. if (!(s->flags & SLAB_STORE_USER))
  330. return;
  331. set_track(s, object, TRACK_FREE, 0UL);
  332. set_track(s, object, TRACK_ALLOC, 0UL);
  333. }
  334. static void print_track(const char *s, struct track *t)
  335. {
  336. if (!t->addr)
  337. return;
  338. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  339. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  340. }
  341. static void print_tracking(struct kmem_cache *s, void *object)
  342. {
  343. if (!(s->flags & SLAB_STORE_USER))
  344. return;
  345. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  346. print_track("Freed", get_track(s, object, TRACK_FREE));
  347. }
  348. static void print_page_info(struct page *page)
  349. {
  350. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  351. page, page->objects, page->inuse, page->freelist, page->flags);
  352. }
  353. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  354. {
  355. va_list args;
  356. char buf[100];
  357. va_start(args, fmt);
  358. vsnprintf(buf, sizeof(buf), fmt, args);
  359. va_end(args);
  360. printk(KERN_ERR "========================================"
  361. "=====================================\n");
  362. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  363. printk(KERN_ERR "----------------------------------------"
  364. "-------------------------------------\n\n");
  365. }
  366. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  367. {
  368. va_list args;
  369. char buf[100];
  370. va_start(args, fmt);
  371. vsnprintf(buf, sizeof(buf), fmt, args);
  372. va_end(args);
  373. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  374. }
  375. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  376. {
  377. unsigned int off; /* Offset of last byte */
  378. u8 *addr = page_address(page);
  379. print_tracking(s, p);
  380. print_page_info(page);
  381. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  382. p, p - addr, get_freepointer(s, p));
  383. if (p > addr + 16)
  384. print_section("Bytes b4", p - 16, 16);
  385. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  386. if (s->flags & SLAB_RED_ZONE)
  387. print_section("Redzone", p + s->objsize,
  388. s->inuse - s->objsize);
  389. if (s->offset)
  390. off = s->offset + sizeof(void *);
  391. else
  392. off = s->inuse;
  393. if (s->flags & SLAB_STORE_USER)
  394. off += 2 * sizeof(struct track);
  395. if (off != s->size)
  396. /* Beginning of the filler is the free pointer */
  397. print_section("Padding", p + off, s->size - off);
  398. dump_stack();
  399. }
  400. static void object_err(struct kmem_cache *s, struct page *page,
  401. u8 *object, char *reason)
  402. {
  403. slab_bug(s, "%s", reason);
  404. print_trailer(s, page, object);
  405. }
  406. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  407. {
  408. va_list args;
  409. char buf[100];
  410. va_start(args, fmt);
  411. vsnprintf(buf, sizeof(buf), fmt, args);
  412. va_end(args);
  413. slab_bug(s, "%s", buf);
  414. print_page_info(page);
  415. dump_stack();
  416. }
  417. static void init_object(struct kmem_cache *s, void *object, u8 val)
  418. {
  419. u8 *p = object;
  420. if (s->flags & __OBJECT_POISON) {
  421. memset(p, POISON_FREE, s->objsize - 1);
  422. p[s->objsize - 1] = POISON_END;
  423. }
  424. if (s->flags & SLAB_RED_ZONE)
  425. memset(p + s->objsize, val, s->inuse - s->objsize);
  426. }
  427. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  428. {
  429. while (bytes) {
  430. if (*start != (u8)value)
  431. return start;
  432. start++;
  433. bytes--;
  434. }
  435. return NULL;
  436. }
  437. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  438. void *from, void *to)
  439. {
  440. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  441. memset(from, data, to - from);
  442. }
  443. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  444. u8 *object, char *what,
  445. u8 *start, unsigned int value, unsigned int bytes)
  446. {
  447. u8 *fault;
  448. u8 *end;
  449. fault = check_bytes(start, value, bytes);
  450. if (!fault)
  451. return 1;
  452. end = start + bytes;
  453. while (end > fault && end[-1] == value)
  454. end--;
  455. slab_bug(s, "%s overwritten", what);
  456. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  457. fault, end - 1, fault[0], value);
  458. print_trailer(s, page, object);
  459. restore_bytes(s, what, value, fault, end);
  460. return 0;
  461. }
  462. /*
  463. * Object layout:
  464. *
  465. * object address
  466. * Bytes of the object to be managed.
  467. * If the freepointer may overlay the object then the free
  468. * pointer is the first word of the object.
  469. *
  470. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  471. * 0xa5 (POISON_END)
  472. *
  473. * object + s->objsize
  474. * Padding to reach word boundary. This is also used for Redzoning.
  475. * Padding is extended by another word if Redzoning is enabled and
  476. * objsize == inuse.
  477. *
  478. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  479. * 0xcc (RED_ACTIVE) for objects in use.
  480. *
  481. * object + s->inuse
  482. * Meta data starts here.
  483. *
  484. * A. Free pointer (if we cannot overwrite object on free)
  485. * B. Tracking data for SLAB_STORE_USER
  486. * C. Padding to reach required alignment boundary or at mininum
  487. * one word if debugging is on to be able to detect writes
  488. * before the word boundary.
  489. *
  490. * Padding is done using 0x5a (POISON_INUSE)
  491. *
  492. * object + s->size
  493. * Nothing is used beyond s->size.
  494. *
  495. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  496. * ignored. And therefore no slab options that rely on these boundaries
  497. * may be used with merged slabcaches.
  498. */
  499. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  500. {
  501. unsigned long off = s->inuse; /* The end of info */
  502. if (s->offset)
  503. /* Freepointer is placed after the object. */
  504. off += sizeof(void *);
  505. if (s->flags & SLAB_STORE_USER)
  506. /* We also have user information there */
  507. off += 2 * sizeof(struct track);
  508. if (s->size == off)
  509. return 1;
  510. return check_bytes_and_report(s, page, p, "Object padding",
  511. p + off, POISON_INUSE, s->size - off);
  512. }
  513. /* Check the pad bytes at the end of a slab page */
  514. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  515. {
  516. u8 *start;
  517. u8 *fault;
  518. u8 *end;
  519. int length;
  520. int remainder;
  521. if (!(s->flags & SLAB_POISON))
  522. return 1;
  523. start = page_address(page);
  524. length = (PAGE_SIZE << compound_order(page));
  525. end = start + length;
  526. remainder = length % s->size;
  527. if (!remainder)
  528. return 1;
  529. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  530. if (!fault)
  531. return 1;
  532. while (end > fault && end[-1] == POISON_INUSE)
  533. end--;
  534. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  535. print_section("Padding", end - remainder, remainder);
  536. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  537. return 0;
  538. }
  539. static int check_object(struct kmem_cache *s, struct page *page,
  540. void *object, u8 val)
  541. {
  542. u8 *p = object;
  543. u8 *endobject = object + s->objsize;
  544. if (s->flags & SLAB_RED_ZONE) {
  545. if (!check_bytes_and_report(s, page, object, "Redzone",
  546. endobject, val, s->inuse - s->objsize))
  547. return 0;
  548. } else {
  549. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  550. check_bytes_and_report(s, page, p, "Alignment padding",
  551. endobject, POISON_INUSE, s->inuse - s->objsize);
  552. }
  553. }
  554. if (s->flags & SLAB_POISON) {
  555. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  556. (!check_bytes_and_report(s, page, p, "Poison", p,
  557. POISON_FREE, s->objsize - 1) ||
  558. !check_bytes_and_report(s, page, p, "Poison",
  559. p + s->objsize - 1, POISON_END, 1)))
  560. return 0;
  561. /*
  562. * check_pad_bytes cleans up on its own.
  563. */
  564. check_pad_bytes(s, page, p);
  565. }
  566. if (!s->offset && val == SLUB_RED_ACTIVE)
  567. /*
  568. * Object and freepointer overlap. Cannot check
  569. * freepointer while object is allocated.
  570. */
  571. return 1;
  572. /* Check free pointer validity */
  573. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  574. object_err(s, page, p, "Freepointer corrupt");
  575. /*
  576. * No choice but to zap it and thus lose the remainder
  577. * of the free objects in this slab. May cause
  578. * another error because the object count is now wrong.
  579. */
  580. set_freepointer(s, p, NULL);
  581. return 0;
  582. }
  583. return 1;
  584. }
  585. static int check_slab(struct kmem_cache *s, struct page *page)
  586. {
  587. int maxobj;
  588. VM_BUG_ON(!irqs_disabled());
  589. if (!PageSlab(page)) {
  590. slab_err(s, page, "Not a valid slab page");
  591. return 0;
  592. }
  593. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  594. if (page->objects > maxobj) {
  595. slab_err(s, page, "objects %u > max %u",
  596. s->name, page->objects, maxobj);
  597. return 0;
  598. }
  599. if (page->inuse > page->objects) {
  600. slab_err(s, page, "inuse %u > max %u",
  601. s->name, page->inuse, page->objects);
  602. return 0;
  603. }
  604. /* Slab_pad_check fixes things up after itself */
  605. slab_pad_check(s, page);
  606. return 1;
  607. }
  608. /*
  609. * Determine if a certain object on a page is on the freelist. Must hold the
  610. * slab lock to guarantee that the chains are in a consistent state.
  611. */
  612. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  613. {
  614. int nr = 0;
  615. void *fp = page->freelist;
  616. void *object = NULL;
  617. unsigned long max_objects;
  618. while (fp && nr <= page->objects) {
  619. if (fp == search)
  620. return 1;
  621. if (!check_valid_pointer(s, page, fp)) {
  622. if (object) {
  623. object_err(s, page, object,
  624. "Freechain corrupt");
  625. set_freepointer(s, object, NULL);
  626. break;
  627. } else {
  628. slab_err(s, page, "Freepointer corrupt");
  629. page->freelist = NULL;
  630. page->inuse = page->objects;
  631. slab_fix(s, "Freelist cleared");
  632. return 0;
  633. }
  634. break;
  635. }
  636. object = fp;
  637. fp = get_freepointer(s, object);
  638. nr++;
  639. }
  640. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  641. if (max_objects > MAX_OBJS_PER_PAGE)
  642. max_objects = MAX_OBJS_PER_PAGE;
  643. if (page->objects != max_objects) {
  644. slab_err(s, page, "Wrong number of objects. Found %d but "
  645. "should be %d", page->objects, max_objects);
  646. page->objects = max_objects;
  647. slab_fix(s, "Number of objects adjusted.");
  648. }
  649. if (page->inuse != page->objects - nr) {
  650. slab_err(s, page, "Wrong object count. Counter is %d but "
  651. "counted were %d", page->inuse, page->objects - nr);
  652. page->inuse = page->objects - nr;
  653. slab_fix(s, "Object count adjusted.");
  654. }
  655. return search == NULL;
  656. }
  657. static void trace(struct kmem_cache *s, struct page *page, void *object,
  658. int alloc)
  659. {
  660. if (s->flags & SLAB_TRACE) {
  661. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  662. s->name,
  663. alloc ? "alloc" : "free",
  664. object, page->inuse,
  665. page->freelist);
  666. if (!alloc)
  667. print_section("Object", (void *)object, s->objsize);
  668. dump_stack();
  669. }
  670. }
  671. /*
  672. * Hooks for other subsystems that check memory allocations. In a typical
  673. * production configuration these hooks all should produce no code at all.
  674. */
  675. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  676. {
  677. flags &= gfp_allowed_mask;
  678. lockdep_trace_alloc(flags);
  679. might_sleep_if(flags & __GFP_WAIT);
  680. return should_failslab(s->objsize, flags, s->flags);
  681. }
  682. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
  683. {
  684. flags &= gfp_allowed_mask;
  685. kmemcheck_slab_alloc(s, flags, object, s->objsize);
  686. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
  687. }
  688. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  689. {
  690. kmemleak_free_recursive(x, s->flags);
  691. }
  692. static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
  693. {
  694. kmemcheck_slab_free(s, object, s->objsize);
  695. debug_check_no_locks_freed(object, s->objsize);
  696. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  697. debug_check_no_obj_freed(object, s->objsize);
  698. }
  699. /*
  700. * Tracking of fully allocated slabs for debugging purposes.
  701. */
  702. static void add_full(struct kmem_cache_node *n, struct page *page)
  703. {
  704. spin_lock(&n->list_lock);
  705. list_add(&page->lru, &n->full);
  706. spin_unlock(&n->list_lock);
  707. }
  708. static void remove_full(struct kmem_cache *s, struct page *page)
  709. {
  710. struct kmem_cache_node *n;
  711. if (!(s->flags & SLAB_STORE_USER))
  712. return;
  713. n = get_node(s, page_to_nid(page));
  714. spin_lock(&n->list_lock);
  715. list_del(&page->lru);
  716. spin_unlock(&n->list_lock);
  717. }
  718. /* Tracking of the number of slabs for debugging purposes */
  719. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  720. {
  721. struct kmem_cache_node *n = get_node(s, node);
  722. return atomic_long_read(&n->nr_slabs);
  723. }
  724. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  725. {
  726. return atomic_long_read(&n->nr_slabs);
  727. }
  728. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  729. {
  730. struct kmem_cache_node *n = get_node(s, node);
  731. /*
  732. * May be called early in order to allocate a slab for the
  733. * kmem_cache_node structure. Solve the chicken-egg
  734. * dilemma by deferring the increment of the count during
  735. * bootstrap (see early_kmem_cache_node_alloc).
  736. */
  737. if (n) {
  738. atomic_long_inc(&n->nr_slabs);
  739. atomic_long_add(objects, &n->total_objects);
  740. }
  741. }
  742. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  743. {
  744. struct kmem_cache_node *n = get_node(s, node);
  745. atomic_long_dec(&n->nr_slabs);
  746. atomic_long_sub(objects, &n->total_objects);
  747. }
  748. /* Object debug checks for alloc/free paths */
  749. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  750. void *object)
  751. {
  752. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  753. return;
  754. init_object(s, object, SLUB_RED_INACTIVE);
  755. init_tracking(s, object);
  756. }
  757. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  758. void *object, unsigned long addr)
  759. {
  760. if (!check_slab(s, page))
  761. goto bad;
  762. if (!on_freelist(s, page, object)) {
  763. object_err(s, page, object, "Object already allocated");
  764. goto bad;
  765. }
  766. if (!check_valid_pointer(s, page, object)) {
  767. object_err(s, page, object, "Freelist Pointer check fails");
  768. goto bad;
  769. }
  770. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  771. goto bad;
  772. /* Success perform special debug activities for allocs */
  773. if (s->flags & SLAB_STORE_USER)
  774. set_track(s, object, TRACK_ALLOC, addr);
  775. trace(s, page, object, 1);
  776. init_object(s, object, SLUB_RED_ACTIVE);
  777. return 1;
  778. bad:
  779. if (PageSlab(page)) {
  780. /*
  781. * If this is a slab page then lets do the best we can
  782. * to avoid issues in the future. Marking all objects
  783. * as used avoids touching the remaining objects.
