memory.c 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif
  167. /*
  168. * If a p?d_bad entry is found while walking page tables, report
  169. * the error, before resetting entry to p?d_none. Usually (but
  170. * very seldom) called out from the p?d_none_or_clear_bad macros.
  171. */
  172. void pgd_clear_bad(pgd_t *pgd)
  173. {
  174. pgd_ERROR(*pgd);
  175. pgd_clear(pgd);
  176. }
  177. void pud_clear_bad(pud_t *pud)
  178. {
  179. pud_ERROR(*pud);
  180. pud_clear(pud);
  181. }
  182. void pmd_clear_bad(pmd_t *pmd)
  183. {
  184. pmd_ERROR(*pmd);
  185. pmd_clear(pmd);
  186. }
  187. /*
  188. * Note: this doesn't free the actual pages themselves. That
  189. * has been handled earlier when unmapping all the memory regions.
  190. */
  191. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  192. unsigned long addr)
  193. {
  194. pgtable_t token = pmd_pgtable(*pmd);
  195. pmd_clear(pmd);
  196. pte_free_tlb(tlb, token, addr);
  197. tlb->mm->nr_ptes--;
  198. }
  199. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  200. unsigned long addr, unsigned long end,
  201. unsigned long floor, unsigned long ceiling)
  202. {
  203. pmd_t *pmd;
  204. unsigned long next;
  205. unsigned long start;
  206. start = addr;
  207. pmd = pmd_offset(pud, addr);
  208. do {
  209. next = pmd_addr_end(addr, end);
  210. if (pmd_none_or_clear_bad(pmd))
  211. continue;
  212. free_pte_range(tlb, pmd, addr);
  213. } while (pmd++, addr = next, addr != end);
  214. start &= PUD_MASK;
  215. if (start < floor)
  216. return;
  217. if (ceiling) {
  218. ceiling &= PUD_MASK;
  219. if (!ceiling)
  220. return;
  221. }
  222. if (end - 1 > ceiling - 1)
  223. return;
  224. pmd = pmd_offset(pud, start);
  225. pud_clear(pud);
  226. pmd_free_tlb(tlb, pmd, start);
  227. }
  228. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  229. unsigned long addr, unsigned long end,
  230. unsigned long floor, unsigned long ceiling)
  231. {
  232. pud_t *pud;
  233. unsigned long next;
  234. unsigned long start;
  235. start = addr;
  236. pud = pud_offset(pgd, addr);
  237. do {
  238. next = pud_addr_end(addr, end);
  239. if (pud_none_or_clear_bad(pud))
  240. continue;
  241. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  242. } while (pud++, addr = next, addr != end);
  243. start &= PGDIR_MASK;
  244. if (start < floor)
  245. return;
  246. if (ceiling) {
  247. ceiling &= PGDIR_MASK;
  248. if (!ceiling)
  249. return;
  250. }
  251. if (end - 1 > ceiling - 1)
  252. return;
  253. pud = pud_offset(pgd, start);
  254. pgd_clear(pgd);
  255. pud_free_tlb(tlb, pud, start);
  256. }
  257. /*
  258. * This function frees user-level page tables of a process.
  259. *
  260. * Must be called with pagetable lock held.
  261. */
  262. void free_pgd_range(struct mmu_gather *tlb,
  263. unsigned long addr, unsigned long end,
  264. unsigned long floor, unsigned long ceiling)
  265. {
  266. pgd_t *pgd;
  267. unsigned long next;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. pgd = pgd_offset(tlb->mm, addr);
  309. do {
  310. next = pgd_addr_end(addr, end);
  311. if (pgd_none_or_clear_bad(pgd))
  312. continue;
  313. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  314. } while (pgd++, addr = next, addr != end);
  315. }
  316. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  317. unsigned long floor, unsigned long ceiling)
  318. {
  319. while (vma) {
  320. struct vm_area_struct *next = vma->vm_next;
  321. unsigned long addr = vma->vm_start;
  322. /*
  323. * Hide vma from rmap and truncate_pagecache before freeing
  324. * pgtables
  325. */
  326. unlink_anon_vmas(vma);
  327. unlink_file_vma(vma);
  328. if (is_vm_hugetlb_page(vma)) {
  329. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  330. floor, next? next->vm_start: ceiling);
  331. } else {
  332. /*
  333. * Optimization: gather nearby vmas into one call down
  334. */
  335. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  336. && !is_vm_hugetlb_page(next)) {
  337. vma = next;
  338. next = vma->vm_next;
  339. unlink_anon_vmas(vma);
  340. unlink_file_vma(vma);
  341. }
  342. free_pgd_range(tlb, addr, vma->vm_end,
  343. floor, next? next->vm_start: ceiling);
  344. }
  345. vma = next;
  346. }
  347. }
  348. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  349. pmd_t *pmd, unsigned long address)
  350. {
  351. pgtable_t new = pte_alloc_one(mm, address);
  352. int wait_split_huge_page;
  353. if (!new)
  354. return -ENOMEM;
  355. /*
  356. * Ensure all pte setup (eg. pte page lock and page clearing) are
  357. * visible before the pte is made visible to other CPUs by being
  358. * put into page tables.
  359. *
  360. * The other side of the story is the pointer chasing in the page
  361. * table walking code (when walking the page table without locking;
  362. * ie. most of the time). Fortunately, these data accesses consist
  363. * of a chain of data-dependent loads, meaning most CPUs (alpha
  364. * being the notable exception) will already guarantee loads are
  365. * seen in-order. See the alpha page table accessors for the
  366. * smp_read_barrier_depends() barriers in page table walking code.
  367. */
  368. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  369. spin_lock(&mm->page_table_lock);
  370. wait_split_huge_page = 0;
  371. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  372. mm->nr_ptes++;
  373. pmd_populate(mm, pmd, new);
  374. new = NULL;
  375. } else if (unlikely(pmd_trans_splitting(*pmd)))
  376. wait_split_huge_page = 1;
  377. spin_unlock(&mm->page_table_lock);
  378. if (new)
  379. pte_free(mm, new);
  380. if (wait_split_huge_page)
  381. wait_split_huge_page(vma->anon_vma, pmd);
  382. return 0;
  383. }
  384. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  385. {
  386. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  387. if (!new)
  388. return -ENOMEM;
  389. smp_wmb(); /* See comment in __pte_alloc */
  390. spin_lock(&init_mm.page_table_lock);
  391. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  392. pmd_populate_kernel(&init_mm, pmd, new);
  393. new = NULL;
  394. } else
  395. VM_BUG_ON(pmd_trans_splitting(*pmd));
  396. spin_unlock(&init_mm.page_table_lock);
  397. if (new)
  398. pte_free_kernel(&init_mm, new);
  399. return 0;
  400. }
  401. static inline void init_rss_vec(int *rss)
  402. {
  403. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  404. }
  405. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  406. {
  407. int i;
  408. if (current->mm == mm)
  409. sync_mm_rss(current, mm);
  410. for (i = 0; i < NR_MM_COUNTERS; i++)
  411. if (rss[i])
  412. add_mm_counter(mm, i, rss[i]);
  413. }
  414. /*
  415. * This function is called to print an error when a bad pte
  416. * is found. For example, we might have a PFN-mapped pte in
  417. * a region that doesn't allow it.
  418. *
  419. * The calling function must still handle the error.
  420. */
  421. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  422. pte_t pte, struct page *page)
  423. {
  424. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  425. pud_t *pud = pud_offset(pgd, addr);
  426. pmd_t *pmd = pmd_offset(pud, addr);
  427. struct address_space *mapping;
  428. pgoff_t index;
  429. static unsigned long resume;
  430. static unsigned long nr_shown;
  431. static unsigned long nr_unshown;
  432. /*
  433. * Allow a burst of 60 reports, then keep quiet for that minute;
  434. * or allow a steady drip of one report per second.
  435. */
  436. if (nr_shown == 60) {
  437. if (time_before(jiffies, resume)) {
  438. nr_unshown++;
  439. return;
  440. }
  441. if (nr_unshown) {
  442. printk(KERN_ALERT
  443. "BUG: Bad page map: %lu messages suppressed\n",
  444. nr_unshown);
  445. nr_unshown = 0;
  446. }
  447. nr_shown = 0;
  448. }
  449. if (nr_shown++ == 0)
  450. resume = jiffies + 60 * HZ;
  451. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  452. index = linear_page_index(vma, addr);
  453. printk(KERN_ALERT
  454. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  455. current->comm,
  456. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  457. if (page)
  458. dump_page(page);
  459. printk(KERN_ALERT
  460. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  461. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  462. /*
  463. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  464. */
  465. if (vma->vm_ops)
  466. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  467. (unsigned long)vma->vm_ops->fault);
  468. if (vma->vm_file && vma->vm_file->f_op)
  469. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  470. (unsigned long)vma->vm_file->f_op->mmap);
  471. dump_stack();
  472. add_taint(TAINT_BAD_PAGE);
  473. }
  474. static inline int is_cow_mapping(unsigned int flags)
  475. {
  476. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  477. }
  478. #ifndef is_zero_pfn
  479. static inline int is_zero_pfn(unsigned long pfn)
  480. {
  481. return pfn == zero_pfn;
  482. }
  483. #endif
  484. #ifndef my_zero_pfn
  485. static inline unsigned long my_zero_pfn(unsigned long addr)
  486. {
  487. return zero_pfn;
  488. }
  489. #endif
  490. /*
  491. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  492. *
  493. * "Special" mappings do not wish to be associated with a "struct page" (either
  494. * it doesn't exist, or it exists but they don't want to touch it). In this
  495. * case, NULL is returned here. "Normal" mappings do have a struct page.
  496. *
  497. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  498. * pte bit, in which case this function is trivial. Secondly, an architecture
  499. * may not have a spare pte bit, which requires a more complicated scheme,
  500. * described below.
  501. *
  502. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  503. * special mapping (even if there are underlying and valid "struct pages").
  504. * COWed pages of a VM_PFNMAP are always normal.
  505. *
  506. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  507. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  508. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  509. * mapping will always honor the rule
  510. *
  511. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  512. *
  513. * And for normal mappings this is false.
  514. *
  515. * This restricts such mappings to be a linear translation from virtual address
  516. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  517. * as the vma is not a COW mapping; in that case, we know that all ptes are
  518. * special (because none can have been COWed).
  519. *
  520. *
  521. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  522. *
  523. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  524. * page" backing, however the difference is that _all_ pages with a struct
  525. * page (that is, those where pfn_valid is true) are refcounted and considered
  526. * normal pages by the VM. The disadvantage is that pages are refcounted
  527. * (which can be slower and simply not an option for some PFNMAP users). The
  528. * advantage is that we don't have to follow the strict linearity rule of
  529. * PFNMAP mappings in order to support COWable mappings.
  530. *
  531. */
  532. #ifdef __HAVE_ARCH_PTE_SPECIAL
  533. # define HAVE_PTE_SPECIAL 1
  534. #else
  535. # define HAVE_PTE_SPECIAL 0
  536. #endif
  537. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  538. pte_t pte)
  539. {
  540. unsigned long pfn = pte_pfn(pte);
  541. if (HAVE_PTE_SPECIAL) {
  542. if (likely(!pte_special(pte)))
  543. goto check_pfn;
  544. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  545. return NULL;
  546. if (!is_zero_pfn(pfn))
  547. print_bad_pte(vma, addr, pte, NULL);
  548. return NULL;
  549. }
  550. /* !HAVE_PTE_SPECIAL case follows: */
  551. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  552. if (vma->vm_flags & VM_MIXEDMAP) {
  553. if (!pfn_valid(pfn))
  554. return NULL;
  555. goto out;
  556. } else {
  557. unsigned long off;
  558. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  559. if (pfn == vma->vm_pgoff + off)
  560. return NULL;
  561. if (!is_cow_mapping(vma->vm_flags))
  562. return NULL;
  563. }
  564. }
  565. if (is_zero_pfn(pfn))
  566. return NULL;
  567. check_pfn:
  568. if (unlikely(pfn > highest_memmap_pfn)) {
  569. print_bad_pte(vma, addr, pte, NULL);
  570. return NULL;
  571. }
  572. /*
  573. * NOTE! We still have PageReserved() pages in the page tables.
  574. * eg. VDSO mappings can cause them to exist.
  575. */
  576. out:
  577. return pfn_to_page(pfn);
  578. }
  579. /*
  580. * copy one vm_area from one task to the other. Assumes the page tables
  581. * already present in the new task to be cleared in the whole range
  582. * covered by this vma.
  583. */
  584. static inline unsigned long
  585. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  586. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  587. unsigned long addr, int *rss)
  588. {
  589. unsigned long vm_flags = vma->vm_flags;
  590. pte_t pte = *src_pte;
  591. struct page *page;
  592. /* pte contains position in swap or file, so copy. */
  593. if (unlikely(!pte_present(pte))) {
  594. if (!pte_file(pte)) {
  595. swp_entry_t entry = pte_to_swp_entry(pte);
  596. if (swap_duplicate(entry) < 0)
  597. return entry.val;
  598. /* make sure dst_mm is on swapoff's mmlist. */
  599. if (unlikely(list_empty(&dst_mm->mmlist))) {
  600. spin_lock(&mmlist_lock);
  601. if (list_empty(&dst_mm->mmlist))
  602. list_add(&dst_mm->mmlist,
  603. &src_mm->mmlist);
  604. spin_unlock(&mmlist_lock);
  605. }
  606. if (likely(!non_swap_entry(entry)))
  607. rss[MM_SWAPENTS]++;
  608. else if (is_write_migration_entry(entry) &&
  609. is_cow_mapping(vm_flags)) {
  610. /*
  611. * COW mappings require pages in both parent
  612. * and child to be set to read.
