mlock.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/mempolicy.h>
  14. #include <linux/syscalls.h>
  15. #include <linux/sched.h>
  16. #include <linux/module.h>
  17. #include <linux/rmap.h>
  18. #include <linux/mmzone.h>
  19. #include <linux/hugetlb.h>
  20. #include "internal.h"
  21. int can_do_mlock(void)
  22. {
  23. if (capable(CAP_IPC_LOCK))
  24. return 1;
  25. if (rlimit(RLIMIT_MEMLOCK) != 0)
  26. return 1;
  27. return 0;
  28. }
  29. EXPORT_SYMBOL(can_do_mlock);
  30. /*
  31. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  32. * in vmscan and, possibly, the fault path; and to support semi-accurate
  33. * statistics.
  34. *
  35. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  36. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  37. * The unevictable list is an LRU sibling list to the [in]active lists.
  38. * PageUnevictable is set to indicate the unevictable state.
  39. *
  40. * When lazy mlocking via vmscan, it is important to ensure that the
  41. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  42. * may have mlocked a page that is being munlocked. So lazy mlock must take
  43. * the mmap_sem for read, and verify that the vma really is locked
  44. * (see mm/rmap.c).
  45. */
  46. /*
  47. * LRU accounting for clear_page_mlock()
  48. */
  49. void __clear_page_mlock(struct page *page)
  50. {
  51. VM_BUG_ON(!PageLocked(page));
  52. if (!page->mapping) { /* truncated ? */
  53. return;
  54. }
  55. dec_zone_page_state(page, NR_MLOCK);
  56. count_vm_event(UNEVICTABLE_PGCLEARED);
  57. if (!isolate_lru_page(page)) {
  58. putback_lru_page(page);
  59. } else {
  60. /*
  61. * We lost the race. the page already moved to evictable list.
  62. */
  63. if (PageUnevictable(page))
  64. count_vm_event(UNEVICTABLE_PGSTRANDED);
  65. }
  66. }
  67. /*
  68. * Mark page as mlocked if not already.
  69. * If page on LRU, isolate and putback to move to unevictable list.
  70. */
  71. void mlock_vma_page(struct page *page)
  72. {
  73. BUG_ON(!PageLocked(page));
  74. if (!TestSetPageMlocked(page)) {
  75. inc_zone_page_state(page, NR_MLOCK);
  76. count_vm_event(UNEVICTABLE_PGMLOCKED);
  77. if (!isolate_lru_page(page))
  78. putback_lru_page(page);
  79. }
  80. }
  81. /**
  82. * munlock_vma_page - munlock a vma page
  83. * @page - page to be unlocked
  84. *
  85. * called from munlock()/munmap() path with page supposedly on the LRU.
  86. * When we munlock a page, because the vma where we found the page is being
  87. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  88. * page locked so that we can leave it on the unevictable lru list and not
  89. * bother vmscan with it. However, to walk the page's rmap list in
  90. * try_to_munlock() we must isolate the page from the LRU. If some other
  91. * task has removed the page from the LRU, we won't be able to do that.
  92. * So we clear the PageMlocked as we might not get another chance. If we
  93. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  94. * [page_referenced()/try_to_unmap()] to deal with.
  95. */
  96. void munlock_vma_page(struct page *page)
  97. {
  98. BUG_ON(!PageLocked(page));
  99. if (TestClearPageMlocked(page)) {
  100. dec_zone_page_state(page, NR_MLOCK);
  101. if (!isolate_lru_page(page)) {
  102. int ret = try_to_munlock(page);
  103. /*
  104. * did try_to_unlock() succeed or punt?
  105. */
  106. if (ret != SWAP_MLOCK)
  107. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  108. putback_lru_page(page);
  109. } else {
  110. /*
  111. * Some other task has removed the page from the LRU.
  112. * putback_lru_page() will take care of removing the
  113. * page from the unevictable list, if necessary.
  114. * vmscan [page_referenced()] will move the page back
  115. * to the unevictable list if some other vma has it
  116. * mlocked.
  117. */
  118. if (PageUnevictable(page))
  119. count_vm_event(UNEVICTABLE_PGSTRANDED);
  120. else
  121. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  122. }
  123. }
  124. }
  125. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  126. {
  127. return (vma->vm_flags & VM_GROWSDOWN) &&
  128. (vma->vm_start == addr) &&
  129. !vma_stack_continue(vma->vm_prev, addr);
  130. }
  131. /**
  132. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  133. * @vma: target vma
  134. * @start: start address
  135. * @end: end address
  136. *
  137. * This takes care of making the pages present too.
  138. *
  139. * return 0 on success, negative error code on error.
  140. *
  141. * vma->vm_mm->mmap_sem must be held for at least read.