  784. */
  785. slab_fix(s, "Marking all objects used");
  786. page->inuse = page->objects;
  787. page->freelist = NULL;
  788. }
  789. return 0;
  790. }
  791. static noinline int free_debug_processing(struct kmem_cache *s,
  792. struct page *page, void *object, unsigned long addr)
  793. {
  794. if (!check_slab(s, page))
  795. goto fail;
  796. if (!check_valid_pointer(s, page, object)) {
  797. slab_err(s, page, "Invalid object pointer 0x%p", object);
  798. goto fail;
  799. }
  800. if (on_freelist(s, page, object)) {
  801. object_err(s, page, object, "Object already free");
  802. goto fail;
  803. }
  804. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  805. return 0;
  806. if (unlikely(s != page->slab)) {
  807. if (!PageSlab(page)) {
  808. slab_err(s, page, "Attempt to free object(0x%p) "
  809. "outside of slab", object);
  810. } else if (!page->slab) {
  811. printk(KERN_ERR
  812. "SLUB <none>: no slab for object 0x%p.\n",
  813. object);
  814. dump_stack();
  815. } else
  816. object_err(s, page, object,
  817. "page slab pointer corrupt.");
  818. goto fail;
  819. }
  820. /* Special debug activities for freeing objects */
  821. if (!PageSlubFrozen(page) && !page->freelist)
  822. remove_full(s, page);
  823. if (s->flags & SLAB_STORE_USER)
  824. set_track(s, object, TRACK_FREE, addr);
  825. trace(s, page, object, 0);
  826. init_object(s, object, SLUB_RED_INACTIVE);
  827. return 1;
  828. fail:
  829. slab_fix(s, "Object at 0x%p not freed", object);
  830. return 0;
  831. }
  832. static int __init setup_slub_debug(char *str)
  833. {
  834. slub_debug = DEBUG_DEFAULT_FLAGS;
  835. if (*str++ != '=' || !*str)
  836. /*
  837. * No options specified. Switch on full debugging.
  838. */
  839. goto out;
  840. if (*str == ',')
  841. /*
  842. * No options but restriction on slabs. This means full
  843. * debugging for slabs matching a pattern.
  844. */
  845. goto check_slabs;
  846. if (tolower(*str) == 'o') {
  847. /*
  848. * Avoid enabling debugging on caches if its minimum order
  849. * would increase as a result.
  850. */
  851. disable_higher_order_debug = 1;
  852. goto out;
  853. }
  854. slub_debug = 0;
  855. if (*str == '-')
  856. /*
  857. * Switch off all debugging measures.
  858. */
  859. goto out;
  860. /*
  861. * Determine which debug features should be switched on
  862. */
  863. for (; *str && *str != ','; str++) {
  864. switch (tolower(*str)) {
  865. case 'f':
  866. slub_debug |= SLAB_DEBUG_FREE;
  867. break;
  868. case 'z':
  869. slub_debug |= SLAB_RED_ZONE;
  870. break;
  871. case 'p':
  872. slub_debug |= SLAB_POISON;
  873. break;
  874. case 'u':
  875. slub_debug |= SLAB_STORE_USER;
  876. break;
  877. case 't':
  878. slub_debug |= SLAB_TRACE;
  879. break;
  880. case 'a':
  881. slub_debug |= SLAB_FAILSLAB;
  882. break;
  883. default:
  884. printk(KERN_ERR "slub_debug option '%c' "
  885. "unknown. skipped\n", *str);
  886. }
  887. }
  888. check_slabs:
  889. if (*str == ',')
  890. slub_debug_slabs = str + 1;
  891. out:
  892. return 1;
  893. }
  894. __setup("slub_debug", setup_slub_debug);
  895. static unsigned long kmem_cache_flags(unsigned long objsize,
  896. unsigned long flags, const char *name,
  897. void (*ctor)(void *))
  898. {
  899. /*
  900. * Enable debugging if selected on the kernel commandline.
  901. */
  902. if (slub_debug && (!slub_debug_slabs ||
  903. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  904. flags |= slub_debug;
  905. return flags;
  906. }
  907. #else
  908. static inline void setup_object_debug(struct kmem_cache *s,
  909. struct page *page, void *object) {}
  910. static inline int alloc_debug_processing(struct kmem_cache *s,
  911. struct page *page, void *object, unsigned long addr) { return 0; }
  912. static inline int free_debug_processing(struct kmem_cache *s,
  913. struct page *page, void *object, unsigned long addr) { return 0; }
  914. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  915. { return 1; }
  916. static inline int check_object(struct kmem_cache *s, struct page *page,
  917. void *object, u8 val) { return 1; }
  918. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  919. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  920. unsigned long flags, const char *name,
  921. void (*ctor)(void *))
  922. {
  923. return flags;
  924. }
  925. #define slub_debug 0
  926. #define disable_higher_order_debug 0
  927. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  928. { return 0; }
  929. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  930. { return 0; }
  931. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  932. int objects) {}
  933. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  934. int objects) {}
  935. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  936. { return 0; }
  937. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  938. void *object) {}
  939. static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
  940. static inline void slab_free_hook_irq(struct kmem_cache *s,
  941. void *object) {}
  942. #endif /* CONFIG_SLUB_DEBUG */
  943. /*
  944. * Slab allocation and freeing
  945. */
  946. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  947. struct kmem_cache_order_objects oo)
  948. {
  949. int order = oo_order(oo);
  950. flags |= __GFP_NOTRACK;
  951. if (node == NUMA_NO_NODE)
  952. return alloc_pages(flags, order);
  953. else
  954. return alloc_pages_exact_node(node, flags, order);
  955. }
  956. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  957. {
  958. struct page *page;
  959. struct kmem_cache_order_objects oo = s->oo;
  960. gfp_t alloc_gfp;
  961. flags |= s->allocflags;
  962. /*
  963. * Let the initial higher-order allocation fail under memory pressure
  964. * so we fall-back to the minimum order allocation.
  965. */
  966. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  967. page = alloc_slab_page(alloc_gfp, node, oo);
  968. if (unlikely(!page)) {
  969. oo = s->min;
  970. /*
  971. * Allocation may have failed due to fragmentation.
  972. * Try a lower order alloc if possible
  973. */
  974. page = alloc_slab_page(flags, node, oo);
  975. if (!page)
  976. return NULL;
  977. stat(s, ORDER_FALLBACK);
  978. }
  979. if (kmemcheck_enabled
  980. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  981. int pages = 1 << oo_order(oo);
  982. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  983. /*
  984. * Objects from caches that have a constructor don't get
  985. * cleared when they're allocated, so we need to do it here.
  986. */
  987. if (s->ctor)
  988. kmemcheck_mark_uninitialized_pages(page, pages);
  989. else
  990. kmemcheck_mark_unallocated_pages(page, pages);
  991. }
  992. page->objects = oo_objects(oo);
  993. mod_zone_page_state(page_zone(page),
  994. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  995. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  996. 1 << oo_order(oo));
  997. return page;
  998. }
  999. static void setup_object(struct kmem_cache *s, struct page *page,
  1000. void *object)
  1001. {
  1002. setup_object_debug(s, page, object);
  1003. if (unlikely(s->ctor))
  1004. s->ctor(object);
  1005. }
  1006. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1007. {
  1008. struct page *page;
  1009. void *start;
  1010. void *last;
  1011. void *p;
  1012. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1013. page = allocate_slab(s,
  1014. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1015. if (!page)
  1016. goto out;
  1017. inc_slabs_node(s, page_to_nid(page), page->objects);
  1018. page->slab = s;
  1019. page->flags |= 1 << PG_slab;
  1020. start = page_address(page);
  1021. if (unlikely(s->flags & SLAB_POISON))
  1022. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  1023. last = start;
  1024. for_each_object(p, s, start, page->objects) {
  1025. setup_object(s, page, last);
  1026. set_freepointer(s, last, p);
  1027. last = p;
  1028. }
  1029. setup_object(s, page, last);
  1030. set_freepointer(s, last, NULL);
  1031. page->freelist = start;
  1032. page->inuse = 0;
  1033. out:
  1034. return page;
  1035. }
  1036. static void __free_slab(struct kmem_cache *s, struct page *page)
  1037. {
  1038. int order = compound_order(page);
  1039. int pages = 1 << order;
  1040. if (kmem_cache_debug(s)) {
  1041. void *p;
  1042. slab_pad_check(s, page);
  1043. for_each_object(p, s, page_address(page),
  1044. page->objects)
  1045. check_object(s, page, p, SLUB_RED_INACTIVE);
  1046. }
  1047. kmemcheck_free_shadow(page, compound_order(page));
  1048. mod_zone_page_state(page_zone(page),
  1049. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1050. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1051. -pages);
  1052. __ClearPageSlab(page);
  1053. reset_page_mapcount(page);
  1054. if (current->reclaim_state)
  1055. current->reclaim_state->reclaimed_slab += pages;
  1056. __free_pages(page, order);
  1057. }
  1058. static void rcu_free_slab(struct rcu_head *h)
  1059. {
  1060. struct page *page;
  1061. page = container_of((struct list_head *)h, struct page, lru);
  1062. __free_slab(page->slab, page);
  1063. }
  1064. static void free_slab(struct kmem_cache *s, struct page *page)
  1065. {
  1066. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1067. /*
  1068. * RCU free overloads the RCU head over the LRU
  1069. */
  1070. struct rcu_head *head = (void *)&page->lru;
  1071. call_rcu(head, rcu_free_slab);
  1072. } else
  1073. __free_slab(s, page);
  1074. }
  1075. static void discard_slab(struct kmem_cache *s, struct page *page)
  1076. {
  1077. dec_slabs_node(s, page_to_nid(page), page->objects);
  1078. free_slab(s, page);
  1079. }
  1080. /*
  1081. * Per slab locking using the pagelock
  1082. */
  1083. static __always_inline void slab_lock(struct page *page)
  1084. {
  1085. bit_spin_lock(PG_locked, &page->flags);
  1086. }
  1087. static __always_inline void slab_unlock(struct page *page)
  1088. {
  1089. __bit_spin_unlock(PG_locked, &page->flags);
  1090. }
  1091. static __always_inline int slab_trylock(struct page *page)
  1092. {
  1093. int rc = 1;
  1094. rc = bit_spin_trylock(PG_locked, &page->flags);
  1095. return rc;
  1096. }
  1097. /*
  1098. * Management of partially allocated slabs
  1099. */
  1100. static void add_partial(struct kmem_cache_node *n,
  1101. struct page *page, int tail)
  1102. {
  1103. spin_lock(&n->list_lock);
  1104. n->nr_partial++;
  1105. if (tail)
  1106. list_add_tail(&page->lru, &n->partial);
  1107. else
  1108. list_add(&page->lru, &n->partial);
  1109. spin_unlock(&n->list_lock);
  1110. }
  1111. static inline void __remove_partial(struct kmem_cache_node *n,
  1112. struct page *page)
  1113. {
  1114. list_del(&page->lru);
  1115. n->nr_partial--;
  1116. }
  1117. static void remove_partial(struct kmem_cache *s, struct page *page)
  1118. {
  1119. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1120. spin_lock(&n->list_lock);
  1121. __remove_partial(n, page);
  1122. spin_unlock(&n->list_lock);
  1123. }
  1124. /*
  1125. * Lock slab and remove from the partial list.
  1126. *
  1127. * Must hold list_lock.
  1128. */
  1129. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1130. struct page *page)
  1131. {
  1132. if (slab_trylock(page)) {
  1133. __remove_partial(n, page);
  1134. __SetPageSlubFrozen(page);
  1135. return 1;
  1136. }
  1137. return 0;
  1138. }
  1139. /*
  1140. * Try to allocate a partial slab from a specific node.
  1141. */
  1142. static struct page *get_partial_node(struct kmem_cache_node *n)
  1143. {
  1144. struct page *page;
  1145. /*
  1146. * Racy check. If we mistakenly see no partial slabs then we
  1147. * just allocate an empty slab. If we mistakenly try to get a
  1148. * partial slab and there is none available then get_partials()
  1149. * will return NULL.
  1150. */
  1151. if (!n || !n->nr_partial)
  1152. return NULL;
  1153. spin_lock(&n->list_lock);
  1154. list_for_each_entry(page, &n->partial, lru)
  1155. if (lock_and_freeze_slab(n, page))
  1156. goto out;
  1157. page = NULL;
  1158. out:
  1159. spin_unlock(&n->list_lock);
  1160. return page;
  1161. }
  1162. /*
  1163. * Get a page from somewhere. Search in increasing NUMA distances.
  1164. */
  1165. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1166. {
  1167. #ifdef CONFIG_NUMA
  1168. struct zonelist *zonelist;
  1169. struct zoneref *z;
  1170. struct zone *zone;
  1171. enum zone_type high_zoneidx = gfp_zone(flags);
  1172. struct page *page;
  1173. /*
  1174. * The defrag ratio allows a configuration of the tradeoffs between
  1175. * inter node defragmentation and node local allocations. A lower
  1176. * defrag_ratio increases the tendency to do local allocations
  1177. * instead of attempting to obtain partial slabs from other nodes.
  1178. *
  1179. * If the defrag_ratio is set to 0 then kmalloc() always
  1180. * returns node local objects. If the ratio is higher then kmalloc()
  1181. * may return off node objects because partial slabs are obtained
  1182. * from other nodes and filled up.
  1183. *
  1184. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1185. * defrag_ratio = 1000) then every (well almost) allocation will
  1186. * first attempt to defrag slab caches on other nodes. This means
  1187. * scanning over all nodes to look for partial slabs which may be
  1188. * expensive if we do it every time we are trying to find a slab
  1189. * with available objects.
  1190. */
  1191. if (!s->remote_node_defrag_ratio ||
  1192. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1193. return NULL;
  1194. get_mems_allowed();
  1195. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1196. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1197. struct kmem_cache_node *n;
  1198. n = get_node(s, zone_to_nid(zone));
  1199. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1200. n->nr_partial > s->min_partial) {
  1201. page = get_partial_node(n);
  1202. if (page) {
  1203. put_mems_allowed();
  1204. return page;
  1205. }
  1206. }
  1207. }
  1208. put_mems_allowed();
  1209. #endif
  1210. return NULL;
  1211. }
  1212. /*
  1213. * Get a partial page, lock it and return it.
  1214. */
  1215. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1216. {
  1217. struct page *page;
  1218. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1219. page = get_partial_node(get_node(s, searchnode));
  1220. if (page || node != -1)
  1221. return page;
  1222. return get_any_partial(s, flags);
  1223. }
  1224. /*
  1225. * Move a page back to the lists.
  1226. *
  1227. * Must be called with the slab lock held.
  1228. *
  1229. * On exit the slab lock will have been dropped.
  1230. */
  1231. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1232. __releases(bitlock)
  1233. {
  1234. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1235. __ClearPageSlubFrozen(page);
  1236. if (page->inuse) {
  1237. if (page->freelist) {
  1238. add_partial(n, page, tail);
  1239. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1240. } else {
  1241. stat(s, DEACTIVATE_FULL);
  1242. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1243. add_full(n, page);
  1244. }
  1245. slab_unlock(page);
  1246. } else {
  1247. stat(s, DEACTIVATE_EMPTY);
  1248. if (n->nr_partial < s->min_partial) {
  1249. /*
  1250. * Adding an empty slab to the partial slabs in order
  1251. * to avoid page allocator overhead. This slab needs
  1252. * to come after the other slabs with objects in
  1253. * so that the others get filled first. That way the
  1254. * size of the partial list stays small.
  1255. *
  1256. * kmem_cache_shrink can reclaim any empty slabs from
  1257. * the partial list.