  613. */
  614. make_migration_entry_read(&entry);
  615. pte = swp_entry_to_pte(entry);
  616. set_pte_at(src_mm, addr, src_pte, pte);
  617. }
  618. }
  619. goto out_set_pte;
  620. }
  621. /*
  622. * If it's a COW mapping, write protect it both
  623. * in the parent and the child
  624. */
  625. if (is_cow_mapping(vm_flags)) {
  626. ptep_set_wrprotect(src_mm, addr, src_pte);
  627. pte = pte_wrprotect(pte);
  628. }
  629. /*
  630. * If it's a shared mapping, mark it clean in
  631. * the child
  632. */
  633. if (vm_flags & VM_SHARED)
  634. pte = pte_mkclean(pte);
  635. pte = pte_mkold(pte);
  636. page = vm_normal_page(vma, addr, pte);
  637. if (page) {
  638. get_page(page);
  639. page_dup_rmap(page);
  640. if (PageAnon(page))
  641. rss[MM_ANONPAGES]++;
  642. else
  643. rss[MM_FILEPAGES]++;
  644. }
  645. out_set_pte:
  646. set_pte_at(dst_mm, addr, dst_pte, pte);
  647. return 0;
  648. }
  649. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  650. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  651. unsigned long addr, unsigned long end)
  652. {
  653. pte_t *orig_src_pte, *orig_dst_pte;
  654. pte_t *src_pte, *dst_pte;
  655. spinlock_t *src_ptl, *dst_ptl;
  656. int progress = 0;
  657. int rss[NR_MM_COUNTERS];
  658. swp_entry_t entry = (swp_entry_t){0};
  659. again:
  660. init_rss_vec(rss);
  661. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  662. if (!dst_pte)
  663. return -ENOMEM;
  664. src_pte = pte_offset_map(src_pmd, addr);
  665. src_ptl = pte_lockptr(src_mm, src_pmd);
  666. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  667. orig_src_pte = src_pte;
  668. orig_dst_pte = dst_pte;
  669. arch_enter_lazy_mmu_mode();
  670. do {
  671. /*
  672. * We are holding two locks at this point - either of them
  673. * could generate latencies in another task on another CPU.
  674. */
  675. if (progress >= 32) {
  676. progress = 0;
  677. if (need_resched() ||
  678. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  679. break;
  680. }
  681. if (pte_none(*src_pte)) {
  682. progress++;
  683. continue;
  684. }
  685. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  686. vma, addr, rss);
  687. if (entry.val)
  688. break;
  689. progress += 8;
  690. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  691. arch_leave_lazy_mmu_mode();
  692. spin_unlock(src_ptl);
  693. pte_unmap(orig_src_pte);
  694. add_mm_rss_vec(dst_mm, rss);
  695. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  696. cond_resched();
  697. if (entry.val) {
  698. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  699. return -ENOMEM;
  700. progress = 0;
  701. }
  702. if (addr != end)
  703. goto again;
  704. return 0;
  705. }
  706. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  707. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  708. unsigned long addr, unsigned long end)
  709. {
  710. pmd_t *src_pmd, *dst_pmd;
  711. unsigned long next;
  712. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  713. if (!dst_pmd)
  714. return -ENOMEM;
  715. src_pmd = pmd_offset(src_pud, addr);
  716. do {
  717. next = pmd_addr_end(addr, end);
  718. if (pmd_trans_huge(*src_pmd)) {
  719. int err;
  720. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  721. err = copy_huge_pmd(dst_mm, src_mm,
  722. dst_pmd, src_pmd, addr, vma);
  723. if (err == -ENOMEM)
  724. return -ENOMEM;
  725. if (!err)
  726. continue;
  727. /* fall through */
  728. }
  729. if (pmd_none_or_clear_bad(src_pmd))
  730. continue;
  731. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  732. vma, addr, next))
  733. return -ENOMEM;
  734. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  735. return 0;
  736. }
  737. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  738. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  739. unsigned long addr, unsigned long end)
  740. {
  741. pud_t *src_pud, *dst_pud;
  742. unsigned long next;
  743. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  744. if (!dst_pud)
  745. return -ENOMEM;
  746. src_pud = pud_offset(src_pgd, addr);
  747. do {
  748. next = pud_addr_end(addr, end);
  749. if (pud_none_or_clear_bad(src_pud))
  750. continue;
  751. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  752. vma, addr, next))
  753. return -ENOMEM;
  754. } while (dst_pud++, src_pud++, addr = next, addr != end);
  755. return 0;
  756. }
  757. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  758. struct vm_area_struct *vma)
  759. {
  760. pgd_t *src_pgd, *dst_pgd;
  761. unsigned long next;
  762. unsigned long addr = vma->vm_start;
  763. unsigned long end = vma->vm_end;
  764. int ret;
  765. /*
  766. * Don't copy ptes where a page fault will fill them correctly.
  767. * Fork becomes much lighter when there are big shared or private
  768. * readonly mappings. The tradeoff is that copy_page_range is more
  769. * efficient than faulting.
  770. */
  771. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  772. if (!vma->anon_vma)
  773. return 0;
  774. }
  775. if (is_vm_hugetlb_page(vma))
  776. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  777. if (unlikely(is_pfn_mapping(vma))) {
  778. /*
  779. * We do not free on error cases below as remove_vma
  780. * gets called on error from higher level routine
  781. */
  782. ret = track_pfn_vma_copy(vma);
  783. if (ret)
  784. return ret;
  785. }
  786. /*
  787. * We need to invalidate the secondary MMU mappings only when
  788. * there could be a permission downgrade on the ptes of the
  789. * parent mm. And a permission downgrade will only happen if
  790. * is_cow_mapping() returns true.
  791. */
  792. if (is_cow_mapping(vma->vm_flags))
  793. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  794. ret = 0;
  795. dst_pgd = pgd_offset(dst_mm, addr);
  796. src_pgd = pgd_offset(src_mm, addr);
  797. do {
  798. next = pgd_addr_end(addr, end);
  799. if (pgd_none_or_clear_bad(src_pgd))
  800. continue;
  801. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  802. vma, addr, next))) {
  803. ret = -ENOMEM;
  804. break;
  805. }
  806. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  807. if (is_cow_mapping(vma->vm_flags))
  808. mmu_notifier_invalidate_range_end(src_mm,
  809. vma->vm_start, end);
  810. return ret;
  811. }
  812. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  813. struct vm_area_struct *vma, pmd_t *pmd,
  814. unsigned long addr, unsigned long end,
  815. long *zap_work, struct zap_details *details)
  816. {
  817. struct mm_struct *mm = tlb->mm;
  818. pte_t *pte;
  819. spinlock_t *ptl;
  820. int rss[NR_MM_COUNTERS];
  821. init_rss_vec(rss);
  822. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  823. arch_enter_lazy_mmu_mode();
  824. do {
  825. pte_t ptent = *pte;
  826. if (pte_none(ptent)) {
  827. (*zap_work)--;
  828. continue;
  829. }
  830. (*zap_work) -= PAGE_SIZE;
  831. if (pte_present(ptent)) {
  832. struct page *page;
  833. page = vm_normal_page(vma, addr, ptent);
  834. if (unlikely(details) && page) {
  835. /*
  836. * unmap_shared_mapping_pages() wants to
  837. * invalidate cache without truncating:
  838. * unmap shared but keep private pages.
  839. */
  840. if (details->check_mapping &&
  841. details->check_mapping != page->mapping)
  842. continue;
  843. /*
  844. * Each page->index must be checked when
  845. * invalidating or truncating nonlinear.
  846. */
  847. if (details->nonlinear_vma &&
  848. (page->index < details->first_index ||
  849. page->index > details->last_index))
  850. continue;
  851. }
  852. ptent = ptep_get_and_clear_full(mm, addr, pte,
  853. tlb->fullmm);
  854. tlb_remove_tlb_entry(tlb, pte, addr);
  855. if (unlikely(!page))
  856. continue;
  857. if (unlikely(details) && details->nonlinear_vma
  858. && linear_page_index(details->nonlinear_vma,
  859. addr) != page->index)
  860. set_pte_at(mm, addr, pte,
  861. pgoff_to_pte(page->index));
  862. if (PageAnon(page))
  863. rss[MM_ANONPAGES]--;
  864. else {
  865. if (pte_dirty(ptent))
  866. set_page_dirty(page);
  867. if (pte_young(ptent) &&
  868. likely(!VM_SequentialReadHint(vma)))
  869. mark_page_accessed(page);
  870. rss[MM_FILEPAGES]--;
  871. }
  872. page_remove_rmap(page);
  873. if (unlikely(page_mapcount(page) < 0))
  874. print_bad_pte(vma, addr, ptent, page);
  875. tlb_remove_page(tlb, page);
  876. continue;
  877. }
  878. /*
  879. * If details->check_mapping, we leave swap entries;
  880. * if details->nonlinear_vma, we leave file entries.
  881. */
  882. if (unlikely(details))
  883. continue;
  884. if (pte_file(ptent)) {
  885. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  886. print_bad_pte(vma, addr, ptent, NULL);
  887. } else {
  888. swp_entry_t entry = pte_to_swp_entry(ptent);
  889. if (!non_swap_entry(entry))
  890. rss[MM_SWAPENTS]--;
  891. if (unlikely(!free_swap_and_cache(entry)))
  892. print_bad_pte(vma, addr, ptent, NULL);
  893. }
  894. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  895. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  896. add_mm_rss_vec(mm, rss);
  897. arch_leave_lazy_mmu_mode();
  898. pte_unmap_unlock(pte - 1, ptl);
  899. return addr;
  900. }
  901. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  902. struct vm_area_struct *vma, pud_t *pud,
  903. unsigned long addr, unsigned long end,
  904. long *zap_work, struct zap_details *details)
  905. {
  906. pmd_t *pmd;
  907. unsigned long next;
  908. pmd = pmd_offset(pud, addr);
  909. do {
  910. next = pmd_addr_end(addr, end);
  911. if (pmd_trans_huge(*pmd)) {
  912. if (next-addr != HPAGE_PMD_SIZE) {
  913. VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
  914. split_huge_page_pmd(vma->vm_mm, pmd);
  915. } else if (zap_huge_pmd(tlb, vma, pmd)) {
  916. (*zap_work)--;
  917. continue;
  918. }
  919. /* fall through */
  920. }
  921. if (pmd_none_or_clear_bad(pmd)) {
  922. (*zap_work)--;
  923. continue;
  924. }
  925. next = zap_pte_range(tlb, vma, pmd, addr, next,
  926. zap_work, details);
  927. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  928. return addr;
  929. }
  930. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  931. struct vm_area_struct *vma, pgd_t *pgd,
  932. unsigned long addr, unsigned long end,
  933. long *zap_work, struct zap_details *details)
  934. {
  935. pud_t *pud;
  936. unsigned long next;
  937. pud = pud_offset(pgd, addr);
  938. do {
  939. next = pud_addr_end(addr, end);
  940. if (pud_none_or_clear_bad(pud)) {
  941. (*zap_work)--;
  942. continue;
  943. }
  944. next = zap_pmd_range(tlb, vma, pud, addr, next,
  945. zap_work, details);
  946. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  947. return addr;
  948. }
  949. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  950. struct vm_area_struct *vma,
  951. unsigned long addr, unsigned long end,
  952. long *zap_work, struct zap_details *details)
  953. {
  954. pgd_t *pgd;
  955. unsigned long next;
  956. if (details && !details->check_mapping && !details->nonlinear_vma)
  957. details = NULL;
  958. BUG_ON(addr >= end);
  959. mem_cgroup_uncharge_start();
  960. tlb_start_vma(tlb, vma);
  961. pgd = pgd_offset(vma->vm_mm, addr);
  962. do {
  963. next = pgd_addr_end(addr, end);
  964. if (pgd_none_or_clear_bad(pgd)) {
  965. (*zap_work)--;
  966. continue;
  967. }
  968. next = zap_pud_range(tlb, vma, pgd, addr, next,
  969. zap_work, details);
  970. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  971. tlb_end_vma(tlb, vma);
  972. mem_cgroup_uncharge_end();
  973. return addr;
  974. }
  975. #ifdef CONFIG_PREEMPT
  976. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  977. #else
  978. /* No preempt: go for improved straight-line efficiency */
  979. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  980. #endif
  981. /**
  982. * unmap_vmas - unmap a range of memory covered by a list of vma's
  983. * @tlbp: address of the caller's struct mmu_gather
  984. * @vma: the starting vma
  985. * @start_addr: virtual address at which to start unmapping
  986. * @end_addr: virtual address at which to end unmapping
  987. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  988. * @details: details of nonlinear truncation or shared cache invalidation
  989. *
  990. * Returns the end address of the unmapping (restart addr if interrupted).
  991. *
  992. * Unmap all pages in the vma list.
  993. *
  994. * We aim to not hold locks for too long (for scheduling latency reasons).
  995. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  996. * return the ending mmu_gather to the caller.
  997. *
  998. * Only addresses between `start' and `end' will be unmapped.
  999. *
  1000. * The VMA list must be sorted in ascending virtual address order.
  1001. *
  1002. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1003. * range after unmap_vmas() returns. So the only responsibility here is to
  1004. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1005. * drops the lock and schedules.
  1006. */
  1007. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  1008. struct vm_area_struct *vma, unsigned long start_addr,
  1009. unsigned long end_addr, unsigned long *nr_accounted,
  1010. struct zap_details *details)
  1011. {
  1012. long zap_work = ZAP_BLOCK_SIZE;
  1013. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  1014. int tlb_start_valid = 0;
  1015. unsigned long start = start_addr;
  1016. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  1017. int fullmm = (*tlbp)->fullmm;
  1018. struct mm_struct *mm = vma->vm_mm;
  1019. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1020. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  1021. unsigned long end;
  1022. start = max(vma->vm_start, start_addr);
  1023. if (start >= vma->vm_end)
  1024. continue;
  1025. end = min(vma->vm_end, end_addr);
  1026. if (end <= vma->vm_start)
  1027. continue;
  1028. if (vma->vm_flags & VM_ACCOUNT)
  1029. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1030. if (unlikely(is_pfn_mapping(vma)))
  1031. untrack_pfn_vma(vma, 0, 0);
  1032. while (start != end) {
  1033. if (!tlb_start_valid) {
  1034. tlb_start = start;
  1035. tlb_start_valid = 1;
  1036. }
  1037. if (unlikely(is_vm_hugetlb_page(vma))) {
  1038. /*
  1039. * It is undesirable to test vma->vm_file as it
  1040. * should be non-null for valid hugetlb area.