  142. */
  143. static long __mlock_vma_pages_range(struct vm_area_struct *vma,
  144. unsigned long start, unsigned long end,
  145. int *nonblocking)
  146. {
  147. struct mm_struct *mm = vma->vm_mm;
  148. unsigned long addr = start;
  149. int nr_pages = (end - start) / PAGE_SIZE;
  150. int gup_flags;
  151. VM_BUG_ON(start & ~PAGE_MASK);
  152. VM_BUG_ON(end & ~PAGE_MASK);
  153. VM_BUG_ON(start < vma->vm_start);
  154. VM_BUG_ON(end > vma->vm_end);
  155. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  156. gup_flags = FOLL_TOUCH;
  157. /*
  158. * We want to touch writable mappings with a write fault in order
  159. * to break COW, except for shared mappings because these don't COW
  160. * and we would not want to dirty them for nothing.
  161. */
  162. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  163. gup_flags |= FOLL_WRITE;
  164. /*
  165. * We want mlock to succeed for regions that have any permissions
  166. * other than PROT_NONE.
  167. */
  168. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  169. gup_flags |= FOLL_FORCE;
  170. if (vma->vm_flags & VM_LOCKED)
  171. gup_flags |= FOLL_MLOCK;
  172. /* We don't try to access the guard page of a stack vma */
  173. if (stack_guard_page(vma, start)) {
  174. addr += PAGE_SIZE;
  175. nr_pages--;
  176. }
  177. return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
  178. NULL, NULL, nonblocking);
  179. }
  180. /*
  181. * convert get_user_pages() return value to posix mlock() error
  182. */
  183. static int __mlock_posix_error_return(long retval)
  184. {
  185. if (retval == -EFAULT)
  186. retval = -ENOMEM;
  187. else if (retval == -ENOMEM)
  188. retval = -EAGAIN;
  189. return retval;
  190. }
  191. /**
  192. * mlock_vma_pages_range() - mlock pages in specified vma range.
  193. * @vma - the vma containing the specfied address range
  194. * @start - starting address in @vma to mlock
  195. * @end - end address [+1] in @vma to mlock
  196. *
  197. * For mmap()/mremap()/expansion of mlocked vma.
  198. *
  199. * return 0 on success for "normal" vmas.
  200. *
  201. * return number of pages [> 0] to be removed from locked_vm on success
  202. * of "special" vmas.
  203. */
  204. long mlock_vma_pages_range(struct vm_area_struct *vma,
  205. unsigned long start, unsigned long end)
  206. {
  207. int nr_pages = (end - start) / PAGE_SIZE;
  208. BUG_ON(!(vma->vm_flags & VM_LOCKED));
  209. /*
  210. * filter unlockable vmas
  211. */
  212. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  213. goto no_mlock;
  214. if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
  215. is_vm_hugetlb_page(vma) ||
  216. vma == get_gate_vma(current))) {
  217. __mlock_vma_pages_range(vma, start, end, NULL);
  218. /* Hide errors from mmap() and other callers */
  219. return 0;
  220. }
  221. /*
  222. * User mapped kernel pages or huge pages:
  223. * make these pages present to populate the ptes, but
  224. * fall thru' to reset VM_LOCKED--no need to unlock, and
  225. * return nr_pages so these don't get counted against task's
  226. * locked limit. huge pages are already counted against
  227. * locked vm limit.
  228. */
  229. make_pages_present(start, end);
  230. no_mlock:
  231. vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
  232. return nr_pages; /* error or pages NOT mlocked */
  233. }
  234. /*
  235. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  236. * @vma - vma containing range to be munlock()ed.
  237. * @start - start address in @vma of the range
  238. * @end - end of range in @vma.
  239. *
  240. * For mremap(), munmap() and exit().
  241. *
  242. * Called with @vma VM_LOCKED.
  243. *
  244. * Returns with VM_LOCKED cleared. Callers must be prepared to
  245. * deal with this.
  246. *
  247. * We don't save and restore VM_LOCKED here because pages are
  248. * still on lru. In unmap path, pages might be scanned by reclaim
  249. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  250. * free them. This will result in freeing mlocked pages.
  251. */
  252. void munlock_vma_pages_range(struct vm_area_struct *vma,
  253. unsigned long start, unsigned long end)
  254. {
  255. unsigned long addr;
  256. lru_add_drain();
  257. vma->vm_flags &= ~VM_LOCKED;
  258. for (addr = start; addr < end; addr += PAGE_SIZE) {
  259. struct page *page;
  260. /*
  261. * Although FOLL_DUMP is intended for get_dump_page(),
  262. * it just so happens that its special treatment of the
  263. * ZERO_PAGE (returning an error instead of doing get_page)
  264. * suits munlock very well (and if somehow an abnormal page
  265. * has sneaked into the range, we won't oops here: great).