  1258. */
  1259. add_partial(n, page, 1);
  1260. slab_unlock(page);
  1261. } else {
  1262. slab_unlock(page);
  1263. stat(s, FREE_SLAB);
  1264. discard_slab(s, page);
  1265. }
  1266. }
  1267. }
  1268. /*
  1269. * Remove the cpu slab
  1270. */
  1271. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1272. __releases(bitlock)
  1273. {
  1274. struct page *page = c->page;
  1275. int tail = 1;
  1276. if (page->freelist)
  1277. stat(s, DEACTIVATE_REMOTE_FREES);
  1278. /*
  1279. * Merge cpu freelist into slab freelist. Typically we get here
  1280. * because both freelists are empty. So this is unlikely
  1281. * to occur.
  1282. */
  1283. while (unlikely(c->freelist)) {
  1284. void **object;
  1285. tail = 0; /* Hot objects. Put the slab first */
  1286. /* Retrieve object from cpu_freelist */
  1287. object = c->freelist;
  1288. c->freelist = get_freepointer(s, c->freelist);
  1289. /* And put onto the regular freelist */
  1290. set_freepointer(s, object, page->freelist);
  1291. page->freelist = object;
  1292. page->inuse--;
  1293. }
  1294. c->page = NULL;
  1295. unfreeze_slab(s, page, tail);
  1296. }
  1297. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1298. {
  1299. stat(s, CPUSLAB_FLUSH);
  1300. slab_lock(c->page);
  1301. deactivate_slab(s, c);
  1302. }
  1303. /*
  1304. * Flush cpu slab.
  1305. *
  1306. * Called from IPI handler with interrupts disabled.
  1307. */
  1308. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1309. {
  1310. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1311. if (likely(c && c->page))
  1312. flush_slab(s, c);
  1313. }
  1314. static void flush_cpu_slab(void *d)
  1315. {
  1316. struct kmem_cache *s = d;
  1317. __flush_cpu_slab(s, smp_processor_id());
  1318. }
  1319. static void flush_all(struct kmem_cache *s)
  1320. {
  1321. on_each_cpu(flush_cpu_slab, s, 1);
  1322. }
  1323. /*
  1324. * Check if the objects in a per cpu structure fit numa
  1325. * locality expectations.
  1326. */
  1327. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1328. {
  1329. #ifdef CONFIG_NUMA
  1330. if (node != NUMA_NO_NODE && c->node != node)
  1331. return 0;
  1332. #endif
  1333. return 1;
  1334. }
  1335. static int count_free(struct page *page)
  1336. {
  1337. return page->objects - page->inuse;
  1338. }
  1339. static unsigned long count_partial(struct kmem_cache_node *n,
  1340. int (*get_count)(struct page *))
  1341. {
  1342. unsigned long flags;
  1343. unsigned long x = 0;
  1344. struct page *page;
  1345. spin_lock_irqsave(&n->list_lock, flags);
  1346. list_for_each_entry(page, &n->partial, lru)
  1347. x += get_count(page);
  1348. spin_unlock_irqrestore(&n->list_lock, flags);
  1349. return x;
  1350. }
  1351. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1352. {
  1353. #ifdef CONFIG_SLUB_DEBUG
  1354. return atomic_long_read(&n->total_objects);
  1355. #else
  1356. return 0;
  1357. #endif
  1358. }
  1359. static noinline void
  1360. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1361. {
  1362. int node;
  1363. printk(KERN_WARNING
  1364. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1365. nid, gfpflags);
  1366. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1367. "default order: %d, min order: %d\n", s->name, s->objsize,
  1368. s->size, oo_order(s->oo), oo_order(s->min));
  1369. if (oo_order(s->min) > get_order(s->objsize))
  1370. printk(KERN_WARNING " %s debugging increased min order, use "
  1371. "slub_debug=O to disable.\n", s->name);
  1372. for_each_online_node(node) {
  1373. struct kmem_cache_node *n = get_node(s, node);
  1374. unsigned long nr_slabs;
  1375. unsigned long nr_objs;
  1376. unsigned long nr_free;
  1377. if (!n)
  1378. continue;
  1379. nr_free = count_partial(n, count_free);
  1380. nr_slabs = node_nr_slabs(n);
  1381. nr_objs = node_nr_objs(n);
  1382. printk(KERN_WARNING
  1383. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1384. node, nr_slabs, nr_objs, nr_free);
  1385. }
  1386. }
  1387. /*
  1388. * Slow path. The lockless freelist is empty or we need to perform
  1389. * debugging duties.
  1390. *
  1391. * Interrupts are disabled.
  1392. *
  1393. * Processing is still very fast if new objects have been freed to the
  1394. * regular freelist. In that case we simply take over the regular freelist
  1395. * as the lockless freelist and zap the regular freelist.
  1396. *
  1397. * If that is not working then we fall back to the partial lists. We take the
  1398. * first element of the freelist as the object to allocate now and move the
  1399. * rest of the freelist to the lockless freelist.
  1400. *
  1401. * And if we were unable to get a new slab from the partial slab lists then
  1402. * we need to allocate a new slab. This is the slowest path since it involves
  1403. * a call to the page allocator and the setup of a new slab.
  1404. */
  1405. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1406. unsigned long addr, struct kmem_cache_cpu *c)
  1407. {
  1408. void **object;
  1409. struct page *new;
  1410. /* We handle __GFP_ZERO in the caller */
  1411. gfpflags &= ~__GFP_ZERO;
  1412. if (!c->page)
  1413. goto new_slab;
  1414. slab_lock(c->page);
  1415. if (unlikely(!node_match(c, node)))
  1416. goto another_slab;
  1417. stat(s, ALLOC_REFILL);
  1418. load_freelist:
  1419. object = c->page->freelist;
  1420. if (unlikely(!object))
  1421. goto another_slab;
  1422. if (kmem_cache_debug(s))
  1423. goto debug;
  1424. c->freelist = get_freepointer(s, object);
  1425. c->page->inuse = c->page->objects;
  1426. c->page->freelist = NULL;
  1427. c->node = page_to_nid(c->page);
  1428. unlock_out:
  1429. slab_unlock(c->page);
  1430. stat(s, ALLOC_SLOWPATH);
  1431. return object;
  1432. another_slab:
  1433. deactivate_slab(s, c);
  1434. new_slab:
  1435. new = get_partial(s, gfpflags, node);
  1436. if (new) {
  1437. c->page = new;
  1438. stat(s, ALLOC_FROM_PARTIAL);
  1439. goto load_freelist;
  1440. }
  1441. gfpflags &= gfp_allowed_mask;
  1442. if (gfpflags & __GFP_WAIT)
  1443. local_irq_enable();
  1444. new = new_slab(s, gfpflags, node);
  1445. if (gfpflags & __GFP_WAIT)
  1446. local_irq_disable();
  1447. if (new) {
  1448. c = __this_cpu_ptr(s->cpu_slab);
  1449. stat(s, ALLOC_SLAB);
  1450. if (c->page)
  1451. flush_slab(s, c);
  1452. slab_lock(new);
  1453. __SetPageSlubFrozen(new);
  1454. c->page = new;
  1455. goto load_freelist;
  1456. }
  1457. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1458. slab_out_of_memory(s, gfpflags, node);
  1459. return NULL;
  1460. debug:
  1461. if (!alloc_debug_processing(s, c->page, object, addr))
  1462. goto another_slab;
  1463. c->page->inuse++;
  1464. c->page->freelist = get_freepointer(s, object);
  1465. c->node = NUMA_NO_NODE;
  1466. goto unlock_out;
  1467. }
  1468. /*
  1469. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1470. * have the fastpath folded into their functions. So no function call
  1471. * overhead for requests that can be satisfied on the fastpath.
  1472. *
  1473. * The fastpath works by first checking if the lockless freelist can be used.
  1474. * If not then __slab_alloc is called for slow processing.
  1475. *
  1476. * Otherwise we can simply pick the next object from the lockless free list.
  1477. */
  1478. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1479. gfp_t gfpflags, int node, unsigned long addr)
  1480. {
  1481. void **object;
  1482. struct kmem_cache_cpu *c;
  1483. unsigned long flags;
  1484. if (slab_pre_alloc_hook(s, gfpflags))
  1485. return NULL;
  1486. local_irq_save(flags);
  1487. c = __this_cpu_ptr(s->cpu_slab);
  1488. object = c->freelist;
  1489. if (unlikely(!object || !node_match(c, node)))
  1490. object = __slab_alloc(s, gfpflags, node, addr, c);
  1491. else {
  1492. c->freelist = get_freepointer(s, object);
  1493. stat(s, ALLOC_FASTPATH);
  1494. }
  1495. local_irq_restore(flags);
  1496. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1497. memset(object, 0, s->objsize);
  1498. slab_post_alloc_hook(s, gfpflags, object);
  1499. return object;
  1500. }
  1501. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1502. {
  1503. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1504. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1505. return ret;
  1506. }
  1507. EXPORT_SYMBOL(kmem_cache_alloc);
  1508. #ifdef CONFIG_TRACING
  1509. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  1510. {
  1511. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1512. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  1513. return ret;
  1514. }
  1515. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  1516. void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  1517. {
  1518. void *ret = kmalloc_order(size, flags, order);
  1519. trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
  1520. return ret;
  1521. }
  1522. EXPORT_SYMBOL(kmalloc_order_trace);
  1523. #endif
  1524. #ifdef CONFIG_NUMA
  1525. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1526. {
  1527. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1528. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1529. s->objsize, s->size, gfpflags, node);
  1530. return ret;
  1531. }
  1532. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1533. #ifdef CONFIG_TRACING
  1534. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  1535. gfp_t gfpflags,
  1536. int node, size_t size)
  1537. {
  1538. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1539. trace_kmalloc_node(_RET_IP_, ret,
  1540. size, s->size, gfpflags, node);
  1541. return ret;
  1542. }
  1543. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  1544. #endif
  1545. #endif
  1546. /*
  1547. * Slow patch handling. This may still be called frequently since objects
  1548. * have a longer lifetime than the cpu slabs in most processing loads.
  1549. *
  1550. * So we still attempt to reduce cache line usage. Just take the slab
  1551. * lock and free the item. If there is no additional partial page
  1552. * handling required then we can return immediately.
  1553. */
  1554. static void __slab_free(struct kmem_cache *s, struct page *page,
  1555. void *x, unsigned long addr)
  1556. {
  1557. void *prior;
  1558. void **object = (void *)x;
  1559. stat(s, FREE_SLOWPATH);
  1560. slab_lock(page);
  1561. if (kmem_cache_debug(s))
  1562. goto debug;
  1563. checks_ok:
  1564. prior = page->freelist;
  1565. set_freepointer(s, object, prior);
  1566. page->freelist = object;
  1567. page->inuse--;
  1568. if (unlikely(PageSlubFrozen(page))) {
  1569. stat(s, FREE_FROZEN);
  1570. goto out_unlock;
  1571. }
  1572. if (unlikely(!page->inuse))
  1573. goto slab_empty;
  1574. /*
  1575. * Objects left in the slab. If it was not on the partial list before
  1576. * then add it.
  1577. */
  1578. if (unlikely(!prior)) {
  1579. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1580. stat(s, FREE_ADD_PARTIAL);
  1581. }
  1582. out_unlock:
  1583. slab_unlock(page);
  1584. return;
  1585. slab_empty:
  1586. if (prior) {
  1587. /*
  1588. * Slab still on the partial list.
  1589. */
  1590. remove_partial(s, page);
  1591. stat(s, FREE_REMOVE_PARTIAL);
  1592. }
  1593. slab_unlock(page);
  1594. stat(s, FREE_SLAB);
  1595. discard_slab(s, page);
  1596. return;
  1597. debug:
  1598. if (!free_debug_processing(s, page, x, addr))
  1599. goto out_unlock;
  1600. goto checks_ok;
  1601. }
  1602. /*
  1603. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1604. * can perform fastpath freeing without additional function calls.
  1605. *
  1606. * The fastpath is only possible if we are freeing to the current cpu slab
  1607. * of this processor. This typically the case if we have just allocated
  1608. * the item before.
  1609. *
  1610. * If fastpath is not possible then fall back to __slab_free where we deal
  1611. * with all sorts of special processing.
  1612. */
  1613. static __always_inline void slab_free(struct kmem_cache *s,
  1614. struct page *page, void *x, unsigned long addr)
  1615. {
  1616. void **object = (void *)x;
  1617. struct kmem_cache_cpu *c;
  1618. unsigned long flags;
  1619. slab_free_hook(s, x);
  1620. local_irq_save(flags);
  1621. c = __this_cpu_ptr(s->cpu_slab);
  1622. slab_free_hook_irq(s, x);
  1623. if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
  1624. set_freepointer(s, object, c->freelist);
  1625. c->freelist = object;
  1626. stat(s, FREE_FASTPATH);
  1627. } else
  1628. __slab_free(s, page, x, addr);
  1629. local_irq_restore(flags);
  1630. }
  1631. void kmem_cache_free(struct kmem_cache *s, void *x)
  1632. {
  1633. struct page *page;
  1634. page = virt_to_head_page(x);
  1635. slab_free(s, page, x, _RET_IP_);
  1636. trace_kmem_cache_free(_RET_IP_, x);
  1637. }
  1638. EXPORT_SYMBOL(kmem_cache_free);
  1639. /*
  1640. * Object placement in a slab is made very easy because we always start at
  1641. * offset 0. If we tune the size of the object to the alignment then we can
  1642. * get the required alignment by putting one properly sized object after
  1643. * another.
  1644. *
  1645. * Notice that the allocation order determines the sizes of the per cpu
  1646. * caches. Each processor has always one slab available for allocations.
  1647. * Increasing the allocation order reduces the number of times that slabs
  1648. * must be moved on and off the partial lists and is therefore a factor in
  1649. * locking overhead.
  1650. */
  1651. /*
  1652. * Mininum / Maximum order of slab pages. This influences locking overhead
  1653. * and slab fragmentation. A higher order reduces the number of partial slabs
  1654. * and increases the number of allocations possible without having to
  1655. * take the list_lock.
  1656. */
  1657. static int slub_min_order;
  1658. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1659. static int slub_min_objects;
  1660. /*
  1661. * Merge control. If this is set then no merging of slab caches will occur.
  1662. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1663. */
  1664. static int slub_nomerge;
  1665. /*
  1666. * Calculate the order of allocation given an slab object size.
  1667. *
  1668. * The order of allocation has significant impact on performance and other
  1669. * system components. Generally order 0 allocations should be preferred since
  1670. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1671. * be problematic to put into order 0 slabs because there may be too much
  1672. * unused space left. We go to a higher order if more than 1/16th of the slab
  1673. * would be wasted.
  1674. *
  1675. * In order to reach satisfactory performance we must ensure that a minimum
  1676. * number of objects is in one slab. Otherwise we may generate too much
  1677. * activity on the partial lists which requires taking the list_lock. This is
  1678. * less a concern for large slabs though which are rarely used.
  1679. *
  1680. * slub_max_order specifies the order where we begin to stop considering the
  1681. * number of objects in a slab as critical. If we reach slub_max_order then
  1682. * we try to keep the page order as low as possible. So we accept more waste
  1683. * of space in favor of a small page order.
  1684. *
  1685. * Higher order allocations also allow the placement of more objects in a
  1686. * slab and thereby reduce object handling overhead. If the user has
  1687. * requested a higher mininum order then we start with that one instead of
  1688. * the smallest order which will fit the object.