  1041. * However, vm_file will be NULL in the error
  1042. * cleanup path of do_mmap_pgoff. When
  1043. * hugetlbfs ->mmap method fails,
  1044. * do_mmap_pgoff() nullifies vma->vm_file
  1045. * before calling this function to clean up.
  1046. * Since no pte has actually been setup, it is
  1047. * safe to do nothing in this case.
  1048. */
  1049. if (vma->vm_file) {
  1050. unmap_hugepage_range(vma, start, end, NULL);
  1051. zap_work -= (end - start) /
  1052. pages_per_huge_page(hstate_vma(vma));
  1053. }
  1054. start = end;
  1055. } else
  1056. start = unmap_page_range(*tlbp, vma,
  1057. start, end, &zap_work, details);
  1058. if (zap_work > 0) {
  1059. BUG_ON(start != end);
  1060. break;
  1061. }
  1062. tlb_finish_mmu(*tlbp, tlb_start, start);
  1063. if (need_resched() ||
  1064. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1065. if (i_mmap_lock) {
  1066. *tlbp = NULL;
  1067. goto out;
  1068. }
  1069. cond_resched();
  1070. }
  1071. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1072. tlb_start_valid = 0;
  1073. zap_work = ZAP_BLOCK_SIZE;
  1074. }
  1075. }
  1076. out:
  1077. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1078. return start; /* which is now the end (or restart) address */
  1079. }
  1080. /**
  1081. * zap_page_range - remove user pages in a given range
  1082. * @vma: vm_area_struct holding the applicable pages
  1083. * @address: starting address of pages to zap
  1084. * @size: number of bytes to zap
  1085. * @details: details of nonlinear truncation or shared cache invalidation
  1086. */
  1087. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1088. unsigned long size, struct zap_details *details)
  1089. {
  1090. struct mm_struct *mm = vma->vm_mm;
  1091. struct mmu_gather *tlb;
  1092. unsigned long end = address + size;
  1093. unsigned long nr_accounted = 0;
  1094. lru_add_drain();
  1095. tlb = tlb_gather_mmu(mm, 0);
  1096. update_hiwater_rss(mm);
  1097. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1098. if (tlb)
  1099. tlb_finish_mmu(tlb, address, end);
  1100. return end;
  1101. }
  1102. /**
  1103. * zap_vma_ptes - remove ptes mapping the vma
  1104. * @vma: vm_area_struct holding ptes to be zapped
  1105. * @address: starting address of pages to zap
  1106. * @size: number of bytes to zap
  1107. *
  1108. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1109. *
  1110. * The entire address range must be fully contained within the vma.
  1111. *
  1112. * Returns 0 if successful.
  1113. */
  1114. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1115. unsigned long size)
  1116. {
  1117. if (address < vma->vm_start || address + size > vma->vm_end ||
  1118. !(vma->vm_flags & VM_PFNMAP))
  1119. return -1;
  1120. zap_page_range(vma, address, size, NULL);
  1121. return 0;
  1122. }
  1123. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1124. /**
  1125. * follow_page - look up a page descriptor from a user-virtual address
  1126. * @vma: vm_area_struct mapping @address
  1127. * @address: virtual address to look up
  1128. * @flags: flags modifying lookup behaviour
  1129. *
  1130. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1131. *
  1132. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1133. * an error pointer if there is a mapping to something not represented
  1134. * by a page descriptor (see also vm_normal_page()).
  1135. */
  1136. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1137. unsigned int flags)
  1138. {
  1139. pgd_t *pgd;
  1140. pud_t *pud;
  1141. pmd_t *pmd;
  1142. pte_t *ptep, pte;
  1143. spinlock_t *ptl;
  1144. struct page *page;
  1145. struct mm_struct *mm = vma->vm_mm;
  1146. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1147. if (!IS_ERR(page)) {
  1148. BUG_ON(flags & FOLL_GET);
  1149. goto out;
  1150. }
  1151. page = NULL;
  1152. pgd = pgd_offset(mm, address);
  1153. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1154. goto no_page_table;
  1155. pud = pud_offset(pgd, address);
  1156. if (pud_none(*pud))
  1157. goto no_page_table;
  1158. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1159. BUG_ON(flags & FOLL_GET);
  1160. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1161. goto out;
  1162. }
  1163. if (unlikely(pud_bad(*pud)))
  1164. goto no_page_table;
  1165. pmd = pmd_offset(pud, address);
  1166. if (pmd_none(*pmd))
  1167. goto no_page_table;
  1168. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1169. BUG_ON(flags & FOLL_GET);
  1170. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1171. goto out;
  1172. }
  1173. if (pmd_trans_huge(*pmd)) {
  1174. if (flags & FOLL_SPLIT) {
  1175. split_huge_page_pmd(mm, pmd);
  1176. goto split_fallthrough;
  1177. }
  1178. spin_lock(&mm->page_table_lock);
  1179. if (likely(pmd_trans_huge(*pmd))) {
  1180. if (unlikely(pmd_trans_splitting(*pmd))) {
  1181. spin_unlock(&mm->page_table_lock);
  1182. wait_split_huge_page(vma->anon_vma, pmd);
  1183. } else {
  1184. page = follow_trans_huge_pmd(mm, address,
  1185. pmd, flags);
  1186. spin_unlock(&mm->page_table_lock);
  1187. goto out;
  1188. }
  1189. } else
  1190. spin_unlock(&mm->page_table_lock);
  1191. /* fall through */
  1192. }
  1193. split_fallthrough:
  1194. if (unlikely(pmd_bad(*pmd)))
  1195. goto no_page_table;
  1196. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1197. pte = *ptep;
  1198. if (!pte_present(pte))
  1199. goto no_page;
  1200. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1201. goto unlock;
  1202. page = vm_normal_page(vma, address, pte);
  1203. if (unlikely(!page)) {
  1204. if ((flags & FOLL_DUMP) ||
  1205. !is_zero_pfn(pte_pfn(pte)))
  1206. goto bad_page;
  1207. page = pte_page(pte);
  1208. }
  1209. if (flags & FOLL_GET)
  1210. get_page(page);
  1211. if (flags & FOLL_TOUCH) {
  1212. if ((flags & FOLL_WRITE) &&
  1213. !pte_dirty(pte) && !PageDirty(page))
  1214. set_page_dirty(page);
  1215. /*
  1216. * pte_mkyoung() would be more correct here, but atomic care
  1217. * is needed to avoid losing the dirty bit: it is easier to use
  1218. * mark_page_accessed().
  1219. */
  1220. mark_page_accessed(page);
  1221. }
  1222. if (flags & FOLL_MLOCK) {
  1223. /*
  1224. * The preliminary mapping check is mainly to avoid the
  1225. * pointless overhead of lock_page on the ZERO_PAGE
  1226. * which might bounce very badly if there is contention.
  1227. *
  1228. * If the page is already locked, we don't need to
  1229. * handle it now - vmscan will handle it later if and
  1230. * when it attempts to reclaim the page.
  1231. */
  1232. if (page->mapping && trylock_page(page)) {
  1233. lru_add_drain(); /* push cached pages to LRU */
  1234. /*
  1235. * Because we lock page here and migration is
  1236. * blocked by the pte's page reference, we need
  1237. * only check for file-cache page truncation.
  1238. */
  1239. if (page->mapping)
  1240. mlock_vma_page(page);
  1241. unlock_page(page);
  1242. }
  1243. }
  1244. unlock:
  1245. pte_unmap_unlock(ptep, ptl);
  1246. out:
  1247. return page;
  1248. bad_page:
  1249. pte_unmap_unlock(ptep, ptl);
  1250. return ERR_PTR(-EFAULT);
  1251. no_page:
  1252. pte_unmap_unlock(ptep, ptl);
  1253. if (!pte_none(pte))
  1254. return page;
  1255. no_page_table:
  1256. /*
  1257. * When core dumping an enormous anonymous area that nobody
  1258. * has touched so far, we don't want to allocate unnecessary pages or
  1259. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1260. * then get_dump_page() will return NULL to leave a hole in the dump.
  1261. * But we can only make this optimization where a hole would surely
  1262. * be zero-filled if handle_mm_fault() actually did handle it.
  1263. */
  1264. if ((flags & FOLL_DUMP) &&
  1265. (!vma->vm_ops || !vma->vm_ops->fault))
  1266. return ERR_PTR(-EFAULT);
  1267. return page;
  1268. }
  1269. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1270. unsigned long start, int nr_pages, unsigned int gup_flags,
  1271. struct page **pages, struct vm_area_struct **vmas,
  1272. int *nonblocking)
  1273. {
  1274. int i;
  1275. unsigned long vm_flags;
  1276. if (nr_pages <= 0)
  1277. return 0;
  1278. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1279. /*
  1280. * Require read or write permissions.
  1281. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1282. */
  1283. vm_flags = (gup_flags & FOLL_WRITE) ?
  1284. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1285. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1286. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1287. i = 0;
  1288. do {
  1289. struct vm_area_struct *vma;
  1290. vma = find_extend_vma(mm, start);
  1291. if (!vma && in_gate_area(tsk, start)) {
  1292. unsigned long pg = start & PAGE_MASK;
  1293. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1294. pgd_t *pgd;
  1295. pud_t *pud;
  1296. pmd_t *pmd;
  1297. pte_t *pte;
  1298. /* user gate pages are read-only */
  1299. if (gup_flags & FOLL_WRITE)
  1300. return i ? : -EFAULT;
  1301. if (pg > TASK_SIZE)
  1302. pgd = pgd_offset_k(pg);
  1303. else
  1304. pgd = pgd_offset_gate(mm, pg);
  1305. BUG_ON(pgd_none(*pgd));
  1306. pud = pud_offset(pgd, pg);
  1307. BUG_ON(pud_none(*pud));
  1308. pmd = pmd_offset(pud, pg);
  1309. if (pmd_none(*pmd))
  1310. return i ? : -EFAULT;
  1311. VM_BUG_ON(pmd_trans_huge(*pmd));
  1312. pte = pte_offset_map(pmd, pg);
  1313. if (pte_none(*pte)) {
  1314. pte_unmap(pte);
  1315. return i ? : -EFAULT;
  1316. }
  1317. if (pages) {
  1318. struct page *page;
  1319. page = vm_normal_page(gate_vma, start, *pte);
  1320. if (!page) {
  1321. if (!(gup_flags & FOLL_DUMP) &&
  1322. is_zero_pfn(pte_pfn(*pte)))
  1323. page = pte_page(*pte);
  1324. else {
  1325. pte_unmap(pte);
  1326. return i ? : -EFAULT;
  1327. }
  1328. }
  1329. pages[i] = page;
  1330. get_page(page);
  1331. }
  1332. pte_unmap(pte);
  1333. if (vmas)
  1334. vmas[i] = gate_vma;
  1335. i++;
  1336. start += PAGE_SIZE;
  1337. nr_pages--;
  1338. continue;
  1339. }
  1340. if (!vma ||
  1341. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1342. !(vm_flags & vma->vm_flags))
  1343. return i ? : -EFAULT;
  1344. if (is_vm_hugetlb_page(vma)) {
  1345. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1346. &start, &nr_pages, i, gup_flags);
  1347. continue;
  1348. }
  1349. do {
  1350. struct page *page;
  1351. unsigned int foll_flags = gup_flags;
  1352. /*
  1353. * If we have a pending SIGKILL, don't keep faulting
  1354. * pages and potentially allocating memory.
  1355. */
  1356. if (unlikely(fatal_signal_pending(current)))
  1357. return i ? i : -ERESTARTSYS;
  1358. cond_resched();
  1359. while (!(page = follow_page(vma, start, foll_flags))) {
  1360. int ret;
  1361. unsigned int fault_flags = 0;
  1362. if (foll_flags & FOLL_WRITE)
  1363. fault_flags |= FAULT_FLAG_WRITE;
  1364. if (nonblocking)
  1365. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1366. ret = handle_mm_fault(mm, vma, start,
  1367. fault_flags);
  1368. if (ret & VM_FAULT_ERROR) {
  1369. if (ret & VM_FAULT_OOM)
  1370. return i ? i : -ENOMEM;
  1371. if (ret &
  1372. (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE|
  1373. VM_FAULT_SIGBUS))
  1374. return i ? i : -EFAULT;
  1375. BUG();
  1376. }
  1377. if (ret & VM_FAULT_MAJOR)
  1378. tsk->maj_flt++;
  1379. else
  1380. tsk->min_flt++;
  1381. if (ret & VM_FAULT_RETRY) {
  1382. *nonblocking = 0;
  1383. return i;
  1384. }
  1385. /*
  1386. * The VM_FAULT_WRITE bit tells us that
  1387. * do_wp_page has broken COW when necessary,
  1388. * even if maybe_mkwrite decided not to set
  1389. * pte_write. We can thus safely do subsequent
  1390. * page lookups as if they were reads. But only
  1391. * do so when looping for pte_write is futile:
  1392. * in some cases userspace may also be wanting
  1393. * to write to the gotten user page, which a
  1394. * read fault here might prevent (a readonly
  1395. * page might get reCOWed by userspace write).
  1396. */
  1397. if ((ret & VM_FAULT_WRITE) &&
  1398. !(vma->vm_flags & VM_WRITE))
  1399. foll_flags &= ~FOLL_WRITE;
  1400. cond_resched();
  1401. }
  1402. if (IS_ERR(page))
  1403. return i ? i : PTR_ERR(page);
  1404. if (pages) {
  1405. pages[i] = page;
  1406. flush_anon_page(vma, page, start);
  1407. flush_dcache_page(page);
  1408. }
  1409. if (vmas)
  1410. vmas[i] = vma;
  1411. i++;
  1412. start += PAGE_SIZE;
  1413. nr_pages--;
  1414. } while (nr_pages && start < vma->vm_end);
  1415. } while (nr_pages);
  1416. return i;
  1417. }
  1418. /**
  1419. * get_user_pages() - pin user pages in memory
  1420. * @tsk: task_struct of target task
  1421. * @mm: mm_struct of target mm
  1422. * @start: starting user address
  1423. * @nr_pages: number of pages from start to pin
  1424. * @write: whether pages will be written to by the caller
  1425. * @force: whether to force write access even if user mapping is
  1426. * readonly. This will result in the page being COWed even
  1427. * in MAP_SHARED mappings. You do not want this.