  266. */
  267. page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
  268. if (page && !IS_ERR(page)) {
  269. lock_page(page);
  270. /*
  271. * Like in __mlock_vma_pages_range(),
  272. * because we lock page here and migration is
  273. * blocked by the elevated reference, we need
  274. * only check for file-cache page truncation.
  275. */
  276. if (page->mapping)
  277. munlock_vma_page(page);
  278. unlock_page(page);
  279. put_page(page);
  280. }
  281. cond_resched();
  282. }
  283. }
  284. /*
  285. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  286. *
  287. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  288. * munlock is a no-op. However, for some special vmas, we go ahead and
  289. * populate the ptes via make_pages_present().
  290. *
  291. * For vmas that pass the filters, merge/split as appropriate.
  292. */
  293. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  294. unsigned long start, unsigned long end, unsigned int newflags)
  295. {
  296. struct mm_struct *mm = vma->vm_mm;
  297. pgoff_t pgoff;
  298. int nr_pages;
  299. int ret = 0;
  300. int lock = newflags & VM_LOCKED;
  301. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  302. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current))
  303. goto out; /* don't set VM_LOCKED, don't count */
  304. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  305. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  306. vma->vm_file, pgoff, vma_policy(vma));
  307. if (*prev) {
  308. vma = *prev;
  309. goto success;
  310. }
  311. if (start != vma->vm_start) {
  312. ret = split_vma(mm, vma, start, 1);
  313. if (ret)
  314. goto out;
  315. }
  316. if (end != vma->vm_end) {
  317. ret = split_vma(mm, vma, end, 0);
  318. if (ret)
  319. goto out;
  320. }
  321. success:
  322. /*
  323. * Keep track of amount of locked VM.
  324. */
  325. nr_pages = (end - start) >> PAGE_SHIFT;
  326. if (!lock)
  327. nr_pages = -nr_pages;
  328. mm->locked_vm += nr_pages;
  329. /*
  330. * vm_flags is protected by the mmap_sem held in write mode.
  331. * It's okay if try_to_unmap_one unmaps a page just after we
  332. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  333. */
  334. if (lock)
  335. vma->vm_flags = newflags;
  336. else
  337. munlock_vma_pages_range(vma, start, end);
  338. out:
  339. *prev = vma;
  340. return ret;
  341. }
  342. static int do_mlock(unsigned long start, size_t len, int on)
  343. {
  344. unsigned long nstart, end, tmp;
  345. struct vm_area_struct * vma, * prev;
  346. int error;
  347. VM_BUG_ON(start & ~PAGE_MASK);
  348. VM_BUG_ON(len != PAGE_ALIGN(len));
  349. end = start + len;
  350. if (end < start)
  351. return -EINVAL;
  352. if (end == start)
  353. return 0;
  354. vma = find_vma_prev(current->mm, start, &prev);
  355. if (!vma || vma->vm_start > start)
  356. return -ENOMEM;
  357. if (start > vma->vm_start)
  358. prev = vma;
  359. for (nstart = start ; ; ) {
  360. unsigned int newflags;
  361. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  362. newflags = vma->vm_flags | VM_LOCKED;
  363. if (!on)
  364. newflags &= ~VM_LOCKED;
  365. tmp = vma->vm_end;
  366. if (tmp > end)
  367. tmp = end;
  368. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  369. if (error)
  370. break;
  371. nstart = tmp;
  372. if (nstart < prev->vm_end)
  373. nstart = prev->vm_end;
  374. if (nstart >= end)
  375. break;
  376. vma = prev->vm_next;
  377. if (!vma || vma->vm_start != nstart) {
  378. error = -ENOMEM;
  379. break;
  380. }
  381. }
  382. return error;
  383. }
  384. static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
  385. {
  386. struct mm_struct *mm = current->mm;
  387. unsigned long end, nstart, nend;
  388. struct vm_area_struct *vma = NULL;
  389. int locked = 0;
  390. int ret = 0;
  391. VM_BUG_ON(start & ~PAGE_MASK);
  392. VM_BUG_ON(len != PAGE_ALIGN(len));
  393. end = start + len;
  394. for (nstart = start; nstart < end; nstart = nend) {
  395. /*
  396. * We want to fault in pages for [nstart; end) address range.
  397. * Find first corresponding VMA.
  398. */
  399. if (!locked) {
  400. locked = 1;
  401. down_read(&mm->mmap_sem);
  402. vma = find_vma(mm, nstart);
  403. } else if (nstart >= vma->vm_end)
  404. vma = vma->vm_next;
  405. if (!vma || vma->vm_start >= end)
  406. break;
  407. /*
  408. * Set [nstart; nend) to intersection of desired address
  409. * range with the first VMA. Also, skip undesirable VMA types.