  1689. */
  1690. static inline int slab_order(int size, int min_objects,
  1691. int max_order, int fract_leftover)
  1692. {
  1693. int order;
  1694. int rem;
  1695. int min_order = slub_min_order;
  1696. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1697. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1698. for (order = max(min_order,
  1699. fls(min_objects * size - 1) - PAGE_SHIFT);
  1700. order <= max_order; order++) {
  1701. unsigned long slab_size = PAGE_SIZE << order;
  1702. if (slab_size < min_objects * size)
  1703. continue;
  1704. rem = slab_size % size;
  1705. if (rem <= slab_size / fract_leftover)
  1706. break;
  1707. }
  1708. return order;
  1709. }
  1710. static inline int calculate_order(int size)
  1711. {
  1712. int order;
  1713. int min_objects;
  1714. int fraction;
  1715. int max_objects;
  1716. /*
  1717. * Attempt to find best configuration for a slab. This
  1718. * works by first attempting to generate a layout with
  1719. * the best configuration and backing off gradually.
  1720. *
  1721. * First we reduce the acceptable waste in a slab. Then
  1722. * we reduce the minimum objects required in a slab.
  1723. */
  1724. min_objects = slub_min_objects;
  1725. if (!min_objects)
  1726. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1727. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1728. min_objects = min(min_objects, max_objects);
  1729. while (min_objects > 1) {
  1730. fraction = 16;
  1731. while (fraction >= 4) {
  1732. order = slab_order(size, min_objects,
  1733. slub_max_order, fraction);
  1734. if (order <= slub_max_order)
  1735. return order;
  1736. fraction /= 2;
  1737. }
  1738. min_objects--;
  1739. }
  1740. /*
  1741. * We were unable to place multiple objects in a slab. Now
  1742. * lets see if we can place a single object there.
  1743. */
  1744. order = slab_order(size, 1, slub_max_order, 1);
  1745. if (order <= slub_max_order)
  1746. return order;
  1747. /*
  1748. * Doh this slab cannot be placed using slub_max_order.
  1749. */
  1750. order = slab_order(size, 1, MAX_ORDER, 1);
  1751. if (order < MAX_ORDER)
  1752. return order;
  1753. return -ENOSYS;
  1754. }
  1755. /*
  1756. * Figure out what the alignment of the objects will be.
  1757. */
  1758. static unsigned long calculate_alignment(unsigned long flags,
  1759. unsigned long align, unsigned long size)
  1760. {
  1761. /*
  1762. * If the user wants hardware cache aligned objects then follow that
  1763. * suggestion if the object is sufficiently large.
  1764. *
  1765. * The hardware cache alignment cannot override the specified
  1766. * alignment though. If that is greater then use it.
  1767. */
  1768. if (flags & SLAB_HWCACHE_ALIGN) {
  1769. unsigned long ralign = cache_line_size();
  1770. while (size <= ralign / 2)
  1771. ralign /= 2;
  1772. align = max(align, ralign);
  1773. }
  1774. if (align < ARCH_SLAB_MINALIGN)
  1775. align = ARCH_SLAB_MINALIGN;
  1776. return ALIGN(align, sizeof(void *));
  1777. }
  1778. static void
  1779. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1780. {
  1781. n->nr_partial = 0;
  1782. spin_lock_init(&n->list_lock);
  1783. INIT_LIST_HEAD(&n->partial);
  1784. #ifdef CONFIG_SLUB_DEBUG
  1785. atomic_long_set(&n->nr_slabs, 0);
  1786. atomic_long_set(&n->total_objects, 0);
  1787. INIT_LIST_HEAD(&n->full);
  1788. #endif
  1789. }
  1790. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1791. {
  1792. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1793. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1794. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1795. return s->cpu_slab != NULL;
  1796. }
  1797. static struct kmem_cache *kmem_cache_node;
  1798. /*
  1799. * No kmalloc_node yet so do it by hand. We know that this is the first
  1800. * slab on the node for this slabcache. There are no concurrent accesses
  1801. * possible.
  1802. *
  1803. * Note that this function only works on the kmalloc_node_cache
  1804. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1805. * memory on a fresh node that has no slab structures yet.
  1806. */
  1807. static void early_kmem_cache_node_alloc(int node)
  1808. {
  1809. struct page *page;
  1810. struct kmem_cache_node *n;
  1811. unsigned long flags;
  1812. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1813. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1814. BUG_ON(!page);
  1815. if (page_to_nid(page) != node) {
  1816. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1817. "node %d\n", node);
  1818. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1819. "in order to be able to continue\n");
  1820. }
  1821. n = page->freelist;
  1822. BUG_ON(!n);
  1823. page->freelist = get_freepointer(kmem_cache_node, n);
  1824. page->inuse++;
  1825. kmem_cache_node->node[node] = n;
  1826. #ifdef CONFIG_SLUB_DEBUG
  1827. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  1828. init_tracking(kmem_cache_node, n);
  1829. #endif
  1830. init_kmem_cache_node(n, kmem_cache_node);
  1831. inc_slabs_node(kmem_cache_node, node, page->objects);
  1832. /*
  1833. * lockdep requires consistent irq usage for each lock
  1834. * so even though there cannot be a race this early in
  1835. * the boot sequence, we still disable irqs.
  1836. */
  1837. local_irq_save(flags);
  1838. add_partial(n, page, 0);
  1839. local_irq_restore(flags);
  1840. }
  1841. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1842. {
  1843. int node;
  1844. for_each_node_state(node, N_NORMAL_MEMORY) {
  1845. struct kmem_cache_node *n = s->node[node];
  1846. if (n)
  1847. kmem_cache_free(kmem_cache_node, n);
  1848. s->node[node] = NULL;
  1849. }
  1850. }
  1851. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1852. {
  1853. int node;
  1854. for_each_node_state(node, N_NORMAL_MEMORY) {
  1855. struct kmem_cache_node *n;
  1856. if (slab_state == DOWN) {
  1857. early_kmem_cache_node_alloc(node);
  1858. continue;
  1859. }
  1860. n = kmem_cache_alloc_node(kmem_cache_node,
  1861. GFP_KERNEL, node);
  1862. if (!n) {
  1863. free_kmem_cache_nodes(s);
  1864. return 0;
  1865. }
  1866. s->node[node] = n;
  1867. init_kmem_cache_node(n, s);
  1868. }
  1869. return 1;
  1870. }
  1871. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1872. {
  1873. if (min < MIN_PARTIAL)
  1874. min = MIN_PARTIAL;
  1875. else if (min > MAX_PARTIAL)
  1876. min = MAX_PARTIAL;
  1877. s->min_partial = min;
  1878. }
  1879. /*
  1880. * calculate_sizes() determines the order and the distribution of data within
  1881. * a slab object.
  1882. */
  1883. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1884. {
  1885. unsigned long flags = s->flags;
  1886. unsigned long size = s->objsize;
  1887. unsigned long align = s->align;
  1888. int order;
  1889. /*
  1890. * Round up object size to the next word boundary. We can only
  1891. * place the free pointer at word boundaries and this determines
  1892. * the possible location of the free pointer.
  1893. */
  1894. size = ALIGN(size, sizeof(void *));
  1895. #ifdef CONFIG_SLUB_DEBUG
  1896. /*
  1897. * Determine if we can poison the object itself. If the user of
  1898. * the slab may touch the object after free or before allocation
  1899. * then we should never poison the object itself.
  1900. */
  1901. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1902. !s->ctor)
  1903. s->flags |= __OBJECT_POISON;
  1904. else
  1905. s->flags &= ~__OBJECT_POISON;
  1906. /*
  1907. * If we are Redzoning then check if there is some space between the
  1908. * end of the object and the free pointer. If not then add an
  1909. * additional word to have some bytes to store Redzone information.
  1910. */
  1911. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1912. size += sizeof(void *);
  1913. #endif
  1914. /*
  1915. * With that we have determined the number of bytes in actual use
  1916. * by the object. This is the potential offset to the free pointer.
  1917. */
  1918. s->inuse = size;
  1919. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1920. s->ctor)) {
  1921. /*
  1922. * Relocate free pointer after the object if it is not
  1923. * permitted to overwrite the first word of the object on
  1924. * kmem_cache_free.
  1925. *
  1926. * This is the case if we do RCU, have a constructor or
  1927. * destructor or are poisoning the objects.
  1928. */
  1929. s->offset = size;
  1930. size += sizeof(void *);
  1931. }
  1932. #ifdef CONFIG_SLUB_DEBUG
  1933. if (flags & SLAB_STORE_USER)
  1934. /*
  1935. * Need to store information about allocs and frees after
  1936. * the object.
  1937. */
  1938. size += 2 * sizeof(struct track);
  1939. if (flags & SLAB_RED_ZONE)
  1940. /*
  1941. * Add some empty padding so that we can catch
  1942. * overwrites from earlier objects rather than let
  1943. * tracking information or the free pointer be
  1944. * corrupted if a user writes before the start
  1945. * of the object.
  1946. */
  1947. size += sizeof(void *);
  1948. #endif
  1949. /*
  1950. * Determine the alignment based on various parameters that the
  1951. * user specified and the dynamic determination of cache line size
  1952. * on bootup.
  1953. */
  1954. align = calculate_alignment(flags, align, s->objsize);
  1955. s->align = align;
  1956. /*
  1957. * SLUB stores one object immediately after another beginning from
  1958. * offset 0. In order to align the objects we have to simply size
  1959. * each object to conform to the alignment.
  1960. */
  1961. size = ALIGN(size, align);
  1962. s->size = size;
  1963. if (forced_order >= 0)
  1964. order = forced_order;
  1965. else
  1966. order = calculate_order(size);
  1967. if (order < 0)
  1968. return 0;
  1969. s->allocflags = 0;
  1970. if (order)
  1971. s->allocflags |= __GFP_COMP;
  1972. if (s->flags & SLAB_CACHE_DMA)
  1973. s->allocflags |= SLUB_DMA;
  1974. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1975. s->allocflags |= __GFP_RECLAIMABLE;
  1976. /*
  1977. * Determine the number of objects per slab
  1978. */
  1979. s->oo = oo_make(order, size);
  1980. s->min = oo_make(get_order(size), size);
  1981. if (oo_objects(s->oo) > oo_objects(s->max))
  1982. s->max = s->oo;
  1983. return !!oo_objects(s->oo);
  1984. }
  1985. static int kmem_cache_open(struct kmem_cache *s,
  1986. const char *name, size_t size,
  1987. size_t align, unsigned long flags,
  1988. void (*ctor)(void *))
  1989. {
  1990. memset(s, 0, kmem_size);
  1991. s->name = name;
  1992. s->ctor = ctor;
  1993. s->objsize = size;
  1994. s->align = align;
  1995. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1996. if (!calculate_sizes(s, -1))
  1997. goto error;
  1998. if (disable_higher_order_debug) {
  1999. /*
  2000. * Disable debugging flags that store metadata if the min slab
  2001. * order increased.
  2002. */
  2003. if (get_order(s->size) > get_order(s->objsize)) {
  2004. s->flags &= ~DEBUG_METADATA_FLAGS;
  2005. s->offset = 0;
  2006. if (!calculate_sizes(s, -1))
  2007. goto error;
  2008. }
  2009. }
  2010. /*
  2011. * The larger the object size is, the more pages we want on the partial
  2012. * list to avoid pounding the page allocator excessively.
  2013. */
  2014. set_min_partial(s, ilog2(s->size));
  2015. s->refcount = 1;
  2016. #ifdef CONFIG_NUMA
  2017. s->remote_node_defrag_ratio = 1000;
  2018. #endif
  2019. if (!init_kmem_cache_nodes(s))
  2020. goto error;
  2021. if (alloc_kmem_cache_cpus(s))
  2022. return 1;
  2023. free_kmem_cache_nodes(s);
  2024. error:
  2025. if (flags & SLAB_PANIC)
  2026. panic("Cannot create slab %s size=%lu realsize=%u "
  2027. "order=%u offset=%u flags=%lx\n",
  2028. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2029. s->offset, flags);
  2030. return 0;
  2031. }
  2032. /*
  2033. * Determine the size of a slab object
  2034. */
  2035. unsigned int kmem_cache_size(struct kmem_cache *s)
  2036. {
  2037. return s->objsize;
  2038. }
  2039. EXPORT_SYMBOL(kmem_cache_size);
  2040. const char *kmem_cache_name(struct kmem_cache *s)
  2041. {
  2042. return s->name;
  2043. }
  2044. EXPORT_SYMBOL(kmem_cache_name);
  2045. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2046. const char *text)
  2047. {
  2048. #ifdef CONFIG_SLUB_DEBUG
  2049. void *addr = page_address(page);
  2050. void *p;
  2051. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2052. sizeof(long), GFP_ATOMIC);
  2053. if (!map)
  2054. return;
  2055. slab_err(s, page, "%s", text);
  2056. slab_lock(page);
  2057. for_each_free_object(p, s, page->freelist)
  2058. set_bit(slab_index(p, s, addr), map);
  2059. for_each_object(p, s, addr, page->objects) {
  2060. if (!test_bit(slab_index(p, s, addr), map)) {
  2061. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2062. p, p - addr);
  2063. print_tracking(s, p);
  2064. }
  2065. }
  2066. slab_unlock(page);
  2067. kfree(map);
  2068. #endif
  2069. }
  2070. /*
  2071. * Attempt to free all partial slabs on a node.
  2072. */
  2073. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2074. {
  2075. unsigned long flags;
  2076. struct page *page, *h;
  2077. spin_lock_irqsave(&n->list_lock, flags);
  2078. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2079. if (!page->inuse) {
  2080. __remove_partial(n, page);
  2081. discard_slab(s, page);
  2082. } else {
  2083. list_slab_objects(s, page,
  2084. "Objects remaining on kmem_cache_close()");
  2085. }
  2086. }
  2087. spin_unlock_irqrestore(&n->list_lock, flags);
  2088. }
  2089. /*
  2090. * Release all resources used by a slab cache.
  2091. */
  2092. static inline int kmem_cache_close(struct kmem_cache *s)
  2093. {
  2094. int node;
  2095. flush_all(s);
  2096. free_percpu(s->cpu_slab);
  2097. /* Attempt to free all objects */
  2098. for_each_node_state(node, N_NORMAL_MEMORY) {
  2099. struct kmem_cache_node *n = get_node(s, node);
  2100. free_partial(s, n);
  2101. if (n->nr_partial || slabs_node(s, node))
  2102. return 1;
  2103. }
  2104. free_kmem_cache_nodes(s);
  2105. return 0;
  2106. }
  2107. /*
  2108. * Close a cache and release the kmem_cache structure
  2109. * (must be used for caches created using kmem_cache_create)
  2110. */
  2111. void kmem_cache_destroy(struct kmem_cache *s)
  2112. {
  2113. down_write(&slub_lock);
  2114. s->refcount--;
  2115. if (!s->refcount) {
  2116. list_del(&s->list);
  2117. if (kmem_cache_close(s)) {
  2118. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2119. "still has objects.\n", s->name, __func__);
  2120. dump_stack();
  2121. }
  2122. if (s->flags & SLAB_DESTROY_BY_RCU)
  2123. rcu_barrier();
  2124. sysfs_slab_remove(s);
  2125. }
  2126. up_write(&slub_lock);
  2127. }
  2128. EXPORT_SYMBOL(kmem_cache_destroy);
  2129. /********************************************************************
  2130. * Kmalloc subsystem
  2131. *******************************************************************/
  2132. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2133. EXPORT_SYMBOL(kmalloc_caches);
  2134. static struct kmem_cache *kmem_cache;
  2135. #ifdef CONFIG_ZONE_DMA
  2136. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2137. #endif
  2138. static int __init setup_slub_min_order(char *str)
  2139. {
  2140. get_option(&str, &slub_min_order);
  2141. return 1;
  2142. }
  2143. __setup("slub_min_order=", setup_slub_min_order);
  2144. static int __init setup_slub_max_order(char *str)
  2145. {
  2146. get_option(&str, &slub_max_order);
  2147. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2148. return 1;
  2149. }
  2150. __setup("slub_max_order=", setup_slub_max_order);
  2151. static int __init setup_slub_min_objects(char *str)
  2152. {
  2153. get_option(&str, &slub_min_objects);
  2154. return 1;
  2155. }
  2156. __setup("slub_min_objects=", setup_slub_min_objects);
  2157. static int __init setup_slub_nomerge(char *str)
  2158. {
  2159. slub_nomerge = 1;
  2160. return 1;
  2161. }
  2162. __setup("slub_nomerge", setup_slub_nomerge);
  2163. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2164. int size, unsigned int flags)
  2165. {
  2166. struct kmem_cache *s;
  2167. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2168. /*
  2169. * This function is called with IRQs disabled during early-boot on
  2170. * single CPU so there's no need to take slub_lock here.