  1428. * @pages: array that receives pointers to the pages pinned.
  1429. * Should be at least nr_pages long. Or NULL, if caller
  1430. * only intends to ensure the pages are faulted in.
  1431. * @vmas: array of pointers to vmas corresponding to each page.
  1432. * Or NULL if the caller does not require them.
  1433. *
  1434. * Returns number of pages pinned. This may be fewer than the number
  1435. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1436. * were pinned, returns -errno. Each page returned must be released
  1437. * with a put_page() call when it is finished with. vmas will only
  1438. * remain valid while mmap_sem is held.
  1439. *
  1440. * Must be called with mmap_sem held for read or write.
  1441. *
  1442. * get_user_pages walks a process's page tables and takes a reference to
  1443. * each struct page that each user address corresponds to at a given
  1444. * instant. That is, it takes the page that would be accessed if a user
  1445. * thread accesses the given user virtual address at that instant.
  1446. *
  1447. * This does not guarantee that the page exists in the user mappings when
  1448. * get_user_pages returns, and there may even be a completely different
  1449. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1450. * and subsequently re faulted). However it does guarantee that the page
  1451. * won't be freed completely. And mostly callers simply care that the page
  1452. * contains data that was valid *at some point in time*. Typically, an IO
  1453. * or similar operation cannot guarantee anything stronger anyway because
  1454. * locks can't be held over the syscall boundary.
  1455. *
  1456. * If write=0, the page must not be written to. If the page is written to,
  1457. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1458. * after the page is finished with, and before put_page is called.
  1459. *
  1460. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1461. * handle on the memory by some means other than accesses via the user virtual
  1462. * addresses. The pages may be submitted for DMA to devices or accessed via
  1463. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1464. * use the correct cache flushing APIs.
  1465. *
  1466. * See also get_user_pages_fast, for performance critical applications.
  1467. */
  1468. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1469. unsigned long start, int nr_pages, int write, int force,
  1470. struct page **pages, struct vm_area_struct **vmas)
  1471. {
  1472. int flags = FOLL_TOUCH;
  1473. if (pages)
  1474. flags |= FOLL_GET;
  1475. if (write)
  1476. flags |= FOLL_WRITE;
  1477. if (force)
  1478. flags |= FOLL_FORCE;
  1479. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1480. NULL);
  1481. }
  1482. EXPORT_SYMBOL(get_user_pages);
  1483. /**
  1484. * get_dump_page() - pin user page in memory while writing it to core dump
  1485. * @addr: user address
  1486. *
  1487. * Returns struct page pointer of user page pinned for dump,
  1488. * to be freed afterwards by page_cache_release() or put_page().
  1489. *
  1490. * Returns NULL on any kind of failure - a hole must then be inserted into
  1491. * the corefile, to preserve alignment with its headers; and also returns
  1492. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1493. * allowing a hole to be left in the corefile to save diskspace.
  1494. *
  1495. * Called without mmap_sem, but after all other threads have been killed.
  1496. */
  1497. #ifdef CONFIG_ELF_CORE
  1498. struct page *get_dump_page(unsigned long addr)
  1499. {
  1500. struct vm_area_struct *vma;
  1501. struct page *page;
  1502. if (__get_user_pages(current, current->mm, addr, 1,
  1503. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1504. NULL) < 1)
  1505. return NULL;
  1506. flush_cache_page(vma, addr, page_to_pfn(page));
  1507. return page;
  1508. }
  1509. #endif /* CONFIG_ELF_CORE */
  1510. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1511. spinlock_t **ptl)
  1512. {
  1513. pgd_t * pgd = pgd_offset(mm, addr);
  1514. pud_t * pud = pud_alloc(mm, pgd, addr);
  1515. if (pud) {
  1516. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1517. if (pmd) {
  1518. VM_BUG_ON(pmd_trans_huge(*pmd));
  1519. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1520. }
  1521. }
  1522. return NULL;
  1523. }
  1524. /*
  1525. * This is the old fallback for page remapping.
  1526. *
  1527. * For historical reasons, it only allows reserved pages. Only
  1528. * old drivers should use this, and they needed to mark their
  1529. * pages reserved for the old functions anyway.
  1530. */
  1531. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1532. struct page *page, pgprot_t prot)
  1533. {
  1534. struct mm_struct *mm = vma->vm_mm;
  1535. int retval;
  1536. pte_t *pte;
  1537. spinlock_t *ptl;
  1538. retval = -EINVAL;
  1539. if (PageAnon(page))
  1540. goto out;
  1541. retval = -ENOMEM;
  1542. flush_dcache_page(page);
  1543. pte = get_locked_pte(mm, addr, &ptl);
  1544. if (!pte)
  1545. goto out;
  1546. retval = -EBUSY;
  1547. if (!pte_none(*pte))
  1548. goto out_unlock;
  1549. /* Ok, finally just insert the thing.. */
  1550. get_page(page);
  1551. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1552. page_add_file_rmap(page);
  1553. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1554. retval = 0;
  1555. pte_unmap_unlock(pte, ptl);
  1556. return retval;
  1557. out_unlock:
  1558. pte_unmap_unlock(pte, ptl);
  1559. out:
  1560. return retval;
  1561. }
  1562. /**
  1563. * vm_insert_page - insert single page into user vma
  1564. * @vma: user vma to map to
  1565. * @addr: target user address of this page
  1566. * @page: source kernel page
  1567. *
  1568. * This allows drivers to insert individual pages they've allocated
  1569. * into a user vma.
  1570. *
  1571. * The page has to be a nice clean _individual_ kernel allocation.
  1572. * If you allocate a compound page, you need to have marked it as
  1573. * such (__GFP_COMP), or manually just split the page up yourself
  1574. * (see split_page()).
  1575. *
  1576. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1577. * took an arbitrary page protection parameter. This doesn't allow
  1578. * that. Your vma protection will have to be set up correctly, which
  1579. * means that if you want a shared writable mapping, you'd better
  1580. * ask for a shared writable mapping!
  1581. *
  1582. * The page does not need to be reserved.
  1583. */
  1584. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1585. struct page *page)
  1586. {
  1587. if (addr < vma->vm_start || addr >= vma->vm_end)
  1588. return -EFAULT;
  1589. if (!page_count(page))
  1590. return -EINVAL;
  1591. vma->vm_flags |= VM_INSERTPAGE;
  1592. return insert_page(vma, addr, page, vma->vm_page_prot);
  1593. }
  1594. EXPORT_SYMBOL(vm_insert_page);
  1595. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1596. unsigned long pfn, pgprot_t prot)
  1597. {
  1598. struct mm_struct *mm = vma->vm_mm;
  1599. int retval;
  1600. pte_t *pte, entry;
  1601. spinlock_t *ptl;
  1602. retval = -ENOMEM;
  1603. pte = get_locked_pte(mm, addr, &ptl);
  1604. if (!pte)
  1605. goto out;
  1606. retval = -EBUSY;
  1607. if (!pte_none(*pte))
  1608. goto out_unlock;
  1609. /* Ok, finally just insert the thing.. */
  1610. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1611. set_pte_at(mm, addr, pte, entry);
  1612. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1613. retval = 0;
  1614. out_unlock:
  1615. pte_unmap_unlock(pte, ptl);
  1616. out:
  1617. return retval;
  1618. }
  1619. /**
  1620. * vm_insert_pfn - insert single pfn into user vma
  1621. * @vma: user vma to map to
  1622. * @addr: target user address of this page
  1623. * @pfn: source kernel pfn
  1624. *
  1625. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1626. * they've allocated into a user vma. Same comments apply.
  1627. *
  1628. * This function should only be called from a vm_ops->fault handler, and
  1629. * in that case the handler should return NULL.
  1630. *
  1631. * vma cannot be a COW mapping.
  1632. *
  1633. * As this is called only for pages that do not currently exist, we
  1634. * do not need to flush old virtual caches or the TLB.
  1635. */
  1636. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1637. unsigned long pfn)
  1638. {
  1639. int ret;
  1640. pgprot_t pgprot = vma->vm_page_prot;
  1641. /*
  1642. * Technically, architectures with pte_special can avoid all these
  1643. * restrictions (same for remap_pfn_range). However we would like
  1644. * consistency in testing and feature parity among all, so we should
  1645. * try to keep these invariants in place for everybody.
  1646. */
  1647. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1648. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1649. (VM_PFNMAP|VM_MIXEDMAP));
  1650. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1651. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1652. if (addr < vma->vm_start || addr >= vma->vm_end)
  1653. return -EFAULT;
  1654. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1655. return -EINVAL;
  1656. ret = insert_pfn(vma, addr, pfn, pgprot);
  1657. if (ret)
  1658. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1659. return ret;
  1660. }
  1661. EXPORT_SYMBOL(vm_insert_pfn);
  1662. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1663. unsigned long pfn)
  1664. {
  1665. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1666. if (addr < vma->vm_start || addr >= vma->vm_end)
  1667. return -EFAULT;
  1668. /*
  1669. * If we don't have pte special, then we have to use the pfn_valid()
  1670. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1671. * refcount the page if pfn_valid is true (hence insert_page rather
  1672. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1673. * without pte special, it would there be refcounted as a normal page.
  1674. */
  1675. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1676. struct page *page;
  1677. page = pfn_to_page(pfn);
  1678. return insert_page(vma, addr, page, vma->vm_page_prot);
  1679. }
  1680. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1681. }
  1682. EXPORT_SYMBOL(vm_insert_mixed);
  1683. /*
  1684. * maps a range of physical memory into the requested pages. the old
  1685. * mappings are removed. any references to nonexistent pages results
  1686. * in null mappings (currently treated as "copy-on-access")
  1687. */
  1688. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1689. unsigned long addr, unsigned long end,
  1690. unsigned long pfn, pgprot_t prot)
  1691. {
  1692. pte_t *pte;
  1693. spinlock_t *ptl;
  1694. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1695. if (!pte)
  1696. return -ENOMEM;
  1697. arch_enter_lazy_mmu_mode();
  1698. do {
  1699. BUG_ON(!pte_none(*pte));
  1700. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1701. pfn++;
  1702. } while (pte++, addr += PAGE_SIZE, addr != end);
  1703. arch_leave_lazy_mmu_mode();
  1704. pte_unmap_unlock(pte - 1, ptl);
  1705. return 0;
  1706. }
  1707. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1708. unsigned long addr, unsigned long end,
  1709. unsigned long pfn, pgprot_t prot)
  1710. {
  1711. pmd_t *pmd;
  1712. unsigned long next;
  1713. pfn -= addr >> PAGE_SHIFT;
  1714. pmd = pmd_alloc(mm, pud, addr);
  1715. if (!pmd)
  1716. return -ENOMEM;
  1717. VM_BUG_ON(pmd_trans_huge(*pmd));
  1718. do {
  1719. next = pmd_addr_end(addr, end);
  1720. if (remap_pte_range(mm, pmd, addr, next,
  1721. pfn + (addr >> PAGE_SHIFT), prot))
  1722. return -ENOMEM;
  1723. } while (pmd++, addr = next, addr != end);
  1724. return 0;
  1725. }
  1726. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1727. unsigned long addr, unsigned long end,
  1728. unsigned long pfn, pgprot_t prot)
  1729. {
  1730. pud_t *pud;
  1731. unsigned long next;
  1732. pfn -= addr >> PAGE_SHIFT;
  1733. pud = pud_alloc(mm, pgd, addr);
  1734. if (!pud)
  1735. return -ENOMEM;
  1736. do {
  1737. next = pud_addr_end(addr, end);
  1738. if (remap_pmd_range(mm, pud, addr, next,
  1739. pfn + (addr >> PAGE_SHIFT), prot))
  1740. return -ENOMEM;
  1741. } while (pud++, addr = next, addr != end);
  1742. return 0;
  1743. }
  1744. /**
  1745. * remap_pfn_range - remap kernel memory to userspace
  1746. * @vma: user vma to map to
  1747. * @addr: target user address to start at
  1748. * @pfn: physical address of kernel memory
  1749. * @size: size of map area
  1750. * @prot: page protection flags for this mapping
  1751. *
  1752. * Note: this is only safe if the mm semaphore is held when called.
  1753. */
  1754. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1755. unsigned long pfn, unsigned long size, pgprot_t prot)
  1756. {
  1757. pgd_t *pgd;
  1758. unsigned long next;
  1759. unsigned long end = addr + PAGE_ALIGN(size);
  1760. struct mm_struct *mm = vma->vm_mm;
  1761. int err;
  1762. /*
  1763. * Physically remapped pages are special. Tell the
  1764. * rest of the world about it:
  1765. * VM_IO tells people not to look at these pages
  1766. * (accesses can have side effects).
  1767. * VM_RESERVED is specified all over the place, because
  1768. * in 2.4 it kept swapout's vma scan off this vma; but
  1769. * in 2.6 the LRU scan won't even find its pages, so this
  1770. * flag means no more than count its pages in reserved_vm,
  1771. * and omit it from core dump, even when VM_IO turned off.
  1772. * VM_PFNMAP tells the core MM that the base pages are just
  1773. * raw PFN mappings, and do not have a "struct page" associated
  1774. * with them.