  410. */
  411. nend = min(end, vma->vm_end);
  412. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  413. continue;
  414. if (nstart < vma->vm_start)
  415. nstart = vma->vm_start;
  416. /*
  417. * Now fault in a range of pages. __mlock_vma_pages_range()
  418. * double checks the vma flags, so that it won't mlock pages
  419. * if the vma was already munlocked.
  420. */
  421. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  422. if (ret < 0) {
  423. if (ignore_errors) {
  424. ret = 0;
  425. continue; /* continue at next VMA */
  426. }
  427. ret = __mlock_posix_error_return(ret);
  428. break;
  429. }
  430. nend = nstart + ret * PAGE_SIZE;
  431. ret = 0;
  432. }
  433. if (locked)
  434. up_read(&mm->mmap_sem);
  435. return ret; /* 0 or negative error code */
  436. }
  437. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  438. {
  439. unsigned long locked;
  440. unsigned long lock_limit;
  441. int error = -ENOMEM;
  442. if (!can_do_mlock())
  443. return -EPERM;
  444. lru_add_drain_all(); /* flush pagevec */
  445. down_write(&current->mm->mmap_sem);
  446. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  447. start &= PAGE_MASK;
  448. locked = len >> PAGE_SHIFT;
  449. locked += current->mm->locked_vm;
  450. lock_limit = rlimit(RLIMIT_MEMLOCK);
  451. lock_limit >>= PAGE_SHIFT;
  452. /* check against resource limits */
  453. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  454. error = do_mlock(start, len, 1);
  455. up_write(&current->mm->mmap_sem);
  456. if (!error)
  457. error = do_mlock_pages(start, len, 0);
  458. return error;
  459. }
  460. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  461. {
  462. int ret;
  463. down_write(&current->mm->mmap_sem);
  464. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  465. start &= PAGE_MASK;
  466. ret = do_mlock(start, len, 0);
  467. up_write(&current->mm->mmap_sem);
  468. return ret;
  469. }
  470. static int do_mlockall(int flags)
  471. {
  472. struct vm_area_struct * vma, * prev = NULL;
  473. unsigned int def_flags = 0;
  474. if (flags & MCL_FUTURE)
  475. def_flags = VM_LOCKED;
  476. current->mm->def_flags = def_flags;
  477. if (flags == MCL_FUTURE)
  478. goto out;
  479. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  480. unsigned int newflags;
  481. newflags = vma->vm_flags | VM_LOCKED;
  482. if (!(flags & MCL_CURRENT))
  483. newflags &= ~VM_LOCKED;
  484. /* Ignore errors */
  485. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  486. }
  487. out:
  488. return 0;
  489. }
  490. SYSCALL_DEFINE1(mlockall, int, flags)
  491. {
  492. unsigned long lock_limit;
  493. int ret = -EINVAL;
  494. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  495. goto out;
  496. ret = -EPERM;
  497. if (!can_do_mlock())
  498. goto out;
  499. lru_add_drain_all(); /* flush pagevec */
  500. down_write(&current->mm->mmap_sem);
  501. lock_limit = rlimit(RLIMIT_MEMLOCK);
  502. lock_limit >>= PAGE_SHIFT;
  503. ret = -ENOMEM;
  504. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  505. capable(CAP_IPC_LOCK))
  506. ret = do_mlockall(flags);
  507. up_write(&current->mm->mmap_sem);
  508. if (!ret && (flags & MCL_CURRENT)) {
  509. /* Ignore errors */
  510. do_mlock_pages(0, TASK_SIZE, 1);
  511. }
  512. out:
  513. return ret;
  514. }
  515. SYSCALL_DEFINE0(munlockall)
  516. {
  517. int ret;
  518. down_write(&current->mm->mmap_sem);
  519. ret = do_mlockall(0);
  520. up_write(&current->mm->mmap_sem);
  521. return ret;
  522. }
  523. /*
  524. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  525. * shm segments) get accounted against the user_struct instead.
  526. */
  527. static DEFINE_SPINLOCK(shmlock_user_lock);
  528. int user_shm_lock(size_t size, struct user_struct *user)
  529. {
  530. unsigned long lock_limit, locked;
  531. int allowed = 0;
  532. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  533. lock_limit = rlimit(RLIMIT_MEMLOCK);
  534. if (lock_limit == RLIM_INFINITY)
  535. allowed = 1;
  536. lock_limit >>= PAGE_SHIFT;
  537. spin_lock(&shmlock_user_lock);
  538. if (!allowed &&
  539. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  540. goto out;
  541. get_uid(user);
  542. user->locked_shm += locked;
  543. allowed = 1;
  544. out:
  545. spin_unlock(&shmlock_user_lock);
  546. return allowed;
  547. }
  548. void user_shm_unlock(size_t size, struct user_struct *user)
  549. {
  550. spin_lock(&shmlock_user_lock);
  551. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  552. spin_unlock(&shmlock_user_lock);
  553. free_uid(user);
  554. }