  2171. */
  2172. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2173. flags, NULL))
  2174. goto panic;
  2175. list_add(&s->list, &slab_caches);
  2176. return s;
  2177. panic:
  2178. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2179. return NULL;
  2180. }
  2181. /*
  2182. * Conversion table for small slabs sizes / 8 to the index in the
  2183. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2184. * of two cache sizes there. The size of larger slabs can be determined using
  2185. * fls.
  2186. */
  2187. static s8 size_index[24] = {
  2188. 3, /* 8 */
  2189. 4, /* 16 */
  2190. 5, /* 24 */
  2191. 5, /* 32 */
  2192. 6, /* 40 */
  2193. 6, /* 48 */
  2194. 6, /* 56 */
  2195. 6, /* 64 */
  2196. 1, /* 72 */
  2197. 1, /* 80 */
  2198. 1, /* 88 */
  2199. 1, /* 96 */
  2200. 7, /* 104 */
  2201. 7, /* 112 */
  2202. 7, /* 120 */
  2203. 7, /* 128 */
  2204. 2, /* 136 */
  2205. 2, /* 144 */
  2206. 2, /* 152 */
  2207. 2, /* 160 */
  2208. 2, /* 168 */
  2209. 2, /* 176 */
  2210. 2, /* 184 */
  2211. 2 /* 192 */
  2212. };
  2213. static inline int size_index_elem(size_t bytes)
  2214. {
  2215. return (bytes - 1) / 8;
  2216. }
  2217. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2218. {
  2219. int index;
  2220. if (size <= 192) {
  2221. if (!size)
  2222. return ZERO_SIZE_PTR;
  2223. index = size_index[size_index_elem(size)];
  2224. } else
  2225. index = fls(size - 1);
  2226. #ifdef CONFIG_ZONE_DMA
  2227. if (unlikely((flags & SLUB_DMA)))
  2228. return kmalloc_dma_caches[index];
  2229. #endif
  2230. return kmalloc_caches[index];
  2231. }
  2232. void *__kmalloc(size_t size, gfp_t flags)
  2233. {
  2234. struct kmem_cache *s;
  2235. void *ret;
  2236. if (unlikely(size > SLUB_MAX_SIZE))
  2237. return kmalloc_large(size, flags);
  2238. s = get_slab(size, flags);
  2239. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2240. return s;
  2241. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2242. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2243. return ret;
  2244. }
  2245. EXPORT_SYMBOL(__kmalloc);
  2246. #ifdef CONFIG_NUMA
  2247. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2248. {
  2249. struct page *page;
  2250. void *ptr = NULL;
  2251. flags |= __GFP_COMP | __GFP_NOTRACK;
  2252. page = alloc_pages_node(node, flags, get_order(size));
  2253. if (page)
  2254. ptr = page_address(page);
  2255. kmemleak_alloc(ptr, size, 1, flags);
  2256. return ptr;
  2257. }
  2258. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2259. {
  2260. struct kmem_cache *s;
  2261. void *ret;
  2262. if (unlikely(size > SLUB_MAX_SIZE)) {
  2263. ret = kmalloc_large_node(size, flags, node);
  2264. trace_kmalloc_node(_RET_IP_, ret,
  2265. size, PAGE_SIZE << get_order(size),
  2266. flags, node);
  2267. return ret;
  2268. }
  2269. s = get_slab(size, flags);
  2270. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2271. return s;
  2272. ret = slab_alloc(s, flags, node, _RET_IP_);
  2273. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2274. return ret;
  2275. }
  2276. EXPORT_SYMBOL(__kmalloc_node);
  2277. #endif
  2278. size_t ksize(const void *object)
  2279. {
  2280. struct page *page;
  2281. struct kmem_cache *s;
  2282. if (unlikely(object == ZERO_SIZE_PTR))
  2283. return 0;
  2284. page = virt_to_head_page(object);
  2285. if (unlikely(!PageSlab(page))) {
  2286. WARN_ON(!PageCompound(page));
  2287. return PAGE_SIZE << compound_order(page);
  2288. }
  2289. s = page->slab;
  2290. #ifdef CONFIG_SLUB_DEBUG
  2291. /*
  2292. * Debugging requires use of the padding between object
  2293. * and whatever may come after it.
  2294. */
  2295. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2296. return s->objsize;
  2297. #endif
  2298. /*
  2299. * If we have the need to store the freelist pointer
  2300. * back there or track user information then we can
  2301. * only use the space before that information.
  2302. */
  2303. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2304. return s->inuse;
  2305. /*
  2306. * Else we can use all the padding etc for the allocation
  2307. */
  2308. return s->size;
  2309. }
  2310. EXPORT_SYMBOL(ksize);
  2311. void kfree(const void *x)
  2312. {
  2313. struct page *page;
  2314. void *object = (void *)x;
  2315. trace_kfree(_RET_IP_, x);
  2316. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2317. return;
  2318. page = virt_to_head_page(x);
  2319. if (unlikely(!PageSlab(page))) {
  2320. BUG_ON(!PageCompound(page));
  2321. kmemleak_free(x);
  2322. put_page(page);
  2323. return;
  2324. }
  2325. slab_free(page->slab, page, object, _RET_IP_);
  2326. }
  2327. EXPORT_SYMBOL(kfree);
  2328. /*
  2329. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2330. * the remaining slabs by the number of items in use. The slabs with the
  2331. * most items in use come first. New allocations will then fill those up
  2332. * and thus they can be removed from the partial lists.
  2333. *
  2334. * The slabs with the least items are placed last. This results in them
  2335. * being allocated from last increasing the chance that the last objects
  2336. * are freed in them.
  2337. */
  2338. int kmem_cache_shrink(struct kmem_cache *s)
  2339. {
  2340. int node;
  2341. int i;
  2342. struct kmem_cache_node *n;
  2343. struct page *page;
  2344. struct page *t;
  2345. int objects = oo_objects(s->max);
  2346. struct list_head *slabs_by_inuse =
  2347. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2348. unsigned long flags;
  2349. if (!slabs_by_inuse)
  2350. return -ENOMEM;
  2351. flush_all(s);
  2352. for_each_node_state(node, N_NORMAL_MEMORY) {
  2353. n = get_node(s, node);
  2354. if (!n->nr_partial)
  2355. continue;
  2356. for (i = 0; i < objects; i++)
  2357. INIT_LIST_HEAD(slabs_by_inuse + i);
  2358. spin_lock_irqsave(&n->list_lock, flags);
  2359. /*
  2360. * Build lists indexed by the items in use in each slab.
  2361. *
  2362. * Note that concurrent frees may occur while we hold the
  2363. * list_lock. page->inuse here is the upper limit.
  2364. */
  2365. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2366. if (!page->inuse && slab_trylock(page)) {
  2367. /*
  2368. * Must hold slab lock here because slab_free
  2369. * may have freed the last object and be
  2370. * waiting to release the slab.
  2371. */
  2372. __remove_partial(n, page);
  2373. slab_unlock(page);
  2374. discard_slab(s, page);
  2375. } else {
  2376. list_move(&page->lru,
  2377. slabs_by_inuse + page->inuse);
  2378. }
  2379. }
  2380. /*
  2381. * Rebuild the partial list with the slabs filled up most
  2382. * first and the least used slabs at the end.
  2383. */
  2384. for (i = objects - 1; i >= 0; i--)
  2385. list_splice(slabs_by_inuse + i, n->partial.prev);
  2386. spin_unlock_irqrestore(&n->list_lock, flags);
  2387. }
  2388. kfree(slabs_by_inuse);
  2389. return 0;
  2390. }
  2391. EXPORT_SYMBOL(kmem_cache_shrink);
  2392. #if defined(CONFIG_MEMORY_HOTPLUG)
  2393. static int slab_mem_going_offline_callback(void *arg)
  2394. {
  2395. struct kmem_cache *s;
  2396. down_read(&slub_lock);
  2397. list_for_each_entry(s, &slab_caches, list)
  2398. kmem_cache_shrink(s);
  2399. up_read(&slub_lock);
  2400. return 0;
  2401. }
  2402. static void slab_mem_offline_callback(void *arg)
  2403. {
  2404. struct kmem_cache_node *n;
  2405. struct kmem_cache *s;
  2406. struct memory_notify *marg = arg;
  2407. int offline_node;
  2408. offline_node = marg->status_change_nid;
  2409. /*
  2410. * If the node still has available memory. we need kmem_cache_node
  2411. * for it yet.
  2412. */
  2413. if (offline_node < 0)
  2414. return;
  2415. down_read(&slub_lock);
  2416. list_for_each_entry(s, &slab_caches, list) {
  2417. n = get_node(s, offline_node);
  2418. if (n) {
  2419. /*
  2420. * if n->nr_slabs > 0, slabs still exist on the node
  2421. * that is going down. We were unable to free them,
  2422. * and offline_pages() function shouldn't call this
  2423. * callback. So, we must fail.
  2424. */
  2425. BUG_ON(slabs_node(s, offline_node));
  2426. s->node[offline_node] = NULL;
  2427. kmem_cache_free(kmem_cache_node, n);
  2428. }
  2429. }
  2430. up_read(&slub_lock);
  2431. }
  2432. static int slab_mem_going_online_callback(void *arg)
  2433. {
  2434. struct kmem_cache_node *n;
  2435. struct kmem_cache *s;
  2436. struct memory_notify *marg = arg;
  2437. int nid = marg->status_change_nid;
  2438. int ret = 0;
  2439. /*
  2440. * If the node's memory is already available, then kmem_cache_node is
  2441. * already created. Nothing to do.
  2442. */
  2443. if (nid < 0)
  2444. return 0;
  2445. /*
  2446. * We are bringing a node online. No memory is available yet. We must
  2447. * allocate a kmem_cache_node structure in order to bring the node
  2448. * online.
  2449. */
  2450. down_read(&slub_lock);
  2451. list_for_each_entry(s, &slab_caches, list) {
  2452. /*
  2453. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2454. * since memory is not yet available from the node that
  2455. * is brought up.
  2456. */
  2457. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2458. if (!n) {
  2459. ret = -ENOMEM;
  2460. goto out;
  2461. }
  2462. init_kmem_cache_node(n, s);
  2463. s->node[nid] = n;
  2464. }
  2465. out:
  2466. up_read(&slub_lock);
  2467. return ret;
  2468. }
  2469. static int slab_memory_callback(struct notifier_block *self,
  2470. unsigned long action, void *arg)
  2471. {
  2472. int ret = 0;
  2473. switch (action) {
  2474. case MEM_GOING_ONLINE:
  2475. ret = slab_mem_going_online_callback(arg);
  2476. break;
  2477. case MEM_GOING_OFFLINE:
  2478. ret = slab_mem_going_offline_callback(arg);
  2479. break;
  2480. case MEM_OFFLINE:
  2481. case MEM_CANCEL_ONLINE:
  2482. slab_mem_offline_callback(arg);
  2483. break;
  2484. case MEM_ONLINE:
  2485. case MEM_CANCEL_OFFLINE:
  2486. break;
  2487. }
  2488. if (ret)
  2489. ret = notifier_from_errno(ret);
  2490. else
  2491. ret = NOTIFY_OK;
  2492. return ret;
  2493. }
  2494. #endif /* CONFIG_MEMORY_HOTPLUG */
  2495. /********************************************************************
  2496. * Basic setup of slabs
  2497. *******************************************************************/
  2498. /*
  2499. * Used for early kmem_cache structures that were allocated using
  2500. * the page allocator
  2501. */
  2502. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2503. {
  2504. int node;
  2505. list_add(&s->list, &slab_caches);
  2506. s->refcount = -1;
  2507. for_each_node_state(node, N_NORMAL_MEMORY) {
  2508. struct kmem_cache_node *n = get_node(s, node);
  2509. struct page *p;
  2510. if (n) {
  2511. list_for_each_entry(p, &n->partial, lru)
  2512. p->slab = s;
  2513. #ifdef CONFIG_SLAB_DEBUG
  2514. list_for_each_entry(p, &n->full, lru)
  2515. p->slab = s;
  2516. #endif
  2517. }
  2518. }
  2519. }
  2520. void __init kmem_cache_init(void)
  2521. {
  2522. int i;
  2523. int caches = 0;
  2524. struct kmem_cache *temp_kmem_cache;
  2525. int order;
  2526. struct kmem_cache *temp_kmem_cache_node;
  2527. unsigned long kmalloc_size;
  2528. kmem_size = offsetof(struct kmem_cache, node) +
  2529. nr_node_ids * sizeof(struct kmem_cache_node *);
  2530. /* Allocate two kmem_caches from the page allocator */
  2531. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2532. order = get_order(2 * kmalloc_size);
  2533. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2534. /*
  2535. * Must first have the slab cache available for the allocations of the
  2536. * struct kmem_cache_node's. There is special bootstrap code in
  2537. * kmem_cache_open for slab_state == DOWN.
  2538. */
  2539. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2540. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2541. sizeof(struct kmem_cache_node),
  2542. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2543. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2544. /* Able to allocate the per node structures */
  2545. slab_state = PARTIAL;
  2546. temp_kmem_cache = kmem_cache;
  2547. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2548. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2549. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2550. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2551. /*
  2552. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2553. * kmem_cache_node is separately allocated so no need to
  2554. * update any list pointers.
  2555. */
  2556. temp_kmem_cache_node = kmem_cache_node;
  2557. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2558. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2559. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2560. caches++;
  2561. kmem_cache_bootstrap_fixup(kmem_cache);
  2562. caches++;
  2563. /* Free temporary boot structure */
  2564. free_pages((unsigned long)temp_kmem_cache, order);
  2565. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2566. /*
  2567. * Patch up the size_index table if we have strange large alignment
  2568. * requirements for the kmalloc array. This is only the case for
  2569. * MIPS it seems. The standard arches will not generate any code here.
  2570. *
  2571. * Largest permitted alignment is 256 bytes due to the way we
  2572. * handle the index determination for the smaller caches.
  2573. *
  2574. * Make sure that nothing crazy happens if someone starts tinkering
  2575. * around with ARCH_KMALLOC_MINALIGN
  2576. */
  2577. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2578. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2579. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2580. int elem = size_index_elem(i);
  2581. if (elem >= ARRAY_SIZE(size_index))
  2582. break;
  2583. size_index[elem] = KMALLOC_SHIFT_LOW;
  2584. }
  2585. if (KMALLOC_MIN_SIZE == 64) {
  2586. /*
  2587. * The 96 byte size cache is not used if the alignment
  2588. * is 64 byte.