  1775. *
  1776. * There's a horrible special case to handle copy-on-write
  1777. * behaviour that some programs depend on. We mark the "original"
  1778. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1779. */
  1780. if (addr == vma->vm_start && end == vma->vm_end) {
  1781. vma->vm_pgoff = pfn;
  1782. vma->vm_flags |= VM_PFN_AT_MMAP;
  1783. } else if (is_cow_mapping(vma->vm_flags))
  1784. return -EINVAL;
  1785. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1786. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1787. if (err) {
  1788. /*
  1789. * To indicate that track_pfn related cleanup is not
  1790. * needed from higher level routine calling unmap_vmas
  1791. */
  1792. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1793. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1794. return -EINVAL;
  1795. }
  1796. BUG_ON(addr >= end);
  1797. pfn -= addr >> PAGE_SHIFT;
  1798. pgd = pgd_offset(mm, addr);
  1799. flush_cache_range(vma, addr, end);
  1800. do {
  1801. next = pgd_addr_end(addr, end);
  1802. err = remap_pud_range(mm, pgd, addr, next,
  1803. pfn + (addr >> PAGE_SHIFT), prot);
  1804. if (err)
  1805. break;
  1806. } while (pgd++, addr = next, addr != end);
  1807. if (err)
  1808. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1809. return err;
  1810. }
  1811. EXPORT_SYMBOL(remap_pfn_range);
  1812. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1813. unsigned long addr, unsigned long end,
  1814. pte_fn_t fn, void *data)
  1815. {
  1816. pte_t *pte;
  1817. int err;
  1818. pgtable_t token;
  1819. spinlock_t *uninitialized_var(ptl);
  1820. pte = (mm == &init_mm) ?
  1821. pte_alloc_kernel(pmd, addr) :
  1822. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1823. if (!pte)
  1824. return -ENOMEM;
  1825. BUG_ON(pmd_huge(*pmd));
  1826. arch_enter_lazy_mmu_mode();
  1827. token = pmd_pgtable(*pmd);
  1828. do {
  1829. err = fn(pte++, token, addr, data);
  1830. if (err)
  1831. break;
  1832. } while (addr += PAGE_SIZE, addr != end);
  1833. arch_leave_lazy_mmu_mode();
  1834. if (mm != &init_mm)
  1835. pte_unmap_unlock(pte-1, ptl);
  1836. return err;
  1837. }
  1838. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1839. unsigned long addr, unsigned long end,
  1840. pte_fn_t fn, void *data)
  1841. {
  1842. pmd_t *pmd;
  1843. unsigned long next;
  1844. int err;
  1845. BUG_ON(pud_huge(*pud));
  1846. pmd = pmd_alloc(mm, pud, addr);
  1847. if (!pmd)
  1848. return -ENOMEM;
  1849. do {
  1850. next = pmd_addr_end(addr, end);
  1851. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1852. if (err)
  1853. break;
  1854. } while (pmd++, addr = next, addr != end);
  1855. return err;
  1856. }
  1857. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1858. unsigned long addr, unsigned long end,
  1859. pte_fn_t fn, void *data)
  1860. {
  1861. pud_t *pud;
  1862. unsigned long next;
  1863. int err;
  1864. pud = pud_alloc(mm, pgd, addr);
  1865. if (!pud)
  1866. return -ENOMEM;
  1867. do {
  1868. next = pud_addr_end(addr, end);
  1869. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1870. if (err)
  1871. break;
  1872. } while (pud++, addr = next, addr != end);
  1873. return err;
  1874. }
  1875. /*
  1876. * Scan a region of virtual memory, filling in page tables as necessary
  1877. * and calling a provided function on each leaf page table.
  1878. */
  1879. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1880. unsigned long size, pte_fn_t fn, void *data)
  1881. {
  1882. pgd_t *pgd;
  1883. unsigned long next;
  1884. unsigned long end = addr + size;
  1885. int err;
  1886. BUG_ON(addr >= end);
  1887. pgd = pgd_offset(mm, addr);
  1888. do {
  1889. next = pgd_addr_end(addr, end);
  1890. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1891. if (err)
  1892. break;
  1893. } while (pgd++, addr = next, addr != end);
  1894. return err;
  1895. }
  1896. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1897. /*
  1898. * handle_pte_fault chooses page fault handler according to an entry
  1899. * which was read non-atomically. Before making any commitment, on
  1900. * those architectures or configurations (e.g. i386 with PAE) which
  1901. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1902. * must check under lock before unmapping the pte and proceeding
  1903. * (but do_wp_page is only called after already making such a check;
  1904. * and do_anonymous_page and do_no_page can safely check later on).
  1905. */
  1906. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1907. pte_t *page_table, pte_t orig_pte)
  1908. {
  1909. int same = 1;
  1910. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1911. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1912. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1913. spin_lock(ptl);
  1914. same = pte_same(*page_table, orig_pte);
  1915. spin_unlock(ptl);
  1916. }
  1917. #endif
  1918. pte_unmap(page_table);
  1919. return same;
  1920. }
  1921. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1922. {
  1923. /*
  1924. * If the source page was a PFN mapping, we don't have
  1925. * a "struct page" for it. We do a best-effort copy by
  1926. * just copying from the original user address. If that
  1927. * fails, we just zero-fill it. Live with it.
  1928. */
  1929. if (unlikely(!src)) {
  1930. void *kaddr = kmap_atomic(dst, KM_USER0);
  1931. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1932. /*
  1933. * This really shouldn't fail, because the page is there
  1934. * in the page tables. But it might just be unreadable,
  1935. * in which case we just give up and fill the result with
  1936. * zeroes.
  1937. */
  1938. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1939. clear_page(kaddr);
  1940. kunmap_atomic(kaddr, KM_USER0);
  1941. flush_dcache_page(dst);
  1942. } else
  1943. copy_user_highpage(dst, src, va, vma);
  1944. }
  1945. /*
  1946. * This routine handles present pages, when users try to write
  1947. * to a shared page. It is done by copying the page to a new address
  1948. * and decrementing the shared-page counter for the old page.
  1949. *
  1950. * Note that this routine assumes that the protection checks have been
  1951. * done by the caller (the low-level page fault routine in most cases).
  1952. * Thus we can safely just mark it writable once we've done any necessary
  1953. * COW.
  1954. *
  1955. * We also mark the page dirty at this point even though the page will
  1956. * change only once the write actually happens. This avoids a few races,
  1957. * and potentially makes it more efficient.
  1958. *
  1959. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1960. * but allow concurrent faults), with pte both mapped and locked.
  1961. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1962. */
  1963. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1964. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1965. spinlock_t *ptl, pte_t orig_pte)
  1966. __releases(ptl)
  1967. {
  1968. struct page *old_page, *new_page;
  1969. pte_t entry;
  1970. int ret = 0;
  1971. int page_mkwrite = 0;
  1972. struct page *dirty_page = NULL;
  1973. old_page = vm_normal_page(vma, address, orig_pte);
  1974. if (!old_page) {
  1975. /*
  1976. * VM_MIXEDMAP !pfn_valid() case
  1977. *
  1978. * We should not cow pages in a shared writeable mapping.
  1979. * Just mark the pages writable as we can't do any dirty
  1980. * accounting on raw pfn maps.
  1981. */
  1982. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1983. (VM_WRITE|VM_SHARED))
  1984. goto reuse;
  1985. goto gotten;
  1986. }
  1987. /*
  1988. * Take out anonymous pages first, anonymous shared vmas are
  1989. * not dirty accountable.
  1990. */
  1991. if (PageAnon(old_page) && !PageKsm(old_page)) {
  1992. if (!trylock_page(old_page)) {
  1993. page_cache_get(old_page);
  1994. pte_unmap_unlock(page_table, ptl);
  1995. lock_page(old_page);
  1996. page_table = pte_offset_map_lock(mm, pmd, address,
  1997. &ptl);
  1998. if (!pte_same(*page_table, orig_pte)) {
  1999. unlock_page(old_page);
  2000. goto unlock;
  2001. }
  2002. page_cache_release(old_page);
  2003. }
  2004. if (reuse_swap_page(old_page)) {
  2005. /*
  2006. * The page is all ours. Move it to our anon_vma so
  2007. * the rmap code will not search our parent or siblings.
  2008. * Protected against the rmap code by the page lock.
  2009. */
  2010. page_move_anon_rmap(old_page, vma, address);
  2011. unlock_page(old_page);
  2012. goto reuse;
  2013. }
  2014. unlock_page(old_page);
  2015. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2016. (VM_WRITE|VM_SHARED))) {
  2017. /*
  2018. * Only catch write-faults on shared writable pages,
  2019. * read-only shared pages can get COWed by
  2020. * get_user_pages(.write=1, .force=1).
  2021. */
  2022. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2023. struct vm_fault vmf;
  2024. int tmp;
  2025. vmf.virtual_address = (void __user *)(address &
  2026. PAGE_MASK);
  2027. vmf.pgoff = old_page->index;
  2028. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2029. vmf.page = old_page;
  2030. /*
  2031. * Notify the address space that the page is about to
  2032. * become writable so that it can prohibit this or wait
  2033. * for the page to get into an appropriate state.
  2034. *
  2035. * We do this without the lock held, so that it can
  2036. * sleep if it needs to.
  2037. */
  2038. page_cache_get(old_page);
  2039. pte_unmap_unlock(page_table, ptl);
  2040. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2041. if (unlikely(tmp &
  2042. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2043. ret = tmp;
  2044. goto unwritable_page;
  2045. }
  2046. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2047. lock_page(old_page);
  2048. if (!old_page->mapping) {
  2049. ret = 0; /* retry the fault */
  2050. unlock_page(old_page);
  2051. goto unwritable_page;
  2052. }
  2053. } else
  2054. VM_BUG_ON(!PageLocked(old_page));
  2055. /*
  2056. * Since we dropped the lock we need to revalidate
  2057. * the PTE as someone else may have changed it. If
  2058. * they did, we just return, as we can count on the
  2059. * MMU to tell us if they didn't also make it writable.
  2060. */
  2061. page_table = pte_offset_map_lock(mm, pmd, address,
  2062. &ptl);
  2063. if (!pte_same(*page_table, orig_pte)) {
  2064. unlock_page(old_page);
  2065. goto unlock;
  2066. }
  2067. page_mkwrite = 1;
  2068. }
  2069. dirty_page = old_page;
  2070. get_page(dirty_page);
  2071. reuse:
  2072. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2073. entry = pte_mkyoung(orig_pte);
  2074. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2075. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2076. update_mmu_cache(vma, address, page_table);
  2077. pte_unmap_unlock(page_table, ptl);
  2078. ret |= VM_FAULT_WRITE;
  2079. if (!dirty_page)
  2080. return ret;
  2081. /*
  2082. * Yes, Virginia, this is actually required to prevent a race
  2083. * with clear_page_dirty_for_io() from clearing the page dirty
  2084. * bit after it clear all dirty ptes, but before a racing
  2085. * do_wp_page installs a dirty pte.
  2086. *
  2087. * do_no_page is protected similarly.
  2088. */
  2089. if (!page_mkwrite) {
  2090. wait_on_page_locked(dirty_page);
  2091. set_page_dirty_balance(dirty_page, page_mkwrite);
  2092. }
  2093. put_page(dirty_page);
  2094. if (page_mkwrite) {
  2095. struct address_space *mapping = dirty_page->mapping;
  2096. set_page_dirty(dirty_page);
  2097. unlock_page(dirty_page);
  2098. page_cache_release(dirty_page);
  2099. if (mapping) {
  2100. /*
  2101. * Some device drivers do not set page.mapping
  2102. * but still dirty their pages
  2103. */
  2104. balance_dirty_pages_ratelimited(mapping);
  2105. }
  2106. }
  2107. /* file_update_time outside page_lock */
  2108. if (vma->vm_file)
  2109. file_update_time(vma->vm_file);
  2110. return ret;
  2111. }
  2112. /*
  2113. * Ok, we need to copy. Oh, well..
  2114. */
  2115. page_cache_get(old_page);
  2116. gotten:
  2117. pte_unmap_unlock(page_table, ptl);
  2118. if (unlikely(anon_vma_prepare(vma)))
  2119. goto oom;
  2120. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2121. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2122. if (!new_page)
  2123. goto oom;
  2124. } else {
  2125. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2126. if (!new_page)
  2127. goto oom;
  2128. cow_user_page(new_page, old_page, address, vma);
  2129. }
  2130. __SetPageUptodate(new_page);
  2131. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2132. goto oom_free_new;
  2133. /*
  2134. * Re-check the pte - we dropped the lock
  2135. */
  2136. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2137. if (likely(pte_same(*page_table, orig_pte))) {
  2138. if (old_page) {
  2139. if (!PageAnon(old_page)) {
  2140. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2141. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2142. }
  2143. } else
  2144. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2145. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2146. entry = mk_pte(new_page, vma->vm_page_prot);
  2147. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2148. /*
  2149. * Clear the pte entry and flush it first, before updating the
  2150. * pte with the new entry. This will avoid a race condition
  2151. * seen in the presence of one thread doing SMC and another
  2152. * thread doing COW.
  2153. */
  2154. ptep_clear_flush(vma, address, page_table);
  2155. page_add_new_anon_rmap(new_page, vma, address);
  2156. /*
  2157. * We call the notify macro here because, when using secondary
  2158. * mmu page tables (such as kvm shadow page tables), we want the
  2159. * new page to be mapped directly into the secondary page table.
  2160. */
  2161. set_pte_at_notify(mm, address, page_table, entry);
  2162. update_mmu_cache(vma, address, page_table);
  2163. if (old_page) {
  2164. /*
  2165. * Only after switching the pte to the new page may
  2166. * we remove the mapcount here. Otherwise another
  2167. * process may come and find the rmap count decremented
  2168. * before the pte is switched to the new page, and
  2169. * "reuse" the old page writing into it while our pte
  2170. * here still points into it and can be read by other
  2171. * threads.
  2172. *
  2173. * The critical issue is to order this
  2174. * page_remove_rmap with the ptp_clear_flush above.
  2175. * Those stores are ordered by (if nothing else,)
  2176. * the barrier present in the atomic_add_negative
  2177. * in page_remove_rmap.
  2178. *
  2179. * Then the TLB flush in ptep_clear_flush ensures that
  2180. * no process can access the old page before the
  2181. * decremented mapcount is visible. And the old page
  2182. * cannot be reused until after the decremented
  2183. * mapcount is visible. So transitively, TLBs to
  2184. * old page will be flushed before it can be reused.
  2185. */
  2186. page_remove_rmap(old_page);
  2187. }
  2188. /* Free the old page.. */
  2189. new_page = old_page;
  2190. ret |= VM_FAULT_WRITE;
  2191. } else
  2192. mem_cgroup_uncharge_page(new_page);
  2193. if (new_page)
  2194. page_cache_release(new_page);
  2195. unlock:
  2196. pte_unmap_unlock(page_table, ptl);
  2197. if (old_page) {
  2198. /*
  2199. * Don't let another task, with possibly unlocked vma,
  2200. * keep the mlocked page.
  2201. */
  2202. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2203. lock_page(old_page); /* LRU manipulation */
  2204. munlock_vma_page(old_page);
  2205. unlock_page(old_page);
  2206. }
  2207. page_cache_release(old_page);
  2208. }
  2209. return ret;
  2210. oom_free_new:
  2211. page_cache_release(new_page);
  2212. oom:
  2213. if (old_page) {
  2214. if (page_mkwrite) {
  2215. unlock_page(old_page);
  2216. page_cache_release(old_page);
  2217. }
  2218. page_cache_release(old_page);
  2219. }
  2220. return VM_FAULT_OOM;
  2221. unwritable_page:
  2222. page_cache_release(old_page);
  2223. return ret;
  2224. }
  2225. /*
  2226. * Helper functions for unmap_mapping_range().
  2227. *
  2228. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2229. *
  2230. * We have to restart searching the prio_tree whenever we drop the lock,
  2231. * since the iterator is only valid while the lock is held, and anyway
  2232. * a later vma might be split and reinserted earlier while lock dropped.
  2233. *
  2234. * The list of nonlinear vmas could be handled more efficiently, using
  2235. * a placeholder, but handle it in the same way until a need is shown.
  2236. * It is important to search the prio_tree before nonlinear list: a vma
  2237. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2238. * while the lock is dropped; but never shifted from list to prio_tree.
  2239. *
  2240. * In order to make forward progress despite restarting the search,
  2241. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2242. * quickly skip it next time around. Since the prio_tree search only
  2243. * shows us those vmas affected by unmapping the range in question, we
  2244. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2245. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2246. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2247. * i_mmap_lock.
  2248. *
  2249. * In order to make forward progress despite repeatedly restarting some
  2250. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2251. * and restart from that address when we reach that vma again. It might
  2252. * have been split or merged, shrunk or extended, but never shifted: so
  2253. * restart_addr remains valid so long as it remains in the vma's range.
  2254. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2255. * values so we can save vma's restart_addr in its truncate_count field.
  2256. */
  2257. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2258. static void reset_vma_truncate_counts(struct address_space *mapping)
  2259. {
  2260. struct vm_area_struct *vma;
  2261. struct prio_tree_iter iter;
  2262. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2263. vma->vm_truncate_count = 0;
  2264. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2265. vma->vm_truncate_count = 0;
  2266. }
  2267. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2268. unsigned long start_addr, unsigned long end_addr,
  2269. struct zap_details *details)
  2270. {
  2271. unsigned long restart_addr;
  2272. int need_break;
  2273. /*
  2274. * files that support invalidating or truncating portions of the
  2275. * file from under mmaped areas must have their ->fault function
  2276. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2277. * This provides synchronisation against concurrent unmapping here.
  2278. */
  2279. again:
  2280. restart_addr = vma->vm_truncate_count;
  2281. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2282. start_addr = restart_addr;
  2283. if (start_addr >= end_addr) {
  2284. /* Top of vma has been split off since last time */
  2285. vma->vm_truncate_count = details->truncate_count;
  2286. return 0;
  2287. }
  2288. }
  2289. restart_addr = zap_page_range(vma, start_addr,
  2290. end_addr - start_addr, details);
  2291. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2292. if (restart_addr >= end_addr) {
  2293. /* We have now completed this vma: mark it so */
  2294. vma->vm_truncate_count = details->truncate_count;
  2295. if (!need_break)
  2296. return 0;
  2297. } else {
  2298. /* Note restart_addr in vma's truncate_count field */
  2299. vma->vm_truncate_count = restart_addr;
  2300. if (!need_break)
  2301. goto again;
  2302. }
  2303. spin_unlock(details->i_mmap_lock);
  2304. cond_resched();
  2305. spin_lock(details->i_mmap_lock);
  2306. return -EINTR;
  2307. }
  2308. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2309. struct zap_details *details)
  2310. {
  2311. struct vm_area_struct *vma;
  2312. struct prio_tree_iter iter;
  2313. pgoff_t vba, vea, zba, zea;
  2314. restart:
  2315. vma_prio_tree_foreach(vma, &iter, root,
  2316. details->first_index, details->last_index) {
  2317. /* Skip quickly over those we have already dealt with */
  2318. if (vma->vm_truncate_count == details->truncate_count)
  2319. continue;
  2320. vba = vma->vm_pgoff;
  2321. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2322. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2323. zba = details->first_index;
  2324. if (zba < vba)
  2325. zba = vba;
  2326. zea = details->last_index;
  2327. if (zea > vea)
  2328. zea = vea;
  2329. if (unmap_mapping_range_vma(vma,
  2330. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2331. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2332. details) < 0)
  2333. goto restart;
  2334. }
  2335. }
  2336. static inline void unmap_mapping_range_list(struct list_head *head,
  2337. struct zap_details *details)
  2338. {
  2339. struct vm_area_struct *vma;
  2340. /*
  2341. * In nonlinear VMAs there is no correspondence between virtual address
  2342. * offset and file offset. So we must perform an exhaustive search
  2343. * across *all* the pages in each nonlinear VMA, not just the pages
  2344. * whose virtual address lies outside the file truncation point.
  2345. */
  2346. restart:
  2347. list_for_each_entry(vma, head, shared.vm_set.list) {
  2348. /* Skip quickly over those we have already dealt with */
  2349. if (vma->vm_truncate_count == details->truncate_count)
  2350. continue;
  2351. details->nonlinear_vma = vma;
  2352. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2353. vma->vm_end, details) < 0)
  2354. goto restart;
  2355. }
  2356. }
  2357. /**
  2358. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2359. * @mapping: the address space containing mmaps to be unmapped.
  2360. * @holebegin: byte in first page to unmap, relative to the start of
  2361. * the underlying file. This will be rounded down to a PAGE_SIZE
  2362. * boundary. Note that this is different from truncate_pagecache(), which
  2363. * must keep the partial page. In contrast, we must get rid of
  2364. * partial pages.
  2365. * @holelen: size of prospective hole in bytes. This will be rounded
  2366. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2367. * end of the file.
  2368. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2369. * but 0 when invalidating pagecache, don't throw away private data.
  2370. */
  2371. void unmap_mapping_range(struct address_space *mapping,
  2372. loff_t const holebegin, loff_t const holelen, int even_cows)
  2373. {
  2374. struct zap_details details;
  2375. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2376. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2377. /* Check for overflow. */
  2378. if (sizeof(holelen) > sizeof(hlen)) {
  2379. long long holeend =
  2380. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2381. if (holeend & ~(long long)ULONG_MAX)
  2382. hlen = ULONG_MAX - hba + 1;
  2383. }
  2384. details.check_mapping = even_cows? NULL: mapping;
  2385. details.nonlinear_vma = NULL;
  2386. details.first_index = hba;
  2387. details.last_index = hba + hlen - 1;
  2388. if (details.last_index < details.first_index)
  2389. details.last_index = ULONG_MAX;
  2390. details.i_mmap_lock = &mapping->i_mmap_lock;
  2391. mutex_lock(&mapping->unmap_mutex);
  2392. spin_lock(&mapping->i_mmap_lock);
  2393. /* Protect against endless unmapping loops */
  2394. mapping->truncate_count++;
  2395. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2396. if (mapping->truncate_count == 0)
  2397. reset_vma_truncate_counts(mapping);
  2398. mapping->truncate_count++;
  2399. }
  2400. details.truncate_count = mapping->truncate_count;
  2401. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2402. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2403. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2404. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2405. spin_unlock(&mapping->i_mmap_lock);
  2406. mutex_unlock(&mapping->unmap_mutex);
  2407. }
  2408. EXPORT_SYMBOL(unmap_mapping_range);
  2409. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2410. {
  2411. struct address_space *mapping = inode->i_mapping;
  2412. /*
  2413. * If the underlying filesystem is not going to provide
  2414. * a way to truncate a range of blocks (punch a hole) -
  2415. * we should return failure right now.
  2416. */
  2417. if (!inode->i_op->truncate_range)
  2418. return -ENOSYS;
  2419. mutex_lock(&inode->i_mutex);
  2420. down_write(&inode->i_alloc_sem);
  2421. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2422. truncate_inode_pages_range(mapping, offset, end);
  2423. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2424. inode->i_op->truncate_range(inode, offset, end);
  2425. up_write(&inode->i_alloc_sem);
  2426. mutex_unlock(&inode->i_mutex);
  2427. return 0;
  2428. }
  2429. /*
  2430. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2431. * but allow concurrent faults), and pte mapped but not yet locked.
  2432. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2433. */
  2434. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2435. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2436. unsigned int flags, pte_t orig_pte)
  2437. {
  2438. spinlock_t *ptl;
  2439. struct page *page, *swapcache = NULL;
  2440. swp_entry_t entry;
  2441. pte_t pte;
  2442. int locked;
  2443. struct mem_cgroup *ptr = NULL;
  2444. int exclusive = 0;
  2445. int ret = 0;
  2446. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2447. goto out;
  2448. entry = pte_to_swp_entry(orig_pte);
  2449. if (unlikely(non_swap_entry(entry))) {
  2450. if (is_migration_entry(entry)) {
  2451. migration_entry_wait(mm, pmd, address);
  2452. } else if (is_hwpoison_entry(entry)) {
  2453. ret = VM_FAULT_HWPOISON;
  2454. } else {
  2455. print_bad_pte(vma, address, orig_pte, NULL);
  2456. ret = VM_FAULT_SIGBUS;
  2457. }
  2458. goto out;
  2459. }
  2460. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2461. page = lookup_swap_cache(entry);
  2462. if (!page) {
  2463. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2464. page = swapin_readahead(entry,
  2465. GFP_HIGHUSER_MOVABLE, vma, address);
  2466. if (!page) {
  2467. /*
  2468. * Back out if somebody else faulted in this pte
  2469. * while we released the pte lock.
  2470. */
  2471. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2472. if (likely(pte_same(*page_table, orig_pte)))
  2473. ret = VM_FAULT_OOM;
  2474. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2475. goto unlock;
  2476. }
  2477. /* Had to read the page from swap area: Major fault */
  2478. ret = VM_FAULT_MAJOR;
  2479. count_vm_event(PGMAJFAULT);
  2480. } else if (PageHWPoison(page)) {
  2481. /*
  2482. * hwpoisoned dirty swapcache pages are kept for killing
  2483. * owner processes (which may be unknown at hwpoison time)
  2484. */
  2485. ret = VM_FAULT_HWPOISON;
  2486. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2487. goto out_release;
  2488. }
  2489. locked = lock_page_or_retry(page, mm, flags);
  2490. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2491. if (!locked) {
  2492. ret |= VM_FAULT_RETRY;
  2493. goto out_release;
  2494. }
  2495. /*
  2496. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2497. * release the swapcache from under us. The page pin, and pte_same
  2498. * test below, are not enough to exclude that. Even if it is still
  2499. * swapcache, we need to check that the page's swap has not changed.
  2500. */
  2501. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2502. goto out_page;
  2503. if (ksm_might_need_to_copy(page, vma, address)) {
  2504. swapcache = page;
  2505. page = ksm_does_need_to_copy(page, vma, address);
  2506. if (unlikely(!page)) {
  2507. ret = VM_FAULT_OOM;
  2508. page = swapcache;
  2509. swapcache = NULL;
  2510. goto out_page;
  2511. }
  2512. }
  2513. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2514. ret = VM_FAULT_OOM;
  2515. goto out_page;
  2516. }
  2517. /*
  2518. * Back out if somebody else already faulted in this pte.
  2519. */
  2520. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2521. if (unlikely(!pte_same(*page_table, orig_pte)))
  2522. goto out_nomap;
  2523. if (unlikely(!PageUptodate(page))) {
  2524. ret = VM_FAULT_SIGBUS;
  2525. goto out_nomap;
  2526. }
  2527. /*
  2528. * The page isn't present yet, go ahead with the fault.
  2529. *
  2530. * Be careful about the sequence of operations here.
  2531. * To get its accounting right, reuse_swap_page() must be called
  2532. * while the page is counted on swap but not yet in mapcount i.e.
  2533. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2534. * must be called after the swap_free(), or it will never succeed.
  2535. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2536. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2537. * in page->private. In this case, a record in swap_cgroup is silently
  2538. * discarded at swap_free().
  2539. */
  2540. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2541. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2542. pte = mk_pte(page, vma->vm_page_prot);
  2543. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2544. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2545. flags &= ~FAULT_FLAG_WRITE;
  2546. ret |= VM_FAULT_WRITE;
  2547. exclusive = 1;
  2548. }
  2549. flush_icache_page(vma, page);
  2550. set_pte_at(mm, address, page_table, pte);
  2551. do_page_add_anon_rmap(page, vma, address, exclusive);
  2552. /* It's better to call commit-charge after rmap is established */
  2553. mem_cgroup_commit_charge_swapin(page, ptr);
  2554. swap_free(entry);
  2555. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2556. try_to_free_swap(page);
  2557. unlock_page(page);
  2558. if (swapcache) {
  2559. /*
  2560. * Hold the lock to avoid the swap entry to be reused
  2561. * until we take the PT lock for the pte_same() check
  2562. * (to avoid false positives from pte_same). For
  2563. * further safety release the lock after the swap_free
  2564. * so that the swap count won't change under a
  2565. * parallel locked swapcache.
  2566. */
  2567. unlock_page(swapcache);
  2568. page_cache_release(swapcache);
  2569. }
  2570. if (flags & FAULT_FLAG_WRITE) {
  2571. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2572. if (ret & VM_FAULT_ERROR)
  2573. ret &= VM_FAULT_ERROR;
  2574. goto out;
  2575. }
  2576. /* No need to invalidate - it was non-present before */
  2577. update_mmu_cache(vma, address, page_table);
  2578. unlock:
  2579. pte_unmap_unlock(page_table, ptl);
  2580. out:
  2581. return ret;
  2582. out_nomap:
  2583. mem_cgroup_cancel_charge_swapin(ptr);
  2584. pte_unmap_unlock(page_table, ptl);
  2585. out_page:
  2586. unlock_page(page);
  2587. out_release:
  2588. page_cache_release(page);
  2589. if (swapcache) {
  2590. unlock_page(swapcache);
  2591. page_cache_release(swapcache);
  2592. }
  2593. return ret;
  2594. }
  2595. /*
  2596. * This is like a special single-page "expand_{down|up}wards()",
  2597. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2598. * doesn't hit another vma.