  2589. */
  2590. for (i = 64 + 8; i <= 96; i += 8)
  2591. size_index[size_index_elem(i)] = 7;
  2592. } else if (KMALLOC_MIN_SIZE == 128) {
  2593. /*
  2594. * The 192 byte sized cache is not used if the alignment
  2595. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2596. * instead.
  2597. */
  2598. for (i = 128 + 8; i <= 192; i += 8)
  2599. size_index[size_index_elem(i)] = 8;
  2600. }
  2601. /* Caches that are not of the two-to-the-power-of size */
  2602. if (KMALLOC_MIN_SIZE <= 32) {
  2603. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2604. caches++;
  2605. }
  2606. if (KMALLOC_MIN_SIZE <= 64) {
  2607. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2608. caches++;
  2609. }
  2610. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2611. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2612. caches++;
  2613. }
  2614. slab_state = UP;
  2615. /* Provide the correct kmalloc names now that the caches are up */
  2616. if (KMALLOC_MIN_SIZE <= 32) {
  2617. kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
  2618. BUG_ON(!kmalloc_caches[1]->name);
  2619. }
  2620. if (KMALLOC_MIN_SIZE <= 64) {
  2621. kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
  2622. BUG_ON(!kmalloc_caches[2]->name);
  2623. }
  2624. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2625. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2626. BUG_ON(!s);
  2627. kmalloc_caches[i]->name = s;
  2628. }
  2629. #ifdef CONFIG_SMP
  2630. register_cpu_notifier(&slab_notifier);
  2631. #endif
  2632. #ifdef CONFIG_ZONE_DMA
  2633. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2634. struct kmem_cache *s = kmalloc_caches[i];
  2635. if (s && s->size) {
  2636. char *name = kasprintf(GFP_NOWAIT,
  2637. "dma-kmalloc-%d", s->objsize);
  2638. BUG_ON(!name);
  2639. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2640. s->objsize, SLAB_CACHE_DMA);
  2641. }
  2642. }
  2643. #endif
  2644. printk(KERN_INFO
  2645. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2646. " CPUs=%d, Nodes=%d\n",
  2647. caches, cache_line_size(),
  2648. slub_min_order, slub_max_order, slub_min_objects,
  2649. nr_cpu_ids, nr_node_ids);
  2650. }
  2651. void __init kmem_cache_init_late(void)
  2652. {
  2653. }
  2654. /*
  2655. * Find a mergeable slab cache
  2656. */
  2657. static int slab_unmergeable(struct kmem_cache *s)
  2658. {
  2659. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2660. return 1;
  2661. if (s->ctor)
  2662. return 1;
  2663. /*
  2664. * We may have set a slab to be unmergeable during bootstrap.
  2665. */
  2666. if (s->refcount < 0)
  2667. return 1;
  2668. return 0;
  2669. }
  2670. static struct kmem_cache *find_mergeable(size_t size,
  2671. size_t align, unsigned long flags, const char *name,
  2672. void (*ctor)(void *))
  2673. {
  2674. struct kmem_cache *s;
  2675. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2676. return NULL;
  2677. if (ctor)
  2678. return NULL;
  2679. size = ALIGN(size, sizeof(void *));
  2680. align = calculate_alignment(flags, align, size);
  2681. size = ALIGN(size, align);
  2682. flags = kmem_cache_flags(size, flags, name, NULL);
  2683. list_for_each_entry(s, &slab_caches, list) {
  2684. if (slab_unmergeable(s))
  2685. continue;
  2686. if (size > s->size)
  2687. continue;
  2688. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2689. continue;
  2690. /*
  2691. * Check if alignment is compatible.
  2692. * Courtesy of Adrian Drzewiecki
  2693. */
  2694. if ((s->size & ~(align - 1)) != s->size)
  2695. continue;
  2696. if (s->size - size >= sizeof(void *))
  2697. continue;
  2698. return s;
  2699. }
  2700. return NULL;
  2701. }
  2702. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2703. size_t align, unsigned long flags, void (*ctor)(void *))
  2704. {
  2705. struct kmem_cache *s;
  2706. char *n;
  2707. if (WARN_ON(!name))
  2708. return NULL;
  2709. down_write(&slub_lock);
  2710. s = find_mergeable(size, align, flags, name, ctor);
  2711. if (s) {
  2712. s->refcount++;
  2713. /*
  2714. * Adjust the object sizes so that we clear
  2715. * the complete object on kzalloc.
  2716. */
  2717. s->objsize = max(s->objsize, (int)size);
  2718. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2719. if (sysfs_slab_alias(s, name)) {
  2720. s->refcount--;
  2721. goto err;
  2722. }
  2723. up_write(&slub_lock);
  2724. return s;
  2725. }
  2726. n = kstrdup(name, GFP_KERNEL);
  2727. if (!n)
  2728. goto err;
  2729. s = kmalloc(kmem_size, GFP_KERNEL);
  2730. if (s) {
  2731. if (kmem_cache_open(s, n,
  2732. size, align, flags, ctor)) {
  2733. list_add(&s->list, &slab_caches);
  2734. if (sysfs_slab_add(s)) {
  2735. list_del(&s->list);
  2736. kfree(n);
  2737. kfree(s);
  2738. goto err;
  2739. }
  2740. up_write(&slub_lock);
  2741. return s;
  2742. }
  2743. kfree(n);
  2744. kfree(s);
  2745. }
  2746. err:
  2747. up_write(&slub_lock);
  2748. if (flags & SLAB_PANIC)
  2749. panic("Cannot create slabcache %s\n", name);
  2750. else
  2751. s = NULL;
  2752. return s;
  2753. }
  2754. EXPORT_SYMBOL(kmem_cache_create);
  2755. #ifdef CONFIG_SMP
  2756. /*
  2757. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2758. * necessary.
  2759. */
  2760. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2761. unsigned long action, void *hcpu)
  2762. {
  2763. long cpu = (long)hcpu;
  2764. struct kmem_cache *s;
  2765. unsigned long flags;
  2766. switch (action) {
  2767. case CPU_UP_CANCELED:
  2768. case CPU_UP_CANCELED_FROZEN:
  2769. case CPU_DEAD:
  2770. case CPU_DEAD_FROZEN:
  2771. down_read(&slub_lock);
  2772. list_for_each_entry(s, &slab_caches, list) {
  2773. local_irq_save(flags);
  2774. __flush_cpu_slab(s, cpu);
  2775. local_irq_restore(flags);
  2776. }
  2777. up_read(&slub_lock);
  2778. break;
  2779. default:
  2780. break;
  2781. }
  2782. return NOTIFY_OK;
  2783. }
  2784. static struct notifier_block __cpuinitdata slab_notifier = {
  2785. .notifier_call = slab_cpuup_callback
  2786. };
  2787. #endif
  2788. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2789. {
  2790. struct kmem_cache *s;
  2791. void *ret;
  2792. if (unlikely(size > SLUB_MAX_SIZE))
  2793. return kmalloc_large(size, gfpflags);
  2794. s = get_slab(size, gfpflags);
  2795. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2796. return s;
  2797. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2798. /* Honor the call site pointer we recieved. */
  2799. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2800. return ret;
  2801. }
  2802. #ifdef CONFIG_NUMA
  2803. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2804. int node, unsigned long caller)
  2805. {
  2806. struct kmem_cache *s;
  2807. void *ret;
  2808. if (unlikely(size > SLUB_MAX_SIZE)) {
  2809. ret = kmalloc_large_node(size, gfpflags, node);
  2810. trace_kmalloc_node(caller, ret,
  2811. size, PAGE_SIZE << get_order(size),
  2812. gfpflags, node);
  2813. return ret;
  2814. }
  2815. s = get_slab(size, gfpflags);
  2816. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2817. return s;
  2818. ret = slab_alloc(s, gfpflags, node, caller);
  2819. /* Honor the call site pointer we recieved. */
  2820. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2821. return ret;
  2822. }
  2823. #endif
  2824. #ifdef CONFIG_SYSFS
  2825. static int count_inuse(struct page *page)
  2826. {
  2827. return page->inuse;
  2828. }
  2829. static int count_total(struct page *page)
  2830. {
  2831. return page->objects;
  2832. }
  2833. #endif
  2834. #ifdef CONFIG_SLUB_DEBUG
  2835. static int validate_slab(struct kmem_cache *s, struct page *page,
  2836. unsigned long *map)
  2837. {
  2838. void *p;
  2839. void *addr = page_address(page);
  2840. if (!check_slab(s, page) ||
  2841. !on_freelist(s, page, NULL))
  2842. return 0;
  2843. /* Now we know that a valid freelist exists */
  2844. bitmap_zero(map, page->objects);
  2845. for_each_free_object(p, s, page->freelist) {
  2846. set_bit(slab_index(p, s, addr), map);
  2847. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  2848. return 0;
  2849. }
  2850. for_each_object(p, s, addr, page->objects)
  2851. if (!test_bit(slab_index(p, s, addr), map))
  2852. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  2853. return 0;
  2854. return 1;
  2855. }
  2856. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2857. unsigned long *map)
  2858. {
  2859. if (slab_trylock(page)) {
  2860. validate_slab(s, page, map);
  2861. slab_unlock(page);
  2862. } else
  2863. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2864. s->name, page);
  2865. }
  2866. static int validate_slab_node(struct kmem_cache *s,
  2867. struct kmem_cache_node *n, unsigned long *map)
  2868. {
  2869. unsigned long count = 0;
  2870. struct page *page;
  2871. unsigned long flags;
  2872. spin_lock_irqsave(&n->list_lock, flags);
  2873. list_for_each_entry(page, &n->partial, lru) {
  2874. validate_slab_slab(s, page, map);
  2875. count++;
  2876. }
  2877. if (count != n->nr_partial)
  2878. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2879. "counter=%ld\n", s->name, count, n->nr_partial);
  2880. if (!(s->flags & SLAB_STORE_USER))
  2881. goto out;
  2882. list_for_each_entry(page, &n->full, lru) {
  2883. validate_slab_slab(s, page, map);
  2884. count++;
  2885. }
  2886. if (count != atomic_long_read(&n->nr_slabs))
  2887. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2888. "counter=%ld\n", s->name, count,
  2889. atomic_long_read(&n->nr_slabs));
  2890. out:
  2891. spin_unlock_irqrestore(&n->list_lock, flags);
  2892. return count;
  2893. }
  2894. static long validate_slab_cache(struct kmem_cache *s)
  2895. {
  2896. int node;
  2897. unsigned long count = 0;
  2898. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2899. sizeof(unsigned long), GFP_KERNEL);
  2900. if (!map)
  2901. return -ENOMEM;
  2902. flush_all(s);
  2903. for_each_node_state(node, N_NORMAL_MEMORY) {
  2904. struct kmem_cache_node *n = get_node(s, node);
  2905. count += validate_slab_node(s, n, map);
  2906. }
  2907. kfree(map);
  2908. return count;
  2909. }
  2910. /*
  2911. * Generate lists of code addresses where slabcache objects are allocated
  2912. * and freed.
  2913. */
  2914. struct location {
  2915. unsigned long count;
  2916. unsigned long addr;
  2917. long long sum_time;
  2918. long min_time;
  2919. long max_time;
  2920. long min_pid;
  2921. long max_pid;
  2922. DECLARE_BITMAP(cpus, NR_CPUS);
  2923. nodemask_t nodes;
  2924. };
  2925. struct loc_track {
  2926. unsigned long max;
  2927. unsigned long count;
  2928. struct location *loc;
  2929. };
  2930. static void free_loc_track(struct loc_track *t)
  2931. {
  2932. if (t->max)
  2933. free_pages((unsigned long)t->loc,
  2934. get_order(sizeof(struct location) * t->max));
  2935. }
  2936. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2937. {
  2938. struct location *l;
  2939. int order;
  2940. order = get_order(sizeof(struct location) * max);
  2941. l = (void *)__get_free_pages(flags, order);
  2942. if (!l)
  2943. return 0;
  2944. if (t->count) {
  2945. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2946. free_loc_track(t);
  2947. }
  2948. t->max = max;
  2949. t->loc = l;
  2950. return 1;
  2951. }
  2952. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2953. const struct track *track)
  2954. {
  2955. long start, end, pos;
  2956. struct location *l;
  2957. unsigned long caddr;
  2958. unsigned long age = jiffies - track->when;
  2959. start = -1;
  2960. end = t->count;
  2961. for ( ; ; ) {
  2962. pos = start + (end - start + 1) / 2;
  2963. /*
  2964. * There is nothing at "end". If we end up there
  2965. * we need to add something to before end.
  2966. */
  2967. if (pos == end)
  2968. break;
  2969. caddr = t->loc[pos].addr;
  2970. if (track->addr == caddr) {
  2971. l = &t->loc[pos];
  2972. l->count++;
  2973. if (track->when) {
  2974. l->sum_time += age;
  2975. if (age < l->min_time)
  2976. l->min_time = age;
  2977. if (age > l->max_time)
  2978. l->max_time = age;
  2979. if (track->pid < l->min_pid)
  2980. l->min_pid = track->pid;
  2981. if (track->pid > l->max_pid)
  2982. l->max_pid = track->pid;
  2983. cpumask_set_cpu(track->cpu,
  2984. to_cpumask(l->cpus));
  2985. }
  2986. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2987. return 1;
  2988. }
  2989. if (track->addr < caddr)
  2990. end = pos;
  2991. else
  2992. start = pos;
  2993. }
  2994. /*
  2995. * Not found. Insert new tracking element.