  2599. */
  2600. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2601. {
  2602. address &= PAGE_MASK;
  2603. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2604. struct vm_area_struct *prev = vma->vm_prev;
  2605. /*
  2606. * Is there a mapping abutting this one below?
  2607. *
  2608. * That's only ok if it's the same stack mapping
  2609. * that has gotten split..
  2610. */
  2611. if (prev && prev->vm_end == address)
  2612. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2613. expand_stack(vma, address - PAGE_SIZE);
  2614. }
  2615. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2616. struct vm_area_struct *next = vma->vm_next;
  2617. /* As VM_GROWSDOWN but s/below/above/ */
  2618. if (next && next->vm_start == address + PAGE_SIZE)
  2619. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2620. expand_upwards(vma, address + PAGE_SIZE);
  2621. }
  2622. return 0;
  2623. }
  2624. /*
  2625. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2626. * but allow concurrent faults), and pte mapped but not yet locked.
  2627. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2628. */
  2629. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2630. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2631. unsigned int flags)
  2632. {
  2633. struct page *page;
  2634. spinlock_t *ptl;
  2635. pte_t entry;
  2636. pte_unmap(page_table);
  2637. /* Check if we need to add a guard page to the stack */
  2638. if (check_stack_guard_page(vma, address) < 0)
  2639. return VM_FAULT_SIGBUS;
  2640. /* Use the zero-page for reads */
  2641. if (!(flags & FAULT_FLAG_WRITE)) {
  2642. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2643. vma->vm_page_prot));
  2644. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2645. if (!pte_none(*page_table))
  2646. goto unlock;
  2647. goto setpte;
  2648. }
  2649. /* Allocate our own private page. */
  2650. if (unlikely(anon_vma_prepare(vma)))
  2651. goto oom;
  2652. page = alloc_zeroed_user_highpage_movable(vma, address);
  2653. if (!page)
  2654. goto oom;
  2655. __SetPageUptodate(page);
  2656. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2657. goto oom_free_page;
  2658. entry = mk_pte(page, vma->vm_page_prot);
  2659. if (vma->vm_flags & VM_WRITE)
  2660. entry = pte_mkwrite(pte_mkdirty(entry));
  2661. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2662. if (!pte_none(*page_table))
  2663. goto release;
  2664. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2665. page_add_new_anon_rmap(page, vma, address);
  2666. setpte:
  2667. set_pte_at(mm, address, page_table, entry);
  2668. /* No need to invalidate - it was non-present before */
  2669. update_mmu_cache(vma, address, page_table);
  2670. unlock:
  2671. pte_unmap_unlock(page_table, ptl);
  2672. return 0;
  2673. release:
  2674. mem_cgroup_uncharge_page(page);
  2675. page_cache_release(page);
  2676. goto unlock;
  2677. oom_free_page:
  2678. page_cache_release(page);
  2679. oom:
  2680. return VM_FAULT_OOM;
  2681. }
  2682. /*
  2683. * __do_fault() tries to create a new page mapping. It aggressively
  2684. * tries to share with existing pages, but makes a separate copy if
  2685. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2686. * the next page fault.
  2687. *
  2688. * As this is called only for pages that do not currently exist, we
  2689. * do not need to flush old virtual caches or the TLB.
  2690. *
  2691. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2692. * but allow concurrent faults), and pte neither mapped nor locked.
  2693. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2694. */
  2695. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2696. unsigned long address, pmd_t *pmd,
  2697. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2698. {
  2699. pte_t *page_table;
  2700. spinlock_t *ptl;
  2701. struct page *page;
  2702. pte_t entry;
  2703. int anon = 0;
  2704. int charged = 0;
  2705. struct page *dirty_page = NULL;
  2706. struct vm_fault vmf;
  2707. int ret;
  2708. int page_mkwrite = 0;
  2709. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2710. vmf.pgoff = pgoff;
  2711. vmf.flags = flags;
  2712. vmf.page = NULL;
  2713. ret = vma->vm_ops->fault(vma, &vmf);
  2714. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2715. VM_FAULT_RETRY)))
  2716. return ret;
  2717. if (unlikely(PageHWPoison(vmf.page))) {
  2718. if (ret & VM_FAULT_LOCKED)
  2719. unlock_page(vmf.page);
  2720. return VM_FAULT_HWPOISON;
  2721. }
  2722. /*
  2723. * For consistency in subsequent calls, make the faulted page always
  2724. * locked.
  2725. */
  2726. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2727. lock_page(vmf.page);
  2728. else
  2729. VM_BUG_ON(!PageLocked(vmf.page));
  2730. /*
  2731. * Should we do an early C-O-W break?
  2732. */
  2733. page = vmf.page;
  2734. if (flags & FAULT_FLAG_WRITE) {
  2735. if (!(vma->vm_flags & VM_SHARED)) {
  2736. anon = 1;
  2737. if (unlikely(anon_vma_prepare(vma))) {
  2738. ret = VM_FAULT_OOM;
  2739. goto out;
  2740. }
  2741. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2742. vma, address);
  2743. if (!page) {
  2744. ret = VM_FAULT_OOM;
  2745. goto out;
  2746. }
  2747. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2748. ret = VM_FAULT_OOM;
  2749. page_cache_release(page);
  2750. goto out;
  2751. }
  2752. charged = 1;
  2753. copy_user_highpage(page, vmf.page, address, vma);
  2754. __SetPageUptodate(page);
  2755. } else {
  2756. /*
  2757. * If the page will be shareable, see if the backing
  2758. * address space wants to know that the page is about
  2759. * to become writable
  2760. */
  2761. if (vma->vm_ops->page_mkwrite) {
  2762. int tmp;
  2763. unlock_page(page);
  2764. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2765. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2766. if (unlikely(tmp &
  2767. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2768. ret = tmp;
  2769. goto unwritable_page;
  2770. }
  2771. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2772. lock_page(page);
  2773. if (!page->mapping) {
  2774. ret = 0; /* retry the fault */
  2775. unlock_page(page);
  2776. goto unwritable_page;
  2777. }
  2778. } else
  2779. VM_BUG_ON(!PageLocked(page));
  2780. page_mkwrite = 1;
  2781. }
  2782. }
  2783. }
  2784. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2785. /*
  2786. * This silly early PAGE_DIRTY setting removes a race
  2787. * due to the bad i386 page protection. But it's valid
  2788. * for other architectures too.
  2789. *
  2790. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2791. * an exclusive copy of the page, or this is a shared mapping,
  2792. * so we can make it writable and dirty to avoid having to
  2793. * handle that later.
  2794. */
  2795. /* Only go through if we didn't race with anybody else... */
  2796. if (likely(pte_same(*page_table, orig_pte))) {
  2797. flush_icache_page(vma, page);
  2798. entry = mk_pte(page, vma->vm_page_prot);
  2799. if (flags & FAULT_FLAG_WRITE)
  2800. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2801. if (anon) {
  2802. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2803. page_add_new_anon_rmap(page, vma, address);
  2804. } else {
  2805. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2806. page_add_file_rmap(page);
  2807. if (flags & FAULT_FLAG_WRITE) {
  2808. dirty_page = page;
  2809. get_page(dirty_page);
  2810. }
  2811. }
  2812. set_pte_at(mm, address, page_table, entry);
  2813. /* no need to invalidate: a not-present page won't be cached */
  2814. update_mmu_cache(vma, address, page_table);
  2815. } else {
  2816. if (charged)
  2817. mem_cgroup_uncharge_page(page);
  2818. if (anon)
  2819. page_cache_release(page);
  2820. else
  2821. anon = 1; /* no anon but release faulted_page */
  2822. }
  2823. pte_unmap_unlock(page_table, ptl);
  2824. out:
  2825. if (dirty_page) {
  2826. struct address_space *mapping = page->mapping;
  2827. if (set_page_dirty(dirty_page))
  2828. page_mkwrite = 1;
  2829. unlock_page(dirty_page);
  2830. put_page(dirty_page);
  2831. if (page_mkwrite && mapping) {
  2832. /*
  2833. * Some device drivers do not set page.mapping but still
  2834. * dirty their pages
  2835. */
  2836. balance_dirty_pages_ratelimited(mapping);
  2837. }
  2838. /* file_update_time outside page_lock */
  2839. if (vma->vm_file)
  2840. file_update_time(vma->vm_file);
  2841. } else {
  2842. unlock_page(vmf.page);
  2843. if (anon)
  2844. page_cache_release(vmf.page);
  2845. }
  2846. return ret;
  2847. unwritable_page:
  2848. page_cache_release(page);
  2849. return ret;
  2850. }
  2851. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2852. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2853. unsigned int flags, pte_t orig_pte)
  2854. {
  2855. pgoff_t pgoff = (((address & PAGE_MASK)
  2856. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2857. pte_unmap(page_table);
  2858. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2859. }
  2860. /*
  2861. * Fault of a previously existing named mapping. Repopulate the pte
  2862. * from the encoded file_pte if possible. This enables swappable
  2863. * nonlinear vmas.
  2864. *
  2865. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2866. * but allow concurrent faults), and pte mapped but not yet locked.
  2867. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2868. */
  2869. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2870. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2871. unsigned int flags, pte_t orig_pte)
  2872. {
  2873. pgoff_t pgoff;
  2874. flags |= FAULT_FLAG_NONLINEAR;
  2875. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2876. return 0;
  2877. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2878. /*
  2879. * Page table corrupted: show pte and kill process.
  2880. */
  2881. print_bad_pte(vma, address, orig_pte, NULL);
  2882. return VM_FAULT_SIGBUS;
  2883. }
  2884. pgoff = pte_to_pgoff(orig_pte);
  2885. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2886. }
  2887. /*
  2888. * These routines also need to handle stuff like marking pages dirty
  2889. * and/or accessed for architectures that don't do it in hardware (most
  2890. * RISC architectures). The early dirtying is also good on the i386.
  2891. *
  2892. * There is also a hook called "update_mmu_cache()" that architectures
  2893. * with external mmu caches can use to update those (ie the Sparc or
  2894. * PowerPC hashed page tables that act as extended TLBs).
  2895. *
  2896. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2897. * but allow concurrent faults), and pte mapped but not yet locked.
  2898. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2899. */
  2900. int handle_pte_fault(struct mm_struct *mm,
  2901. struct vm_area_struct *vma, unsigned long address,
  2902. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2903. {
  2904. pte_t entry;
  2905. spinlock_t *ptl;
  2906. entry = *pte;
  2907. if (!pte_present(entry)) {
  2908. if (pte_none(entry)) {
  2909. if (vma->vm_ops) {
  2910. if (likely(vma->vm_ops->fault))
  2911. return do_linear_fault(mm, vma, address,
  2912. pte, pmd, flags, entry);
  2913. }
  2914. return do_anonymous_page(mm, vma, address,
  2915. pte, pmd, flags);
  2916. }
  2917. if (pte_file(entry))
  2918. return do_nonlinear_fault(mm, vma, address,
  2919. pte, pmd, flags, entry);
  2920. return do_swap_page(mm, vma, address,
  2921. pte, pmd, flags, entry);
  2922. }
  2923. ptl = pte_lockptr(mm, pmd);
  2924. spin_lock(ptl);
  2925. if (unlikely(!pte_same(*pte, entry)))
  2926. goto unlock;
  2927. if (flags & FAULT_FLAG_WRITE) {
  2928. if (!pte_write(entry))
  2929. return do_wp_page(mm, vma, address,
  2930. pte, pmd, ptl, entry);
  2931. entry = pte_mkdirty(entry);
  2932. }
  2933. entry = pte_mkyoung(entry);
  2934. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2935. update_mmu_cache(vma, address, pte);
  2936. } else {
  2937. /*
  2938. * This is needed only for protection faults but the arch code
  2939. * is not yet telling us if this is a protection fault or not.
  2940. * This still avoids useless tlb flushes for .text page faults
  2941. * with threads.
  2942. */
  2943. if (flags & FAULT_FLAG_WRITE)
  2944. flush_tlb_fix_spurious_fault(vma, address);
  2945. }
  2946. unlock:
  2947. pte_unmap_unlock(pte, ptl);
  2948. return 0;
  2949. }
  2950. /*
  2951. * By the time we get here, we already hold the mm semaphore
  2952. */
  2953. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2954. unsigned long address, unsigned int flags)
  2955. {
  2956. pgd_t *pgd;
  2957. pud_t *pud;
  2958. pmd_t *pmd;
  2959. pte_t *pte;
  2960. __set_current_state(TASK_RUNNING);
  2961. count_vm_event(PGFAULT);
  2962. /* do counter updates before entering really critical section. */
  2963. check_sync_rss_stat(current);
  2964. if (unlikely(is_vm_hugetlb_page(vma)))
  2965. return hugetlb_fault(mm, vma, address, flags);
  2966. pgd = pgd_offset(mm, address);
  2967. pud = pud_alloc(mm, pgd, address);
  2968. if (!pud)
  2969. return VM_FAULT_OOM;
  2970. pmd = pmd_alloc(mm, pud, address);
  2971. if (!pmd)
  2972. return VM_FAULT_OOM;
  2973. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  2974. if (!vma->vm_ops)
  2975. return do_huge_pmd_anonymous_page(mm, vma, address,
  2976. pmd, flags);
  2977. } else {
  2978. pmd_t orig_pmd = *pmd;
  2979. barrier();
  2980. if (pmd_trans_huge(orig_pmd)) {
  2981. if (flags & FAULT_FLAG_WRITE &&
  2982. !pmd_write(orig_pmd) &&
  2983. !pmd_trans_splitting(orig_pmd))
  2984. return do_huge_pmd_wp_page(mm, vma, address,
  2985. pmd, orig_pmd);
  2986. return 0;
  2987. }
  2988. }
  2989. /*
  2990. * Use __pte_alloc instead of pte_alloc_map, because we can't
  2991. * run pte_offset_map on the pmd, if an huge pmd could
  2992. * materialize from under us from a different thread.