  2996. */
  2997. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2998. return 0;
  2999. l = t->loc + pos;
  3000. if (pos < t->count)
  3001. memmove(l + 1, l,
  3002. (t->count - pos) * sizeof(struct location));
  3003. t->count++;
  3004. l->count = 1;
  3005. l->addr = track->addr;
  3006. l->sum_time = age;
  3007. l->min_time = age;
  3008. l->max_time = age;
  3009. l->min_pid = track->pid;
  3010. l->max_pid = track->pid;
  3011. cpumask_clear(to_cpumask(l->cpus));
  3012. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3013. nodes_clear(l->nodes);
  3014. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3015. return 1;
  3016. }
  3017. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3018. struct page *page, enum track_item alloc,
  3019. unsigned long *map)
  3020. {
  3021. void *addr = page_address(page);
  3022. void *p;
  3023. bitmap_zero(map, page->objects);
  3024. for_each_free_object(p, s, page->freelist)
  3025. set_bit(slab_index(p, s, addr), map);
  3026. for_each_object(p, s, addr, page->objects)
  3027. if (!test_bit(slab_index(p, s, addr), map))
  3028. add_location(t, s, get_track(s, p, alloc));
  3029. }
  3030. static int list_locations(struct kmem_cache *s, char *buf,
  3031. enum track_item alloc)
  3032. {
  3033. int len = 0;
  3034. unsigned long i;
  3035. struct loc_track t = { 0, 0, NULL };
  3036. int node;
  3037. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3038. sizeof(unsigned long), GFP_KERNEL);
  3039. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3040. GFP_TEMPORARY)) {
  3041. kfree(map);
  3042. return sprintf(buf, "Out of memory\n");
  3043. }
  3044. /* Push back cpu slabs */
  3045. flush_all(s);
  3046. for_each_node_state(node, N_NORMAL_MEMORY) {
  3047. struct kmem_cache_node *n = get_node(s, node);
  3048. unsigned long flags;
  3049. struct page *page;
  3050. if (!atomic_long_read(&n->nr_slabs))
  3051. continue;
  3052. spin_lock_irqsave(&n->list_lock, flags);
  3053. list_for_each_entry(page, &n->partial, lru)
  3054. process_slab(&t, s, page, alloc, map);
  3055. list_for_each_entry(page, &n->full, lru)
  3056. process_slab(&t, s, page, alloc, map);
  3057. spin_unlock_irqrestore(&n->list_lock, flags);
  3058. }
  3059. for (i = 0; i < t.count; i++) {
  3060. struct location *l = &t.loc[i];
  3061. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3062. break;
  3063. len += sprintf(buf + len, "%7ld ", l->count);
  3064. if (l->addr)
  3065. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3066. else
  3067. len += sprintf(buf + len, "<not-available>");
  3068. if (l->sum_time != l->min_time) {
  3069. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3070. l->min_time,
  3071. (long)div_u64(l->sum_time, l->count),
  3072. l->max_time);
  3073. } else
  3074. len += sprintf(buf + len, " age=%ld",
  3075. l->min_time);
  3076. if (l->min_pid != l->max_pid)
  3077. len += sprintf(buf + len, " pid=%ld-%ld",
  3078. l->min_pid, l->max_pid);
  3079. else
  3080. len += sprintf(buf + len, " pid=%ld",
  3081. l->min_pid);
  3082. if (num_online_cpus() > 1 &&
  3083. !cpumask_empty(to_cpumask(l->cpus)) &&
  3084. len < PAGE_SIZE - 60) {
  3085. len += sprintf(buf + len, " cpus=");
  3086. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3087. to_cpumask(l->cpus));
  3088. }
  3089. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3090. len < PAGE_SIZE - 60) {
  3091. len += sprintf(buf + len, " nodes=");
  3092. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3093. l->nodes);
  3094. }
  3095. len += sprintf(buf + len, "\n");
  3096. }
  3097. free_loc_track(&t);
  3098. kfree(map);
  3099. if (!t.count)
  3100. len += sprintf(buf, "No data\n");
  3101. return len;
  3102. }
  3103. #endif
  3104. #ifdef SLUB_RESILIENCY_TEST
  3105. static void resiliency_test(void)
  3106. {
  3107. u8 *p;
  3108. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
  3109. printk(KERN_ERR "SLUB resiliency testing\n");
  3110. printk(KERN_ERR "-----------------------\n");
  3111. printk(KERN_ERR "A. Corruption after allocation\n");
  3112. p = kzalloc(16, GFP_KERNEL);
  3113. p[16] = 0x12;
  3114. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  3115. " 0x12->0x%p\n\n", p + 16);
  3116. validate_slab_cache(kmalloc_caches[4]);
  3117. /* Hmmm... The next two are dangerous */
  3118. p = kzalloc(32, GFP_KERNEL);
  3119. p[32 + sizeof(void *)] = 0x34;
  3120. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  3121. " 0x34 -> -0x%p\n", p);
  3122. printk(KERN_ERR
  3123. "If allocated object is overwritten then not detectable\n\n");
  3124. validate_slab_cache(kmalloc_caches[5]);
  3125. p = kzalloc(64, GFP_KERNEL);
  3126. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3127. *p = 0x56;
  3128. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3129. p);
  3130. printk(KERN_ERR
  3131. "If allocated object is overwritten then not detectable\n\n");
  3132. validate_slab_cache(kmalloc_caches[6]);
  3133. printk(KERN_ERR "\nB. Corruption after free\n");
  3134. p = kzalloc(128, GFP_KERNEL);
  3135. kfree(p);
  3136. *p = 0x78;
  3137. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3138. validate_slab_cache(kmalloc_caches[7]);
  3139. p = kzalloc(256, GFP_KERNEL);
  3140. kfree(p);
  3141. p[50] = 0x9a;
  3142. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  3143. p);
  3144. validate_slab_cache(kmalloc_caches[8]);
  3145. p = kzalloc(512, GFP_KERNEL);
  3146. kfree(p);
  3147. p[512] = 0xab;
  3148. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3149. validate_slab_cache(kmalloc_caches[9]);
  3150. }
  3151. #else
  3152. #ifdef CONFIG_SYSFS
  3153. static void resiliency_test(void) {};
  3154. #endif
  3155. #endif
  3156. #ifdef CONFIG_SYSFS
  3157. enum slab_stat_type {
  3158. SL_ALL, /* All slabs */
  3159. SL_PARTIAL, /* Only partially allocated slabs */
  3160. SL_CPU, /* Only slabs used for cpu caches */
  3161. SL_OBJECTS, /* Determine allocated objects not slabs */
  3162. SL_TOTAL /* Determine object capacity not slabs */
  3163. };
  3164. #define SO_ALL (1 << SL_ALL)
  3165. #define SO_PARTIAL (1 << SL_PARTIAL)
  3166. #define SO_CPU (1 << SL_CPU)
  3167. #define SO_OBJECTS (1 << SL_OBJECTS)
  3168. #define SO_TOTAL (1 << SL_TOTAL)
  3169. static ssize_t show_slab_objects(struct kmem_cache *s,
  3170. char *buf, unsigned long flags)
  3171. {
  3172. unsigned long total = 0;
  3173. int node;
  3174. int x;
  3175. unsigned long *nodes;
  3176. unsigned long *per_cpu;
  3177. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3178. if (!nodes)
  3179. return -ENOMEM;
  3180. per_cpu = nodes + nr_node_ids;
  3181. if (flags & SO_CPU) {
  3182. int cpu;
  3183. for_each_possible_cpu(cpu) {
  3184. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3185. if (!c || c->node < 0)
  3186. continue;
  3187. if (c->page) {
  3188. if (flags & SO_TOTAL)
  3189. x = c->page->objects;
  3190. else if (flags & SO_OBJECTS)
  3191. x = c->page->inuse;
  3192. else
  3193. x = 1;
  3194. total += x;
  3195. nodes[c->node] += x;
  3196. }
  3197. per_cpu[c->node]++;
  3198. }
  3199. }
  3200. lock_memory_hotplug();
  3201. #ifdef CONFIG_SLUB_DEBUG
  3202. if (flags & SO_ALL) {
  3203. for_each_node_state(node, N_NORMAL_MEMORY) {
  3204. struct kmem_cache_node *n = get_node(s, node);
  3205. if (flags & SO_TOTAL)
  3206. x = atomic_long_read(&n->total_objects);
  3207. else if (flags & SO_OBJECTS)
  3208. x = atomic_long_read(&n->total_objects) -
  3209. count_partial(n, count_free);
  3210. else
  3211. x = atomic_long_read(&n->nr_slabs);
  3212. total += x;
  3213. nodes[node] += x;
  3214. }
  3215. } else
  3216. #endif
  3217. if (flags & SO_PARTIAL) {
  3218. for_each_node_state(node, N_NORMAL_MEMORY) {
  3219. struct kmem_cache_node *n = get_node(s, node);
  3220. if (flags & SO_TOTAL)
  3221. x = count_partial(n, count_total);
  3222. else if (flags & SO_OBJECTS)
  3223. x = count_partial(n, count_inuse);
  3224. else
  3225. x = n->nr_partial;
  3226. total += x;
  3227. nodes[node] += x;
  3228. }
  3229. }
  3230. x = sprintf(buf, "%lu", total);
  3231. #ifdef CONFIG_NUMA
  3232. for_each_node_state(node, N_NORMAL_MEMORY)
  3233. if (nodes[node])
  3234. x += sprintf(buf + x, " N%d=%lu",
  3235. node, nodes[node]);
  3236. #endif
  3237. unlock_memory_hotplug();
  3238. kfree(nodes);
  3239. return x + sprintf(buf + x, "\n");
  3240. }
  3241. #ifdef CONFIG_SLUB_DEBUG
  3242. static int any_slab_objects(struct kmem_cache *s)
  3243. {
  3244. int node;
  3245. for_each_online_node(node) {
  3246. struct kmem_cache_node *n = get_node(s, node);
  3247. if (!n)
  3248. continue;
  3249. if (atomic_long_read(&n->total_objects))
  3250. return 1;
  3251. }
  3252. return 0;
  3253. }
  3254. #endif
  3255. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3256. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3257. struct slab_attribute {
  3258. struct attribute attr;
  3259. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3260. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3261. };
  3262. #define SLAB_ATTR_RO(_name) \
  3263. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3264. #define SLAB_ATTR(_name) \
  3265. static struct slab_attribute _name##_attr = \
  3266. __ATTR(_name, 0644, _name##_show, _name##_store)
  3267. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3268. {
  3269. return sprintf(buf, "%d\n", s->size);
  3270. }
  3271. SLAB_ATTR_RO(slab_size);
  3272. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3273. {
  3274. return sprintf(buf, "%d\n", s->align);
  3275. }
  3276. SLAB_ATTR_RO(align);
  3277. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3278. {
  3279. return sprintf(buf, "%d\n", s->objsize);
  3280. }
  3281. SLAB_ATTR_RO(object_size);
  3282. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3283. {
  3284. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3285. }
  3286. SLAB_ATTR_RO(objs_per_slab);
  3287. static ssize_t order_store(struct kmem_cache *s,
  3288. const char *buf, size_t length)
  3289. {
  3290. unsigned long order;
  3291. int err;
  3292. err = strict_strtoul(buf, 10, &order);
  3293. if (err)
  3294. return err;
  3295. if (order > slub_max_order || order < slub_min_order)
  3296. return -EINVAL;
  3297. calculate_sizes(s, order);
  3298. return length;
  3299. }
  3300. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3301. {
  3302. return sprintf(buf, "%d\n", oo_order(s->oo));
  3303. }
  3304. SLAB_ATTR(order);
  3305. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3306. {
  3307. return sprintf(buf, "%lu\n", s->min_partial);
  3308. }
  3309. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3310. size_t length)
  3311. {
  3312. unsigned long min;
  3313. int err;
  3314. err = strict_strtoul(buf, 10, &min);
  3315. if (err)
  3316. return err;
  3317. set_min_partial(s, min);
  3318. return length;
  3319. }
  3320. SLAB_ATTR(min_partial);
  3321. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3322. {
  3323. if (!s->ctor)
  3324. return 0;
  3325. return sprintf(buf, "%pS\n", s->ctor);
  3326. }
  3327. SLAB_ATTR_RO(ctor);
  3328. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3329. {
  3330. return sprintf(buf, "%d\n", s->refcount - 1);
  3331. }
  3332. SLAB_ATTR_RO(aliases);
  3333. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3334. {
  3335. return show_slab_objects(s, buf, SO_PARTIAL);
  3336. }
  3337. SLAB_ATTR_RO(partial);
  3338. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3339. {
  3340. return show_slab_objects(s, buf, SO_CPU);
  3341. }
  3342. SLAB_ATTR_RO(cpu_slabs);
  3343. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3344. {
  3345. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3346. }
  3347. SLAB_ATTR_RO(objects);
  3348. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3351. }
  3352. SLAB_ATTR_RO(objects_partial);
  3353. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3356. }
  3357. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3358. const char *buf, size_t length)
  3359. {
  3360. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3361. if (buf[0] == '1')
  3362. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3363. return length;
  3364. }
  3365. SLAB_ATTR(reclaim_account);
  3366. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3367. {
  3368. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3369. }
  3370. SLAB_ATTR_RO(hwcache_align);
  3371. #ifdef CONFIG_ZONE_DMA
  3372. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3373. {
  3374. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3375. }
  3376. SLAB_ATTR_RO(cache_dma);
  3377. #endif
  3378. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3379. {
  3380. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3381. }
  3382. SLAB_ATTR_RO(destroy_by_rcu);
  3383. #ifdef CONFIG_SLUB_DEBUG
  3384. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3385. {
  3386. return show_slab_objects(s, buf, SO_ALL);
  3387. }
  3388. SLAB_ATTR_RO(slabs);
  3389. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3390. {
  3391. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3392. }
  3393. SLAB_ATTR_RO(total_objects);
  3394. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3395. {
  3396. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3397. }
  3398. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3399. const char *buf, size_t length)
  3400. {
  3401. s->flags &= ~SLAB_DEBUG_FREE;
  3402. if (buf[0] == '1')
  3403. s->flags |= SLAB_DEBUG_FREE;
  3404. return length;
  3405. }
  3406. SLAB_ATTR(sanity_checks);
  3407. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3408. {
  3409. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3410. }
  3411. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3412. size_t length)
  3413. {
  3414. s->flags &= ~SLAB_TRACE;
  3415. if (buf[0] == '1')
  3416. s->flags |= SLAB_TRACE;
  3417. return length;
  3418. }
  3419. SLAB_ATTR(trace);
  3420. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3421. {
  3422. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3423. }
  3424. static ssize_t red_zone_store(struct kmem_cache *s,
  3425. const char *buf, size_t length)
  3426. {
  3427. if (any_slab_objects(s))
  3428. return -EBUSY;
  3429. s->flags &= ~SLAB_RED_ZONE;
  3430. if (buf[0] == '1')
  3431. s->flags |= SLAB_RED_ZONE;
  3432. calculate_sizes(s, -1);
  3433. return length;
  3434. }
  3435. SLAB_ATTR(red_zone);
  3436. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3437. {
  3438. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3439. }
  3440. static ssize_t poison_store(struct kmem_cache *s,
  3441. const char *buf, size_t length)
  3442. {
  3443. if (any_slab_objects(s))
  3444. return -EBUSY;
  3445. s->flags &= ~SLAB_POISON;
  3446. if (buf[0] == '1')
  3447. s->flags |= SLAB_POISON;
  3448. calculate_sizes(s, -1);
  3449. return length;
  3450. }
  3451. SLAB_ATTR(poison);
  3452. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3453. {
  3454. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3455. }
  3456. static ssize_t store_user_store(struct kmem_cache *s,
  3457. const char *buf, size_t length)
  3458. {
  3459. if (any_slab_objects(s))
  3460. return -EBUSY;
  3461. s->flags &= ~SLAB_STORE_USER;
  3462. if (buf[0] == '1')
  3463. s->flags |= SLAB_STORE_USER;
  3464. calculate_sizes(s, -1);
  3465. return length;
  3466. }
  3467. SLAB_ATTR(store_user);
  3468. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3469. {
  3470. return 0;
  3471. }
  3472. static ssize_t validate_store(struct kmem_cache *s,
  3473. const char *buf, size_t length)
  3474. {
  3475. int ret = -EINVAL;
  3476. if (buf[0] == '1') {
  3477. ret = validate_slab_cache(s);
  3478. if (ret >= 0)
  3479. ret = length;
  3480. }
  3481. return ret;
  3482. }
  3483. SLAB_ATTR(validate);
  3484. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3485. {
  3486. if (!(s->flags & SLAB_STORE_USER))
  3487. return -ENOSYS;
  3488. return list_locations(s, buf, TRACK_ALLOC);
  3489. }
  3490. SLAB_ATTR_RO(alloc_calls);
  3491. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3492. {
  3493. if (!(s->flags & SLAB_STORE_USER))
  3494. return -ENOSYS;
  3495. return list_locations(s, buf, TRACK_FREE);
  3496. }
  3497. SLAB_ATTR_RO(free_calls);
  3498. #endif /* CONFIG_SLUB_DEBUG */
  3499. #ifdef CONFIG_FAILSLAB
  3500. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3501. {
  3502. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3503. }
  3504. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3505. size_t length)
  3506. {
  3507. s->flags &= ~SLAB_FAILSLAB;
  3508. if (buf[0] == '1')
  3509. s->flags |= SLAB_FAILSLAB;
  3510. return length;
  3511. }
  3512. SLAB_ATTR(failslab);
  3513. #endif
  3514. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3515. {
  3516. return 0;
  3517. }
  3518. static ssize_t shrink_store(struct kmem_cache *s,
  3519. const char *buf, size_t length)
  3520. {
  3521. if (buf[0] == '1') {
  3522. int rc = kmem_cache_shrink(s);
  3523. if (rc)
  3524. return rc;
  3525. } else
  3526. return -EINVAL;
  3527. return length;
  3528. }
  3529. SLAB_ATTR(shrink);
  3530. #ifdef CONFIG_NUMA
  3531. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3532. {
  3533. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3534. }
  3535. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3536. const char *buf, size_t length)
  3537. {
  3538. unsigned long ratio;
  3539. int err;
  3540. err = strict_strtoul(buf, 10, &ratio);
  3541. if (err)
  3542. return err;
  3543. if (ratio <= 100)
  3544. s->remote_node_defrag_ratio = ratio * 10;
  3545. return length;
  3546. }
  3547. SLAB_ATTR(remote_node_defrag_ratio);
  3548. #endif
  3549. #ifdef CONFIG_SLUB_STATS
  3550. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3551. {
  3552. unsigned long sum = 0;
  3553. int cpu;
  3554. int len;
  3555. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3556. if (!data)
  3557. return -ENOMEM;
  3558. for_each_online_cpu(cpu) {
  3559. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3560. data[cpu] = x;
  3561. sum += x;
  3562. }
  3563. len = sprintf(buf, "%lu", sum);
  3564. #ifdef CONFIG_SMP
  3565. for_each_online_cpu(cpu) {
  3566. if (data[cpu] && len < PAGE_SIZE - 20)
  3567. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3568. }
  3569. #endif
  3570. kfree(data);
  3571. return len + sprintf(buf + len, "\n");
  3572. }
  3573. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3574. {
  3575. int cpu;
  3576. for_each_online_cpu(cpu)
  3577. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3578. }
  3579. #define STAT_ATTR(si, text) \
  3580. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3581. { \
  3582. return show_stat(s, buf, si); \
  3583. } \
  3584. static ssize_t text##_store(struct kmem_cache *s, \
  3585. const char *buf, size_t length) \
  3586. { \
  3587. if (buf[0] != '0') \
  3588. return -EINVAL; \
  3589. clear_stat(s, si); \
  3590. return length; \
  3591. } \
  3592. SLAB_ATTR(text); \
  3593. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3594. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3595. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3596. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3597. STAT_ATTR(FREE_FROZEN, free_frozen);
  3598. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3599. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3600. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3601. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3602. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3603. STAT_ATTR(FREE_SLAB, free_slab);
  3604. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3605. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3606. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3607. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3608. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3609. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3610. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3611. #endif
  3612. static struct attribute *slab_attrs[] = {
  3613. &slab_size_attr.attr,
  3614. &object_size_attr.attr,
  3615. &objs_per_slab_attr.attr,
  3616. &order_attr.attr,
  3617. &min_partial_attr.attr,
  3618. &objects_attr.attr,
  3619. &objects_partial_attr.attr,
  3620. &partial_attr.attr,
  3621. &cpu_slabs_attr.attr,
  3622. &ctor_attr.attr,
  3623. &aliases_attr.attr,
  3624. &align_attr.attr,
  3625. &hwcache_align_attr.attr,
  3626. &reclaim_account_attr.attr,
  3627. &destroy_by_rcu_attr.attr,
  3628. &shrink_attr.attr,
  3629. #ifdef CONFIG_SLUB_DEBUG
  3630. &total_objects_attr.attr,
  3631. &slabs_attr.attr,
  3632. &sanity_checks_attr.attr,
  3633. &trace_attr.attr,
  3634. &red_zone_attr.attr,
  3635. &poison_attr.attr,
  3636. &store_user_attr.attr,
  3637. &validate_attr.attr,
  3638. &alloc_calls_attr.attr,
  3639. &free_calls_attr.attr,
  3640. #endif
  3641. #ifdef CONFIG_ZONE_DMA
  3642. &cache_dma_attr.attr,
  3643. #endif
  3644. #ifdef CONFIG_NUMA
  3645. &remote_node_defrag_ratio_attr.attr,
  3646. #endif
  3647. #ifdef CONFIG_SLUB_STATS
  3648. &alloc_fastpath_attr.attr,
  3649. &alloc_slowpath_attr.attr,
  3650. &free_fastpath_attr.attr,
  3651. &free_slowpath_attr.attr,
  3652. &free_frozen_attr.attr,
  3653. &free_add_partial_attr.attr,
  3654. &free_remove_partial_attr.attr,
  3655. &alloc_from_partial_attr.attr,
  3656. &alloc_slab_attr.attr,
  3657. &alloc_refill_attr.attr,
  3658. &free_slab_attr.attr,
  3659. &cpuslab_flush_attr.attr,
  3660. &deactivate_full_attr.attr,
  3661. &deactivate_empty_attr.attr,
  3662. &deactivate_to_head_attr.attr,
  3663. &deactivate_to_tail_attr.attr,
  3664. &deactivate_remote_frees_attr.attr,
  3665. &order_fallback_attr.attr,
  3666. #endif
  3667. #ifdef CONFIG_FAILSLAB
  3668. &failslab_attr.attr,
  3669. #endif
  3670. NULL
  3671. };
  3672. static struct attribute_group slab_attr_group = {
  3673. .attrs = slab_attrs,
  3674. };
  3675. static ssize_t slab_attr_show(struct kobject *kobj,
  3676. struct attribute *attr,
  3677. char *buf)
  3678. {
  3679. struct slab_attribute *attribute;
  3680. struct kmem_cache *s;
  3681. int err;
  3682. attribute = to_slab_attr(attr);
  3683. s = to_slab(kobj);
  3684. if (!attribute->show)
  3685. return -EIO;
  3686. err = attribute->show(s, buf);
  3687. return err;
  3688. }
  3689. static ssize_t slab_attr_store(struct kobject *kobj,
  3690. struct attribute *attr,
  3691. const char *buf, size_t len)
  3692. {
  3693. struct slab_attribute *attribute;
  3694. struct kmem_cache *s;
  3695. int err;
  3696. attribute = to_slab_attr(attr);
  3697. s = to_slab(kobj);
  3698. if (!attribute->store)
  3699. return -EIO;
  3700. err = attribute->store(s, buf, len);
  3701. return err;
  3702. }
  3703. static void kmem_cache_release(struct kobject *kobj)
  3704. {
  3705. struct kmem_cache *s = to_slab(kobj);
  3706. kfree(s->name);
  3707. kfree(s);
  3708. }
  3709. static const struct sysfs_ops slab_sysfs_ops = {
  3710. .show = slab_attr_show,
  3711. .store = slab_attr_store,
  3712. };
  3713. static struct kobj_type slab_ktype = {
  3714. .sysfs_ops = &slab_sysfs_ops,
  3715. .release = kmem_cache_release
  3716. };
  3717. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3718. {
  3719. struct kobj_type *ktype = get_ktype(kobj);
  3720. if (ktype == &slab_ktype)
  3721. return 1;
  3722. return 0;
  3723. }
  3724. static const struct kset_uevent_ops slab_uevent_ops = {
  3725. .filter = uevent_filter,
  3726. };
  3727. static struct kset *slab_kset;
  3728. #define ID_STR_LENGTH 64
  3729. /* Create a unique string id for a slab cache:
  3730. *
  3731. * Format :[flags-]size
  3732. */
  3733. static char *create_unique_id(struct kmem_cache *s)
  3734. {
  3735. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3736. char *p = name;
  3737. BUG_ON(!name);
  3738. *p++ = ':';
  3739. /*
  3740. * First flags affecting slabcache operations. We will only
  3741. * get here for aliasable slabs so we do not need to support
  3742. * too many flags. The flags here must cover all flags that
  3743. * are matched during merging to guarantee that the id is
  3744. * unique.
  3745. */
  3746. if (s->flags & SLAB_CACHE_DMA)
  3747. *p++ = 'd';
  3748. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3749. *p++ = 'a';
  3750. if (s->flags & SLAB_DEBUG_FREE)
  3751. *p++ = 'F';
  3752. if (!(s->flags & SLAB_NOTRACK))
  3753. *p++ = 't';
  3754. if (p != name + 1)
  3755. *p++ = '-';
  3756. p += sprintf(p, "%07d", s->size);
  3757. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3758. return name;
  3759. }
  3760. static int sysfs_slab_add(struct kmem_cache *s)
  3761. {
  3762. int err;
  3763. const char *name;
  3764. int unmergeable;
  3765. if (slab_state < SYSFS)
  3766. /* Defer until later */
  3767. return 0;
  3768. unmergeable = slab_unmergeable(s);
  3769. if (unmergeable) {
  3770. /*
  3771. * Slabcache can never be merged so we can use the name proper.
  3772. * This is typically the case for debug situations. In that
  3773. * case we can catch duplicate names easily.
  3774. */
  3775. sysfs_remove_link(&slab_kset->kobj, s->name);
  3776. name = s->name;
  3777. } else {
  3778. /*
  3779. * Create a unique name for the slab as a target
  3780. * for the symlinks.
  3781. */
  3782. name = create_unique_id(s);
  3783. }
  3784. s->kobj.kset = slab_kset;
  3785. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3786. if (err) {
  3787. kobject_put(&s->kobj);
  3788. return err;
  3789. }
  3790. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3791. if (err) {
  3792. kobject_del(&s->kobj);
  3793. kobject_put(&s->kobj);
  3794. return err;
  3795. }
  3796. kobject_uevent(&s->kobj, KOBJ_ADD);
  3797. if (!unmergeable) {
  3798. /* Setup first alias */
  3799. sysfs_slab_alias(s, s->name);
  3800. kfree(name);
  3801. }
  3802. return 0;
  3803. }
  3804. static void sysfs_slab_remove(struct kmem_cache *s)
  3805. {
  3806. if (slab_state < SYSFS)
  3807. /*
  3808. * Sysfs has not been setup yet so no need to remove the
  3809. * cache from sysfs.
  3810. */
  3811. return;
  3812. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3813. kobject_del(&s->kobj);
  3814. kobject_put(&s->kobj);
  3815. }
  3816. /*
  3817. * Need to buffer aliases during bootup until sysfs becomes
  3818. * available lest we lose that information.
  3819. */
  3820. struct saved_alias {
  3821. struct kmem_cache *s;
  3822. const char *name;
  3823. struct saved_alias *next;
  3824. };
  3825. static struct saved_alias *alias_list;
  3826. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3827. {
  3828. struct saved_alias *al;
  3829. if (slab_state == SYSFS) {
  3830. /*
  3831. * If we have a leftover link then remove it.
  3832. */
  3833. sysfs_remove_link(&slab_kset->kobj, name);
  3834. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3835. }
  3836. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3837. if (!al)
  3838. return -ENOMEM;
  3839. al->s = s;
  3840. al->name = name;
  3841. al->next = alias_list;
  3842. alias_list = al;
  3843. return 0;
  3844. }
  3845. static int __init slab_sysfs_init(void)
  3846. {
  3847. struct kmem_cache *s;
  3848. int err;
  3849. down_write(&slub_lock);
  3850. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3851. if (!slab_kset) {
  3852. up_write(&slub_lock);
  3853. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3854. return -ENOSYS;
  3855. }
  3856. slab_state = SYSFS;
  3857. list_for_each_entry(s, &slab_caches, list) {
  3858. err = sysfs_slab_add(s);
  3859. if (err)
  3860. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3861. " to sysfs\n", s->name);
  3862. }
  3863. while (alias_list) {
  3864. struct saved_alias *al = alias_list;
  3865. alias_list = alias_list->next;
  3866. err = sysfs_slab_alias(al->s, al->name);
  3867. if (err)
  3868. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3869. " %s to sysfs\n", s->name);
  3870. kfree(al);
  3871. }
  3872. up_write(&slub_lock);
  3873. resiliency_test();
  3874. return 0;
  3875. }
  3876. __initcall(slab_sysfs_init);
  3877. #endif /* CONFIG_SYSFS */
  3878. /*
  3879. * The /proc/slabinfo ABI
  3880. */
  3881. #ifdef CONFIG_SLABINFO
  3882. static void print_slabinfo_header(struct seq_file *m)
  3883. {
  3884. seq_puts(m, "slabinfo - version: 2.1\n");
  3885. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3886. "<objperslab> <pagesperslab>");
  3887. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3888. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3889. seq_putc(m, '\n');
  3890. }
  3891. static void *s_start(struct seq_file *m, loff_t *pos)
  3892. {
  3893. loff_t n = *pos;
  3894. down_read(&slub_lock);
  3895. if (!n)
  3896. print_slabinfo_header(m);
  3897. return seq_list_start(&slab_caches, *pos);
  3898. }
  3899. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3900. {
  3901. return seq_list_next(p, &slab_caches, pos);
  3902. }
  3903. static void s_stop(struct seq_file *m, void *p)
  3904. {
  3905. up_read(&slub_lock);
  3906. }
  3907. static int s_show(struct seq_file *m, void *p)
  3908. {
  3909. unsigned long nr_partials = 0;
  3910. unsigned long nr_slabs = 0;
  3911. unsigned long nr_inuse = 0;
  3912. unsigned long nr_objs = 0;
  3913. unsigned long nr_free = 0;
  3914. struct kmem_cache *s;
  3915. int node;
  3916. s = list_entry(p, struct kmem_cache, list);
  3917. for_each_online_node(node) {
  3918. struct kmem_cache_node *n = get_node(s, node);
  3919. if (!n)
  3920. continue;
  3921. nr_partials += n->nr_partial;
  3922. nr_slabs += atomic_long_read(&n->nr_slabs);
  3923. nr_objs += atomic_long_read(&n->total_objects);
  3924. nr_free += count_partial(n, count_free);
  3925. }
  3926. nr_inuse = nr_objs - nr_free;
  3927. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3928. nr_objs, s->size, oo_objects(s->oo),
  3929. (1 << oo_order(s->oo)));
  3930. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3931. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3932. 0UL);
  3933. seq_putc(m, '\n');
  3934. return 0;
  3935. }
  3936. static const struct seq_operations slabinfo_op = {
  3937. .start = s_start,
  3938. .next = s_next,
  3939. .stop = s_stop,
  3940. .show = s_show,
  3941. };
  3942. static int slabinfo_open(struct inode *inode, struct file *file)
  3943. {
  3944. return seq_open(file, &slabinfo_op);
  3945. }
  3946. static const struct file_operations proc_slabinfo_operations = {
  3947. .open = slabinfo_open,
  3948. .read = seq_read,
  3949. .llseek = seq_lseek,
  3950. .release = seq_release,
  3951. };
  3952. static int __init slab_proc_init(void)
  3953. {
  3954. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3955. return 0;
  3956. }
  3957. module_init(slab_proc_init);
  3958. #endif /* CONFIG_SLABINFO */