  2993. */
  2994. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  2995. return VM_FAULT_OOM;
  2996. /* if an huge pmd materialized from under us just retry later */
  2997. if (unlikely(pmd_trans_huge(*pmd)))
  2998. return 0;
  2999. /*
  3000. * A regular pmd is established and it can't morph into a huge pmd
  3001. * from under us anymore at this point because we hold the mmap_sem
  3002. * read mode and khugepaged takes it in write mode. So now it's
  3003. * safe to run pte_offset_map().
  3004. */
  3005. pte = pte_offset_map(pmd, address);
  3006. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3007. }
  3008. #ifndef __PAGETABLE_PUD_FOLDED
  3009. /*
  3010. * Allocate page upper directory.
  3011. * We've already handled the fast-path in-line.
  3012. */
  3013. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3014. {
  3015. pud_t *new = pud_alloc_one(mm, address);
  3016. if (!new)
  3017. return -ENOMEM;
  3018. smp_wmb(); /* See comment in __pte_alloc */
  3019. spin_lock(&mm->page_table_lock);
  3020. if (pgd_present(*pgd)) /* Another has populated it */
  3021. pud_free(mm, new);
  3022. else
  3023. pgd_populate(mm, pgd, new);
  3024. spin_unlock(&mm->page_table_lock);
  3025. return 0;
  3026. }
  3027. #endif /* __PAGETABLE_PUD_FOLDED */
  3028. #ifndef __PAGETABLE_PMD_FOLDED
  3029. /*
  3030. * Allocate page middle directory.
  3031. * We've already handled the fast-path in-line.
  3032. */
  3033. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3034. {
  3035. pmd_t *new = pmd_alloc_one(mm, address);
  3036. if (!new)
  3037. return -ENOMEM;
  3038. smp_wmb(); /* See comment in __pte_alloc */
  3039. spin_lock(&mm->page_table_lock);
  3040. #ifndef __ARCH_HAS_4LEVEL_HACK
  3041. if (pud_present(*pud)) /* Another has populated it */
  3042. pmd_free(mm, new);
  3043. else
  3044. pud_populate(mm, pud, new);
  3045. #else
  3046. if (pgd_present(*pud)) /* Another has populated it */
  3047. pmd_free(mm, new);
  3048. else
  3049. pgd_populate(mm, pud, new);
  3050. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3051. spin_unlock(&mm->page_table_lock);
  3052. return 0;
  3053. }
  3054. #endif /* __PAGETABLE_PMD_FOLDED */
  3055. int make_pages_present(unsigned long addr, unsigned long end)
  3056. {
  3057. int ret, len, write;
  3058. struct vm_area_struct * vma;
  3059. vma = find_vma(current->mm, addr);
  3060. if (!vma)
  3061. return -ENOMEM;
  3062. /*
  3063. * We want to touch writable mappings with a write fault in order
  3064. * to break COW, except for shared mappings because these don't COW
  3065. * and we would not want to dirty them for nothing.
  3066. */
  3067. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3068. BUG_ON(addr >= end);
  3069. BUG_ON(end > vma->vm_end);
  3070. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3071. ret = get_user_pages(current, current->mm, addr,
  3072. len, write, 0, NULL, NULL);
  3073. if (ret < 0)
  3074. return ret;
  3075. return ret == len ? 0 : -EFAULT;
  3076. }
  3077. #if !defined(__HAVE_ARCH_GATE_AREA)
  3078. #if defined(AT_SYSINFO_EHDR)
  3079. static struct vm_area_struct gate_vma;
  3080. static int __init gate_vma_init(void)
  3081. {
  3082. gate_vma.vm_mm = NULL;
  3083. gate_vma.vm_start = FIXADDR_USER_START;
  3084. gate_vma.vm_end = FIXADDR_USER_END;
  3085. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3086. gate_vma.vm_page_prot = __P101;
  3087. /*
  3088. * Make sure the vDSO gets into every core dump.
  3089. * Dumping its contents makes post-mortem fully interpretable later
  3090. * without matching up the same kernel and hardware config to see
  3091. * what PC values meant.
  3092. */
  3093. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  3094. return 0;
  3095. }
  3096. __initcall(gate_vma_init);
  3097. #endif
  3098. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  3099. {
  3100. #ifdef AT_SYSINFO_EHDR
  3101. return &gate_vma;
  3102. #else
  3103. return NULL;
  3104. #endif
  3105. }
  3106. int in_gate_area_no_task(unsigned long addr)
  3107. {
  3108. #ifdef AT_SYSINFO_EHDR
  3109. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3110. return 1;
  3111. #endif
  3112. return 0;
  3113. }
  3114. #endif /* __HAVE_ARCH_GATE_AREA */
  3115. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3116. pte_t **ptepp, spinlock_t **ptlp)
  3117. {
  3118. pgd_t *pgd;
  3119. pud_t *pud;
  3120. pmd_t *pmd;
  3121. pte_t *ptep;
  3122. pgd = pgd_offset(mm, address);
  3123. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3124. goto out;
  3125. pud = pud_offset(pgd, address);
  3126. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3127. goto out;
  3128. pmd = pmd_offset(pud, address);
  3129. VM_BUG_ON(pmd_trans_huge(*pmd));
  3130. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3131. goto out;
  3132. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3133. if (pmd_huge(*pmd))
  3134. goto out;
  3135. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3136. if (!ptep)
  3137. goto out;
  3138. if (!pte_present(*ptep))
  3139. goto unlock;
  3140. *ptepp = ptep;
  3141. return 0;
  3142. unlock:
  3143. pte_unmap_unlock(ptep, *ptlp);
  3144. out:
  3145. return -EINVAL;
  3146. }
  3147. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3148. pte_t **ptepp, spinlock_t **ptlp)
  3149. {
  3150. int res;
  3151. /* (void) is needed to make gcc happy */
  3152. (void) __cond_lock(*ptlp,
  3153. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3154. return res;
  3155. }
  3156. /**
  3157. * follow_pfn - look up PFN at a user virtual address
  3158. * @vma: memory mapping
  3159. * @address: user virtual address
  3160. * @pfn: location to store found PFN
  3161. *
  3162. * Only IO mappings and raw PFN mappings are allowed.
  3163. *
  3164. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3165. */
  3166. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3167. unsigned long *pfn)
  3168. {
  3169. int ret = -EINVAL;
  3170. spinlock_t *ptl;
  3171. pte_t *ptep;
  3172. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3173. return ret;
  3174. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3175. if (ret)
  3176. return ret;
  3177. *pfn = pte_pfn(*ptep);
  3178. pte_unmap_unlock(ptep, ptl);
  3179. return 0;
  3180. }
  3181. EXPORT_SYMBOL(follow_pfn);
  3182. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3183. int follow_phys(struct vm_area_struct *vma,
  3184. unsigned long address, unsigned int flags,
  3185. unsigned long *prot, resource_size_t *phys)
  3186. {
  3187. int ret = -EINVAL;
  3188. pte_t *ptep, pte;
  3189. spinlock_t *ptl;
  3190. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3191. goto out;
  3192. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3193. goto out;
  3194. pte = *ptep;
  3195. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3196. goto unlock;
  3197. *prot = pgprot_val(pte_pgprot(pte));
  3198. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3199. ret = 0;
  3200. unlock:
  3201. pte_unmap_unlock(ptep, ptl);
  3202. out:
  3203. return ret;
  3204. }
  3205. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3206. void *buf, int len, int write)
  3207. {
  3208. resource_size_t phys_addr;
  3209. unsigned long prot = 0;
  3210. void __iomem *maddr;
  3211. int offset = addr & (PAGE_SIZE-1);
  3212. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3213. return -EINVAL;
  3214. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3215. if (write)
  3216. memcpy_toio(maddr + offset, buf, len);
  3217. else
  3218. memcpy_fromio(buf, maddr + offset, len);
  3219. iounmap(maddr);
  3220. return len;
  3221. }
  3222. #endif
  3223. /*
  3224. * Access another process' address space.
  3225. * Source/target buffer must be kernel space,
  3226. * Do not walk the page table directly, use get_user_pages
  3227. */
  3228. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  3229. {
  3230. struct mm_struct *mm;
  3231. struct vm_area_struct *vma;
  3232. void *old_buf = buf;
  3233. mm = get_task_mm(tsk);
  3234. if (!mm)
  3235. return 0;
  3236. down_read(&mm->mmap_sem);
  3237. /* ignore errors, just check how much was successfully transferred */
  3238. while (len) {
  3239. int bytes, ret, offset;
  3240. void *maddr;
  3241. struct page *page = NULL;
  3242. ret = get_user_pages(tsk, mm, addr, 1,
  3243. write, 1, &page, &vma);
  3244. if (ret <= 0) {
  3245. /*
  3246. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3247. * we can access using slightly different code.
  3248. */
  3249. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3250. vma = find_vma(mm, addr);
  3251. if (!vma)
  3252. break;
  3253. if (vma->vm_ops && vma->vm_ops->access)
  3254. ret = vma->vm_ops->access(vma, addr, buf,
  3255. len, write);
  3256. if (ret <= 0)
  3257. #endif
  3258. break;
  3259. bytes = ret;
  3260. } else {
  3261. bytes = len;
  3262. offset = addr & (PAGE_SIZE-1);
  3263. if (bytes > PAGE_SIZE-offset)
  3264. bytes = PAGE_SIZE-offset;
  3265. maddr = kmap(page);
  3266. if (write) {
  3267. copy_to_user_page(vma, page, addr,
  3268. maddr + offset, buf, bytes);
  3269. set_page_dirty_lock(page);
  3270. } else {
  3271. copy_from_user_page(vma, page, addr,
  3272. buf, maddr + offset, bytes);
  3273. }
  3274. kunmap(page);
  3275. page_cache_release(page);
  3276. }
  3277. len -= bytes;
  3278. buf += bytes;
  3279. addr += bytes;
  3280. }
  3281. up_read(&mm->mmap_sem);
  3282. mmput(mm);
  3283. return buf - old_buf;
  3284. }
  3285. /*
  3286. * Print the name of a VMA.
  3287. */
  3288. void print_vma_addr(char *prefix, unsigned long ip)
  3289. {
  3290. struct mm_struct *mm = current->mm;
  3291. struct vm_area_struct *vma;
  3292. /*
  3293. * Do not print if we are in atomic
  3294. * contexts (in exception stacks, etc.):
  3295. */
  3296. if (preempt_count())
  3297. return;
  3298. down_read(&mm->mmap_sem);
  3299. vma = find_vma(mm, ip);
  3300. if (vma && vma->vm_file) {
  3301. struct file *f = vma->vm_file;
  3302. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3303. if (buf) {
  3304. char *p, *s;
  3305. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3306. if (IS_ERR(p))
  3307. p = "?";
  3308. s = strrchr(p, '/');
  3309. if (s)
  3310. p = s+1;
  3311. printk("%s%s[%lx+%lx]", prefix, p,
  3312. vma->vm_start,
  3313. vma->vm_end - vma->vm_start);
  3314. free_page((unsigned long)buf);
  3315. }
  3316. }
  3317. up_read(&current->mm->mmap_sem);
  3318. }
  3319. #ifdef CONFIG_PROVE_LOCKING
  3320. void might_fault(void)
  3321. {
  3322. /*
  3323. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3324. * holding the mmap_sem, this is safe because kernel memory doesn't
  3325. * get paged out, therefore we'll never actually fault, and the
  3326. * below annotations will generate false positives.
  3327. */
  3328. if (segment_eq(get_fs(), KERNEL_DS))
  3329. return;
  3330. might_sleep();
  3331. /*
  3332. * it would be nicer only to annotate paths which are not under
  3333. * pagefault_disable, however that requires a larger audit and
  3334. * providing helpers like get_user_atomic.
  3335. */
  3336. if (!in_atomic() && current->mm)
  3337. might_lock_read(&current->mm->mmap_sem);
  3338. }
  3339. EXPORT_SYMBOL(might_fault);
  3340. #endif
  3341. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3342. static void clear_gigantic_page(struct page *page,
  3343. unsigned long addr,
  3344. unsigned int pages_per_huge_page)
  3345. {
  3346. int i;
  3347. struct page *p = page;
  3348. might_sleep();
  3349. for (i = 0; i < pages_per_huge_page;
  3350. i++, p = mem_map_next(p, page, i)) {
  3351. cond_resched();
  3352. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3353. }
  3354. }
  3355. void clear_huge_page(struct page *page,
  3356. unsigned long addr, unsigned int pages_per_huge_page)
  3357. {
  3358. int i;
  3359. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3360. clear_gigantic_page(page, addr, pages_per_huge_page);
  3361. return;
  3362. }
  3363. might_sleep();
  3364. for (i = 0; i < pages_per_huge_page; i++) {
  3365. cond_resched();
  3366. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3367. }
  3368. }
  3369. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3370. unsigned long addr,
  3371. struct vm_area_struct *vma,
  3372. unsigned int pages_per_huge_page)
  3373. {
  3374. int i;
  3375. struct page *dst_base = dst;
  3376. struct page *src_base = src;
  3377. for (i = 0; i < pages_per_huge_page; ) {
  3378. cond_resched();
  3379. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3380. i++;
  3381. dst = mem_map_next(dst, dst_base, i);
  3382. src = mem_map_next(src, src_base, i);
  3383. }
  3384. }
  3385. void copy_user_huge_page(struct page *dst, struct page *src,
  3386. unsigned long addr, struct vm_area_struct *vma,
  3387. unsigned int pages_per_huge_page)
  3388. {
  3389. int i;
  3390. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3391. copy_user_gigantic_page(dst, src, addr, vma,
  3392. pages_per_huge_page);
  3393. return;
  3394. }
  3395. might_sleep();
  3396. for (i = 0; i < pages_per_huge_page; i++) {
  3397. cond_resched();
  3398. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3399. }
  3400. }
  3401. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */