perf_event.c 169 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422
  1. /*
  2. * Performance events core code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/cpu.h>
  14. #include <linux/smp.h>
  15. #include <linux/idr.h>
  16. #include <linux/file.h>
  17. #include <linux/poll.h>
  18. #include <linux/slab.h>
  19. #include <linux/hash.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/percpu.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/reboot.h>
  25. #include <linux/vmstat.h>
  26. #include <linux/device.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/hardirq.h>
  29. #include <linux/rculist.h>
  30. #include <linux/uaccess.h>
  31. #include <linux/syscalls.h>
  32. #include <linux/anon_inodes.h>
  33. #include <linux/kernel_stat.h>
  34. #include <linux/perf_event.h>
  35. #include <linux/ftrace_event.h>
  36. #include <linux/hw_breakpoint.h>
  37. #include <asm/irq_regs.h>
  38. struct remote_function_call {
  39. struct task_struct *p;
  40. int (*func)(void *info);
  41. void *info;
  42. int ret;
  43. };
  44. static void remote_function(void *data)
  45. {
  46. struct remote_function_call *tfc = data;
  47. struct task_struct *p = tfc->p;
  48. if (p) {
  49. tfc->ret = -EAGAIN;
  50. if (task_cpu(p) != smp_processor_id() || !task_curr(p))
  51. return;
  52. }
  53. tfc->ret = tfc->func(tfc->info);
  54. }
  55. /**
  56. * task_function_call - call a function on the cpu on which a task runs
  57. * @p: the task to evaluate
  58. * @func: the function to be called
  59. * @info: the function call argument
  60. *
  61. * Calls the function @func when the task is currently running. This might
  62. * be on the current CPU, which just calls the function directly
  63. *
  64. * returns: @func return value, or
  65. * -ESRCH - when the process isn't running
  66. * -EAGAIN - when the process moved away
  67. */
  68. static int
  69. task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
  70. {
  71. struct remote_function_call data = {
  72. .p = p,
  73. .func = func,
  74. .info = info,
  75. .ret = -ESRCH, /* No such (running) process */
  76. };
  77. if (task_curr(p))
  78. smp_call_function_single(task_cpu(p), remote_function, &data, 1);
  79. return data.ret;
  80. }
  81. /**
  82. * cpu_function_call - call a function on the cpu
  83. * @func: the function to be called
  84. * @info: the function call argument
  85. *
  86. * Calls the function @func on the remote cpu.
  87. *
  88. * returns: @func return value or -ENXIO when the cpu is offline
  89. */
  90. static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
  91. {
  92. struct remote_function_call data = {
  93. .p = NULL,
  94. .func = func,
  95. .info = info,
  96. .ret = -ENXIO, /* No such CPU */
  97. };
  98. smp_call_function_single(cpu, remote_function, &data, 1);
  99. return data.ret;
  100. }
  101. #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
  102. PERF_FLAG_FD_OUTPUT |\
  103. PERF_FLAG_PID_CGROUP)
  104. enum event_type_t {
  105. EVENT_FLEXIBLE = 0x1,
  106. EVENT_PINNED = 0x2,
  107. EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
  108. };
  109. /*
  110. * perf_sched_events : >0 events exist
  111. * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
  112. */
  113. atomic_t perf_sched_events __read_mostly;
  114. static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
  115. static atomic_t nr_mmap_events __read_mostly;
  116. static atomic_t nr_comm_events __read_mostly;
  117. static atomic_t nr_task_events __read_mostly;
  118. static LIST_HEAD(pmus);
  119. static DEFINE_MUTEX(pmus_lock);
  120. static struct srcu_struct pmus_srcu;
  121. /*
  122. * perf event paranoia level:
  123. * -1 - not paranoid at all
  124. * 0 - disallow raw tracepoint access for unpriv
  125. * 1 - disallow cpu events for unpriv
  126. * 2 - disallow kernel profiling for unpriv
  127. */
  128. int sysctl_perf_event_paranoid __read_mostly = 1;
  129. int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
  130. /*
  131. * max perf event sample rate
  132. */
  133. #define DEFAULT_MAX_SAMPLE_RATE 100000
  134. int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
  135. static int max_samples_per_tick __read_mostly =
  136. DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
  137. int perf_proc_update_handler(struct ctl_table *table, int write,
  138. void __user *buffer, size_t *lenp,
  139. loff_t *ppos)
  140. {
  141. int ret = proc_dointvec(table, write, buffer, lenp, ppos);
  142. if (ret || !write)
  143. return ret;
  144. max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
  145. return 0;
  146. }
  147. static atomic64_t perf_event_id;
  148. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  149. enum event_type_t event_type);
  150. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  151. enum event_type_t event_type,
  152. struct task_struct *task);
  153. static void update_context_time(struct perf_event_context *ctx);
  154. static u64 perf_event_time(struct perf_event *event);
  155. void __weak perf_event_print_debug(void) { }
  156. extern __weak const char *perf_pmu_name(void)
  157. {
  158. return "pmu";
  159. }
  160. static inline u64 perf_clock(void)
  161. {
  162. return local_clock();
  163. }
  164. static inline struct perf_cpu_context *
  165. __get_cpu_context(struct perf_event_context *ctx)
  166. {
  167. return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
  168. }
  169. #ifdef CONFIG_CGROUP_PERF
  170. /*
  171. * Must ensure cgroup is pinned (css_get) before calling
  172. * this function. In other words, we cannot call this function
  173. * if there is no cgroup event for the current CPU context.
  174. */
  175. static inline struct perf_cgroup *
  176. perf_cgroup_from_task(struct task_struct *task)
  177. {
  178. return container_of(task_subsys_state(task, perf_subsys_id),
  179. struct perf_cgroup, css);
  180. }
  181. static inline bool
  182. perf_cgroup_match(struct perf_event *event)
  183. {
  184. struct perf_event_context *ctx = event->ctx;
  185. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  186. return !event->cgrp || event->cgrp == cpuctx->cgrp;
  187. }
  188. static inline void perf_get_cgroup(struct perf_event *event)
  189. {
  190. css_get(&event->cgrp->css);
  191. }
  192. static inline void perf_put_cgroup(struct perf_event *event)
  193. {
  194. css_put(&event->cgrp->css);
  195. }
  196. static inline void perf_detach_cgroup(struct perf_event *event)
  197. {
  198. perf_put_cgroup(event);
  199. event->cgrp = NULL;
  200. }
  201. static inline int is_cgroup_event(struct perf_event *event)
  202. {
  203. return event->cgrp != NULL;
  204. }
  205. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  206. {
  207. struct perf_cgroup_info *t;
  208. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  209. return t->time;
  210. }
  211. static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
  212. {
  213. struct perf_cgroup_info *info;
  214. u64 now;
  215. now = perf_clock();
  216. info = this_cpu_ptr(cgrp->info);
  217. info->time += now - info->timestamp;
  218. info->timestamp = now;
  219. }
  220. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  221. {
  222. struct perf_cgroup *cgrp_out = cpuctx->cgrp;
  223. if (cgrp_out)
  224. __update_cgrp_time(cgrp_out);
  225. }
  226. static inline void update_cgrp_time_from_event(struct perf_event *event)
  227. {
  228. struct perf_cgroup *cgrp;
  229. /*
  230. * ensure we access cgroup data only when needed and
  231. * when we know the cgroup is pinned (css_get)
  232. */
  233. if (!is_cgroup_event(event))
  234. return;
  235. cgrp = perf_cgroup_from_task(current);
  236. /*
  237. * Do not update time when cgroup is not active
  238. */
  239. if (cgrp == event->cgrp)
  240. __update_cgrp_time(event->cgrp);
  241. }
  242. static inline void
  243. perf_cgroup_set_timestamp(struct task_struct *task,
  244. struct perf_event_context *ctx)
  245. {
  246. struct perf_cgroup *cgrp;
  247. struct perf_cgroup_info *info;
  248. /*
  249. * ctx->lock held by caller
  250. * ensure we do not access cgroup data
  251. * unless we have the cgroup pinned (css_get)
  252. */
  253. if (!task || !ctx->nr_cgroups)
  254. return;
  255. cgrp = perf_cgroup_from_task(task);
  256. info = this_cpu_ptr(cgrp->info);
  257. info->timestamp = ctx->timestamp;
  258. }
  259. #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
  260. #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
  261. /*
  262. * reschedule events based on the cgroup constraint of task.
  263. *
  264. * mode SWOUT : schedule out everything
  265. * mode SWIN : schedule in based on cgroup for next
  266. */
  267. void perf_cgroup_switch(struct task_struct *task, int mode)
  268. {
  269. struct perf_cpu_context *cpuctx;
  270. struct pmu *pmu;
  271. unsigned long flags;
  272. /*
  273. * disable interrupts to avoid geting nr_cgroup
  274. * changes via __perf_event_disable(). Also
  275. * avoids preemption.
  276. */
  277. local_irq_save(flags);
  278. /*
  279. * we reschedule only in the presence of cgroup
  280. * constrained events.
  281. */
  282. rcu_read_lock();
  283. list_for_each_entry_rcu(pmu, &pmus, entry) {
  284. cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  285. perf_pmu_disable(cpuctx->ctx.pmu);
  286. /*
  287. * perf_cgroup_events says at least one
  288. * context on this CPU has cgroup events.
  289. *
  290. * ctx->nr_cgroups reports the number of cgroup
  291. * events for a context.
  292. */
  293. if (cpuctx->ctx.nr_cgroups > 0) {
  294. if (mode & PERF_CGROUP_SWOUT) {
  295. cpu_ctx_sched_out(cpuctx, EVENT_ALL);
  296. /*
  297. * must not be done before ctxswout due
  298. * to event_filter_match() in event_sched_out()
  299. */
  300. cpuctx->cgrp = NULL;
  301. }
  302. if (mode & PERF_CGROUP_SWIN) {
  303. /* set cgrp before ctxsw in to
  304. * allow event_filter_match() to not
  305. * have to pass task around
  306. */
  307. cpuctx->cgrp = perf_cgroup_from_task(task);
  308. cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
  309. }
  310. }
  311. perf_pmu_enable(cpuctx->ctx.pmu);
  312. }
  313. rcu_read_unlock();
  314. local_irq_restore(flags);
  315. }
  316. static inline void perf_cgroup_sched_out(struct task_struct *task)
  317. {
  318. perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
  319. }
  320. static inline void perf_cgroup_sched_in(struct task_struct *task)
  321. {
  322. perf_cgroup_switch(task, PERF_CGROUP_SWIN);
  323. }
  324. static inline int perf_cgroup_connect(int fd, struct perf_event *event,
  325. struct perf_event_attr *attr,
  326. struct perf_event *group_leader)
  327. {
  328. struct perf_cgroup *cgrp;
  329. struct cgroup_subsys_state *css;
  330. struct file *file;
  331. int ret = 0, fput_needed;
  332. file = fget_light(fd, &fput_needed);
  333. if (!file)
  334. return -EBADF;
  335. css = cgroup_css_from_dir(file, perf_subsys_id);
  336. if (IS_ERR(css)) {
  337. ret = PTR_ERR(css);
  338. goto out;
  339. }
  340. cgrp = container_of(css, struct perf_cgroup, css);
  341. event->cgrp = cgrp;
  342. /* must be done before we fput() the file */
  343. perf_get_cgroup(event);
  344. /*
  345. * all events in a group must monitor
  346. * the same cgroup because a task belongs
  347. * to only one perf cgroup at a time
  348. */
  349. if (group_leader && group_leader->cgrp != cgrp) {
  350. perf_detach_cgroup(event);
  351. ret = -EINVAL;
  352. }
  353. out:
  354. fput_light(file, fput_needed);
  355. return ret;
  356. }
  357. static inline void
  358. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  359. {
  360. struct perf_cgroup_info *t;
  361. t = per_cpu_ptr(event->cgrp->info, event->cpu);
  362. event->shadow_ctx_time = now - t->timestamp;
  363. }
  364. static inline void
  365. perf_cgroup_defer_enabled(struct perf_event *event)
  366. {
  367. /*
  368. * when the current task's perf cgroup does not match
  369. * the event's, we need to remember to call the
  370. * perf_mark_enable() function the first time a task with
  371. * a matching perf cgroup is scheduled in.
  372. */
  373. if (is_cgroup_event(event) && !perf_cgroup_match(event))
  374. event->cgrp_defer_enabled = 1;
  375. }
  376. static inline void
  377. perf_cgroup_mark_enabled(struct perf_event *event,
  378. struct perf_event_context *ctx)
  379. {
  380. struct perf_event *sub;
  381. u64 tstamp = perf_event_time(event);
  382. if (!event->cgrp_defer_enabled)
  383. return;
  384. event->cgrp_defer_enabled = 0;
  385. event->tstamp_enabled = tstamp - event->total_time_enabled;
  386. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  387. if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
  388. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  389. sub->cgrp_defer_enabled = 0;
  390. }
  391. }
  392. }
  393. #else /* !CONFIG_CGROUP_PERF */
  394. static inline bool
  395. perf_cgroup_match(struct perf_event *event)
  396. {
  397. return true;
  398. }
  399. static inline void perf_detach_cgroup(struct perf_event *event)
  400. {}
  401. static inline int is_cgroup_event(struct perf_event *event)
  402. {
  403. return 0;
  404. }
  405. static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
  406. {
  407. return 0;
  408. }
  409. static inline void update_cgrp_time_from_event(struct perf_event *event)
  410. {
  411. }
  412. static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
  413. {
  414. }
  415. static inline void perf_cgroup_sched_out(struct task_struct *task)
  416. {
  417. }
  418. static inline void perf_cgroup_sched_in(struct task_struct *task)
  419. {
  420. }
  421. static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
  422. struct perf_event_attr *attr,
  423. struct perf_event *group_leader)
  424. {
  425. return -EINVAL;
  426. }
  427. static inline void
  428. perf_cgroup_set_timestamp(struct task_struct *task,
  429. struct perf_event_context *ctx)
  430. {
  431. }
  432. void
  433. perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
  434. {
  435. }
  436. static inline void
  437. perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
  438. {
  439. }
  440. static inline u64 perf_cgroup_event_time(struct perf_event *event)
  441. {
  442. return 0;
  443. }
  444. static inline void
  445. perf_cgroup_defer_enabled(struct perf_event *event)
  446. {
  447. }
  448. static inline void
  449. perf_cgroup_mark_enabled(struct perf_event *event,
  450. struct perf_event_context *ctx)
  451. {
  452. }
  453. #endif
  454. void perf_pmu_disable(struct pmu *pmu)
  455. {
  456. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  457. if (!(*count)++)
  458. pmu->pmu_disable(pmu);
  459. }
  460. void perf_pmu_enable(struct pmu *pmu)
  461. {
  462. int *count = this_cpu_ptr(pmu->pmu_disable_count);
  463. if (!--(*count))
  464. pmu->pmu_enable(pmu);
  465. }
  466. static DEFINE_PER_CPU(struct list_head, rotation_list);
  467. /*
  468. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  469. * because they're strictly cpu affine and rotate_start is called with IRQs
  470. * disabled, while rotate_context is called from IRQ context.
  471. */
  472. static void perf_pmu_rotate_start(struct pmu *pmu)
  473. {
  474. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  475. struct list_head *head = &__get_cpu_var(rotation_list);
  476. WARN_ON(!irqs_disabled());
  477. if (list_empty(&cpuctx->rotation_list))
  478. list_add(&cpuctx->rotation_list, head);
  479. }
  480. static void get_ctx(struct perf_event_context *ctx)
  481. {
  482. WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
  483. }
  484. static void free_ctx(struct rcu_head *head)
  485. {
  486. struct perf_event_context *ctx;
  487. ctx = container_of(head, struct perf_event_context, rcu_head);
  488. kfree(ctx);
  489. }
  490. static void put_ctx(struct perf_event_context *ctx)
  491. {
  492. if (atomic_dec_and_test(&ctx->refcount)) {
  493. if (ctx->parent_ctx)
  494. put_ctx(ctx->parent_ctx);
  495. if (ctx->task)
  496. put_task_struct(ctx->task);
  497. call_rcu(&ctx->rcu_head, free_ctx);
  498. }
  499. }
  500. static void unclone_ctx(struct perf_event_context *ctx)
  501. {
  502. if (ctx->parent_ctx) {
  503. put_ctx(ctx->parent_ctx);
  504. ctx->parent_ctx = NULL;
  505. }
  506. }
  507. static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
  508. {
  509. /*
  510. * only top level events have the pid namespace they were created in
  511. */
  512. if (event->parent)
  513. event = event->parent;
  514. return task_tgid_nr_ns(p, event->ns);
  515. }
  516. static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
  517. {
  518. /*
  519. * only top level events have the pid namespace they were created in
  520. */
  521. if (event->parent)
  522. event = event->parent;
  523. return task_pid_nr_ns(p, event->ns);
  524. }
  525. /*
  526. * If we inherit events we want to return the parent event id
  527. * to userspace.
  528. */
  529. static u64 primary_event_id(struct perf_event *event)
  530. {
  531. u64 id = event->id;
  532. if (event->parent)
  533. id = event->parent->id;
  534. return id;
  535. }
  536. /*
  537. * Get the perf_event_context for a task and lock it.
  538. * This has to cope with with the fact that until it is locked,
  539. * the context could get moved to another task.
  540. */
  541. static struct perf_event_context *
  542. perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
  543. {
  544. struct perf_event_context *ctx;
  545. rcu_read_lock();
  546. retry:
  547. ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
  548. if (ctx) {
  549. /*
  550. * If this context is a clone of another, it might
  551. * get swapped for another underneath us by
  552. * perf_event_task_sched_out, though the
  553. * rcu_read_lock() protects us from any context
  554. * getting freed. Lock the context and check if it
  555. * got swapped before we could get the lock, and retry
  556. * if so. If we locked the right context, then it
  557. * can't get swapped on us any more.
  558. */
  559. raw_spin_lock_irqsave(&ctx->lock, *flags);
  560. if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
  561. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  562. goto retry;
  563. }
  564. if (!atomic_inc_not_zero(&ctx->refcount)) {
  565. raw_spin_unlock_irqrestore(&ctx->lock, *flags);
  566. ctx = NULL;
  567. }
  568. }
  569. rcu_read_unlock();
  570. return ctx;
  571. }
  572. /*
  573. * Get the context for a task and increment its pin_count so it
  574. * can't get swapped to another task. This also increments its
  575. * reference count so that the context can't get freed.
  576. */
  577. static struct perf_event_context *
  578. perf_pin_task_context(struct task_struct *task, int ctxn)
  579. {
  580. struct perf_event_context *ctx;
  581. unsigned long flags;
  582. ctx = perf_lock_task_context(task, ctxn, &flags);
  583. if (ctx) {
  584. ++ctx->pin_count;
  585. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  586. }
  587. return ctx;
  588. }
  589. static void perf_unpin_context(struct perf_event_context *ctx)
  590. {
  591. unsigned long flags;
  592. raw_spin_lock_irqsave(&ctx->lock, flags);
  593. --ctx->pin_count;
  594. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  595. }
  596. /*
  597. * Update the record of the current time in a context.
  598. */
  599. static void update_context_time(struct perf_event_context *ctx)
  600. {
  601. u64 now = perf_clock();
  602. ctx->time += now - ctx->timestamp;
  603. ctx->timestamp = now;
  604. }
  605. static u64 perf_event_time(struct perf_event *event)
  606. {
  607. struct perf_event_context *ctx = event->ctx;
  608. if (is_cgroup_event(event))
  609. return perf_cgroup_event_time(event);
  610. return ctx ? ctx->time : 0;
  611. }
  612. /*
  613. * Update the total_time_enabled and total_time_running fields for a event.
  614. */
  615. static void update_event_times(struct perf_event *event)
  616. {
  617. struct perf_event_context *ctx = event->ctx;
  618. u64 run_end;
  619. if (event->state < PERF_EVENT_STATE_INACTIVE ||
  620. event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
  621. return;
  622. /*
  623. * in cgroup mode, time_enabled represents
  624. * the time the event was enabled AND active
  625. * tasks were in the monitored cgroup. This is
  626. * independent of the activity of the context as
  627. * there may be a mix of cgroup and non-cgroup events.
  628. *
  629. * That is why we treat cgroup events differently
  630. * here.
  631. */
  632. if (is_cgroup_event(event))
  633. run_end = perf_event_time(event);
  634. else if (ctx->is_active)
  635. run_end = ctx->time;
  636. else
  637. run_end = event->tstamp_stopped;
  638. event->total_time_enabled = run_end - event->tstamp_enabled;
  639. if (event->state == PERF_EVENT_STATE_INACTIVE)
  640. run_end = event->tstamp_stopped;
  641. else
  642. run_end = perf_event_time(event);
  643. event->total_time_running = run_end - event->tstamp_running;
  644. }
  645. /*
  646. * Update total_time_enabled and total_time_running for all events in a group.
  647. */
  648. static void update_group_times(struct perf_event *leader)
  649. {
  650. struct perf_event *event;
  651. update_event_times(leader);
  652. list_for_each_entry(event, &leader->sibling_list, group_entry)
  653. update_event_times(event);
  654. }
  655. static struct list_head *
  656. ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
  657. {
  658. if (event->attr.pinned)
  659. return &ctx->pinned_groups;
  660. else
  661. return &ctx->flexible_groups;
  662. }
  663. /*
  664. * Add a event from the lists for its context.
  665. * Must be called with ctx->mutex and ctx->lock held.
  666. */
  667. static void
  668. list_add_event(struct perf_event *event, struct perf_event_context *ctx)
  669. {
  670. WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
  671. event->attach_state |= PERF_ATTACH_CONTEXT;
  672. /*
  673. * If we're a stand alone event or group leader, we go to the context
  674. * list, group events are kept attached to the group so that
  675. * perf_group_detach can, at all times, locate all siblings.
  676. */
  677. if (event->group_leader == event) {
  678. struct list_head *list;
  679. if (is_software_event(event))
  680. event->group_flags |= PERF_GROUP_SOFTWARE;
  681. list = ctx_group_list(event, ctx);
  682. list_add_tail(&event->group_entry, list);
  683. }
  684. if (is_cgroup_event(event))
  685. ctx->nr_cgroups++;
  686. list_add_rcu(&event->event_entry, &ctx->event_list);
  687. if (!ctx->nr_events)
  688. perf_pmu_rotate_start(ctx->pmu);
  689. ctx->nr_events++;
  690. if (event->attr.inherit_stat)
  691. ctx->nr_stat++;
  692. }
  693. /*
  694. * Called at perf_event creation and when events are attached/detached from a
  695. * group.
  696. */
  697. static void perf_event__read_size(struct perf_event *event)
  698. {
  699. int entry = sizeof(u64); /* value */
  700. int size = 0;
  701. int nr = 1;
  702. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  703. size += sizeof(u64);
  704. if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  705. size += sizeof(u64);
  706. if (event->attr.read_format & PERF_FORMAT_ID)
  707. entry += sizeof(u64);
  708. if (event->attr.read_format & PERF_FORMAT_GROUP) {
  709. nr += event->group_leader->nr_siblings;
  710. size += sizeof(u64);
  711. }
  712. size += entry * nr;
  713. event->read_size = size;
  714. }
  715. static void perf_event__header_size(struct perf_event *event)
  716. {
  717. struct perf_sample_data *data;
  718. u64 sample_type = event->attr.sample_type;
  719. u16 size = 0;
  720. perf_event__read_size(event);
  721. if (sample_type & PERF_SAMPLE_IP)
  722. size += sizeof(data->ip);
  723. if (sample_type & PERF_SAMPLE_ADDR)
  724. size += sizeof(data->addr);
  725. if (sample_type & PERF_SAMPLE_PERIOD)
  726. size += sizeof(data->period);
  727. if (sample_type & PERF_SAMPLE_READ)
  728. size += event->read_size;
  729. event->header_size = size;
  730. }
  731. static void perf_event__id_header_size(struct perf_event *event)
  732. {
  733. struct perf_sample_data *data;
  734. u64 sample_type = event->attr.sample_type;
  735. u16 size = 0;
  736. if (sample_type & PERF_SAMPLE_TID)
  737. size += sizeof(data->tid_entry);
  738. if (sample_type & PERF_SAMPLE_TIME)
  739. size += sizeof(data->time);
  740. if (sample_type & PERF_SAMPLE_ID)
  741. size += sizeof(data->id);
  742. if (sample_type & PERF_SAMPLE_STREAM_ID)
  743. size += sizeof(data->stream_id);
  744. if (sample_type & PERF_SAMPLE_CPU)
  745. size += sizeof(data->cpu_entry);
  746. event->id_header_size = size;
  747. }
  748. static void perf_group_attach(struct perf_event *event)
  749. {
  750. struct perf_event *group_leader = event->group_leader, *pos;
  751. /*
  752. * We can have double attach due to group movement in perf_event_open.
  753. */
  754. if (event->attach_state & PERF_ATTACH_GROUP)
  755. return;
  756. event->attach_state |= PERF_ATTACH_GROUP;
  757. if (group_leader == event)
  758. return;
  759. if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
  760. !is_software_event(event))
  761. group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
  762. list_add_tail(&event->group_entry, &group_leader->sibling_list);
  763. group_leader->nr_siblings++;
  764. perf_event__header_size(group_leader);
  765. list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
  766. perf_event__header_size(pos);
  767. }
  768. /*
  769. * Remove a event from the lists for its context.
  770. * Must be called with ctx->mutex and ctx->lock held.
  771. */
  772. static void
  773. list_del_event(struct perf_event *event, struct perf_event_context *ctx)
  774. {
  775. /*
  776. * We can have double detach due to exit/hot-unplug + close.
  777. */
  778. if (!(event->attach_state & PERF_ATTACH_CONTEXT))
  779. return;
  780. event->attach_state &= ~PERF_ATTACH_CONTEXT;
  781. if (is_cgroup_event(event))
  782. ctx->nr_cgroups--;
  783. ctx->nr_events--;
  784. if (event->attr.inherit_stat)
  785. ctx->nr_stat--;
  786. list_del_rcu(&event->event_entry);
  787. if (event->group_leader == event)
  788. list_del_init(&event->group_entry);
  789. update_group_times(event);
  790. /*
  791. * If event was in error state, then keep it
  792. * that way, otherwise bogus counts will be
  793. * returned on read(). The only way to get out
  794. * of error state is by explicit re-enabling
  795. * of the event
  796. */
  797. if (event->state > PERF_EVENT_STATE_OFF)
  798. event->state = PERF_EVENT_STATE_OFF;
  799. }
  800. static void perf_group_detach(struct perf_event *event)
  801. {
  802. struct perf_event *sibling, *tmp;
  803. struct list_head *list = NULL;
  804. /*
  805. * We can have double detach due to exit/hot-unplug + close.
  806. */
  807. if (!(event->attach_state & PERF_ATTACH_GROUP))
  808. return;
  809. event->attach_state &= ~PERF_ATTACH_GROUP;
  810. /*
  811. * If this is a sibling, remove it from its group.
  812. */
  813. if (event->group_leader != event) {
  814. list_del_init(&event->group_entry);
  815. event->group_leader->nr_siblings--;
  816. goto out;
  817. }
  818. if (!list_empty(&event->group_entry))
  819. list = &event->group_entry;
  820. /*
  821. * If this was a group event with sibling events then
  822. * upgrade the siblings to singleton events by adding them
  823. * to whatever list we are on.
  824. */
  825. list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
  826. if (list)
  827. list_move_tail(&sibling->group_entry, list);
  828. sibling->group_leader = sibling;
  829. /* Inherit group flags from the previous leader */
  830. sibling->group_flags = event->group_flags;
  831. }
  832. out:
  833. perf_event__header_size(event->group_leader);
  834. list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
  835. perf_event__header_size(tmp);
  836. }
  837. static inline int
  838. event_filter_match(struct perf_event *event)
  839. {
  840. return (event->cpu == -1 || event->cpu == smp_processor_id())
  841. && perf_cgroup_match(event);
  842. }
  843. static void
  844. event_sched_out(struct perf_event *event,
  845. struct perf_cpu_context *cpuctx,
  846. struct perf_event_context *ctx)
  847. {
  848. u64 tstamp = perf_event_time(event);
  849. u64 delta;
  850. /*
  851. * An event which could not be activated because of
  852. * filter mismatch still needs to have its timings
  853. * maintained, otherwise bogus information is return
  854. * via read() for time_enabled, time_running:
  855. */
  856. if (event->state == PERF_EVENT_STATE_INACTIVE
  857. && !event_filter_match(event)) {
  858. delta = tstamp - event->tstamp_stopped;
  859. event->tstamp_running += delta;
  860. event->tstamp_stopped = tstamp;
  861. }
  862. if (event->state != PERF_EVENT_STATE_ACTIVE)
  863. return;
  864. event->state = PERF_EVENT_STATE_INACTIVE;
  865. if (event->pending_disable) {
  866. event->pending_disable = 0;
  867. event->state = PERF_EVENT_STATE_OFF;
  868. }
  869. event->tstamp_stopped = tstamp;
  870. event->pmu->del(event, 0);
  871. event->oncpu = -1;
  872. if (!is_software_event(event))
  873. cpuctx->active_oncpu--;
  874. ctx->nr_active--;
  875. if (event->attr.exclusive || !cpuctx->active_oncpu)
  876. cpuctx->exclusive = 0;
  877. }
  878. static void
  879. group_sched_out(struct perf_event *group_event,
  880. struct perf_cpu_context *cpuctx,
  881. struct perf_event_context *ctx)
  882. {
  883. struct perf_event *event;
  884. int state = group_event->state;
  885. event_sched_out(group_event, cpuctx, ctx);
  886. /*
  887. * Schedule out siblings (if any):
  888. */
  889. list_for_each_entry(event, &group_event->sibling_list, group_entry)
  890. event_sched_out(event, cpuctx, ctx);
  891. if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
  892. cpuctx->exclusive = 0;
  893. }
  894. /*
  895. * Cross CPU call to remove a performance event
  896. *
  897. * We disable the event on the hardware level first. After that we
  898. * remove it from the context list.
  899. */
  900. static int __perf_remove_from_context(void *info)
  901. {
  902. struct perf_event *event = info;
  903. struct perf_event_context *ctx = event->ctx;
  904. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  905. raw_spin_lock(&ctx->lock);
  906. event_sched_out(event, cpuctx, ctx);
  907. list_del_event(event, ctx);
  908. raw_spin_unlock(&ctx->lock);
  909. return 0;
  910. }
  911. /*
  912. * Remove the event from a task's (or a CPU's) list of events.
  913. *
  914. * CPU events are removed with a smp call. For task events we only
  915. * call when the task is on a CPU.
  916. *
  917. * If event->ctx is a cloned context, callers must make sure that
  918. * every task struct that event->ctx->task could possibly point to
  919. * remains valid. This is OK when called from perf_release since
  920. * that only calls us on the top-level context, which can't be a clone.
  921. * When called from perf_event_exit_task, it's OK because the
  922. * context has been detached from its task.
  923. */
  924. static void perf_remove_from_context(struct perf_event *event)
  925. {
  926. struct perf_event_context *ctx = event->ctx;
  927. struct task_struct *task = ctx->task;
  928. lockdep_assert_held(&ctx->mutex);
  929. if (!task) {
  930. /*
  931. * Per cpu events are removed via an smp call and
  932. * the removal is always successful.
  933. */
  934. cpu_function_call(event->cpu, __perf_remove_from_context, event);
  935. return;
  936. }
  937. retry:
  938. if (!task_function_call(task, __perf_remove_from_context, event))
  939. return;
  940. raw_spin_lock_irq(&ctx->lock);
  941. /*
  942. * If we failed to find a running task, but find the context active now
  943. * that we've acquired the ctx->lock, retry.
  944. */
  945. if (ctx->is_active) {
  946. raw_spin_unlock_irq(&ctx->lock);
  947. goto retry;
  948. }
  949. /*
  950. * Since the task isn't running, its safe to remove the event, us
  951. * holding the ctx->lock ensures the task won't get scheduled in.
  952. */
  953. list_del_event(event, ctx);
  954. raw_spin_unlock_irq(&ctx->lock);
  955. }
  956. /*
  957. * Cross CPU call to disable a performance event
  958. */
  959. static int __perf_event_disable(void *info)
  960. {
  961. struct perf_event *event = info;
  962. struct perf_event_context *ctx = event->ctx;
  963. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  964. /*
  965. * If this is a per-task event, need to check whether this
  966. * event's task is the current task on this cpu.
  967. *
  968. * Can trigger due to concurrent perf_event_context_sched_out()
  969. * flipping contexts around.
  970. */
  971. if (ctx->task && cpuctx->task_ctx != ctx)
  972. return -EINVAL;
  973. raw_spin_lock(&ctx->lock);
  974. /*
  975. * If the event is on, turn it off.
  976. * If it is in error state, leave it in error state.
  977. */
  978. if (event->state >= PERF_EVENT_STATE_INACTIVE) {
  979. update_context_time(ctx);
  980. update_cgrp_time_from_event(event);
  981. update_group_times(event);
  982. if (event == event->group_leader)
  983. group_sched_out(event, cpuctx, ctx);
  984. else
  985. event_sched_out(event, cpuctx, ctx);
  986. event->state = PERF_EVENT_STATE_OFF;
  987. }
  988. raw_spin_unlock(&ctx->lock);
  989. return 0;
  990. }
  991. /*
  992. * Disable a event.
  993. *
  994. * If event->ctx is a cloned context, callers must make sure that
  995. * every task struct that event->ctx->task could possibly point to
  996. * remains valid. This condition is satisifed when called through
  997. * perf_event_for_each_child or perf_event_for_each because they
  998. * hold the top-level event's child_mutex, so any descendant that
  999. * goes to exit will block in sync_child_event.
  1000. * When called from perf_pending_event it's OK because event->ctx
  1001. * is the current context on this CPU and preemption is disabled,
  1002. * hence we can't get into perf_event_task_sched_out for this context.
  1003. */
  1004. void perf_event_disable(struct perf_event *event)
  1005. {
  1006. struct perf_event_context *ctx = event->ctx;
  1007. struct task_struct *task = ctx->task;
  1008. if (!task) {
  1009. /*
  1010. * Disable the event on the cpu that it's on
  1011. */
  1012. cpu_function_call(event->cpu, __perf_event_disable, event);
  1013. return;
  1014. }
  1015. retry:
  1016. if (!task_function_call(task, __perf_event_disable, event))
  1017. return;
  1018. raw_spin_lock_irq(&ctx->lock);
  1019. /*
  1020. * If the event is still active, we need to retry the cross-call.
  1021. */
  1022. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  1023. raw_spin_unlock_irq(&ctx->lock);
  1024. /*
  1025. * Reload the task pointer, it might have been changed by
  1026. * a concurrent perf_event_context_sched_out().
  1027. */
  1028. task = ctx->task;
  1029. goto retry;
  1030. }
  1031. /*
  1032. * Since we have the lock this context can't be scheduled
  1033. * in, so we can change the state safely.
  1034. */
  1035. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1036. update_group_times(event);
  1037. event->state = PERF_EVENT_STATE_OFF;
  1038. }
  1039. raw_spin_unlock_irq(&ctx->lock);
  1040. }
  1041. static void perf_set_shadow_time(struct perf_event *event,
  1042. struct perf_event_context *ctx,
  1043. u64 tstamp)
  1044. {
  1045. /*
  1046. * use the correct time source for the time snapshot
  1047. *
  1048. * We could get by without this by leveraging the
  1049. * fact that to get to this function, the caller
  1050. * has most likely already called update_context_time()
  1051. * and update_cgrp_time_xx() and thus both timestamp
  1052. * are identical (or very close). Given that tstamp is,
  1053. * already adjusted for cgroup, we could say that:
  1054. * tstamp - ctx->timestamp
  1055. * is equivalent to
  1056. * tstamp - cgrp->timestamp.
  1057. *
  1058. * Then, in perf_output_read(), the calculation would
  1059. * work with no changes because:
  1060. * - event is guaranteed scheduled in
  1061. * - no scheduled out in between
  1062. * - thus the timestamp would be the same
  1063. *
  1064. * But this is a bit hairy.
  1065. *
  1066. * So instead, we have an explicit cgroup call to remain
  1067. * within the time time source all along. We believe it
  1068. * is cleaner and simpler to understand.
  1069. */
  1070. if (is_cgroup_event(event))
  1071. perf_cgroup_set_shadow_time(event, tstamp);
  1072. else
  1073. event->shadow_ctx_time = tstamp - ctx->timestamp;
  1074. }
  1075. #define MAX_INTERRUPTS (~0ULL)
  1076. static void perf_log_throttle(struct perf_event *event, int enable);
  1077. static int
  1078. event_sched_in(struct perf_event *event,
  1079. struct perf_cpu_context *cpuctx,
  1080. struct perf_event_context *ctx)
  1081. {
  1082. u64 tstamp = perf_event_time(event);
  1083. if (event->state <= PERF_EVENT_STATE_OFF)
  1084. return 0;
  1085. event->state = PERF_EVENT_STATE_ACTIVE;
  1086. event->oncpu = smp_processor_id();
  1087. /*
  1088. * Unthrottle events, since we scheduled we might have missed several
  1089. * ticks already, also for a heavily scheduling task there is little
  1090. * guarantee it'll get a tick in a timely manner.
  1091. */
  1092. if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
  1093. perf_log_throttle(event, 1);
  1094. event->hw.interrupts = 0;
  1095. }
  1096. /*
  1097. * The new state must be visible before we turn it on in the hardware:
  1098. */
  1099. smp_wmb();
  1100. if (event->pmu->add(event, PERF_EF_START)) {
  1101. event->state = PERF_EVENT_STATE_INACTIVE;
  1102. event->oncpu = -1;
  1103. return -EAGAIN;
  1104. }
  1105. event->tstamp_running += tstamp - event->tstamp_stopped;
  1106. perf_set_shadow_time(event, ctx, tstamp);
  1107. if (!is_software_event(event))
  1108. cpuctx->active_oncpu++;
  1109. ctx->nr_active++;
  1110. if (event->attr.exclusive)
  1111. cpuctx->exclusive = 1;
  1112. return 0;
  1113. }
  1114. static int
  1115. group_sched_in(struct perf_event *group_event,
  1116. struct perf_cpu_context *cpuctx,
  1117. struct perf_event_context *ctx)
  1118. {
  1119. struct perf_event *event, *partial_group = NULL;
  1120. struct pmu *pmu = group_event->pmu;
  1121. u64 now = ctx->time;
  1122. bool simulate = false;
  1123. if (group_event->state == PERF_EVENT_STATE_OFF)
  1124. return 0;
  1125. pmu->start_txn(pmu);
  1126. if (event_sched_in(group_event, cpuctx, ctx)) {
  1127. pmu->cancel_txn(pmu);
  1128. return -EAGAIN;
  1129. }
  1130. /*
  1131. * Schedule in siblings as one group (if any):
  1132. */
  1133. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1134. if (event_sched_in(event, cpuctx, ctx)) {
  1135. partial_group = event;
  1136. goto group_error;
  1137. }
  1138. }
  1139. if (!pmu->commit_txn(pmu))
  1140. return 0;
  1141. group_error:
  1142. /*
  1143. * Groups can be scheduled in as one unit only, so undo any
  1144. * partial group before returning:
  1145. * The events up to the failed event are scheduled out normally,
  1146. * tstamp_stopped will be updated.
  1147. *
  1148. * The failed events and the remaining siblings need to have
  1149. * their timings updated as if they had gone thru event_sched_in()
  1150. * and event_sched_out(). This is required to get consistent timings
  1151. * across the group. This also takes care of the case where the group
  1152. * could never be scheduled by ensuring tstamp_stopped is set to mark
  1153. * the time the event was actually stopped, such that time delta
  1154. * calculation in update_event_times() is correct.
  1155. */
  1156. list_for_each_entry(event, &group_event->sibling_list, group_entry) {
  1157. if (event == partial_group)
  1158. simulate = true;
  1159. if (simulate) {
  1160. event->tstamp_running += now - event->tstamp_stopped;
  1161. event->tstamp_stopped = now;
  1162. } else {
  1163. event_sched_out(event, cpuctx, ctx);
  1164. }
  1165. }
  1166. event_sched_out(group_event, cpuctx, ctx);
  1167. pmu->cancel_txn(pmu);
  1168. return -EAGAIN;
  1169. }
  1170. /*
  1171. * Work out whether we can put this event group on the CPU now.
  1172. */
  1173. static int group_can_go_on(struct perf_event *event,
  1174. struct perf_cpu_context *cpuctx,
  1175. int can_add_hw)
  1176. {
  1177. /*
  1178. * Groups consisting entirely of software events can always go on.
  1179. */
  1180. if (event->group_flags & PERF_GROUP_SOFTWARE)
  1181. return 1;
  1182. /*
  1183. * If an exclusive group is already on, no other hardware
  1184. * events can go on.
  1185. */
  1186. if (cpuctx->exclusive)
  1187. return 0;
  1188. /*
  1189. * If this group is exclusive and there are already
  1190. * events on the CPU, it can't go on.
  1191. */
  1192. if (event->attr.exclusive && cpuctx->active_oncpu)
  1193. return 0;
  1194. /*
  1195. * Otherwise, try to add it if all previous groups were able
  1196. * to go on.
  1197. */
  1198. return can_add_hw;
  1199. }
  1200. static void add_event_to_ctx(struct perf_event *event,
  1201. struct perf_event_context *ctx)
  1202. {
  1203. u64 tstamp = perf_event_time(event);
  1204. list_add_event(event, ctx);
  1205. perf_group_attach(event);
  1206. event->tstamp_enabled = tstamp;
  1207. event->tstamp_running = tstamp;
  1208. event->tstamp_stopped = tstamp;
  1209. }
  1210. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1211. struct task_struct *tsk);
  1212. /*
  1213. * Cross CPU call to install and enable a performance event
  1214. *
  1215. * Must be called with ctx->mutex held
  1216. */
  1217. static int __perf_install_in_context(void *info)
  1218. {
  1219. struct perf_event *event = info;
  1220. struct perf_event_context *ctx = event->ctx;
  1221. struct perf_event *leader = event->group_leader;
  1222. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1223. int err;
  1224. /*
  1225. * In case we're installing a new context to an already running task,
  1226. * could also happen before perf_event_task_sched_in() on architectures
  1227. * which do context switches with IRQs enabled.
  1228. */
  1229. if (ctx->task && !cpuctx->task_ctx)
  1230. perf_event_context_sched_in(ctx, ctx->task);
  1231. raw_spin_lock(&ctx->lock);
  1232. ctx->is_active = 1;
  1233. update_context_time(ctx);
  1234. /*
  1235. * update cgrp time only if current cgrp
  1236. * matches event->cgrp. Must be done before
  1237. * calling add_event_to_ctx()
  1238. */
  1239. update_cgrp_time_from_event(event);
  1240. add_event_to_ctx(event, ctx);
  1241. if (!event_filter_match(event))
  1242. goto unlock;
  1243. /*
  1244. * Don't put the event on if it is disabled or if
  1245. * it is in a group and the group isn't on.
  1246. */
  1247. if (event->state != PERF_EVENT_STATE_INACTIVE ||
  1248. (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
  1249. goto unlock;
  1250. /*
  1251. * An exclusive event can't go on if there are already active
  1252. * hardware events, and no hardware event can go on if there
  1253. * is already an exclusive event on.
  1254. */
  1255. if (!group_can_go_on(event, cpuctx, 1))
  1256. err = -EEXIST;
  1257. else
  1258. err = event_sched_in(event, cpuctx, ctx);
  1259. if (err) {
  1260. /*
  1261. * This event couldn't go on. If it is in a group
  1262. * then we have to pull the whole group off.
  1263. * If the event group is pinned then put it in error state.
  1264. */
  1265. if (leader != event)
  1266. group_sched_out(leader, cpuctx, ctx);
  1267. if (leader->attr.pinned) {
  1268. update_group_times(leader);
  1269. leader->state = PERF_EVENT_STATE_ERROR;
  1270. }
  1271. }
  1272. unlock:
  1273. raw_spin_unlock(&ctx->lock);
  1274. return 0;
  1275. }
  1276. /*
  1277. * Attach a performance event to a context
  1278. *
  1279. * First we add the event to the list with the hardware enable bit
  1280. * in event->hw_config cleared.
  1281. *
  1282. * If the event is attached to a task which is on a CPU we use a smp
  1283. * call to enable it in the task context. The task might have been
  1284. * scheduled away, but we check this in the smp call again.
  1285. */
  1286. static void
  1287. perf_install_in_context(struct perf_event_context *ctx,
  1288. struct perf_event *event,
  1289. int cpu)
  1290. {
  1291. struct task_struct *task = ctx->task;
  1292. lockdep_assert_held(&ctx->mutex);
  1293. event->ctx = ctx;
  1294. if (!task) {
  1295. /*
  1296. * Per cpu events are installed via an smp call and
  1297. * the install is always successful.
  1298. */
  1299. cpu_function_call(cpu, __perf_install_in_context, event);
  1300. return;
  1301. }
  1302. retry:
  1303. if (!task_function_call(task, __perf_install_in_context, event))
  1304. return;
  1305. raw_spin_lock_irq(&ctx->lock);
  1306. /*
  1307. * If we failed to find a running task, but find the context active now
  1308. * that we've acquired the ctx->lock, retry.
  1309. */
  1310. if (ctx->is_active) {
  1311. raw_spin_unlock_irq(&ctx->lock);
  1312. goto retry;
  1313. }
  1314. /*
  1315. * Since the task isn't running, its safe to add the event, us holding
  1316. * the ctx->lock ensures the task won't get scheduled in.
  1317. */
  1318. add_event_to_ctx(event, ctx);
  1319. raw_spin_unlock_irq(&ctx->lock);
  1320. }
  1321. /*
  1322. * Put a event into inactive state and update time fields.
  1323. * Enabling the leader of a group effectively enables all
  1324. * the group members that aren't explicitly disabled, so we
  1325. * have to update their ->tstamp_enabled also.
  1326. * Note: this works for group members as well as group leaders
  1327. * since the non-leader members' sibling_lists will be empty.
  1328. */
  1329. static void __perf_event_mark_enabled(struct perf_event *event,
  1330. struct perf_event_context *ctx)
  1331. {
  1332. struct perf_event *sub;
  1333. u64 tstamp = perf_event_time(event);
  1334. event->state = PERF_EVENT_STATE_INACTIVE;
  1335. event->tstamp_enabled = tstamp - event->total_time_enabled;
  1336. list_for_each_entry(sub, &event->sibling_list, group_entry) {
  1337. if (sub->state >= PERF_EVENT_STATE_INACTIVE)
  1338. sub->tstamp_enabled = tstamp - sub->total_time_enabled;
  1339. }
  1340. }
  1341. /*
  1342. * Cross CPU call to enable a performance event
  1343. */
  1344. static int __perf_event_enable(void *info)
  1345. {
  1346. struct perf_event *event = info;
  1347. struct perf_event_context *ctx = event->ctx;
  1348. struct perf_event *leader = event->group_leader;
  1349. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1350. int err;
  1351. if (WARN_ON_ONCE(!ctx->is_active))
  1352. return -EINVAL;
  1353. raw_spin_lock(&ctx->lock);
  1354. update_context_time(ctx);
  1355. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1356. goto unlock;
  1357. /*
  1358. * set current task's cgroup time reference point
  1359. */
  1360. perf_cgroup_set_timestamp(current, ctx);
  1361. __perf_event_mark_enabled(event, ctx);
  1362. if (!event_filter_match(event)) {
  1363. if (is_cgroup_event(event))
  1364. perf_cgroup_defer_enabled(event);
  1365. goto unlock;
  1366. }
  1367. /*
  1368. * If the event is in a group and isn't the group leader,
  1369. * then don't put it on unless the group is on.
  1370. */
  1371. if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
  1372. goto unlock;
  1373. if (!group_can_go_on(event, cpuctx, 1)) {
  1374. err = -EEXIST;
  1375. } else {
  1376. if (event == leader)
  1377. err = group_sched_in(event, cpuctx, ctx);
  1378. else
  1379. err = event_sched_in(event, cpuctx, ctx);
  1380. }
  1381. if (err) {
  1382. /*
  1383. * If this event can't go on and it's part of a
  1384. * group, then the whole group has to come off.
  1385. */
  1386. if (leader != event)
  1387. group_sched_out(leader, cpuctx, ctx);
  1388. if (leader->attr.pinned) {
  1389. update_group_times(leader);
  1390. leader->state = PERF_EVENT_STATE_ERROR;
  1391. }
  1392. }
  1393. unlock:
  1394. raw_spin_unlock(&ctx->lock);
  1395. return 0;
  1396. }
  1397. /*
  1398. * Enable a event.
  1399. *
  1400. * If event->ctx is a cloned context, callers must make sure that
  1401. * every task struct that event->ctx->task could possibly point to
  1402. * remains valid. This condition is satisfied when called through
  1403. * perf_event_for_each_child or perf_event_for_each as described
  1404. * for perf_event_disable.
  1405. */
  1406. void perf_event_enable(struct perf_event *event)
  1407. {
  1408. struct perf_event_context *ctx = event->ctx;
  1409. struct task_struct *task = ctx->task;
  1410. if (!task) {
  1411. /*
  1412. * Enable the event on the cpu that it's on
  1413. */
  1414. cpu_function_call(event->cpu, __perf_event_enable, event);
  1415. return;
  1416. }
  1417. raw_spin_lock_irq(&ctx->lock);
  1418. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1419. goto out;
  1420. /*
  1421. * If the event is in error state, clear that first.
  1422. * That way, if we see the event in error state below, we
  1423. * know that it has gone back into error state, as distinct
  1424. * from the task having been scheduled away before the
  1425. * cross-call arrived.
  1426. */
  1427. if (event->state == PERF_EVENT_STATE_ERROR)
  1428. event->state = PERF_EVENT_STATE_OFF;
  1429. retry:
  1430. if (!ctx->is_active) {
  1431. __perf_event_mark_enabled(event, ctx);
  1432. goto out;
  1433. }
  1434. raw_spin_unlock_irq(&ctx->lock);
  1435. if (!task_function_call(task, __perf_event_enable, event))
  1436. return;
  1437. raw_spin_lock_irq(&ctx->lock);
  1438. /*
  1439. * If the context is active and the event is still off,
  1440. * we need to retry the cross-call.
  1441. */
  1442. if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
  1443. /*
  1444. * task could have been flipped by a concurrent
  1445. * perf_event_context_sched_out()
  1446. */
  1447. task = ctx->task;
  1448. goto retry;
  1449. }
  1450. out:
  1451. raw_spin_unlock_irq(&ctx->lock);
  1452. }
  1453. static int perf_event_refresh(struct perf_event *event, int refresh)
  1454. {
  1455. /*
  1456. * not supported on inherited events
  1457. */
  1458. if (event->attr.inherit || !is_sampling_event(event))
  1459. return -EINVAL;
  1460. atomic_add(refresh, &event->event_limit);
  1461. perf_event_enable(event);
  1462. return 0;
  1463. }
  1464. static void ctx_sched_out(struct perf_event_context *ctx,
  1465. struct perf_cpu_context *cpuctx,
  1466. enum event_type_t event_type)
  1467. {
  1468. struct perf_event *event;
  1469. raw_spin_lock(&ctx->lock);
  1470. perf_pmu_disable(ctx->pmu);
  1471. ctx->is_active = 0;
  1472. if (likely(!ctx->nr_events))
  1473. goto out;
  1474. update_context_time(ctx);
  1475. update_cgrp_time_from_cpuctx(cpuctx);
  1476. if (!ctx->nr_active)
  1477. goto out;
  1478. if (event_type & EVENT_PINNED) {
  1479. list_for_each_entry(event, &ctx->pinned_groups, group_entry)
  1480. group_sched_out(event, cpuctx, ctx);
  1481. }
  1482. if (event_type & EVENT_FLEXIBLE) {
  1483. list_for_each_entry(event, &ctx->flexible_groups, group_entry)
  1484. group_sched_out(event, cpuctx, ctx);
  1485. }
  1486. out:
  1487. perf_pmu_enable(ctx->pmu);
  1488. raw_spin_unlock(&ctx->lock);
  1489. }
  1490. /*
  1491. * Test whether two contexts are equivalent, i.e. whether they
  1492. * have both been cloned from the same version of the same context
  1493. * and they both have the same number of enabled events.
  1494. * If the number of enabled events is the same, then the set
  1495. * of enabled events should be the same, because these are both
  1496. * inherited contexts, therefore we can't access individual events
  1497. * in them directly with an fd; we can only enable/disable all
  1498. * events via prctl, or enable/disable all events in a family
  1499. * via ioctl, which will have the same effect on both contexts.
  1500. */
  1501. static int context_equiv(struct perf_event_context *ctx1,
  1502. struct perf_event_context *ctx2)
  1503. {
  1504. return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
  1505. && ctx1->parent_gen == ctx2->parent_gen
  1506. && !ctx1->pin_count && !ctx2->pin_count;
  1507. }
  1508. static void __perf_event_sync_stat(struct perf_event *event,
  1509. struct perf_event *next_event)
  1510. {
  1511. u64 value;
  1512. if (!event->attr.inherit_stat)
  1513. return;
  1514. /*
  1515. * Update the event value, we cannot use perf_event_read()
  1516. * because we're in the middle of a context switch and have IRQs
  1517. * disabled, which upsets smp_call_function_single(), however
  1518. * we know the event must be on the current CPU, therefore we
  1519. * don't need to use it.
  1520. */
  1521. switch (event->state) {
  1522. case PERF_EVENT_STATE_ACTIVE:
  1523. event->pmu->read(event);
  1524. /* fall-through */
  1525. case PERF_EVENT_STATE_INACTIVE:
  1526. update_event_times(event);
  1527. break;
  1528. default:
  1529. break;
  1530. }
  1531. /*
  1532. * In order to keep per-task stats reliable we need to flip the event
  1533. * values when we flip the contexts.
  1534. */
  1535. value = local64_read(&next_event->count);
  1536. value = local64_xchg(&event->count, value);
  1537. local64_set(&next_event->count, value);
  1538. swap(event->total_time_enabled, next_event->total_time_enabled);
  1539. swap(event->total_time_running, next_event->total_time_running);
  1540. /*
  1541. * Since we swizzled the values, update the user visible data too.
  1542. */
  1543. perf_event_update_userpage(event);
  1544. perf_event_update_userpage(next_event);
  1545. }
  1546. #define list_next_entry(pos, member) \
  1547. list_entry(pos->member.next, typeof(*pos), member)
  1548. static void perf_event_sync_stat(struct perf_event_context *ctx,
  1549. struct perf_event_context *next_ctx)
  1550. {
  1551. struct perf_event *event, *next_event;
  1552. if (!ctx->nr_stat)
  1553. return;
  1554. update_context_time(ctx);
  1555. event = list_first_entry(&ctx->event_list,
  1556. struct perf_event, event_entry);
  1557. next_event = list_first_entry(&next_ctx->event_list,
  1558. struct perf_event, event_entry);
  1559. while (&event->event_entry != &ctx->event_list &&
  1560. &next_event->event_entry != &next_ctx->event_list) {
  1561. __perf_event_sync_stat(event, next_event);
  1562. event = list_next_entry(event, event_entry);
  1563. next_event = list_next_entry(next_event, event_entry);
  1564. }
  1565. }
  1566. static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
  1567. struct task_struct *next)
  1568. {
  1569. struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
  1570. struct perf_event_context *next_ctx;
  1571. struct perf_event_context *parent;
  1572. struct perf_cpu_context *cpuctx;
  1573. int do_switch = 1;
  1574. if (likely(!ctx))
  1575. return;
  1576. cpuctx = __get_cpu_context(ctx);
  1577. if (!cpuctx->task_ctx)
  1578. return;
  1579. rcu_read_lock();
  1580. parent = rcu_dereference(ctx->parent_ctx);
  1581. next_ctx = next->perf_event_ctxp[ctxn];
  1582. if (parent && next_ctx &&
  1583. rcu_dereference(next_ctx->parent_ctx) == parent) {
  1584. /*
  1585. * Looks like the two contexts are clones, so we might be
  1586. * able to optimize the context switch. We lock both
  1587. * contexts and check that they are clones under the
  1588. * lock (including re-checking that neither has been
  1589. * uncloned in the meantime). It doesn't matter which
  1590. * order we take the locks because no other cpu could
  1591. * be trying to lock both of these tasks.
  1592. */
  1593. raw_spin_lock(&ctx->lock);
  1594. raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
  1595. if (context_equiv(ctx, next_ctx)) {
  1596. /*
  1597. * XXX do we need a memory barrier of sorts
  1598. * wrt to rcu_dereference() of perf_event_ctxp
  1599. */
  1600. task->perf_event_ctxp[ctxn] = next_ctx;
  1601. next->perf_event_ctxp[ctxn] = ctx;
  1602. ctx->task = next;
  1603. next_ctx->task = task;
  1604. do_switch = 0;
  1605. perf_event_sync_stat(ctx, next_ctx);
  1606. }
  1607. raw_spin_unlock(&next_ctx->lock);
  1608. raw_spin_unlock(&ctx->lock);
  1609. }
  1610. rcu_read_unlock();
  1611. if (do_switch) {
  1612. ctx_sched_out(ctx, cpuctx, EVENT_ALL);
  1613. cpuctx->task_ctx = NULL;
  1614. }
  1615. }
  1616. #define for_each_task_context_nr(ctxn) \
  1617. for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
  1618. /*
  1619. * Called from scheduler to remove the events of the current task,
  1620. * with interrupts disabled.
  1621. *
  1622. * We stop each event and update the event value in event->count.
  1623. *
  1624. * This does not protect us against NMI, but disable()
  1625. * sets the disabled bit in the control field of event _before_
  1626. * accessing the event control register. If a NMI hits, then it will
  1627. * not restart the event.
  1628. */
  1629. void __perf_event_task_sched_out(struct task_struct *task,
  1630. struct task_struct *next)
  1631. {
  1632. int ctxn;
  1633. for_each_task_context_nr(ctxn)
  1634. perf_event_context_sched_out(task, ctxn, next);
  1635. /*
  1636. * if cgroup events exist on this CPU, then we need
  1637. * to check if we have to switch out PMU state.
  1638. * cgroup event are system-wide mode only
  1639. */
  1640. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1641. perf_cgroup_sched_out(task);
  1642. }
  1643. static void task_ctx_sched_out(struct perf_event_context *ctx,
  1644. enum event_type_t event_type)
  1645. {
  1646. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  1647. if (!cpuctx->task_ctx)
  1648. return;
  1649. if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
  1650. return;
  1651. ctx_sched_out(ctx, cpuctx, event_type);
  1652. cpuctx->task_ctx = NULL;
  1653. }
  1654. /*
  1655. * Called with IRQs disabled
  1656. */
  1657. static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
  1658. enum event_type_t event_type)
  1659. {
  1660. ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
  1661. }
  1662. static void
  1663. ctx_pinned_sched_in(struct perf_event_context *ctx,
  1664. struct perf_cpu_context *cpuctx)
  1665. {
  1666. struct perf_event *event;
  1667. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  1668. if (event->state <= PERF_EVENT_STATE_OFF)
  1669. continue;
  1670. if (!event_filter_match(event))
  1671. continue;
  1672. /* may need to reset tstamp_enabled */
  1673. if (is_cgroup_event(event))
  1674. perf_cgroup_mark_enabled(event, ctx);
  1675. if (group_can_go_on(event, cpuctx, 1))
  1676. group_sched_in(event, cpuctx, ctx);
  1677. /*
  1678. * If this pinned group hasn't been scheduled,
  1679. * put it in error state.
  1680. */
  1681. if (event->state == PERF_EVENT_STATE_INACTIVE) {
  1682. update_group_times(event);
  1683. event->state = PERF_EVENT_STATE_ERROR;
  1684. }
  1685. }
  1686. }
  1687. static void
  1688. ctx_flexible_sched_in(struct perf_event_context *ctx,
  1689. struct perf_cpu_context *cpuctx)
  1690. {
  1691. struct perf_event *event;
  1692. int can_add_hw = 1;
  1693. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  1694. /* Ignore events in OFF or ERROR state */
  1695. if (event->state <= PERF_EVENT_STATE_OFF)
  1696. continue;
  1697. /*
  1698. * Listen to the 'cpu' scheduling filter constraint
  1699. * of events:
  1700. */
  1701. if (!event_filter_match(event))
  1702. continue;
  1703. /* may need to reset tstamp_enabled */
  1704. if (is_cgroup_event(event))
  1705. perf_cgroup_mark_enabled(event, ctx);
  1706. if (group_can_go_on(event, cpuctx, can_add_hw)) {
  1707. if (group_sched_in(event, cpuctx, ctx))
  1708. can_add_hw = 0;
  1709. }
  1710. }
  1711. }
  1712. static void
  1713. ctx_sched_in(struct perf_event_context *ctx,
  1714. struct perf_cpu_context *cpuctx,
  1715. enum event_type_t event_type,
  1716. struct task_struct *task)
  1717. {
  1718. u64 now;
  1719. raw_spin_lock(&ctx->lock);
  1720. ctx->is_active = 1;
  1721. if (likely(!ctx->nr_events))
  1722. goto out;
  1723. now = perf_clock();
  1724. ctx->timestamp = now;
  1725. perf_cgroup_set_timestamp(task, ctx);
  1726. /*
  1727. * First go through the list and put on any pinned groups
  1728. * in order to give them the best chance of going on.
  1729. */
  1730. if (event_type & EVENT_PINNED)
  1731. ctx_pinned_sched_in(ctx, cpuctx);
  1732. /* Then walk through the lower prio flexible groups */
  1733. if (event_type & EVENT_FLEXIBLE)
  1734. ctx_flexible_sched_in(ctx, cpuctx);
  1735. out:
  1736. raw_spin_unlock(&ctx->lock);
  1737. }
  1738. static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
  1739. enum event_type_t event_type,
  1740. struct task_struct *task)
  1741. {
  1742. struct perf_event_context *ctx = &cpuctx->ctx;
  1743. ctx_sched_in(ctx, cpuctx, event_type, task);
  1744. }
  1745. static void task_ctx_sched_in(struct perf_event_context *ctx,
  1746. enum event_type_t event_type)
  1747. {
  1748. struct perf_cpu_context *cpuctx;
  1749. cpuctx = __get_cpu_context(ctx);
  1750. if (cpuctx->task_ctx == ctx)
  1751. return;
  1752. ctx_sched_in(ctx, cpuctx, event_type, NULL);
  1753. cpuctx->task_ctx = ctx;
  1754. }
  1755. static void perf_event_context_sched_in(struct perf_event_context *ctx,
  1756. struct task_struct *task)
  1757. {
  1758. struct perf_cpu_context *cpuctx;
  1759. cpuctx = __get_cpu_context(ctx);
  1760. if (cpuctx->task_ctx == ctx)
  1761. return;
  1762. perf_pmu_disable(ctx->pmu);
  1763. /*
  1764. * We want to keep the following priority order:
  1765. * cpu pinned (that don't need to move), task pinned,
  1766. * cpu flexible, task flexible.
  1767. */
  1768. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1769. ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
  1770. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
  1771. ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
  1772. cpuctx->task_ctx = ctx;
  1773. /*
  1774. * Since these rotations are per-cpu, we need to ensure the
  1775. * cpu-context we got scheduled on is actually rotating.
  1776. */
  1777. perf_pmu_rotate_start(ctx->pmu);
  1778. perf_pmu_enable(ctx->pmu);
  1779. }
  1780. /*
  1781. * Called from scheduler to add the events of the current task
  1782. * with interrupts disabled.
  1783. *
  1784. * We restore the event value and then enable it.
  1785. *
  1786. * This does not protect us against NMI, but enable()
  1787. * sets the enabled bit in the control field of event _before_
  1788. * accessing the event control register. If a NMI hits, then it will
  1789. * keep the event running.
  1790. */
  1791. void __perf_event_task_sched_in(struct task_struct *task)
  1792. {
  1793. struct perf_event_context *ctx;
  1794. int ctxn;
  1795. for_each_task_context_nr(ctxn) {
  1796. ctx = task->perf_event_ctxp[ctxn];
  1797. if (likely(!ctx))
  1798. continue;
  1799. perf_event_context_sched_in(ctx, task);
  1800. }
  1801. /*
  1802. * if cgroup events exist on this CPU, then we need
  1803. * to check if we have to switch in PMU state.
  1804. * cgroup event are system-wide mode only
  1805. */
  1806. if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
  1807. perf_cgroup_sched_in(task);
  1808. }
  1809. static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
  1810. {
  1811. u64 frequency = event->attr.sample_freq;
  1812. u64 sec = NSEC_PER_SEC;
  1813. u64 divisor, dividend;
  1814. int count_fls, nsec_fls, frequency_fls, sec_fls;
  1815. count_fls = fls64(count);
  1816. nsec_fls = fls64(nsec);
  1817. frequency_fls = fls64(frequency);
  1818. sec_fls = 30;
  1819. /*
  1820. * We got @count in @nsec, with a target of sample_freq HZ
  1821. * the target period becomes:
  1822. *
  1823. * @count * 10^9
  1824. * period = -------------------
  1825. * @nsec * sample_freq
  1826. *
  1827. */
  1828. /*
  1829. * Reduce accuracy by one bit such that @a and @b converge
  1830. * to a similar magnitude.
  1831. */
  1832. #define REDUCE_FLS(a, b) \
  1833. do { \
  1834. if (a##_fls > b##_fls) { \
  1835. a >>= 1; \
  1836. a##_fls--; \
  1837. } else { \
  1838. b >>= 1; \
  1839. b##_fls--; \
  1840. } \
  1841. } while (0)
  1842. /*
  1843. * Reduce accuracy until either term fits in a u64, then proceed with
  1844. * the other, so that finally we can do a u64/u64 division.
  1845. */
  1846. while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
  1847. REDUCE_FLS(nsec, frequency);
  1848. REDUCE_FLS(sec, count);
  1849. }
  1850. if (count_fls + sec_fls > 64) {
  1851. divisor = nsec * frequency;
  1852. while (count_fls + sec_fls > 64) {
  1853. REDUCE_FLS(count, sec);
  1854. divisor >>= 1;
  1855. }
  1856. dividend = count * sec;
  1857. } else {
  1858. dividend = count * sec;
  1859. while (nsec_fls + frequency_fls > 64) {
  1860. REDUCE_FLS(nsec, frequency);
  1861. dividend >>= 1;
  1862. }
  1863. divisor = nsec * frequency;
  1864. }
  1865. if (!divisor)
  1866. return dividend;
  1867. return div64_u64(dividend, divisor);
  1868. }
  1869. static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
  1870. {
  1871. struct hw_perf_event *hwc = &event->hw;
  1872. s64 period, sample_period;
  1873. s64 delta;
  1874. period = perf_calculate_period(event, nsec, count);
  1875. delta = (s64)(period - hwc->sample_period);
  1876. delta = (delta + 7) / 8; /* low pass filter */
  1877. sample_period = hwc->sample_period + delta;
  1878. if (!sample_period)
  1879. sample_period = 1;
  1880. hwc->sample_period = sample_period;
  1881. if (local64_read(&hwc->period_left) > 8*sample_period) {
  1882. event->pmu->stop(event, PERF_EF_UPDATE);
  1883. local64_set(&hwc->period_left, 0);
  1884. event->pmu->start(event, PERF_EF_RELOAD);
  1885. }
  1886. }
  1887. static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
  1888. {
  1889. struct perf_event *event;
  1890. struct hw_perf_event *hwc;
  1891. u64 interrupts, now;
  1892. s64 delta;
  1893. raw_spin_lock(&ctx->lock);
  1894. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  1895. if (event->state != PERF_EVENT_STATE_ACTIVE)
  1896. continue;
  1897. if (!event_filter_match(event))
  1898. continue;
  1899. hwc = &event->hw;
  1900. interrupts = hwc->interrupts;
  1901. hwc->interrupts = 0;
  1902. /*
  1903. * unthrottle events on the tick
  1904. */
  1905. if (interrupts == MAX_INTERRUPTS) {
  1906. perf_log_throttle(event, 1);
  1907. event->pmu->start(event, 0);
  1908. }
  1909. if (!event->attr.freq || !event->attr.sample_freq)
  1910. continue;
  1911. event->pmu->read(event);
  1912. now = local64_read(&event->count);
  1913. delta = now - hwc->freq_count_stamp;
  1914. hwc->freq_count_stamp = now;
  1915. if (delta > 0)
  1916. perf_adjust_period(event, period, delta);
  1917. }
  1918. raw_spin_unlock(&ctx->lock);
  1919. }
  1920. /*
  1921. * Round-robin a context's events:
  1922. */
  1923. static void rotate_ctx(struct perf_event_context *ctx)
  1924. {
  1925. raw_spin_lock(&ctx->lock);
  1926. /*
  1927. * Rotate the first entry last of non-pinned groups. Rotation might be
  1928. * disabled by the inheritance code.
  1929. */
  1930. if (!ctx->rotate_disable)
  1931. list_rotate_left(&ctx->flexible_groups);
  1932. raw_spin_unlock(&ctx->lock);
  1933. }
  1934. /*
  1935. * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
  1936. * because they're strictly cpu affine and rotate_start is called with IRQs
  1937. * disabled, while rotate_context is called from IRQ context.
  1938. */
  1939. static void perf_rotate_context(struct perf_cpu_context *cpuctx)
  1940. {
  1941. u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
  1942. struct perf_event_context *ctx = NULL;
  1943. int rotate = 0, remove = 1;
  1944. if (cpuctx->ctx.nr_events) {
  1945. remove = 0;
  1946. if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
  1947. rotate = 1;
  1948. }
  1949. ctx = cpuctx->task_ctx;
  1950. if (ctx && ctx->nr_events) {
  1951. remove = 0;
  1952. if (ctx->nr_events != ctx->nr_active)
  1953. rotate = 1;
  1954. }
  1955. perf_pmu_disable(cpuctx->ctx.pmu);
  1956. perf_ctx_adjust_freq(&cpuctx->ctx, interval);
  1957. if (ctx)
  1958. perf_ctx_adjust_freq(ctx, interval);
  1959. if (!rotate)
  1960. goto done;
  1961. cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
  1962. if (ctx)
  1963. task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
  1964. rotate_ctx(&cpuctx->ctx);
  1965. if (ctx)
  1966. rotate_ctx(ctx);
  1967. cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
  1968. if (ctx)
  1969. task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
  1970. done:
  1971. if (remove)
  1972. list_del_init(&cpuctx->rotation_list);
  1973. perf_pmu_enable(cpuctx->ctx.pmu);
  1974. }
  1975. void perf_event_task_tick(void)
  1976. {
  1977. struct list_head *head = &__get_cpu_var(rotation_list);
  1978. struct perf_cpu_context *cpuctx, *tmp;
  1979. WARN_ON(!irqs_disabled());
  1980. list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
  1981. if (cpuctx->jiffies_interval == 1 ||
  1982. !(jiffies % cpuctx->jiffies_interval))
  1983. perf_rotate_context(cpuctx);
  1984. }
  1985. }
  1986. static int event_enable_on_exec(struct perf_event *event,
  1987. struct perf_event_context *ctx)
  1988. {
  1989. if (!event->attr.enable_on_exec)
  1990. return 0;
  1991. event->attr.enable_on_exec = 0;
  1992. if (event->state >= PERF_EVENT_STATE_INACTIVE)
  1993. return 0;
  1994. __perf_event_mark_enabled(event, ctx);
  1995. return 1;
  1996. }
  1997. /*
  1998. * Enable all of a task's events that have been marked enable-on-exec.
  1999. * This expects task == current.
  2000. */
  2001. static void perf_event_enable_on_exec(struct perf_event_context *ctx)
  2002. {
  2003. struct perf_event *event;
  2004. unsigned long flags;
  2005. int enabled = 0;
  2006. int ret;
  2007. local_irq_save(flags);
  2008. if (!ctx || !ctx->nr_events)
  2009. goto out;
  2010. task_ctx_sched_out(ctx, EVENT_ALL);
  2011. raw_spin_lock(&ctx->lock);
  2012. list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
  2013. ret = event_enable_on_exec(event, ctx);
  2014. if (ret)
  2015. enabled = 1;
  2016. }
  2017. list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
  2018. ret = event_enable_on_exec(event, ctx);
  2019. if (ret)
  2020. enabled = 1;
  2021. }
  2022. /*
  2023. * Unclone this context if we enabled any event.
  2024. */
  2025. if (enabled)
  2026. unclone_ctx(ctx);
  2027. raw_spin_unlock(&ctx->lock);
  2028. perf_event_context_sched_in(ctx, ctx->task);
  2029. out:
  2030. local_irq_restore(flags);
  2031. }
  2032. /*
  2033. * Cross CPU call to read the hardware event
  2034. */
  2035. static void __perf_event_read(void *info)
  2036. {
  2037. struct perf_event *event = info;
  2038. struct perf_event_context *ctx = event->ctx;
  2039. struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
  2040. /*
  2041. * If this is a task context, we need to check whether it is
  2042. * the current task context of this cpu. If not it has been
  2043. * scheduled out before the smp call arrived. In that case
  2044. * event->count would have been updated to a recent sample
  2045. * when the event was scheduled out.
  2046. */
  2047. if (ctx->task && cpuctx->task_ctx != ctx)
  2048. return;
  2049. raw_spin_lock(&ctx->lock);
  2050. if (ctx->is_active) {
  2051. update_context_time(ctx);
  2052. update_cgrp_time_from_event(event);
  2053. }
  2054. update_event_times(event);
  2055. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2056. event->pmu->read(event);
  2057. raw_spin_unlock(&ctx->lock);
  2058. }
  2059. static inline u64 perf_event_count(struct perf_event *event)
  2060. {
  2061. return local64_read(&event->count) + atomic64_read(&event->child_count);
  2062. }
  2063. static u64 perf_event_read(struct perf_event *event)
  2064. {
  2065. /*
  2066. * If event is enabled and currently active on a CPU, update the
  2067. * value in the event structure:
  2068. */
  2069. if (event->state == PERF_EVENT_STATE_ACTIVE) {
  2070. smp_call_function_single(event->oncpu,
  2071. __perf_event_read, event, 1);
  2072. } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
  2073. struct perf_event_context *ctx = event->ctx;
  2074. unsigned long flags;
  2075. raw_spin_lock_irqsave(&ctx->lock, flags);
  2076. /*
  2077. * may read while context is not active
  2078. * (e.g., thread is blocked), in that case
  2079. * we cannot update context time
  2080. */
  2081. if (ctx->is_active) {
  2082. update_context_time(ctx);
  2083. update_cgrp_time_from_event(event);
  2084. }
  2085. update_event_times(event);
  2086. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2087. }
  2088. return perf_event_count(event);
  2089. }
  2090. /*
  2091. * Callchain support
  2092. */
  2093. struct callchain_cpus_entries {
  2094. struct rcu_head rcu_head;
  2095. struct perf_callchain_entry *cpu_entries[0];
  2096. };
  2097. static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
  2098. static atomic_t nr_callchain_events;
  2099. static DEFINE_MUTEX(callchain_mutex);
  2100. struct callchain_cpus_entries *callchain_cpus_entries;
  2101. __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
  2102. struct pt_regs *regs)
  2103. {
  2104. }
  2105. __weak void perf_callchain_user(struct perf_callchain_entry *entry,
  2106. struct pt_regs *regs)
  2107. {
  2108. }
  2109. static void release_callchain_buffers_rcu(struct rcu_head *head)
  2110. {
  2111. struct callchain_cpus_entries *entries;
  2112. int cpu;
  2113. entries = container_of(head, struct callchain_cpus_entries, rcu_head);
  2114. for_each_possible_cpu(cpu)
  2115. kfree(entries->cpu_entries[cpu]);
  2116. kfree(entries);
  2117. }
  2118. static void release_callchain_buffers(void)
  2119. {
  2120. struct callchain_cpus_entries *entries;
  2121. entries = callchain_cpus_entries;
  2122. rcu_assign_pointer(callchain_cpus_entries, NULL);
  2123. call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
  2124. }
  2125. static int alloc_callchain_buffers(void)
  2126. {
  2127. int cpu;
  2128. int size;
  2129. struct callchain_cpus_entries *entries;
  2130. /*
  2131. * We can't use the percpu allocation API for data that can be
  2132. * accessed from NMI. Use a temporary manual per cpu allocation
  2133. * until that gets sorted out.
  2134. */
  2135. size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
  2136. entries = kzalloc(size, GFP_KERNEL);
  2137. if (!entries)
  2138. return -ENOMEM;
  2139. size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
  2140. for_each_possible_cpu(cpu) {
  2141. entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
  2142. cpu_to_node(cpu));
  2143. if (!entries->cpu_entries[cpu])
  2144. goto fail;
  2145. }
  2146. rcu_assign_pointer(callchain_cpus_entries, entries);
  2147. return 0;
  2148. fail:
  2149. for_each_possible_cpu(cpu)
  2150. kfree(entries->cpu_entries[cpu]);
  2151. kfree(entries);
  2152. return -ENOMEM;
  2153. }
  2154. static int get_callchain_buffers(void)
  2155. {
  2156. int err = 0;
  2157. int count;
  2158. mutex_lock(&callchain_mutex);
  2159. count = atomic_inc_return(&nr_callchain_events);
  2160. if (WARN_ON_ONCE(count < 1)) {
  2161. err = -EINVAL;
  2162. goto exit;
  2163. }
  2164. if (count > 1) {
  2165. /* If the allocation failed, give up */
  2166. if (!callchain_cpus_entries)
  2167. err = -ENOMEM;
  2168. goto exit;
  2169. }
  2170. err = alloc_callchain_buffers();
  2171. if (err)
  2172. release_callchain_buffers();
  2173. exit:
  2174. mutex_unlock(&callchain_mutex);
  2175. return err;
  2176. }
  2177. static void put_callchain_buffers(void)
  2178. {
  2179. if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
  2180. release_callchain_buffers();
  2181. mutex_unlock(&callchain_mutex);
  2182. }
  2183. }
  2184. static int get_recursion_context(int *recursion)
  2185. {
  2186. int rctx;
  2187. if (in_nmi())
  2188. rctx = 3;
  2189. else if (in_irq())
  2190. rctx = 2;
  2191. else if (in_softirq())
  2192. rctx = 1;
  2193. else
  2194. rctx = 0;
  2195. if (recursion[rctx])
  2196. return -1;
  2197. recursion[rctx]++;
  2198. barrier();
  2199. return rctx;
  2200. }
  2201. static inline void put_recursion_context(int *recursion, int rctx)
  2202. {
  2203. barrier();
  2204. recursion[rctx]--;
  2205. }
  2206. static struct perf_callchain_entry *get_callchain_entry(int *rctx)
  2207. {
  2208. int cpu;
  2209. struct callchain_cpus_entries *entries;
  2210. *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
  2211. if (*rctx == -1)
  2212. return NULL;
  2213. entries = rcu_dereference(callchain_cpus_entries);
  2214. if (!entries)
  2215. return NULL;
  2216. cpu = smp_processor_id();
  2217. return &entries->cpu_entries[cpu][*rctx];
  2218. }
  2219. static void
  2220. put_callchain_entry(int rctx)
  2221. {
  2222. put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
  2223. }
  2224. static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  2225. {
  2226. int rctx;
  2227. struct perf_callchain_entry *entry;
  2228. entry = get_callchain_entry(&rctx);
  2229. if (rctx == -1)
  2230. return NULL;
  2231. if (!entry)
  2232. goto exit_put;
  2233. entry->nr = 0;
  2234. if (!user_mode(regs)) {
  2235. perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  2236. perf_callchain_kernel(entry, regs);
  2237. if (current->mm)
  2238. regs = task_pt_regs(current);
  2239. else
  2240. regs = NULL;
  2241. }
  2242. if (regs) {
  2243. perf_callchain_store(entry, PERF_CONTEXT_USER);
  2244. perf_callchain_user(entry, regs);
  2245. }
  2246. exit_put:
  2247. put_callchain_entry(rctx);
  2248. return entry;
  2249. }
  2250. /*
  2251. * Initialize the perf_event context in a task_struct:
  2252. */
  2253. static void __perf_event_init_context(struct perf_event_context *ctx)
  2254. {
  2255. raw_spin_lock_init(&ctx->lock);
  2256. mutex_init(&ctx->mutex);
  2257. INIT_LIST_HEAD(&ctx->pinned_groups);
  2258. INIT_LIST_HEAD(&ctx->flexible_groups);
  2259. INIT_LIST_HEAD(&ctx->event_list);
  2260. atomic_set(&ctx->refcount, 1);
  2261. }
  2262. static struct perf_event_context *
  2263. alloc_perf_context(struct pmu *pmu, struct task_struct *task)
  2264. {
  2265. struct perf_event_context *ctx;
  2266. ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
  2267. if (!ctx)
  2268. return NULL;
  2269. __perf_event_init_context(ctx);
  2270. if (task) {
  2271. ctx->task = task;
  2272. get_task_struct(task);
  2273. }
  2274. ctx->pmu = pmu;
  2275. return ctx;
  2276. }
  2277. static struct task_struct *
  2278. find_lively_task_by_vpid(pid_t vpid)
  2279. {
  2280. struct task_struct *task;
  2281. int err;
  2282. rcu_read_lock();
  2283. if (!vpid)
  2284. task = current;
  2285. else
  2286. task = find_task_by_vpid(vpid);
  2287. if (task)
  2288. get_task_struct(task);
  2289. rcu_read_unlock();
  2290. if (!task)
  2291. return ERR_PTR(-ESRCH);
  2292. /* Reuse ptrace permission checks for now. */
  2293. err = -EACCES;
  2294. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  2295. goto errout;
  2296. return task;
  2297. errout:
  2298. put_task_struct(task);
  2299. return ERR_PTR(err);
  2300. }
  2301. /*
  2302. * Returns a matching context with refcount and pincount.
  2303. */
  2304. static struct perf_event_context *
  2305. find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
  2306. {
  2307. struct perf_event_context *ctx;
  2308. struct perf_cpu_context *cpuctx;
  2309. unsigned long flags;
  2310. int ctxn, err;
  2311. if (!task) {
  2312. /* Must be root to operate on a CPU event: */
  2313. if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  2314. return ERR_PTR(-EACCES);
  2315. /*
  2316. * We could be clever and allow to attach a event to an
  2317. * offline CPU and activate it when the CPU comes up, but
  2318. * that's for later.
  2319. */
  2320. if (!cpu_online(cpu))
  2321. return ERR_PTR(-ENODEV);
  2322. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  2323. ctx = &cpuctx->ctx;
  2324. get_ctx(ctx);
  2325. ++ctx->pin_count;
  2326. return ctx;
  2327. }
  2328. err = -EINVAL;
  2329. ctxn = pmu->task_ctx_nr;
  2330. if (ctxn < 0)
  2331. goto errout;
  2332. retry:
  2333. ctx = perf_lock_task_context(task, ctxn, &flags);
  2334. if (ctx) {
  2335. unclone_ctx(ctx);
  2336. ++ctx->pin_count;
  2337. raw_spin_unlock_irqrestore(&ctx->lock, flags);
  2338. }
  2339. if (!ctx) {
  2340. ctx = alloc_perf_context(pmu, task);
  2341. err = -ENOMEM;
  2342. if (!ctx)
  2343. goto errout;
  2344. get_ctx(ctx);
  2345. err = 0;
  2346. mutex_lock(&task->perf_event_mutex);
  2347. /*
  2348. * If it has already passed perf_event_exit_task().
  2349. * we must see PF_EXITING, it takes this mutex too.
  2350. */
  2351. if (task->flags & PF_EXITING)
  2352. err = -ESRCH;
  2353. else if (task->perf_event_ctxp[ctxn])
  2354. err = -EAGAIN;
  2355. else {
  2356. ++ctx->pin_count;
  2357. rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
  2358. }
  2359. mutex_unlock(&task->perf_event_mutex);
  2360. if (unlikely(err)) {
  2361. put_task_struct(task);
  2362. kfree(ctx);
  2363. if (err == -EAGAIN)
  2364. goto retry;
  2365. goto errout;
  2366. }
  2367. }
  2368. return ctx;
  2369. errout:
  2370. return ERR_PTR(err);
  2371. }
  2372. static void perf_event_free_filter(struct perf_event *event);
  2373. static void free_event_rcu(struct rcu_head *head)
  2374. {
  2375. struct perf_event *event;
  2376. event = container_of(head, struct perf_event, rcu_head);
  2377. if (event->ns)
  2378. put_pid_ns(event->ns);
  2379. perf_event_free_filter(event);
  2380. kfree(event);
  2381. }
  2382. static void perf_buffer_put(struct perf_buffer *buffer);
  2383. static void free_event(struct perf_event *event)
  2384. {
  2385. irq_work_sync(&event->pending);
  2386. if (!event->parent) {
  2387. if (event->attach_state & PERF_ATTACH_TASK)
  2388. jump_label_dec(&perf_sched_events);
  2389. if (event->attr.mmap || event->attr.mmap_data)
  2390. atomic_dec(&nr_mmap_events);
  2391. if (event->attr.comm)
  2392. atomic_dec(&nr_comm_events);
  2393. if (event->attr.task)
  2394. atomic_dec(&nr_task_events);
  2395. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
  2396. put_callchain_buffers();
  2397. if (is_cgroup_event(event)) {
  2398. atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
  2399. jump_label_dec(&perf_sched_events);
  2400. }
  2401. }
  2402. if (event->buffer) {
  2403. perf_buffer_put(event->buffer);
  2404. event->buffer = NULL;
  2405. }
  2406. if (is_cgroup_event(event))
  2407. perf_detach_cgroup(event);
  2408. if (event->destroy)
  2409. event->destroy(event);
  2410. if (event->ctx)
  2411. put_ctx(event->ctx);
  2412. call_rcu(&event->rcu_head, free_event_rcu);
  2413. }
  2414. int perf_event_release_kernel(struct perf_event *event)
  2415. {
  2416. struct perf_event_context *ctx = event->ctx;
  2417. /*
  2418. * Remove from the PMU, can't get re-enabled since we got
  2419. * here because the last ref went.
  2420. */
  2421. perf_event_disable(event);
  2422. WARN_ON_ONCE(ctx->parent_ctx);
  2423. /*
  2424. * There are two ways this annotation is useful:
  2425. *
  2426. * 1) there is a lock recursion from perf_event_exit_task
  2427. * see the comment there.
  2428. *
  2429. * 2) there is a lock-inversion with mmap_sem through
  2430. * perf_event_read_group(), which takes faults while
  2431. * holding ctx->mutex, however this is called after
  2432. * the last filedesc died, so there is no possibility
  2433. * to trigger the AB-BA case.
  2434. */
  2435. mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
  2436. raw_spin_lock_irq(&ctx->lock);
  2437. perf_group_detach(event);
  2438. list_del_event(event, ctx);
  2439. raw_spin_unlock_irq(&ctx->lock);
  2440. mutex_unlock(&ctx->mutex);
  2441. free_event(event);
  2442. return 0;
  2443. }
  2444. EXPORT_SYMBOL_GPL(perf_event_release_kernel);
  2445. /*
  2446. * Called when the last reference to the file is gone.
  2447. */
  2448. static int perf_release(struct inode *inode, struct file *file)
  2449. {
  2450. struct perf_event *event = file->private_data;
  2451. struct task_struct *owner;
  2452. file->private_data = NULL;
  2453. rcu_read_lock();
  2454. owner = ACCESS_ONCE(event->owner);
  2455. /*
  2456. * Matches the smp_wmb() in perf_event_exit_task(). If we observe
  2457. * !owner it means the list deletion is complete and we can indeed
  2458. * free this event, otherwise we need to serialize on
  2459. * owner->perf_event_mutex.
  2460. */
  2461. smp_read_barrier_depends();
  2462. if (owner) {
  2463. /*
  2464. * Since delayed_put_task_struct() also drops the last
  2465. * task reference we can safely take a new reference
  2466. * while holding the rcu_read_lock().
  2467. */
  2468. get_task_struct(owner);
  2469. }
  2470. rcu_read_unlock();
  2471. if (owner) {
  2472. mutex_lock(&owner->perf_event_mutex);
  2473. /*
  2474. * We have to re-check the event->owner field, if it is cleared
  2475. * we raced with perf_event_exit_task(), acquiring the mutex
  2476. * ensured they're done, and we can proceed with freeing the
  2477. * event.
  2478. */
  2479. if (event->owner)
  2480. list_del_init(&event->owner_entry);
  2481. mutex_unlock(&owner->perf_event_mutex);
  2482. put_task_struct(owner);
  2483. }
  2484. return perf_event_release_kernel(event);
  2485. }
  2486. u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
  2487. {
  2488. struct perf_event *child;
  2489. u64 total = 0;
  2490. *enabled = 0;
  2491. *running = 0;
  2492. mutex_lock(&event->child_mutex);
  2493. total += perf_event_read(event);
  2494. *enabled += event->total_time_enabled +
  2495. atomic64_read(&event->child_total_time_enabled);
  2496. *running += event->total_time_running +
  2497. atomic64_read(&event->child_total_time_running);
  2498. list_for_each_entry(child, &event->child_list, child_list) {
  2499. total += perf_event_read(child);
  2500. *enabled += child->total_time_enabled;
  2501. *running += child->total_time_running;
  2502. }
  2503. mutex_unlock(&event->child_mutex);
  2504. return total;
  2505. }
  2506. EXPORT_SYMBOL_GPL(perf_event_read_value);
  2507. static int perf_event_read_group(struct perf_event *event,
  2508. u64 read_format, char __user *buf)
  2509. {
  2510. struct perf_event *leader = event->group_leader, *sub;
  2511. int n = 0, size = 0, ret = -EFAULT;
  2512. struct perf_event_context *ctx = leader->ctx;
  2513. u64 values[5];
  2514. u64 count, enabled, running;
  2515. mutex_lock(&ctx->mutex);
  2516. count = perf_event_read_value(leader, &enabled, &running);
  2517. values[n++] = 1 + leader->nr_siblings;
  2518. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2519. values[n++] = enabled;
  2520. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2521. values[n++] = running;
  2522. values[n++] = count;
  2523. if (read_format & PERF_FORMAT_ID)
  2524. values[n++] = primary_event_id(leader);
  2525. size = n * sizeof(u64);
  2526. if (copy_to_user(buf, values, size))
  2527. goto unlock;
  2528. ret = size;
  2529. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  2530. n = 0;
  2531. values[n++] = perf_event_read_value(sub, &enabled, &running);
  2532. if (read_format & PERF_FORMAT_ID)
  2533. values[n++] = primary_event_id(sub);
  2534. size = n * sizeof(u64);
  2535. if (copy_to_user(buf + ret, values, size)) {
  2536. ret = -EFAULT;
  2537. goto unlock;
  2538. }
  2539. ret += size;
  2540. }
  2541. unlock:
  2542. mutex_unlock(&ctx->mutex);
  2543. return ret;
  2544. }
  2545. static int perf_event_read_one(struct perf_event *event,
  2546. u64 read_format, char __user *buf)
  2547. {
  2548. u64 enabled, running;
  2549. u64 values[4];
  2550. int n = 0;
  2551. values[n++] = perf_event_read_value(event, &enabled, &running);
  2552. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  2553. values[n++] = enabled;
  2554. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  2555. values[n++] = running;
  2556. if (read_format & PERF_FORMAT_ID)
  2557. values[n++] = primary_event_id(event);
  2558. if (copy_to_user(buf, values, n * sizeof(u64)))
  2559. return -EFAULT;
  2560. return n * sizeof(u64);
  2561. }
  2562. /*
  2563. * Read the performance event - simple non blocking version for now
  2564. */
  2565. static ssize_t
  2566. perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
  2567. {
  2568. u64 read_format = event->attr.read_format;
  2569. int ret;
  2570. /*
  2571. * Return end-of-file for a read on a event that is in
  2572. * error state (i.e. because it was pinned but it couldn't be
  2573. * scheduled on to the CPU at some point).
  2574. */
  2575. if (event->state == PERF_EVENT_STATE_ERROR)
  2576. return 0;
  2577. if (count < event->read_size)
  2578. return -ENOSPC;
  2579. WARN_ON_ONCE(event->ctx->parent_ctx);
  2580. if (read_format & PERF_FORMAT_GROUP)
  2581. ret = perf_event_read_group(event, read_format, buf);
  2582. else
  2583. ret = perf_event_read_one(event, read_format, buf);
  2584. return ret;
  2585. }
  2586. static ssize_t
  2587. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  2588. {
  2589. struct perf_event *event = file->private_data;
  2590. return perf_read_hw(event, buf, count);
  2591. }
  2592. static unsigned int perf_poll(struct file *file, poll_table *wait)
  2593. {
  2594. struct perf_event *event = file->private_data;
  2595. struct perf_buffer *buffer;
  2596. unsigned int events = POLL_HUP;
  2597. rcu_read_lock();
  2598. buffer = rcu_dereference(event->buffer);
  2599. if (buffer)
  2600. events = atomic_xchg(&buffer->poll, 0);
  2601. rcu_read_unlock();
  2602. poll_wait(file, &event->waitq, wait);
  2603. return events;
  2604. }
  2605. static void perf_event_reset(struct perf_event *event)
  2606. {
  2607. (void)perf_event_read(event);
  2608. local64_set(&event->count, 0);
  2609. perf_event_update_userpage(event);
  2610. }
  2611. /*
  2612. * Holding the top-level event's child_mutex means that any
  2613. * descendant process that has inherited this event will block
  2614. * in sync_child_event if it goes to exit, thus satisfying the
  2615. * task existence requirements of perf_event_enable/disable.
  2616. */
  2617. static void perf_event_for_each_child(struct perf_event *event,
  2618. void (*func)(struct perf_event *))
  2619. {
  2620. struct perf_event *child;
  2621. WARN_ON_ONCE(event->ctx->parent_ctx);
  2622. mutex_lock(&event->child_mutex);
  2623. func(event);
  2624. list_for_each_entry(child, &event->child_list, child_list)
  2625. func(child);
  2626. mutex_unlock(&event->child_mutex);
  2627. }
  2628. static void perf_event_for_each(struct perf_event *event,
  2629. void (*func)(struct perf_event *))
  2630. {
  2631. struct perf_event_context *ctx = event->ctx;
  2632. struct perf_event *sibling;
  2633. WARN_ON_ONCE(ctx->parent_ctx);
  2634. mutex_lock(&ctx->mutex);
  2635. event = event->group_leader;
  2636. perf_event_for_each_child(event, func);
  2637. func(event);
  2638. list_for_each_entry(sibling, &event->sibling_list, group_entry)
  2639. perf_event_for_each_child(event, func);
  2640. mutex_unlock(&ctx->mutex);
  2641. }
  2642. static int perf_event_period(struct perf_event *event, u64 __user *arg)
  2643. {
  2644. struct perf_event_context *ctx = event->ctx;
  2645. int ret = 0;
  2646. u64 value;
  2647. if (!is_sampling_event(event))
  2648. return -EINVAL;
  2649. if (copy_from_user(&value, arg, sizeof(value)))
  2650. return -EFAULT;
  2651. if (!value)
  2652. return -EINVAL;
  2653. raw_spin_lock_irq(&ctx->lock);
  2654. if (event->attr.freq) {
  2655. if (value > sysctl_perf_event_sample_rate) {
  2656. ret = -EINVAL;
  2657. goto unlock;
  2658. }
  2659. event->attr.sample_freq = value;
  2660. } else {
  2661. event->attr.sample_period = value;
  2662. event->hw.sample_period = value;
  2663. }
  2664. unlock:
  2665. raw_spin_unlock_irq(&ctx->lock);
  2666. return ret;
  2667. }
  2668. static const struct file_operations perf_fops;
  2669. static struct perf_event *perf_fget_light(int fd, int *fput_needed)
  2670. {
  2671. struct file *file;
  2672. file = fget_light(fd, fput_needed);
  2673. if (!file)
  2674. return ERR_PTR(-EBADF);
  2675. if (file->f_op != &perf_fops) {
  2676. fput_light(file, *fput_needed);
  2677. *fput_needed = 0;
  2678. return ERR_PTR(-EBADF);
  2679. }
  2680. return file->private_data;
  2681. }
  2682. static int perf_event_set_output(struct perf_event *event,
  2683. struct perf_event *output_event);
  2684. static int perf_event_set_filter(struct perf_event *event, void __user *arg);
  2685. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  2686. {
  2687. struct perf_event *event = file->private_data;
  2688. void (*func)(struct perf_event *);
  2689. u32 flags = arg;
  2690. switch (cmd) {
  2691. case PERF_EVENT_IOC_ENABLE:
  2692. func = perf_event_enable;
  2693. break;
  2694. case PERF_EVENT_IOC_DISABLE:
  2695. func = perf_event_disable;
  2696. break;
  2697. case PERF_EVENT_IOC_RESET:
  2698. func = perf_event_reset;
  2699. break;
  2700. case PERF_EVENT_IOC_REFRESH:
  2701. return perf_event_refresh(event, arg);
  2702. case PERF_EVENT_IOC_PERIOD:
  2703. return perf_event_period(event, (u64 __user *)arg);
  2704. case PERF_EVENT_IOC_SET_OUTPUT:
  2705. {
  2706. struct perf_event *output_event = NULL;
  2707. int fput_needed = 0;
  2708. int ret;
  2709. if (arg != -1) {
  2710. output_event = perf_fget_light(arg, &fput_needed);
  2711. if (IS_ERR(output_event))
  2712. return PTR_ERR(output_event);
  2713. }
  2714. ret = perf_event_set_output(event, output_event);
  2715. if (output_event)
  2716. fput_light(output_event->filp, fput_needed);
  2717. return ret;
  2718. }
  2719. case PERF_EVENT_IOC_SET_FILTER:
  2720. return perf_event_set_filter(event, (void __user *)arg);
  2721. default:
  2722. return -ENOTTY;
  2723. }
  2724. if (flags & PERF_IOC_FLAG_GROUP)
  2725. perf_event_for_each(event, func);
  2726. else
  2727. perf_event_for_each_child(event, func);
  2728. return 0;
  2729. }
  2730. int perf_event_task_enable(void)
  2731. {
  2732. struct perf_event *event;
  2733. mutex_lock(&current->perf_event_mutex);
  2734. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2735. perf_event_for_each_child(event, perf_event_enable);
  2736. mutex_unlock(&current->perf_event_mutex);
  2737. return 0;
  2738. }
  2739. int perf_event_task_disable(void)
  2740. {
  2741. struct perf_event *event;
  2742. mutex_lock(&current->perf_event_mutex);
  2743. list_for_each_entry(event, &current->perf_event_list, owner_entry)
  2744. perf_event_for_each_child(event, perf_event_disable);
  2745. mutex_unlock(&current->perf_event_mutex);
  2746. return 0;
  2747. }
  2748. #ifndef PERF_EVENT_INDEX_OFFSET
  2749. # define PERF_EVENT_INDEX_OFFSET 0
  2750. #endif
  2751. static int perf_event_index(struct perf_event *event)
  2752. {
  2753. if (event->hw.state & PERF_HES_STOPPED)
  2754. return 0;
  2755. if (event->state != PERF_EVENT_STATE_ACTIVE)
  2756. return 0;
  2757. return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
  2758. }
  2759. /*
  2760. * Callers need to ensure there can be no nesting of this function, otherwise
  2761. * the seqlock logic goes bad. We can not serialize this because the arch
  2762. * code calls this from NMI context.
  2763. */
  2764. void perf_event_update_userpage(struct perf_event *event)
  2765. {
  2766. struct perf_event_mmap_page *userpg;
  2767. struct perf_buffer *buffer;
  2768. rcu_read_lock();
  2769. buffer = rcu_dereference(event->buffer);
  2770. if (!buffer)
  2771. goto unlock;
  2772. userpg = buffer->user_page;
  2773. /*
  2774. * Disable preemption so as to not let the corresponding user-space
  2775. * spin too long if we get preempted.
  2776. */
  2777. preempt_disable();
  2778. ++userpg->lock;
  2779. barrier();
  2780. userpg->index = perf_event_index(event);
  2781. userpg->offset = perf_event_count(event);
  2782. if (event->state == PERF_EVENT_STATE_ACTIVE)
  2783. userpg->offset -= local64_read(&event->hw.prev_count);
  2784. userpg->time_enabled = event->total_time_enabled +
  2785. atomic64_read(&event->child_total_time_enabled);
  2786. userpg->time_running = event->total_time_running +
  2787. atomic64_read(&event->child_total_time_running);
  2788. barrier();
  2789. ++userpg->lock;
  2790. preempt_enable();
  2791. unlock:
  2792. rcu_read_unlock();
  2793. }
  2794. static unsigned long perf_data_size(struct perf_buffer *buffer);
  2795. static void
  2796. perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
  2797. {
  2798. long max_size = perf_data_size(buffer);
  2799. if (watermark)
  2800. buffer->watermark = min(max_size, watermark);
  2801. if (!buffer->watermark)
  2802. buffer->watermark = max_size / 2;
  2803. if (flags & PERF_BUFFER_WRITABLE)
  2804. buffer->writable = 1;
  2805. atomic_set(&buffer->refcount, 1);
  2806. }
  2807. #ifndef CONFIG_PERF_USE_VMALLOC
  2808. /*
  2809. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  2810. */
  2811. static struct page *
  2812. perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
  2813. {
  2814. if (pgoff > buffer->nr_pages)
  2815. return NULL;
  2816. if (pgoff == 0)
  2817. return virt_to_page(buffer->user_page);
  2818. return virt_to_page(buffer->data_pages[pgoff - 1]);
  2819. }
  2820. static void *perf_mmap_alloc_page(int cpu)
  2821. {
  2822. struct page *page;
  2823. int node;
  2824. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  2825. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  2826. if (!page)
  2827. return NULL;
  2828. return page_address(page);
  2829. }
  2830. static struct perf_buffer *
  2831. perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
  2832. {
  2833. struct perf_buffer *buffer;
  2834. unsigned long size;
  2835. int i;
  2836. size = sizeof(struct perf_buffer);
  2837. size += nr_pages * sizeof(void *);
  2838. buffer = kzalloc(size, GFP_KERNEL);
  2839. if (!buffer)
  2840. goto fail;
  2841. buffer->user_page = perf_mmap_alloc_page(cpu);
  2842. if (!buffer->user_page)
  2843. goto fail_user_page;
  2844. for (i = 0; i < nr_pages; i++) {
  2845. buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
  2846. if (!buffer->data_pages[i])
  2847. goto fail_data_pages;
  2848. }
  2849. buffer->nr_pages = nr_pages;
  2850. perf_buffer_init(buffer, watermark, flags);
  2851. return buffer;
  2852. fail_data_pages:
  2853. for (i--; i >= 0; i--)
  2854. free_page((unsigned long)buffer->data_pages[i]);
  2855. free_page((unsigned long)buffer->user_page);
  2856. fail_user_page:
  2857. kfree(buffer);
  2858. fail:
  2859. return NULL;
  2860. }
  2861. static void perf_mmap_free_page(unsigned long addr)
  2862. {
  2863. struct page *page = virt_to_page((void *)addr);
  2864. page->mapping = NULL;
  2865. __free_page(page);
  2866. }
  2867. static void perf_buffer_free(struct perf_buffer *buffer)
  2868. {
  2869. int i;
  2870. perf_mmap_free_page((unsigned long)buffer->user_page);
  2871. for (i = 0; i < buffer->nr_pages; i++)
  2872. perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
  2873. kfree(buffer);
  2874. }
  2875. static inline int page_order(struct perf_buffer *buffer)
  2876. {
  2877. return 0;
  2878. }
  2879. #else
  2880. /*
  2881. * Back perf_mmap() with vmalloc memory.
  2882. *
  2883. * Required for architectures that have d-cache aliasing issues.
  2884. */
  2885. static inline int page_order(struct perf_buffer *buffer)
  2886. {
  2887. return buffer->page_order;
  2888. }
  2889. static struct page *
  2890. perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
  2891. {
  2892. if (pgoff > (1UL << page_order(buffer)))
  2893. return NULL;
  2894. return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
  2895. }
  2896. static void perf_mmap_unmark_page(void *addr)
  2897. {
  2898. struct page *page = vmalloc_to_page(addr);
  2899. page->mapping = NULL;
  2900. }
  2901. static void perf_buffer_free_work(struct work_struct *work)
  2902. {
  2903. struct perf_buffer *buffer;
  2904. void *base;
  2905. int i, nr;
  2906. buffer = container_of(work, struct perf_buffer, work);
  2907. nr = 1 << page_order(buffer);
  2908. base = buffer->user_page;
  2909. for (i = 0; i < nr + 1; i++)
  2910. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  2911. vfree(base);
  2912. kfree(buffer);
  2913. }
  2914. static void perf_buffer_free(struct perf_buffer *buffer)
  2915. {
  2916. schedule_work(&buffer->work);
  2917. }
  2918. static struct perf_buffer *
  2919. perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
  2920. {
  2921. struct perf_buffer *buffer;
  2922. unsigned long size;
  2923. void *all_buf;
  2924. size = sizeof(struct perf_buffer);
  2925. size += sizeof(void *);
  2926. buffer = kzalloc(size, GFP_KERNEL);
  2927. if (!buffer)
  2928. goto fail;
  2929. INIT_WORK(&buffer->work, perf_buffer_free_work);
  2930. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  2931. if (!all_buf)
  2932. goto fail_all_buf;
  2933. buffer->user_page = all_buf;
  2934. buffer->data_pages[0] = all_buf + PAGE_SIZE;
  2935. buffer->page_order = ilog2(nr_pages);
  2936. buffer->nr_pages = 1;
  2937. perf_buffer_init(buffer, watermark, flags);
  2938. return buffer;
  2939. fail_all_buf:
  2940. kfree(buffer);
  2941. fail:
  2942. return NULL;
  2943. }
  2944. #endif
  2945. static unsigned long perf_data_size(struct perf_buffer *buffer)
  2946. {
  2947. return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
  2948. }
  2949. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  2950. {
  2951. struct perf_event *event = vma->vm_file->private_data;
  2952. struct perf_buffer *buffer;
  2953. int ret = VM_FAULT_SIGBUS;
  2954. if (vmf->flags & FAULT_FLAG_MKWRITE) {
  2955. if (vmf->pgoff == 0)
  2956. ret = 0;
  2957. return ret;
  2958. }
  2959. rcu_read_lock();
  2960. buffer = rcu_dereference(event->buffer);
  2961. if (!buffer)
  2962. goto unlock;
  2963. if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
  2964. goto unlock;
  2965. vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
  2966. if (!vmf->page)
  2967. goto unlock;
  2968. get_page(vmf->page);
  2969. vmf->page->mapping = vma->vm_file->f_mapping;
  2970. vmf->page->index = vmf->pgoff;
  2971. ret = 0;
  2972. unlock:
  2973. rcu_read_unlock();
  2974. return ret;
  2975. }
  2976. static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
  2977. {
  2978. struct perf_buffer *buffer;
  2979. buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
  2980. perf_buffer_free(buffer);
  2981. }
  2982. static struct perf_buffer *perf_buffer_get(struct perf_event *event)
  2983. {
  2984. struct perf_buffer *buffer;
  2985. rcu_read_lock();
  2986. buffer = rcu_dereference(event->buffer);
  2987. if (buffer) {
  2988. if (!atomic_inc_not_zero(&buffer->refcount))
  2989. buffer = NULL;
  2990. }
  2991. rcu_read_unlock();
  2992. return buffer;
  2993. }
  2994. static void perf_buffer_put(struct perf_buffer *buffer)
  2995. {
  2996. if (!atomic_dec_and_test(&buffer->refcount))
  2997. return;
  2998. call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
  2999. }
  3000. static void perf_mmap_open(struct vm_area_struct *vma)
  3001. {
  3002. struct perf_event *event = vma->vm_file->private_data;
  3003. atomic_inc(&event->mmap_count);
  3004. }
  3005. static void perf_mmap_close(struct vm_area_struct *vma)
  3006. {
  3007. struct perf_event *event = vma->vm_file->private_data;
  3008. if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
  3009. unsigned long size = perf_data_size(event->buffer);
  3010. struct user_struct *user = event->mmap_user;
  3011. struct perf_buffer *buffer = event->buffer;
  3012. atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
  3013. vma->vm_mm->locked_vm -= event->mmap_locked;
  3014. rcu_assign_pointer(event->buffer, NULL);
  3015. mutex_unlock(&event->mmap_mutex);
  3016. perf_buffer_put(buffer);
  3017. free_uid(user);
  3018. }
  3019. }
  3020. static const struct vm_operations_struct perf_mmap_vmops = {
  3021. .open = perf_mmap_open,
  3022. .close = perf_mmap_close,
  3023. .fault = perf_mmap_fault,
  3024. .page_mkwrite = perf_mmap_fault,
  3025. };
  3026. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  3027. {
  3028. struct perf_event *event = file->private_data;
  3029. unsigned long user_locked, user_lock_limit;
  3030. struct user_struct *user = current_user();
  3031. unsigned long locked, lock_limit;
  3032. struct perf_buffer *buffer;
  3033. unsigned long vma_size;
  3034. unsigned long nr_pages;
  3035. long user_extra, extra;
  3036. int ret = 0, flags = 0;
  3037. /*
  3038. * Don't allow mmap() of inherited per-task counters. This would
  3039. * create a performance issue due to all children writing to the
  3040. * same buffer.
  3041. */
  3042. if (event->cpu == -1 && event->attr.inherit)
  3043. return -EINVAL;
  3044. if (!(vma->vm_flags & VM_SHARED))
  3045. return -EINVAL;
  3046. vma_size = vma->vm_end - vma->vm_start;
  3047. nr_pages = (vma_size / PAGE_SIZE) - 1;
  3048. /*
  3049. * If we have buffer pages ensure they're a power-of-two number, so we
  3050. * can do bitmasks instead of modulo.
  3051. */
  3052. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  3053. return -EINVAL;
  3054. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  3055. return -EINVAL;
  3056. if (vma->vm_pgoff != 0)
  3057. return -EINVAL;
  3058. WARN_ON_ONCE(event->ctx->parent_ctx);
  3059. mutex_lock(&event->mmap_mutex);
  3060. if (event->buffer) {
  3061. if (event->buffer->nr_pages == nr_pages)
  3062. atomic_inc(&event->buffer->refcount);
  3063. else
  3064. ret = -EINVAL;
  3065. goto unlock;
  3066. }
  3067. user_extra = nr_pages + 1;
  3068. user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
  3069. /*
  3070. * Increase the limit linearly with more CPUs:
  3071. */
  3072. user_lock_limit *= num_online_cpus();
  3073. user_locked = atomic_long_read(&user->locked_vm) + user_extra;
  3074. extra = 0;
  3075. if (user_locked > user_lock_limit)
  3076. extra = user_locked - user_lock_limit;
  3077. lock_limit = rlimit(RLIMIT_MEMLOCK);
  3078. lock_limit >>= PAGE_SHIFT;
  3079. locked = vma->vm_mm->locked_vm + extra;
  3080. if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
  3081. !capable(CAP_IPC_LOCK)) {
  3082. ret = -EPERM;
  3083. goto unlock;
  3084. }
  3085. WARN_ON(event->buffer);
  3086. if (vma->vm_flags & VM_WRITE)
  3087. flags |= PERF_BUFFER_WRITABLE;
  3088. buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
  3089. event->cpu, flags);
  3090. if (!buffer) {
  3091. ret = -ENOMEM;
  3092. goto unlock;
  3093. }
  3094. rcu_assign_pointer(event->buffer, buffer);
  3095. atomic_long_add(user_extra, &user->locked_vm);
  3096. event->mmap_locked = extra;
  3097. event->mmap_user = get_current_user();
  3098. vma->vm_mm->locked_vm += event->mmap_locked;
  3099. unlock:
  3100. if (!ret)
  3101. atomic_inc(&event->mmap_count);
  3102. mutex_unlock(&event->mmap_mutex);
  3103. vma->vm_flags |= VM_RESERVED;
  3104. vma->vm_ops = &perf_mmap_vmops;
  3105. return ret;
  3106. }
  3107. static int perf_fasync(int fd, struct file *filp, int on)
  3108. {
  3109. struct inode *inode = filp->f_path.dentry->d_inode;
  3110. struct perf_event *event = filp->private_data;
  3111. int retval;
  3112. mutex_lock(&inode->i_mutex);
  3113. retval = fasync_helper(fd, filp, on, &event->fasync);
  3114. mutex_unlock(&inode->i_mutex);
  3115. if (retval < 0)
  3116. return retval;
  3117. return 0;
  3118. }
  3119. static const struct file_operations perf_fops = {
  3120. .llseek = no_llseek,
  3121. .release = perf_release,
  3122. .read = perf_read,
  3123. .poll = perf_poll,
  3124. .unlocked_ioctl = perf_ioctl,
  3125. .compat_ioctl = perf_ioctl,
  3126. .mmap = perf_mmap,
  3127. .fasync = perf_fasync,
  3128. };
  3129. /*
  3130. * Perf event wakeup
  3131. *
  3132. * If there's data, ensure we set the poll() state and publish everything
  3133. * to user-space before waking everybody up.
  3134. */
  3135. void perf_event_wakeup(struct perf_event *event)
  3136. {
  3137. wake_up_all(&event->waitq);
  3138. if (event->pending_kill) {
  3139. kill_fasync(&event->fasync, SIGIO, event->pending_kill);
  3140. event->pending_kill = 0;
  3141. }
  3142. }
  3143. static void perf_pending_event(struct irq_work *entry)
  3144. {
  3145. struct perf_event *event = container_of(entry,
  3146. struct perf_event, pending);
  3147. if (event->pending_disable) {
  3148. event->pending_disable = 0;
  3149. __perf_event_disable(event);
  3150. }
  3151. if (event->pending_wakeup) {
  3152. event->pending_wakeup = 0;
  3153. perf_event_wakeup(event);
  3154. }
  3155. }
  3156. /*
  3157. * We assume there is only KVM supporting the callbacks.
  3158. * Later on, we might change it to a list if there is
  3159. * another virtualization implementation supporting the callbacks.
  3160. */
  3161. struct perf_guest_info_callbacks *perf_guest_cbs;
  3162. int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3163. {
  3164. perf_guest_cbs = cbs;
  3165. return 0;
  3166. }
  3167. EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
  3168. int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
  3169. {
  3170. perf_guest_cbs = NULL;
  3171. return 0;
  3172. }
  3173. EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
  3174. /*
  3175. * Output
  3176. */
  3177. static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
  3178. unsigned long offset, unsigned long head)
  3179. {
  3180. unsigned long mask;
  3181. if (!buffer->writable)
  3182. return true;
  3183. mask = perf_data_size(buffer) - 1;
  3184. offset = (offset - tail) & mask;
  3185. head = (head - tail) & mask;
  3186. if ((int)(head - offset) < 0)
  3187. return false;
  3188. return true;
  3189. }
  3190. static void perf_output_wakeup(struct perf_output_handle *handle)
  3191. {
  3192. atomic_set(&handle->buffer->poll, POLL_IN);
  3193. if (handle->nmi) {
  3194. handle->event->pending_wakeup = 1;
  3195. irq_work_queue(&handle->event->pending);
  3196. } else
  3197. perf_event_wakeup(handle->event);
  3198. }
  3199. /*
  3200. * We need to ensure a later event_id doesn't publish a head when a former
  3201. * event isn't done writing. However since we need to deal with NMIs we
  3202. * cannot fully serialize things.
  3203. *
  3204. * We only publish the head (and generate a wakeup) when the outer-most
  3205. * event completes.
  3206. */
  3207. static void perf_output_get_handle(struct perf_output_handle *handle)
  3208. {
  3209. struct perf_buffer *buffer = handle->buffer;
  3210. preempt_disable();
  3211. local_inc(&buffer->nest);
  3212. handle->wakeup = local_read(&buffer->wakeup);
  3213. }
  3214. static void perf_output_put_handle(struct perf_output_handle *handle)
  3215. {
  3216. struct perf_buffer *buffer = handle->buffer;
  3217. unsigned long head;
  3218. again:
  3219. head = local_read(&buffer->head);
  3220. /*
  3221. * IRQ/NMI can happen here, which means we can miss a head update.
  3222. */
  3223. if (!local_dec_and_test(&buffer->nest))
  3224. goto out;
  3225. /*
  3226. * Publish the known good head. Rely on the full barrier implied
  3227. * by atomic_dec_and_test() order the buffer->head read and this
  3228. * write.
  3229. */
  3230. buffer->user_page->data_head = head;
  3231. /*
  3232. * Now check if we missed an update, rely on the (compiler)
  3233. * barrier in atomic_dec_and_test() to re-read buffer->head.
  3234. */
  3235. if (unlikely(head != local_read(&buffer->head))) {
  3236. local_inc(&buffer->nest);
  3237. goto again;
  3238. }
  3239. if (handle->wakeup != local_read(&buffer->wakeup))
  3240. perf_output_wakeup(handle);
  3241. out:
  3242. preempt_enable();
  3243. }
  3244. __always_inline void perf_output_copy(struct perf_output_handle *handle,
  3245. const void *buf, unsigned int len)
  3246. {
  3247. do {
  3248. unsigned long size = min_t(unsigned long, handle->size, len);
  3249. memcpy(handle->addr, buf, size);
  3250. len -= size;
  3251. handle->addr += size;
  3252. buf += size;
  3253. handle->size -= size;
  3254. if (!handle->size) {
  3255. struct perf_buffer *buffer = handle->buffer;
  3256. handle->page++;
  3257. handle->page &= buffer->nr_pages - 1;
  3258. handle->addr = buffer->data_pages[handle->page];
  3259. handle->size = PAGE_SIZE << page_order(buffer);
  3260. }
  3261. } while (len);
  3262. }
  3263. static void __perf_event_header__init_id(struct perf_event_header *header,
  3264. struct perf_sample_data *data,
  3265. struct perf_event *event)
  3266. {
  3267. u64 sample_type = event->attr.sample_type;
  3268. data->type = sample_type;
  3269. header->size += event->id_header_size;
  3270. if (sample_type & PERF_SAMPLE_TID) {
  3271. /* namespace issues */
  3272. data->tid_entry.pid = perf_event_pid(event, current);
  3273. data->tid_entry.tid = perf_event_tid(event, current);
  3274. }
  3275. if (sample_type & PERF_SAMPLE_TIME)
  3276. data->time = perf_clock();
  3277. if (sample_type & PERF_SAMPLE_ID)
  3278. data->id = primary_event_id(event);
  3279. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3280. data->stream_id = event->id;
  3281. if (sample_type & PERF_SAMPLE_CPU) {
  3282. data->cpu_entry.cpu = raw_smp_processor_id();
  3283. data->cpu_entry.reserved = 0;
  3284. }
  3285. }
  3286. static void perf_event_header__init_id(struct perf_event_header *header,
  3287. struct perf_sample_data *data,
  3288. struct perf_event *event)
  3289. {
  3290. if (event->attr.sample_id_all)
  3291. __perf_event_header__init_id(header, data, event);
  3292. }
  3293. static void __perf_event__output_id_sample(struct perf_output_handle *handle,
  3294. struct perf_sample_data *data)
  3295. {
  3296. u64 sample_type = data->type;
  3297. if (sample_type & PERF_SAMPLE_TID)
  3298. perf_output_put(handle, data->tid_entry);
  3299. if (sample_type & PERF_SAMPLE_TIME)
  3300. perf_output_put(handle, data->time);
  3301. if (sample_type & PERF_SAMPLE_ID)
  3302. perf_output_put(handle, data->id);
  3303. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3304. perf_output_put(handle, data->stream_id);
  3305. if (sample_type & PERF_SAMPLE_CPU)
  3306. perf_output_put(handle, data->cpu_entry);
  3307. }
  3308. static void perf_event__output_id_sample(struct perf_event *event,
  3309. struct perf_output_handle *handle,
  3310. struct perf_sample_data *sample)
  3311. {
  3312. if (event->attr.sample_id_all)
  3313. __perf_event__output_id_sample(handle, sample);
  3314. }
  3315. int perf_output_begin(struct perf_output_handle *handle,
  3316. struct perf_event *event, unsigned int size,
  3317. int nmi, int sample)
  3318. {
  3319. struct perf_buffer *buffer;
  3320. unsigned long tail, offset, head;
  3321. int have_lost;
  3322. struct perf_sample_data sample_data;
  3323. struct {
  3324. struct perf_event_header header;
  3325. u64 id;
  3326. u64 lost;
  3327. } lost_event;
  3328. rcu_read_lock();
  3329. /*
  3330. * For inherited events we send all the output towards the parent.
  3331. */
  3332. if (event->parent)
  3333. event = event->parent;
  3334. buffer = rcu_dereference(event->buffer);
  3335. if (!buffer)
  3336. goto out;
  3337. handle->buffer = buffer;
  3338. handle->event = event;
  3339. handle->nmi = nmi;
  3340. handle->sample = sample;
  3341. if (!buffer->nr_pages)
  3342. goto out;
  3343. have_lost = local_read(&buffer->lost);
  3344. if (have_lost) {
  3345. lost_event.header.size = sizeof(lost_event);
  3346. perf_event_header__init_id(&lost_event.header, &sample_data,
  3347. event);
  3348. size += lost_event.header.size;
  3349. }
  3350. perf_output_get_handle(handle);
  3351. do {
  3352. /*
  3353. * Userspace could choose to issue a mb() before updating the
  3354. * tail pointer. So that all reads will be completed before the
  3355. * write is issued.
  3356. */
  3357. tail = ACCESS_ONCE(buffer->user_page->data_tail);
  3358. smp_rmb();
  3359. offset = head = local_read(&buffer->head);
  3360. head += size;
  3361. if (unlikely(!perf_output_space(buffer, tail, offset, head)))
  3362. goto fail;
  3363. } while (local_cmpxchg(&buffer->head, offset, head) != offset);
  3364. if (head - local_read(&buffer->wakeup) > buffer->watermark)
  3365. local_add(buffer->watermark, &buffer->wakeup);
  3366. handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
  3367. handle->page &= buffer->nr_pages - 1;
  3368. handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
  3369. handle->addr = buffer->data_pages[handle->page];
  3370. handle->addr += handle->size;
  3371. handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
  3372. if (have_lost) {
  3373. lost_event.header.type = PERF_RECORD_LOST;
  3374. lost_event.header.misc = 0;
  3375. lost_event.id = event->id;
  3376. lost_event.lost = local_xchg(&buffer->lost, 0);
  3377. perf_output_put(handle, lost_event);
  3378. perf_event__output_id_sample(event, handle, &sample_data);
  3379. }
  3380. return 0;
  3381. fail:
  3382. local_inc(&buffer->lost);
  3383. perf_output_put_handle(handle);
  3384. out:
  3385. rcu_read_unlock();
  3386. return -ENOSPC;
  3387. }
  3388. void perf_output_end(struct perf_output_handle *handle)
  3389. {
  3390. struct perf_event *event = handle->event;
  3391. struct perf_buffer *buffer = handle->buffer;
  3392. int wakeup_events = event->attr.wakeup_events;
  3393. if (handle->sample && wakeup_events) {
  3394. int events = local_inc_return(&buffer->events);
  3395. if (events >= wakeup_events) {
  3396. local_sub(wakeup_events, &buffer->events);
  3397. local_inc(&buffer->wakeup);
  3398. }
  3399. }
  3400. perf_output_put_handle(handle);
  3401. rcu_read_unlock();
  3402. }
  3403. static void perf_output_read_one(struct perf_output_handle *handle,
  3404. struct perf_event *event,
  3405. u64 enabled, u64 running)
  3406. {
  3407. u64 read_format = event->attr.read_format;
  3408. u64 values[4];
  3409. int n = 0;
  3410. values[n++] = perf_event_count(event);
  3411. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
  3412. values[n++] = enabled +
  3413. atomic64_read(&event->child_total_time_enabled);
  3414. }
  3415. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
  3416. values[n++] = running +
  3417. atomic64_read(&event->child_total_time_running);
  3418. }
  3419. if (read_format & PERF_FORMAT_ID)
  3420. values[n++] = primary_event_id(event);
  3421. perf_output_copy(handle, values, n * sizeof(u64));
  3422. }
  3423. /*
  3424. * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
  3425. */
  3426. static void perf_output_read_group(struct perf_output_handle *handle,
  3427. struct perf_event *event,
  3428. u64 enabled, u64 running)
  3429. {
  3430. struct perf_event *leader = event->group_leader, *sub;
  3431. u64 read_format = event->attr.read_format;
  3432. u64 values[5];
  3433. int n = 0;
  3434. values[n++] = 1 + leader->nr_siblings;
  3435. if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  3436. values[n++] = enabled;
  3437. if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  3438. values[n++] = running;
  3439. if (leader != event)
  3440. leader->pmu->read(leader);
  3441. values[n++] = perf_event_count(leader);
  3442. if (read_format & PERF_FORMAT_ID)
  3443. values[n++] = primary_event_id(leader);
  3444. perf_output_copy(handle, values, n * sizeof(u64));
  3445. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  3446. n = 0;
  3447. if (sub != event)
  3448. sub->pmu->read(sub);
  3449. values[n++] = perf_event_count(sub);
  3450. if (read_format & PERF_FORMAT_ID)
  3451. values[n++] = primary_event_id(sub);
  3452. perf_output_copy(handle, values, n * sizeof(u64));
  3453. }
  3454. }
  3455. #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
  3456. PERF_FORMAT_TOTAL_TIME_RUNNING)
  3457. static void perf_output_read(struct perf_output_handle *handle,
  3458. struct perf_event *event)
  3459. {
  3460. u64 enabled = 0, running = 0, now, ctx_time;
  3461. u64 read_format = event->attr.read_format;
  3462. /*
  3463. * compute total_time_enabled, total_time_running
  3464. * based on snapshot values taken when the event
  3465. * was last scheduled in.
  3466. *
  3467. * we cannot simply called update_context_time()
  3468. * because of locking issue as we are called in
  3469. * NMI context
  3470. */
  3471. if (read_format & PERF_FORMAT_TOTAL_TIMES) {
  3472. now = perf_clock();
  3473. ctx_time = event->shadow_ctx_time + now;
  3474. enabled = ctx_time - event->tstamp_enabled;
  3475. running = ctx_time - event->tstamp_running;
  3476. }
  3477. if (event->attr.read_format & PERF_FORMAT_GROUP)
  3478. perf_output_read_group(handle, event, enabled, running);
  3479. else
  3480. perf_output_read_one(handle, event, enabled, running);
  3481. }
  3482. void perf_output_sample(struct perf_output_handle *handle,
  3483. struct perf_event_header *header,
  3484. struct perf_sample_data *data,
  3485. struct perf_event *event)
  3486. {
  3487. u64 sample_type = data->type;
  3488. perf_output_put(handle, *header);
  3489. if (sample_type & PERF_SAMPLE_IP)
  3490. perf_output_put(handle, data->ip);
  3491. if (sample_type & PERF_SAMPLE_TID)
  3492. perf_output_put(handle, data->tid_entry);
  3493. if (sample_type & PERF_SAMPLE_TIME)
  3494. perf_output_put(handle, data->time);
  3495. if (sample_type & PERF_SAMPLE_ADDR)
  3496. perf_output_put(handle, data->addr);
  3497. if (sample_type & PERF_SAMPLE_ID)
  3498. perf_output_put(handle, data->id);
  3499. if (sample_type & PERF_SAMPLE_STREAM_ID)
  3500. perf_output_put(handle, data->stream_id);
  3501. if (sample_type & PERF_SAMPLE_CPU)
  3502. perf_output_put(handle, data->cpu_entry);
  3503. if (sample_type & PERF_SAMPLE_PERIOD)
  3504. perf_output_put(handle, data->period);
  3505. if (sample_type & PERF_SAMPLE_READ)
  3506. perf_output_read(handle, event);
  3507. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3508. if (data->callchain) {
  3509. int size = 1;
  3510. if (data->callchain)
  3511. size += data->callchain->nr;
  3512. size *= sizeof(u64);
  3513. perf_output_copy(handle, data->callchain, size);
  3514. } else {
  3515. u64 nr = 0;
  3516. perf_output_put(handle, nr);
  3517. }
  3518. }
  3519. if (sample_type & PERF_SAMPLE_RAW) {
  3520. if (data->raw) {
  3521. perf_output_put(handle, data->raw->size);
  3522. perf_output_copy(handle, data->raw->data,
  3523. data->raw->size);
  3524. } else {
  3525. struct {
  3526. u32 size;
  3527. u32 data;
  3528. } raw = {
  3529. .size = sizeof(u32),
  3530. .data = 0,
  3531. };
  3532. perf_output_put(handle, raw);
  3533. }
  3534. }
  3535. }
  3536. void perf_prepare_sample(struct perf_event_header *header,
  3537. struct perf_sample_data *data,
  3538. struct perf_event *event,
  3539. struct pt_regs *regs)
  3540. {
  3541. u64 sample_type = event->attr.sample_type;
  3542. header->type = PERF_RECORD_SAMPLE;
  3543. header->size = sizeof(*header) + event->header_size;
  3544. header->misc = 0;
  3545. header->misc |= perf_misc_flags(regs);
  3546. __perf_event_header__init_id(header, data, event);
  3547. if (sample_type & PERF_SAMPLE_IP)
  3548. data->ip = perf_instruction_pointer(regs);
  3549. if (sample_type & PERF_SAMPLE_CALLCHAIN) {
  3550. int size = 1;
  3551. data->callchain = perf_callchain(regs);
  3552. if (data->callchain)
  3553. size += data->callchain->nr;
  3554. header->size += size * sizeof(u64);
  3555. }
  3556. if (sample_type & PERF_SAMPLE_RAW) {
  3557. int size = sizeof(u32);
  3558. if (data->raw)
  3559. size += data->raw->size;
  3560. else
  3561. size += sizeof(u32);
  3562. WARN_ON_ONCE(size & (sizeof(u64)-1));
  3563. header->size += size;
  3564. }
  3565. }
  3566. static void perf_event_output(struct perf_event *event, int nmi,
  3567. struct perf_sample_data *data,
  3568. struct pt_regs *regs)
  3569. {
  3570. struct perf_output_handle handle;
  3571. struct perf_event_header header;
  3572. /* protect the callchain buffers */
  3573. rcu_read_lock();
  3574. perf_prepare_sample(&header, data, event, regs);
  3575. if (perf_output_begin(&handle, event, header.size, nmi, 1))
  3576. goto exit;
  3577. perf_output_sample(&handle, &header, data, event);
  3578. perf_output_end(&handle);
  3579. exit:
  3580. rcu_read_unlock();
  3581. }
  3582. /*
  3583. * read event_id
  3584. */
  3585. struct perf_read_event {
  3586. struct perf_event_header header;
  3587. u32 pid;
  3588. u32 tid;
  3589. };
  3590. static void
  3591. perf_event_read_event(struct perf_event *event,
  3592. struct task_struct *task)
  3593. {
  3594. struct perf_output_handle handle;
  3595. struct perf_sample_data sample;
  3596. struct perf_read_event read_event = {
  3597. .header = {
  3598. .type = PERF_RECORD_READ,
  3599. .misc = 0,
  3600. .size = sizeof(read_event) + event->read_size,
  3601. },
  3602. .pid = perf_event_pid(event, task),
  3603. .tid = perf_event_tid(event, task),
  3604. };
  3605. int ret;
  3606. perf_event_header__init_id(&read_event.header, &sample, event);
  3607. ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
  3608. if (ret)
  3609. return;
  3610. perf_output_put(&handle, read_event);
  3611. perf_output_read(&handle, event);
  3612. perf_event__output_id_sample(event, &handle, &sample);
  3613. perf_output_end(&handle);
  3614. }
  3615. /*
  3616. * task tracking -- fork/exit
  3617. *
  3618. * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
  3619. */
  3620. struct perf_task_event {
  3621. struct task_struct *task;
  3622. struct perf_event_context *task_ctx;
  3623. struct {
  3624. struct perf_event_header header;
  3625. u32 pid;
  3626. u32 ppid;
  3627. u32 tid;
  3628. u32 ptid;
  3629. u64 time;
  3630. } event_id;
  3631. };
  3632. static void perf_event_task_output(struct perf_event *event,
  3633. struct perf_task_event *task_event)
  3634. {
  3635. struct perf_output_handle handle;
  3636. struct perf_sample_data sample;
  3637. struct task_struct *task = task_event->task;
  3638. int ret, size = task_event->event_id.header.size;
  3639. perf_event_header__init_id(&task_event->event_id.header, &sample, event);
  3640. ret = perf_output_begin(&handle, event,
  3641. task_event->event_id.header.size, 0, 0);
  3642. if (ret)
  3643. goto out;
  3644. task_event->event_id.pid = perf_event_pid(event, task);
  3645. task_event->event_id.ppid = perf_event_pid(event, current);
  3646. task_event->event_id.tid = perf_event_tid(event, task);
  3647. task_event->event_id.ptid = perf_event_tid(event, current);
  3648. perf_output_put(&handle, task_event->event_id);
  3649. perf_event__output_id_sample(event, &handle, &sample);
  3650. perf_output_end(&handle);
  3651. out:
  3652. task_event->event_id.header.size = size;
  3653. }
  3654. static int perf_event_task_match(struct perf_event *event)
  3655. {
  3656. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3657. return 0;
  3658. if (!event_filter_match(event))
  3659. return 0;
  3660. if (event->attr.comm || event->attr.mmap ||
  3661. event->attr.mmap_data || event->attr.task)
  3662. return 1;
  3663. return 0;
  3664. }
  3665. static void perf_event_task_ctx(struct perf_event_context *ctx,
  3666. struct perf_task_event *task_event)
  3667. {
  3668. struct perf_event *event;
  3669. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3670. if (perf_event_task_match(event))
  3671. perf_event_task_output(event, task_event);
  3672. }
  3673. }
  3674. static void perf_event_task_event(struct perf_task_event *task_event)
  3675. {
  3676. struct perf_cpu_context *cpuctx;
  3677. struct perf_event_context *ctx;
  3678. struct pmu *pmu;
  3679. int ctxn;
  3680. rcu_read_lock();
  3681. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3682. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3683. if (cpuctx->active_pmu != pmu)
  3684. goto next;
  3685. perf_event_task_ctx(&cpuctx->ctx, task_event);
  3686. ctx = task_event->task_ctx;
  3687. if (!ctx) {
  3688. ctxn = pmu->task_ctx_nr;
  3689. if (ctxn < 0)
  3690. goto next;
  3691. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3692. }
  3693. if (ctx)
  3694. perf_event_task_ctx(ctx, task_event);
  3695. next:
  3696. put_cpu_ptr(pmu->pmu_cpu_context);
  3697. }
  3698. rcu_read_unlock();
  3699. }
  3700. static void perf_event_task(struct task_struct *task,
  3701. struct perf_event_context *task_ctx,
  3702. int new)
  3703. {
  3704. struct perf_task_event task_event;
  3705. if (!atomic_read(&nr_comm_events) &&
  3706. !atomic_read(&nr_mmap_events) &&
  3707. !atomic_read(&nr_task_events))
  3708. return;
  3709. task_event = (struct perf_task_event){
  3710. .task = task,
  3711. .task_ctx = task_ctx,
  3712. .event_id = {
  3713. .header = {
  3714. .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
  3715. .misc = 0,
  3716. .size = sizeof(task_event.event_id),
  3717. },
  3718. /* .pid */
  3719. /* .ppid */
  3720. /* .tid */
  3721. /* .ptid */
  3722. .time = perf_clock(),
  3723. },
  3724. };
  3725. perf_event_task_event(&task_event);
  3726. }
  3727. void perf_event_fork(struct task_struct *task)
  3728. {
  3729. perf_event_task(task, NULL, 1);
  3730. }
  3731. /*
  3732. * comm tracking
  3733. */
  3734. struct perf_comm_event {
  3735. struct task_struct *task;
  3736. char *comm;
  3737. int comm_size;
  3738. struct {
  3739. struct perf_event_header header;
  3740. u32 pid;
  3741. u32 tid;
  3742. } event_id;
  3743. };
  3744. static void perf_event_comm_output(struct perf_event *event,
  3745. struct perf_comm_event *comm_event)
  3746. {
  3747. struct perf_output_handle handle;
  3748. struct perf_sample_data sample;
  3749. int size = comm_event->event_id.header.size;
  3750. int ret;
  3751. perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
  3752. ret = perf_output_begin(&handle, event,
  3753. comm_event->event_id.header.size, 0, 0);
  3754. if (ret)
  3755. goto out;
  3756. comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
  3757. comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
  3758. perf_output_put(&handle, comm_event->event_id);
  3759. perf_output_copy(&handle, comm_event->comm,
  3760. comm_event->comm_size);
  3761. perf_event__output_id_sample(event, &handle, &sample);
  3762. perf_output_end(&handle);
  3763. out:
  3764. comm_event->event_id.header.size = size;
  3765. }
  3766. static int perf_event_comm_match(struct perf_event *event)
  3767. {
  3768. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3769. return 0;
  3770. if (!event_filter_match(event))
  3771. return 0;
  3772. if (event->attr.comm)
  3773. return 1;
  3774. return 0;
  3775. }
  3776. static void perf_event_comm_ctx(struct perf_event_context *ctx,
  3777. struct perf_comm_event *comm_event)
  3778. {
  3779. struct perf_event *event;
  3780. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3781. if (perf_event_comm_match(event))
  3782. perf_event_comm_output(event, comm_event);
  3783. }
  3784. }
  3785. static void perf_event_comm_event(struct perf_comm_event *comm_event)
  3786. {
  3787. struct perf_cpu_context *cpuctx;
  3788. struct perf_event_context *ctx;
  3789. char comm[TASK_COMM_LEN];
  3790. unsigned int size;
  3791. struct pmu *pmu;
  3792. int ctxn;
  3793. memset(comm, 0, sizeof(comm));
  3794. strlcpy(comm, comm_event->task->comm, sizeof(comm));
  3795. size = ALIGN(strlen(comm)+1, sizeof(u64));
  3796. comm_event->comm = comm;
  3797. comm_event->comm_size = size;
  3798. comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
  3799. rcu_read_lock();
  3800. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3801. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3802. if (cpuctx->active_pmu != pmu)
  3803. goto next;
  3804. perf_event_comm_ctx(&cpuctx->ctx, comm_event);
  3805. ctxn = pmu->task_ctx_nr;
  3806. if (ctxn < 0)
  3807. goto next;
  3808. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3809. if (ctx)
  3810. perf_event_comm_ctx(ctx, comm_event);
  3811. next:
  3812. put_cpu_ptr(pmu->pmu_cpu_context);
  3813. }
  3814. rcu_read_unlock();
  3815. }
  3816. void perf_event_comm(struct task_struct *task)
  3817. {
  3818. struct perf_comm_event comm_event;
  3819. struct perf_event_context *ctx;
  3820. int ctxn;
  3821. for_each_task_context_nr(ctxn) {
  3822. ctx = task->perf_event_ctxp[ctxn];
  3823. if (!ctx)
  3824. continue;
  3825. perf_event_enable_on_exec(ctx);
  3826. }
  3827. if (!atomic_read(&nr_comm_events))
  3828. return;
  3829. comm_event = (struct perf_comm_event){
  3830. .task = task,
  3831. /* .comm */
  3832. /* .comm_size */
  3833. .event_id = {
  3834. .header = {
  3835. .type = PERF_RECORD_COMM,
  3836. .misc = 0,
  3837. /* .size */
  3838. },
  3839. /* .pid */
  3840. /* .tid */
  3841. },
  3842. };
  3843. perf_event_comm_event(&comm_event);
  3844. }
  3845. /*
  3846. * mmap tracking
  3847. */
  3848. struct perf_mmap_event {
  3849. struct vm_area_struct *vma;
  3850. const char *file_name;
  3851. int file_size;
  3852. struct {
  3853. struct perf_event_header header;
  3854. u32 pid;
  3855. u32 tid;
  3856. u64 start;
  3857. u64 len;
  3858. u64 pgoff;
  3859. } event_id;
  3860. };
  3861. static void perf_event_mmap_output(struct perf_event *event,
  3862. struct perf_mmap_event *mmap_event)
  3863. {
  3864. struct perf_output_handle handle;
  3865. struct perf_sample_data sample;
  3866. int size = mmap_event->event_id.header.size;
  3867. int ret;
  3868. perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
  3869. ret = perf_output_begin(&handle, event,
  3870. mmap_event->event_id.header.size, 0, 0);
  3871. if (ret)
  3872. goto out;
  3873. mmap_event->event_id.pid = perf_event_pid(event, current);
  3874. mmap_event->event_id.tid = perf_event_tid(event, current);
  3875. perf_output_put(&handle, mmap_event->event_id);
  3876. perf_output_copy(&handle, mmap_event->file_name,
  3877. mmap_event->file_size);
  3878. perf_event__output_id_sample(event, &handle, &sample);
  3879. perf_output_end(&handle);
  3880. out:
  3881. mmap_event->event_id.header.size = size;
  3882. }
  3883. static int perf_event_mmap_match(struct perf_event *event,
  3884. struct perf_mmap_event *mmap_event,
  3885. int executable)
  3886. {
  3887. if (event->state < PERF_EVENT_STATE_INACTIVE)
  3888. return 0;
  3889. if (!event_filter_match(event))
  3890. return 0;
  3891. if ((!executable && event->attr.mmap_data) ||
  3892. (executable && event->attr.mmap))
  3893. return 1;
  3894. return 0;
  3895. }
  3896. static void perf_event_mmap_ctx(struct perf_event_context *ctx,
  3897. struct perf_mmap_event *mmap_event,
  3898. int executable)
  3899. {
  3900. struct perf_event *event;
  3901. list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
  3902. if (perf_event_mmap_match(event, mmap_event, executable))
  3903. perf_event_mmap_output(event, mmap_event);
  3904. }
  3905. }
  3906. static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
  3907. {
  3908. struct perf_cpu_context *cpuctx;
  3909. struct perf_event_context *ctx;
  3910. struct vm_area_struct *vma = mmap_event->vma;
  3911. struct file *file = vma->vm_file;
  3912. unsigned int size;
  3913. char tmp[16];
  3914. char *buf = NULL;
  3915. const char *name;
  3916. struct pmu *pmu;
  3917. int ctxn;
  3918. memset(tmp, 0, sizeof(tmp));
  3919. if (file) {
  3920. /*
  3921. * d_path works from the end of the buffer backwards, so we
  3922. * need to add enough zero bytes after the string to handle
  3923. * the 64bit alignment we do later.
  3924. */
  3925. buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
  3926. if (!buf) {
  3927. name = strncpy(tmp, "//enomem", sizeof(tmp));
  3928. goto got_name;
  3929. }
  3930. name = d_path(&file->f_path, buf, PATH_MAX);
  3931. if (IS_ERR(name)) {
  3932. name = strncpy(tmp, "//toolong", sizeof(tmp));
  3933. goto got_name;
  3934. }
  3935. } else {
  3936. if (arch_vma_name(mmap_event->vma)) {
  3937. name = strncpy(tmp, arch_vma_name(mmap_event->vma),
  3938. sizeof(tmp));
  3939. goto got_name;
  3940. }
  3941. if (!vma->vm_mm) {
  3942. name = strncpy(tmp, "[vdso]", sizeof(tmp));
  3943. goto got_name;
  3944. } else if (vma->vm_start <= vma->vm_mm->start_brk &&
  3945. vma->vm_end >= vma->vm_mm->brk) {
  3946. name = strncpy(tmp, "[heap]", sizeof(tmp));
  3947. goto got_name;
  3948. } else if (vma->vm_start <= vma->vm_mm->start_stack &&
  3949. vma->vm_end >= vma->vm_mm->start_stack) {
  3950. name = strncpy(tmp, "[stack]", sizeof(tmp));
  3951. goto got_name;
  3952. }
  3953. name = strncpy(tmp, "//anon", sizeof(tmp));
  3954. goto got_name;
  3955. }
  3956. got_name:
  3957. size = ALIGN(strlen(name)+1, sizeof(u64));
  3958. mmap_event->file_name = name;
  3959. mmap_event->file_size = size;
  3960. mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
  3961. rcu_read_lock();
  3962. list_for_each_entry_rcu(pmu, &pmus, entry) {
  3963. cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
  3964. if (cpuctx->active_pmu != pmu)
  3965. goto next;
  3966. perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
  3967. vma->vm_flags & VM_EXEC);
  3968. ctxn = pmu->task_ctx_nr;
  3969. if (ctxn < 0)
  3970. goto next;
  3971. ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
  3972. if (ctx) {
  3973. perf_event_mmap_ctx(ctx, mmap_event,
  3974. vma->vm_flags & VM_EXEC);
  3975. }
  3976. next:
  3977. put_cpu_ptr(pmu->pmu_cpu_context);
  3978. }
  3979. rcu_read_unlock();
  3980. kfree(buf);
  3981. }
  3982. void perf_event_mmap(struct vm_area_struct *vma)
  3983. {
  3984. struct perf_mmap_event mmap_event;
  3985. if (!atomic_read(&nr_mmap_events))
  3986. return;
  3987. mmap_event = (struct perf_mmap_event){
  3988. .vma = vma,
  3989. /* .file_name */
  3990. /* .file_size */
  3991. .event_id = {
  3992. .header = {
  3993. .type = PERF_RECORD_MMAP,
  3994. .misc = PERF_RECORD_MISC_USER,
  3995. /* .size */
  3996. },
  3997. /* .pid */
  3998. /* .tid */
  3999. .start = vma->vm_start,
  4000. .len = vma->vm_end - vma->vm_start,
  4001. .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
  4002. },
  4003. };
  4004. perf_event_mmap_event(&mmap_event);
  4005. }
  4006. /*
  4007. * IRQ throttle logging
  4008. */
  4009. static void perf_log_throttle(struct perf_event *event, int enable)
  4010. {
  4011. struct perf_output_handle handle;
  4012. struct perf_sample_data sample;
  4013. int ret;
  4014. struct {
  4015. struct perf_event_header header;
  4016. u64 time;
  4017. u64 id;
  4018. u64 stream_id;
  4019. } throttle_event = {
  4020. .header = {
  4021. .type = PERF_RECORD_THROTTLE,
  4022. .misc = 0,
  4023. .size = sizeof(throttle_event),
  4024. },
  4025. .time = perf_clock(),
  4026. .id = primary_event_id(event),
  4027. .stream_id = event->id,
  4028. };
  4029. if (enable)
  4030. throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
  4031. perf_event_header__init_id(&throttle_event.header, &sample, event);
  4032. ret = perf_output_begin(&handle, event,
  4033. throttle_event.header.size, 1, 0);
  4034. if (ret)
  4035. return;
  4036. perf_output_put(&handle, throttle_event);
  4037. perf_event__output_id_sample(event, &handle, &sample);
  4038. perf_output_end(&handle);
  4039. }
  4040. /*
  4041. * Generic event overflow handling, sampling.
  4042. */
  4043. static int __perf_event_overflow(struct perf_event *event, int nmi,
  4044. int throttle, struct perf_sample_data *data,
  4045. struct pt_regs *regs)
  4046. {
  4047. int events = atomic_read(&event->event_limit);
  4048. struct hw_perf_event *hwc = &event->hw;
  4049. int ret = 0;
  4050. /*
  4051. * Non-sampling counters might still use the PMI to fold short
  4052. * hardware counters, ignore those.
  4053. */
  4054. if (unlikely(!is_sampling_event(event)))
  4055. return 0;
  4056. if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
  4057. if (throttle) {
  4058. hwc->interrupts = MAX_INTERRUPTS;
  4059. perf_log_throttle(event, 0);
  4060. ret = 1;
  4061. }
  4062. } else
  4063. hwc->interrupts++;
  4064. if (event->attr.freq) {
  4065. u64 now = perf_clock();
  4066. s64 delta = now - hwc->freq_time_stamp;
  4067. hwc->freq_time_stamp = now;
  4068. if (delta > 0 && delta < 2*TICK_NSEC)
  4069. perf_adjust_period(event, delta, hwc->last_period);
  4070. }
  4071. /*
  4072. * XXX event_limit might not quite work as expected on inherited
  4073. * events
  4074. */
  4075. event->pending_kill = POLL_IN;
  4076. if (events && atomic_dec_and_test(&event->event_limit)) {
  4077. ret = 1;
  4078. event->pending_kill = POLL_HUP;
  4079. if (nmi) {
  4080. event->pending_disable = 1;
  4081. irq_work_queue(&event->pending);
  4082. } else
  4083. perf_event_disable(event);
  4084. }
  4085. if (event->overflow_handler)
  4086. event->overflow_handler(event, nmi, data, regs);
  4087. else
  4088. perf_event_output(event, nmi, data, regs);
  4089. return ret;
  4090. }
  4091. int perf_event_overflow(struct perf_event *event, int nmi,
  4092. struct perf_sample_data *data,
  4093. struct pt_regs *regs)
  4094. {
  4095. return __perf_event_overflow(event, nmi, 1, data, regs);
  4096. }
  4097. /*
  4098. * Generic software event infrastructure
  4099. */
  4100. struct swevent_htable {
  4101. struct swevent_hlist *swevent_hlist;
  4102. struct mutex hlist_mutex;
  4103. int hlist_refcount;
  4104. /* Recursion avoidance in each contexts */
  4105. int recursion[PERF_NR_CONTEXTS];
  4106. };
  4107. static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
  4108. /*
  4109. * We directly increment event->count and keep a second value in
  4110. * event->hw.period_left to count intervals. This period event
  4111. * is kept in the range [-sample_period, 0] so that we can use the
  4112. * sign as trigger.
  4113. */
  4114. static u64 perf_swevent_set_period(struct perf_event *event)
  4115. {
  4116. struct hw_perf_event *hwc = &event->hw;
  4117. u64 period = hwc->last_period;
  4118. u64 nr, offset;
  4119. s64 old, val;
  4120. hwc->last_period = hwc->sample_period;
  4121. again:
  4122. old = val = local64_read(&hwc->period_left);
  4123. if (val < 0)
  4124. return 0;
  4125. nr = div64_u64(period + val, period);
  4126. offset = nr * period;
  4127. val -= offset;
  4128. if (local64_cmpxchg(&hwc->period_left, old, val) != old)
  4129. goto again;
  4130. return nr;
  4131. }
  4132. static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
  4133. int nmi, struct perf_sample_data *data,
  4134. struct pt_regs *regs)
  4135. {
  4136. struct hw_perf_event *hwc = &event->hw;
  4137. int throttle = 0;
  4138. data->period = event->hw.last_period;
  4139. if (!overflow)
  4140. overflow = perf_swevent_set_period(event);
  4141. if (hwc->interrupts == MAX_INTERRUPTS)
  4142. return;
  4143. for (; overflow; overflow--) {
  4144. if (__perf_event_overflow(event, nmi, throttle,
  4145. data, regs)) {
  4146. /*
  4147. * We inhibit the overflow from happening when
  4148. * hwc->interrupts == MAX_INTERRUPTS.
  4149. */
  4150. break;
  4151. }
  4152. throttle = 1;
  4153. }
  4154. }
  4155. static void perf_swevent_event(struct perf_event *event, u64 nr,
  4156. int nmi, struct perf_sample_data *data,
  4157. struct pt_regs *regs)
  4158. {
  4159. struct hw_perf_event *hwc = &event->hw;
  4160. local64_add(nr, &event->count);
  4161. if (!regs)
  4162. return;
  4163. if (!is_sampling_event(event))
  4164. return;
  4165. if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
  4166. return perf_swevent_overflow(event, 1, nmi, data, regs);
  4167. if (local64_add_negative(nr, &hwc->period_left))
  4168. return;
  4169. perf_swevent_overflow(event, 0, nmi, data, regs);
  4170. }
  4171. static int perf_exclude_event(struct perf_event *event,
  4172. struct pt_regs *regs)
  4173. {
  4174. if (event->hw.state & PERF_HES_STOPPED)
  4175. return 0;
  4176. if (regs) {
  4177. if (event->attr.exclude_user && user_mode(regs))
  4178. return 1;
  4179. if (event->attr.exclude_kernel && !user_mode(regs))
  4180. return 1;
  4181. }
  4182. return 0;
  4183. }
  4184. static int perf_swevent_match(struct perf_event *event,
  4185. enum perf_type_id type,
  4186. u32 event_id,
  4187. struct perf_sample_data *data,
  4188. struct pt_regs *regs)
  4189. {
  4190. if (event->attr.type != type)
  4191. return 0;
  4192. if (event->attr.config != event_id)
  4193. return 0;
  4194. if (perf_exclude_event(event, regs))
  4195. return 0;
  4196. return 1;
  4197. }
  4198. static inline u64 swevent_hash(u64 type, u32 event_id)
  4199. {
  4200. u64 val = event_id | (type << 32);
  4201. return hash_64(val, SWEVENT_HLIST_BITS);
  4202. }
  4203. static inline struct hlist_head *
  4204. __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
  4205. {
  4206. u64 hash = swevent_hash(type, event_id);
  4207. return &hlist->heads[hash];
  4208. }
  4209. /* For the read side: events when they trigger */
  4210. static inline struct hlist_head *
  4211. find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
  4212. {
  4213. struct swevent_hlist *hlist;
  4214. hlist = rcu_dereference(swhash->swevent_hlist);
  4215. if (!hlist)
  4216. return NULL;
  4217. return __find_swevent_head(hlist, type, event_id);
  4218. }
  4219. /* For the event head insertion and removal in the hlist */
  4220. static inline struct hlist_head *
  4221. find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
  4222. {
  4223. struct swevent_hlist *hlist;
  4224. u32 event_id = event->attr.config;
  4225. u64 type = event->attr.type;
  4226. /*
  4227. * Event scheduling is always serialized against hlist allocation
  4228. * and release. Which makes the protected version suitable here.
  4229. * The context lock guarantees that.
  4230. */
  4231. hlist = rcu_dereference_protected(swhash->swevent_hlist,
  4232. lockdep_is_held(&event->ctx->lock));
  4233. if (!hlist)
  4234. return NULL;
  4235. return __find_swevent_head(hlist, type, event_id);
  4236. }
  4237. static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
  4238. u64 nr, int nmi,
  4239. struct perf_sample_data *data,
  4240. struct pt_regs *regs)
  4241. {
  4242. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4243. struct perf_event *event;
  4244. struct hlist_node *node;
  4245. struct hlist_head *head;
  4246. rcu_read_lock();
  4247. head = find_swevent_head_rcu(swhash, type, event_id);
  4248. if (!head)
  4249. goto end;
  4250. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4251. if (perf_swevent_match(event, type, event_id, data, regs))
  4252. perf_swevent_event(event, nr, nmi, data, regs);
  4253. }
  4254. end:
  4255. rcu_read_unlock();
  4256. }
  4257. int perf_swevent_get_recursion_context(void)
  4258. {
  4259. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4260. return get_recursion_context(swhash->recursion);
  4261. }
  4262. EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
  4263. inline void perf_swevent_put_recursion_context(int rctx)
  4264. {
  4265. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4266. put_recursion_context(swhash->recursion, rctx);
  4267. }
  4268. void __perf_sw_event(u32 event_id, u64 nr, int nmi,
  4269. struct pt_regs *regs, u64 addr)
  4270. {
  4271. struct perf_sample_data data;
  4272. int rctx;
  4273. preempt_disable_notrace();
  4274. rctx = perf_swevent_get_recursion_context();
  4275. if (rctx < 0)
  4276. return;
  4277. perf_sample_data_init(&data, addr);
  4278. do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
  4279. perf_swevent_put_recursion_context(rctx);
  4280. preempt_enable_notrace();
  4281. }
  4282. static void perf_swevent_read(struct perf_event *event)
  4283. {
  4284. }
  4285. static int perf_swevent_add(struct perf_event *event, int flags)
  4286. {
  4287. struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
  4288. struct hw_perf_event *hwc = &event->hw;
  4289. struct hlist_head *head;
  4290. if (is_sampling_event(event)) {
  4291. hwc->last_period = hwc->sample_period;
  4292. perf_swevent_set_period(event);
  4293. }
  4294. hwc->state = !(flags & PERF_EF_START);
  4295. head = find_swevent_head(swhash, event);
  4296. if (WARN_ON_ONCE(!head))
  4297. return -EINVAL;
  4298. hlist_add_head_rcu(&event->hlist_entry, head);
  4299. return 0;
  4300. }
  4301. static void perf_swevent_del(struct perf_event *event, int flags)
  4302. {
  4303. hlist_del_rcu(&event->hlist_entry);
  4304. }
  4305. static void perf_swevent_start(struct perf_event *event, int flags)
  4306. {
  4307. event->hw.state = 0;
  4308. }
  4309. static void perf_swevent_stop(struct perf_event *event, int flags)
  4310. {
  4311. event->hw.state = PERF_HES_STOPPED;
  4312. }
  4313. /* Deref the hlist from the update side */
  4314. static inline struct swevent_hlist *
  4315. swevent_hlist_deref(struct swevent_htable *swhash)
  4316. {
  4317. return rcu_dereference_protected(swhash->swevent_hlist,
  4318. lockdep_is_held(&swhash->hlist_mutex));
  4319. }
  4320. static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
  4321. {
  4322. struct swevent_hlist *hlist;
  4323. hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
  4324. kfree(hlist);
  4325. }
  4326. static void swevent_hlist_release(struct swevent_htable *swhash)
  4327. {
  4328. struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
  4329. if (!hlist)
  4330. return;
  4331. rcu_assign_pointer(swhash->swevent_hlist, NULL);
  4332. call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
  4333. }
  4334. static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
  4335. {
  4336. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4337. mutex_lock(&swhash->hlist_mutex);
  4338. if (!--swhash->hlist_refcount)
  4339. swevent_hlist_release(swhash);
  4340. mutex_unlock(&swhash->hlist_mutex);
  4341. }
  4342. static void swevent_hlist_put(struct perf_event *event)
  4343. {
  4344. int cpu;
  4345. if (event->cpu != -1) {
  4346. swevent_hlist_put_cpu(event, event->cpu);
  4347. return;
  4348. }
  4349. for_each_possible_cpu(cpu)
  4350. swevent_hlist_put_cpu(event, cpu);
  4351. }
  4352. static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
  4353. {
  4354. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  4355. int err = 0;
  4356. mutex_lock(&swhash->hlist_mutex);
  4357. if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
  4358. struct swevent_hlist *hlist;
  4359. hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
  4360. if (!hlist) {
  4361. err = -ENOMEM;
  4362. goto exit;
  4363. }
  4364. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  4365. }
  4366. swhash->hlist_refcount++;
  4367. exit:
  4368. mutex_unlock(&swhash->hlist_mutex);
  4369. return err;
  4370. }
  4371. static int swevent_hlist_get(struct perf_event *event)
  4372. {
  4373. int err;
  4374. int cpu, failed_cpu;
  4375. if (event->cpu != -1)
  4376. return swevent_hlist_get_cpu(event, event->cpu);
  4377. get_online_cpus();
  4378. for_each_possible_cpu(cpu) {
  4379. err = swevent_hlist_get_cpu(event, cpu);
  4380. if (err) {
  4381. failed_cpu = cpu;
  4382. goto fail;
  4383. }
  4384. }
  4385. put_online_cpus();
  4386. return 0;
  4387. fail:
  4388. for_each_possible_cpu(cpu) {
  4389. if (cpu == failed_cpu)
  4390. break;
  4391. swevent_hlist_put_cpu(event, cpu);
  4392. }
  4393. put_online_cpus();
  4394. return err;
  4395. }
  4396. atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
  4397. static void sw_perf_event_destroy(struct perf_event *event)
  4398. {
  4399. u64 event_id = event->attr.config;
  4400. WARN_ON(event->parent);
  4401. jump_label_dec(&perf_swevent_enabled[event_id]);
  4402. swevent_hlist_put(event);
  4403. }
  4404. static int perf_swevent_init(struct perf_event *event)
  4405. {
  4406. int event_id = event->attr.config;
  4407. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4408. return -ENOENT;
  4409. switch (event_id) {
  4410. case PERF_COUNT_SW_CPU_CLOCK:
  4411. case PERF_COUNT_SW_TASK_CLOCK:
  4412. return -ENOENT;
  4413. default:
  4414. break;
  4415. }
  4416. if (event_id >= PERF_COUNT_SW_MAX)
  4417. return -ENOENT;
  4418. if (!event->parent) {
  4419. int err;
  4420. err = swevent_hlist_get(event);
  4421. if (err)
  4422. return err;
  4423. jump_label_inc(&perf_swevent_enabled[event_id]);
  4424. event->destroy = sw_perf_event_destroy;
  4425. }
  4426. return 0;
  4427. }
  4428. static struct pmu perf_swevent = {
  4429. .task_ctx_nr = perf_sw_context,
  4430. .event_init = perf_swevent_init,
  4431. .add = perf_swevent_add,
  4432. .del = perf_swevent_del,
  4433. .start = perf_swevent_start,
  4434. .stop = perf_swevent_stop,
  4435. .read = perf_swevent_read,
  4436. };
  4437. #ifdef CONFIG_EVENT_TRACING
  4438. static int perf_tp_filter_match(struct perf_event *event,
  4439. struct perf_sample_data *data)
  4440. {
  4441. void *record = data->raw->data;
  4442. if (likely(!event->filter) || filter_match_preds(event->filter, record))
  4443. return 1;
  4444. return 0;
  4445. }
  4446. static int perf_tp_event_match(struct perf_event *event,
  4447. struct perf_sample_data *data,
  4448. struct pt_regs *regs)
  4449. {
  4450. /*
  4451. * All tracepoints are from kernel-space.
  4452. */
  4453. if (event->attr.exclude_kernel)
  4454. return 0;
  4455. if (!perf_tp_filter_match(event, data))
  4456. return 0;
  4457. return 1;
  4458. }
  4459. void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
  4460. struct pt_regs *regs, struct hlist_head *head, int rctx)
  4461. {
  4462. struct perf_sample_data data;
  4463. struct perf_event *event;
  4464. struct hlist_node *node;
  4465. struct perf_raw_record raw = {
  4466. .size = entry_size,
  4467. .data = record,
  4468. };
  4469. perf_sample_data_init(&data, addr);
  4470. data.raw = &raw;
  4471. hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
  4472. if (perf_tp_event_match(event, &data, regs))
  4473. perf_swevent_event(event, count, 1, &data, regs);
  4474. }
  4475. perf_swevent_put_recursion_context(rctx);
  4476. }
  4477. EXPORT_SYMBOL_GPL(perf_tp_event);
  4478. static void tp_perf_event_destroy(struct perf_event *event)
  4479. {
  4480. perf_trace_destroy(event);
  4481. }
  4482. static int perf_tp_event_init(struct perf_event *event)
  4483. {
  4484. int err;
  4485. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4486. return -ENOENT;
  4487. err = perf_trace_init(event);
  4488. if (err)
  4489. return err;
  4490. event->destroy = tp_perf_event_destroy;
  4491. return 0;
  4492. }
  4493. static struct pmu perf_tracepoint = {
  4494. .task_ctx_nr = perf_sw_context,
  4495. .event_init = perf_tp_event_init,
  4496. .add = perf_trace_add,
  4497. .del = perf_trace_del,
  4498. .start = perf_swevent_start,
  4499. .stop = perf_swevent_stop,
  4500. .read = perf_swevent_read,
  4501. };
  4502. static inline void perf_tp_register(void)
  4503. {
  4504. perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
  4505. }
  4506. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4507. {
  4508. char *filter_str;
  4509. int ret;
  4510. if (event->attr.type != PERF_TYPE_TRACEPOINT)
  4511. return -EINVAL;
  4512. filter_str = strndup_user(arg, PAGE_SIZE);
  4513. if (IS_ERR(filter_str))
  4514. return PTR_ERR(filter_str);
  4515. ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
  4516. kfree(filter_str);
  4517. return ret;
  4518. }
  4519. static void perf_event_free_filter(struct perf_event *event)
  4520. {
  4521. ftrace_profile_free_filter(event);
  4522. }
  4523. #else
  4524. static inline void perf_tp_register(void)
  4525. {
  4526. }
  4527. static int perf_event_set_filter(struct perf_event *event, void __user *arg)
  4528. {
  4529. return -ENOENT;
  4530. }
  4531. static void perf_event_free_filter(struct perf_event *event)
  4532. {
  4533. }
  4534. #endif /* CONFIG_EVENT_TRACING */
  4535. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  4536. void perf_bp_event(struct perf_event *bp, void *data)
  4537. {
  4538. struct perf_sample_data sample;
  4539. struct pt_regs *regs = data;
  4540. perf_sample_data_init(&sample, bp->attr.bp_addr);
  4541. if (!bp->hw.state && !perf_exclude_event(bp, regs))
  4542. perf_swevent_event(bp, 1, 1, &sample, regs);
  4543. }
  4544. #endif
  4545. /*
  4546. * hrtimer based swevent callback
  4547. */
  4548. static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
  4549. {
  4550. enum hrtimer_restart ret = HRTIMER_RESTART;
  4551. struct perf_sample_data data;
  4552. struct pt_regs *regs;
  4553. struct perf_event *event;
  4554. u64 period;
  4555. event = container_of(hrtimer, struct perf_event, hw.hrtimer);
  4556. if (event->state != PERF_EVENT_STATE_ACTIVE)
  4557. return HRTIMER_NORESTART;
  4558. event->pmu->read(event);
  4559. perf_sample_data_init(&data, 0);
  4560. data.period = event->hw.last_period;
  4561. regs = get_irq_regs();
  4562. if (regs && !perf_exclude_event(event, regs)) {
  4563. if (!(event->attr.exclude_idle && current->pid == 0))
  4564. if (perf_event_overflow(event, 0, &data, regs))
  4565. ret = HRTIMER_NORESTART;
  4566. }
  4567. period = max_t(u64, 10000, event->hw.sample_period);
  4568. hrtimer_forward_now(hrtimer, ns_to_ktime(period));
  4569. return ret;
  4570. }
  4571. static void perf_swevent_start_hrtimer(struct perf_event *event)
  4572. {
  4573. struct hw_perf_event *hwc = &event->hw;
  4574. s64 period;
  4575. if (!is_sampling_event(event))
  4576. return;
  4577. period = local64_read(&hwc->period_left);
  4578. if (period) {
  4579. if (period < 0)
  4580. period = 10000;
  4581. local64_set(&hwc->period_left, 0);
  4582. } else {
  4583. period = max_t(u64, 10000, hwc->sample_period);
  4584. }
  4585. __hrtimer_start_range_ns(&hwc->hrtimer,
  4586. ns_to_ktime(period), 0,
  4587. HRTIMER_MODE_REL_PINNED, 0);
  4588. }
  4589. static void perf_swevent_cancel_hrtimer(struct perf_event *event)
  4590. {
  4591. struct hw_perf_event *hwc = &event->hw;
  4592. if (is_sampling_event(event)) {
  4593. ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
  4594. local64_set(&hwc->period_left, ktime_to_ns(remaining));
  4595. hrtimer_cancel(&hwc->hrtimer);
  4596. }
  4597. }
  4598. static void perf_swevent_init_hrtimer(struct perf_event *event)
  4599. {
  4600. struct hw_perf_event *hwc = &event->hw;
  4601. if (!is_sampling_event(event))
  4602. return;
  4603. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  4604. hwc->hrtimer.function = perf_swevent_hrtimer;
  4605. /*
  4606. * Since hrtimers have a fixed rate, we can do a static freq->period
  4607. * mapping and avoid the whole period adjust feedback stuff.
  4608. */
  4609. if (event->attr.freq) {
  4610. long freq = event->attr.sample_freq;
  4611. event->attr.sample_period = NSEC_PER_SEC / freq;
  4612. hwc->sample_period = event->attr.sample_period;
  4613. local64_set(&hwc->period_left, hwc->sample_period);
  4614. event->attr.freq = 0;
  4615. }
  4616. }
  4617. /*
  4618. * Software event: cpu wall time clock
  4619. */
  4620. static void cpu_clock_event_update(struct perf_event *event)
  4621. {
  4622. s64 prev;
  4623. u64 now;
  4624. now = local_clock();
  4625. prev = local64_xchg(&event->hw.prev_count, now);
  4626. local64_add(now - prev, &event->count);
  4627. }
  4628. static void cpu_clock_event_start(struct perf_event *event, int flags)
  4629. {
  4630. local64_set(&event->hw.prev_count, local_clock());
  4631. perf_swevent_start_hrtimer(event);
  4632. }
  4633. static void cpu_clock_event_stop(struct perf_event *event, int flags)
  4634. {
  4635. perf_swevent_cancel_hrtimer(event);
  4636. cpu_clock_event_update(event);
  4637. }
  4638. static int cpu_clock_event_add(struct perf_event *event, int flags)
  4639. {
  4640. if (flags & PERF_EF_START)
  4641. cpu_clock_event_start(event, flags);
  4642. return 0;
  4643. }
  4644. static void cpu_clock_event_del(struct perf_event *event, int flags)
  4645. {
  4646. cpu_clock_event_stop(event, flags);
  4647. }
  4648. static void cpu_clock_event_read(struct perf_event *event)
  4649. {
  4650. cpu_clock_event_update(event);
  4651. }
  4652. static int cpu_clock_event_init(struct perf_event *event)
  4653. {
  4654. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4655. return -ENOENT;
  4656. if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
  4657. return -ENOENT;
  4658. perf_swevent_init_hrtimer(event);
  4659. return 0;
  4660. }
  4661. static struct pmu perf_cpu_clock = {
  4662. .task_ctx_nr = perf_sw_context,
  4663. .event_init = cpu_clock_event_init,
  4664. .add = cpu_clock_event_add,
  4665. .del = cpu_clock_event_del,
  4666. .start = cpu_clock_event_start,
  4667. .stop = cpu_clock_event_stop,
  4668. .read = cpu_clock_event_read,
  4669. };
  4670. /*
  4671. * Software event: task time clock
  4672. */
  4673. static void task_clock_event_update(struct perf_event *event, u64 now)
  4674. {
  4675. u64 prev;
  4676. s64 delta;
  4677. prev = local64_xchg(&event->hw.prev_count, now);
  4678. delta = now - prev;
  4679. local64_add(delta, &event->count);
  4680. }
  4681. static void task_clock_event_start(struct perf_event *event, int flags)
  4682. {
  4683. local64_set(&event->hw.prev_count, event->ctx->time);
  4684. perf_swevent_start_hrtimer(event);
  4685. }
  4686. static void task_clock_event_stop(struct perf_event *event, int flags)
  4687. {
  4688. perf_swevent_cancel_hrtimer(event);
  4689. task_clock_event_update(event, event->ctx->time);
  4690. }
  4691. static int task_clock_event_add(struct perf_event *event, int flags)
  4692. {
  4693. if (flags & PERF_EF_START)
  4694. task_clock_event_start(event, flags);
  4695. return 0;
  4696. }
  4697. static void task_clock_event_del(struct perf_event *event, int flags)
  4698. {
  4699. task_clock_event_stop(event, PERF_EF_UPDATE);
  4700. }
  4701. static void task_clock_event_read(struct perf_event *event)
  4702. {
  4703. u64 now = perf_clock();
  4704. u64 delta = now - event->ctx->timestamp;
  4705. u64 time = event->ctx->time + delta;
  4706. task_clock_event_update(event, time);
  4707. }
  4708. static int task_clock_event_init(struct perf_event *event)
  4709. {
  4710. if (event->attr.type != PERF_TYPE_SOFTWARE)
  4711. return -ENOENT;
  4712. if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
  4713. return -ENOENT;
  4714. perf_swevent_init_hrtimer(event);
  4715. return 0;
  4716. }
  4717. static struct pmu perf_task_clock = {
  4718. .task_ctx_nr = perf_sw_context,
  4719. .event_init = task_clock_event_init,
  4720. .add = task_clock_event_add,
  4721. .del = task_clock_event_del,
  4722. .start = task_clock_event_start,
  4723. .stop = task_clock_event_stop,
  4724. .read = task_clock_event_read,
  4725. };
  4726. static void perf_pmu_nop_void(struct pmu *pmu)
  4727. {
  4728. }
  4729. static int perf_pmu_nop_int(struct pmu *pmu)
  4730. {
  4731. return 0;
  4732. }
  4733. static void perf_pmu_start_txn(struct pmu *pmu)
  4734. {
  4735. perf_pmu_disable(pmu);
  4736. }
  4737. static int perf_pmu_commit_txn(struct pmu *pmu)
  4738. {
  4739. perf_pmu_enable(pmu);
  4740. return 0;
  4741. }
  4742. static void perf_pmu_cancel_txn(struct pmu *pmu)
  4743. {
  4744. perf_pmu_enable(pmu);
  4745. }
  4746. /*
  4747. * Ensures all contexts with the same task_ctx_nr have the same
  4748. * pmu_cpu_context too.
  4749. */
  4750. static void *find_pmu_context(int ctxn)
  4751. {
  4752. struct pmu *pmu;
  4753. if (ctxn < 0)
  4754. return NULL;
  4755. list_for_each_entry(pmu, &pmus, entry) {
  4756. if (pmu->task_ctx_nr == ctxn)
  4757. return pmu->pmu_cpu_context;
  4758. }
  4759. return NULL;
  4760. }
  4761. static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
  4762. {
  4763. int cpu;
  4764. for_each_possible_cpu(cpu) {
  4765. struct perf_cpu_context *cpuctx;
  4766. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4767. if (cpuctx->active_pmu == old_pmu)
  4768. cpuctx->active_pmu = pmu;
  4769. }
  4770. }
  4771. static void free_pmu_context(struct pmu *pmu)
  4772. {
  4773. struct pmu *i;
  4774. mutex_lock(&pmus_lock);
  4775. /*
  4776. * Like a real lame refcount.
  4777. */
  4778. list_for_each_entry(i, &pmus, entry) {
  4779. if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
  4780. update_pmu_context(i, pmu);
  4781. goto out;
  4782. }
  4783. }
  4784. free_percpu(pmu->pmu_cpu_context);
  4785. out:
  4786. mutex_unlock(&pmus_lock);
  4787. }
  4788. static struct idr pmu_idr;
  4789. static ssize_t
  4790. type_show(struct device *dev, struct device_attribute *attr, char *page)
  4791. {
  4792. struct pmu *pmu = dev_get_drvdata(dev);
  4793. return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
  4794. }
  4795. static struct device_attribute pmu_dev_attrs[] = {
  4796. __ATTR_RO(type),
  4797. __ATTR_NULL,
  4798. };
  4799. static int pmu_bus_running;
  4800. static struct bus_type pmu_bus = {
  4801. .name = "event_source",
  4802. .dev_attrs = pmu_dev_attrs,
  4803. };
  4804. static void pmu_dev_release(struct device *dev)
  4805. {
  4806. kfree(dev);
  4807. }
  4808. static int pmu_dev_alloc(struct pmu *pmu)
  4809. {
  4810. int ret = -ENOMEM;
  4811. pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  4812. if (!pmu->dev)
  4813. goto out;
  4814. device_initialize(pmu->dev);
  4815. ret = dev_set_name(pmu->dev, "%s", pmu->name);
  4816. if (ret)
  4817. goto free_dev;
  4818. dev_set_drvdata(pmu->dev, pmu);
  4819. pmu->dev->bus = &pmu_bus;
  4820. pmu->dev->release = pmu_dev_release;
  4821. ret = device_add(pmu->dev);
  4822. if (ret)
  4823. goto free_dev;
  4824. out:
  4825. return ret;
  4826. free_dev:
  4827. put_device(pmu->dev);
  4828. goto out;
  4829. }
  4830. static struct lock_class_key cpuctx_mutex;
  4831. int perf_pmu_register(struct pmu *pmu, char *name, int type)
  4832. {
  4833. int cpu, ret;
  4834. mutex_lock(&pmus_lock);
  4835. ret = -ENOMEM;
  4836. pmu->pmu_disable_count = alloc_percpu(int);
  4837. if (!pmu->pmu_disable_count)
  4838. goto unlock;
  4839. pmu->type = -1;
  4840. if (!name)
  4841. goto skip_type;
  4842. pmu->name = name;
  4843. if (type < 0) {
  4844. int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
  4845. if (!err)
  4846. goto free_pdc;
  4847. err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
  4848. if (err) {
  4849. ret = err;
  4850. goto free_pdc;
  4851. }
  4852. }
  4853. pmu->type = type;
  4854. if (pmu_bus_running) {
  4855. ret = pmu_dev_alloc(pmu);
  4856. if (ret)
  4857. goto free_idr;
  4858. }
  4859. skip_type:
  4860. pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
  4861. if (pmu->pmu_cpu_context)
  4862. goto got_cpu_context;
  4863. pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
  4864. if (!pmu->pmu_cpu_context)
  4865. goto free_dev;
  4866. for_each_possible_cpu(cpu) {
  4867. struct perf_cpu_context *cpuctx;
  4868. cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
  4869. __perf_event_init_context(&cpuctx->ctx);
  4870. lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
  4871. cpuctx->ctx.type = cpu_context;
  4872. cpuctx->ctx.pmu = pmu;
  4873. cpuctx->jiffies_interval = 1;
  4874. INIT_LIST_HEAD(&cpuctx->rotation_list);
  4875. cpuctx->active_pmu = pmu;
  4876. }
  4877. got_cpu_context:
  4878. if (!pmu->start_txn) {
  4879. if (pmu->pmu_enable) {
  4880. /*
  4881. * If we have pmu_enable/pmu_disable calls, install
  4882. * transaction stubs that use that to try and batch
  4883. * hardware accesses.
  4884. */
  4885. pmu->start_txn = perf_pmu_start_txn;
  4886. pmu->commit_txn = perf_pmu_commit_txn;
  4887. pmu->cancel_txn = perf_pmu_cancel_txn;
  4888. } else {
  4889. pmu->start_txn = perf_pmu_nop_void;
  4890. pmu->commit_txn = perf_pmu_nop_int;
  4891. pmu->cancel_txn = perf_pmu_nop_void;
  4892. }
  4893. }
  4894. if (!pmu->pmu_enable) {
  4895. pmu->pmu_enable = perf_pmu_nop_void;
  4896. pmu->pmu_disable = perf_pmu_nop_void;
  4897. }
  4898. list_add_rcu(&pmu->entry, &pmus);
  4899. ret = 0;
  4900. unlock:
  4901. mutex_unlock(&pmus_lock);
  4902. return ret;
  4903. free_dev:
  4904. device_del(pmu->dev);
  4905. put_device(pmu->dev);
  4906. free_idr:
  4907. if (pmu->type >= PERF_TYPE_MAX)
  4908. idr_remove(&pmu_idr, pmu->type);
  4909. free_pdc:
  4910. free_percpu(pmu->pmu_disable_count);
  4911. goto unlock;
  4912. }
  4913. void perf_pmu_unregister(struct pmu *pmu)
  4914. {
  4915. mutex_lock(&pmus_lock);
  4916. list_del_rcu(&pmu->entry);
  4917. mutex_unlock(&pmus_lock);
  4918. /*
  4919. * We dereference the pmu list under both SRCU and regular RCU, so
  4920. * synchronize against both of those.
  4921. */
  4922. synchronize_srcu(&pmus_srcu);
  4923. synchronize_rcu();
  4924. free_percpu(pmu->pmu_disable_count);
  4925. if (pmu->type >= PERF_TYPE_MAX)
  4926. idr_remove(&pmu_idr, pmu->type);
  4927. device_del(pmu->dev);
  4928. put_device(pmu->dev);
  4929. free_pmu_context(pmu);
  4930. }
  4931. struct pmu *perf_init_event(struct perf_event *event)
  4932. {
  4933. struct pmu *pmu = NULL;
  4934. int idx;
  4935. int ret;
  4936. idx = srcu_read_lock(&pmus_srcu);
  4937. rcu_read_lock();
  4938. pmu = idr_find(&pmu_idr, event->attr.type);
  4939. rcu_read_unlock();
  4940. if (pmu) {
  4941. ret = pmu->event_init(event);
  4942. if (ret)
  4943. pmu = ERR_PTR(ret);
  4944. goto unlock;
  4945. }
  4946. list_for_each_entry_rcu(pmu, &pmus, entry) {
  4947. ret = pmu->event_init(event);
  4948. if (!ret)
  4949. goto unlock;
  4950. if (ret != -ENOENT) {
  4951. pmu = ERR_PTR(ret);
  4952. goto unlock;
  4953. }
  4954. }
  4955. pmu = ERR_PTR(-ENOENT);
  4956. unlock:
  4957. srcu_read_unlock(&pmus_srcu, idx);
  4958. return pmu;
  4959. }
  4960. /*
  4961. * Allocate and initialize a event structure
  4962. */
  4963. static struct perf_event *
  4964. perf_event_alloc(struct perf_event_attr *attr, int cpu,
  4965. struct task_struct *task,
  4966. struct perf_event *group_leader,
  4967. struct perf_event *parent_event,
  4968. perf_overflow_handler_t overflow_handler)
  4969. {
  4970. struct pmu *pmu;
  4971. struct perf_event *event;
  4972. struct hw_perf_event *hwc;
  4973. long err;
  4974. if ((unsigned)cpu >= nr_cpu_ids) {
  4975. if (!task || cpu != -1)
  4976. return ERR_PTR(-EINVAL);
  4977. }
  4978. event = kzalloc(sizeof(*event), GFP_KERNEL);
  4979. if (!event)
  4980. return ERR_PTR(-ENOMEM);
  4981. /*
  4982. * Single events are their own group leaders, with an
  4983. * empty sibling list:
  4984. */
  4985. if (!group_leader)
  4986. group_leader = event;
  4987. mutex_init(&event->child_mutex);
  4988. INIT_LIST_HEAD(&event->child_list);
  4989. INIT_LIST_HEAD(&event->group_entry);
  4990. INIT_LIST_HEAD(&event->event_entry);
  4991. INIT_LIST_HEAD(&event->sibling_list);
  4992. init_waitqueue_head(&event->waitq);
  4993. init_irq_work(&event->pending, perf_pending_event);
  4994. mutex_init(&event->mmap_mutex);
  4995. event->cpu = cpu;
  4996. event->attr = *attr;
  4997. event->group_leader = group_leader;
  4998. event->pmu = NULL;
  4999. event->oncpu = -1;
  5000. event->parent = parent_event;
  5001. event->ns = get_pid_ns(current->nsproxy->pid_ns);
  5002. event->id = atomic64_inc_return(&perf_event_id);
  5003. event->state = PERF_EVENT_STATE_INACTIVE;
  5004. if (task) {
  5005. event->attach_state = PERF_ATTACH_TASK;
  5006. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  5007. /*
  5008. * hw_breakpoint is a bit difficult here..
  5009. */
  5010. if (attr->type == PERF_TYPE_BREAKPOINT)
  5011. event->hw.bp_target = task;
  5012. #endif
  5013. }
  5014. if (!overflow_handler && parent_event)
  5015. overflow_handler = parent_event->overflow_handler;
  5016. event->overflow_handler = overflow_handler;
  5017. if (attr->disabled)
  5018. event->state = PERF_EVENT_STATE_OFF;
  5019. pmu = NULL;
  5020. hwc = &event->hw;
  5021. hwc->sample_period = attr->sample_period;
  5022. if (attr->freq && attr->sample_freq)
  5023. hwc->sample_period = 1;
  5024. hwc->last_period = hwc->sample_period;
  5025. local64_set(&hwc->period_left, hwc->sample_period);
  5026. /*
  5027. * we currently do not support PERF_FORMAT_GROUP on inherited events
  5028. */
  5029. if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
  5030. goto done;
  5031. pmu = perf_init_event(event);
  5032. done:
  5033. err = 0;
  5034. if (!pmu)
  5035. err = -EINVAL;
  5036. else if (IS_ERR(pmu))
  5037. err = PTR_ERR(pmu);
  5038. if (err) {
  5039. if (event->ns)
  5040. put_pid_ns(event->ns);
  5041. kfree(event);
  5042. return ERR_PTR(err);
  5043. }
  5044. event->pmu = pmu;
  5045. if (!event->parent) {
  5046. if (event->attach_state & PERF_ATTACH_TASK)
  5047. jump_label_inc(&perf_sched_events);
  5048. if (event->attr.mmap || event->attr.mmap_data)
  5049. atomic_inc(&nr_mmap_events);
  5050. if (event->attr.comm)
  5051. atomic_inc(&nr_comm_events);
  5052. if (event->attr.task)
  5053. atomic_inc(&nr_task_events);
  5054. if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
  5055. err = get_callchain_buffers();
  5056. if (err) {
  5057. free_event(event);
  5058. return ERR_PTR(err);
  5059. }
  5060. }
  5061. }
  5062. return event;
  5063. }
  5064. static int perf_copy_attr(struct perf_event_attr __user *uattr,
  5065. struct perf_event_attr *attr)
  5066. {
  5067. u32 size;
  5068. int ret;
  5069. if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
  5070. return -EFAULT;
  5071. /*
  5072. * zero the full structure, so that a short copy will be nice.
  5073. */
  5074. memset(attr, 0, sizeof(*attr));
  5075. ret = get_user(size, &uattr->size);
  5076. if (ret)
  5077. return ret;
  5078. if (size > PAGE_SIZE) /* silly large */
  5079. goto err_size;
  5080. if (!size) /* abi compat */
  5081. size = PERF_ATTR_SIZE_VER0;
  5082. if (size < PERF_ATTR_SIZE_VER0)
  5083. goto err_size;
  5084. /*
  5085. * If we're handed a bigger struct than we know of,
  5086. * ensure all the unknown bits are 0 - i.e. new
  5087. * user-space does not rely on any kernel feature
  5088. * extensions we dont know about yet.
  5089. */
  5090. if (size > sizeof(*attr)) {
  5091. unsigned char __user *addr;
  5092. unsigned char __user *end;
  5093. unsigned char val;
  5094. addr = (void __user *)uattr + sizeof(*attr);
  5095. end = (void __user *)uattr + size;
  5096. for (; addr < end; addr++) {
  5097. ret = get_user(val, addr);
  5098. if (ret)
  5099. return ret;
  5100. if (val)
  5101. goto err_size;
  5102. }
  5103. size = sizeof(*attr);
  5104. }
  5105. ret = copy_from_user(attr, uattr, size);
  5106. if (ret)
  5107. return -EFAULT;
  5108. /*
  5109. * If the type exists, the corresponding creation will verify
  5110. * the attr->config.
  5111. */
  5112. if (attr->type >= PERF_TYPE_MAX)
  5113. return -EINVAL;
  5114. if (attr->__reserved_1)
  5115. return -EINVAL;
  5116. if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
  5117. return -EINVAL;
  5118. if (attr->read_format & ~(PERF_FORMAT_MAX-1))
  5119. return -EINVAL;
  5120. out:
  5121. return ret;
  5122. err_size:
  5123. put_user(sizeof(*attr), &uattr->size);
  5124. ret = -E2BIG;
  5125. goto out;
  5126. }
  5127. static int
  5128. perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
  5129. {
  5130. struct perf_buffer *buffer = NULL, *old_buffer = NULL;
  5131. int ret = -EINVAL;
  5132. if (!output_event)
  5133. goto set;
  5134. /* don't allow circular references */
  5135. if (event == output_event)
  5136. goto out;
  5137. /*
  5138. * Don't allow cross-cpu buffers
  5139. */
  5140. if (output_event->cpu != event->cpu)
  5141. goto out;
  5142. /*
  5143. * If its not a per-cpu buffer, it must be the same task.
  5144. */
  5145. if (output_event->cpu == -1 && output_event->ctx != event->ctx)
  5146. goto out;
  5147. set:
  5148. mutex_lock(&event->mmap_mutex);
  5149. /* Can't redirect output if we've got an active mmap() */
  5150. if (atomic_read(&event->mmap_count))
  5151. goto unlock;
  5152. if (output_event) {
  5153. /* get the buffer we want to redirect to */
  5154. buffer = perf_buffer_get(output_event);
  5155. if (!buffer)
  5156. goto unlock;
  5157. }
  5158. old_buffer = event->buffer;
  5159. rcu_assign_pointer(event->buffer, buffer);
  5160. ret = 0;
  5161. unlock:
  5162. mutex_unlock(&event->mmap_mutex);
  5163. if (old_buffer)
  5164. perf_buffer_put(old_buffer);
  5165. out:
  5166. return ret;
  5167. }
  5168. /**
  5169. * sys_perf_event_open - open a performance event, associate it to a task/cpu
  5170. *
  5171. * @attr_uptr: event_id type attributes for monitoring/sampling
  5172. * @pid: target pid
  5173. * @cpu: target cpu
  5174. * @group_fd: group leader event fd
  5175. */
  5176. SYSCALL_DEFINE5(perf_event_open,
  5177. struct perf_event_attr __user *, attr_uptr,
  5178. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  5179. {
  5180. struct perf_event *group_leader = NULL, *output_event = NULL;
  5181. struct perf_event *event, *sibling;
  5182. struct perf_event_attr attr;
  5183. struct perf_event_context *ctx;
  5184. struct file *event_file = NULL;
  5185. struct file *group_file = NULL;
  5186. struct task_struct *task = NULL;
  5187. struct pmu *pmu;
  5188. int event_fd;
  5189. int move_group = 0;
  5190. int fput_needed = 0;
  5191. int err;
  5192. /* for future expandability... */
  5193. if (flags & ~PERF_FLAG_ALL)
  5194. return -EINVAL;
  5195. err = perf_copy_attr(attr_uptr, &attr);
  5196. if (err)
  5197. return err;
  5198. if (!attr.exclude_kernel) {
  5199. if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
  5200. return -EACCES;
  5201. }
  5202. if (attr.freq) {
  5203. if (attr.sample_freq > sysctl_perf_event_sample_rate)
  5204. return -EINVAL;
  5205. }
  5206. /*
  5207. * In cgroup mode, the pid argument is used to pass the fd
  5208. * opened to the cgroup directory in cgroupfs. The cpu argument
  5209. * designates the cpu on which to monitor threads from that
  5210. * cgroup.
  5211. */
  5212. if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
  5213. return -EINVAL;
  5214. event_fd = get_unused_fd_flags(O_RDWR);
  5215. if (event_fd < 0)
  5216. return event_fd;
  5217. if (group_fd != -1) {
  5218. group_leader = perf_fget_light(group_fd, &fput_needed);
  5219. if (IS_ERR(group_leader)) {
  5220. err = PTR_ERR(group_leader);
  5221. goto err_fd;
  5222. }
  5223. group_file = group_leader->filp;
  5224. if (flags & PERF_FLAG_FD_OUTPUT)
  5225. output_event = group_leader;
  5226. if (flags & PERF_FLAG_FD_NO_GROUP)
  5227. group_leader = NULL;
  5228. }
  5229. if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
  5230. task = find_lively_task_by_vpid(pid);
  5231. if (IS_ERR(task)) {
  5232. err = PTR_ERR(task);
  5233. goto err_group_fd;
  5234. }
  5235. }
  5236. event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
  5237. if (IS_ERR(event)) {
  5238. err = PTR_ERR(event);
  5239. goto err_task;
  5240. }
  5241. if (flags & PERF_FLAG_PID_CGROUP) {
  5242. err = perf_cgroup_connect(pid, event, &attr, group_leader);
  5243. if (err)
  5244. goto err_alloc;
  5245. /*
  5246. * one more event:
  5247. * - that has cgroup constraint on event->cpu
  5248. * - that may need work on context switch
  5249. */
  5250. atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
  5251. jump_label_inc(&perf_sched_events);
  5252. }
  5253. /*
  5254. * Special case software events and allow them to be part of
  5255. * any hardware group.
  5256. */
  5257. pmu = event->pmu;
  5258. if (group_leader &&
  5259. (is_software_event(event) != is_software_event(group_leader))) {
  5260. if (is_software_event(event)) {
  5261. /*
  5262. * If event and group_leader are not both a software
  5263. * event, and event is, then group leader is not.
  5264. *
  5265. * Allow the addition of software events to !software
  5266. * groups, this is safe because software events never
  5267. * fail to schedule.
  5268. */
  5269. pmu = group_leader->pmu;
  5270. } else if (is_software_event(group_leader) &&
  5271. (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
  5272. /*
  5273. * In case the group is a pure software group, and we
  5274. * try to add a hardware event, move the whole group to
  5275. * the hardware context.
  5276. */
  5277. move_group = 1;
  5278. }
  5279. }
  5280. /*
  5281. * Get the target context (task or percpu):
  5282. */
  5283. ctx = find_get_context(pmu, task, cpu);
  5284. if (IS_ERR(ctx)) {
  5285. err = PTR_ERR(ctx);
  5286. goto err_alloc;
  5287. }
  5288. /*
  5289. * Look up the group leader (we will attach this event to it):
  5290. */
  5291. if (group_leader) {
  5292. err = -EINVAL;
  5293. /*
  5294. * Do not allow a recursive hierarchy (this new sibling
  5295. * becoming part of another group-sibling):
  5296. */
  5297. if (group_leader->group_leader != group_leader)
  5298. goto err_context;
  5299. /*
  5300. * Do not allow to attach to a group in a different
  5301. * task or CPU context:
  5302. */
  5303. if (move_group) {
  5304. if (group_leader->ctx->type != ctx->type)
  5305. goto err_context;
  5306. } else {
  5307. if (group_leader->ctx != ctx)
  5308. goto err_context;
  5309. }
  5310. /*
  5311. * Only a group leader can be exclusive or pinned
  5312. */
  5313. if (attr.exclusive || attr.pinned)
  5314. goto err_context;
  5315. }
  5316. if (output_event) {
  5317. err = perf_event_set_output(event, output_event);
  5318. if (err)
  5319. goto err_context;
  5320. }
  5321. event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
  5322. if (IS_ERR(event_file)) {
  5323. err = PTR_ERR(event_file);
  5324. goto err_context;
  5325. }
  5326. if (move_group) {
  5327. struct perf_event_context *gctx = group_leader->ctx;
  5328. mutex_lock(&gctx->mutex);
  5329. perf_remove_from_context(group_leader);
  5330. list_for_each_entry(sibling, &group_leader->sibling_list,
  5331. group_entry) {
  5332. perf_remove_from_context(sibling);
  5333. put_ctx(gctx);
  5334. }
  5335. mutex_unlock(&gctx->mutex);
  5336. put_ctx(gctx);
  5337. }
  5338. event->filp = event_file;
  5339. WARN_ON_ONCE(ctx->parent_ctx);
  5340. mutex_lock(&ctx->mutex);
  5341. if (move_group) {
  5342. perf_install_in_context(ctx, group_leader, cpu);
  5343. get_ctx(ctx);
  5344. list_for_each_entry(sibling, &group_leader->sibling_list,
  5345. group_entry) {
  5346. perf_install_in_context(ctx, sibling, cpu);
  5347. get_ctx(ctx);
  5348. }
  5349. }
  5350. perf_install_in_context(ctx, event, cpu);
  5351. ++ctx->generation;
  5352. perf_unpin_context(ctx);
  5353. mutex_unlock(&ctx->mutex);
  5354. event->owner = current;
  5355. mutex_lock(&current->perf_event_mutex);
  5356. list_add_tail(&event->owner_entry, &current->perf_event_list);
  5357. mutex_unlock(&current->perf_event_mutex);
  5358. /*
  5359. * Precalculate sample_data sizes
  5360. */
  5361. perf_event__header_size(event);
  5362. perf_event__id_header_size(event);
  5363. /*
  5364. * Drop the reference on the group_event after placing the
  5365. * new event on the sibling_list. This ensures destruction
  5366. * of the group leader will find the pointer to itself in
  5367. * perf_group_detach().
  5368. */
  5369. fput_light(group_file, fput_needed);
  5370. fd_install(event_fd, event_file);
  5371. return event_fd;
  5372. err_context:
  5373. perf_unpin_context(ctx);
  5374. put_ctx(ctx);
  5375. err_alloc:
  5376. free_event(event);
  5377. err_task:
  5378. if (task)
  5379. put_task_struct(task);
  5380. err_group_fd:
  5381. fput_light(group_file, fput_needed);
  5382. err_fd:
  5383. put_unused_fd(event_fd);
  5384. return err;
  5385. }
  5386. /**
  5387. * perf_event_create_kernel_counter
  5388. *
  5389. * @attr: attributes of the counter to create
  5390. * @cpu: cpu in which the counter is bound
  5391. * @task: task to profile (NULL for percpu)
  5392. */
  5393. struct perf_event *
  5394. perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
  5395. struct task_struct *task,
  5396. perf_overflow_handler_t overflow_handler)
  5397. {
  5398. struct perf_event_context *ctx;
  5399. struct perf_event *event;
  5400. int err;
  5401. /*
  5402. * Get the target context (task or percpu):
  5403. */
  5404. event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
  5405. if (IS_ERR(event)) {
  5406. err = PTR_ERR(event);
  5407. goto err;
  5408. }
  5409. ctx = find_get_context(event->pmu, task, cpu);
  5410. if (IS_ERR(ctx)) {
  5411. err = PTR_ERR(ctx);
  5412. goto err_free;
  5413. }
  5414. event->filp = NULL;
  5415. WARN_ON_ONCE(ctx->parent_ctx);
  5416. mutex_lock(&ctx->mutex);
  5417. perf_install_in_context(ctx, event, cpu);
  5418. ++ctx->generation;
  5419. perf_unpin_context(ctx);
  5420. mutex_unlock(&ctx->mutex);
  5421. return event;
  5422. err_free:
  5423. free_event(event);
  5424. err:
  5425. return ERR_PTR(err);
  5426. }
  5427. EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
  5428. static void sync_child_event(struct perf_event *child_event,
  5429. struct task_struct *child)
  5430. {
  5431. struct perf_event *parent_event = child_event->parent;
  5432. u64 child_val;
  5433. if (child_event->attr.inherit_stat)
  5434. perf_event_read_event(child_event, child);
  5435. child_val = perf_event_count(child_event);
  5436. /*
  5437. * Add back the child's count to the parent's count:
  5438. */
  5439. atomic64_add(child_val, &parent_event->child_count);
  5440. atomic64_add(child_event->total_time_enabled,
  5441. &parent_event->child_total_time_enabled);
  5442. atomic64_add(child_event->total_time_running,
  5443. &parent_event->child_total_time_running);
  5444. /*
  5445. * Remove this event from the parent's list
  5446. */
  5447. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5448. mutex_lock(&parent_event->child_mutex);
  5449. list_del_init(&child_event->child_list);
  5450. mutex_unlock(&parent_event->child_mutex);
  5451. /*
  5452. * Release the parent event, if this was the last
  5453. * reference to it.
  5454. */
  5455. fput(parent_event->filp);
  5456. }
  5457. static void
  5458. __perf_event_exit_task(struct perf_event *child_event,
  5459. struct perf_event_context *child_ctx,
  5460. struct task_struct *child)
  5461. {
  5462. struct perf_event *parent_event;
  5463. perf_remove_from_context(child_event);
  5464. parent_event = child_event->parent;
  5465. /*
  5466. * It can happen that parent exits first, and has events
  5467. * that are still around due to the child reference. These
  5468. * events need to be zapped - but otherwise linger.
  5469. */
  5470. if (parent_event) {
  5471. sync_child_event(child_event, child);
  5472. free_event(child_event);
  5473. }
  5474. }
  5475. static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
  5476. {
  5477. struct perf_event *child_event, *tmp;
  5478. struct perf_event_context *child_ctx;
  5479. unsigned long flags;
  5480. if (likely(!child->perf_event_ctxp[ctxn])) {
  5481. perf_event_task(child, NULL, 0);
  5482. return;
  5483. }
  5484. local_irq_save(flags);
  5485. /*
  5486. * We can't reschedule here because interrupts are disabled,
  5487. * and either child is current or it is a task that can't be
  5488. * scheduled, so we are now safe from rescheduling changing
  5489. * our context.
  5490. */
  5491. child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
  5492. task_ctx_sched_out(child_ctx, EVENT_ALL);
  5493. /*
  5494. * Take the context lock here so that if find_get_context is
  5495. * reading child->perf_event_ctxp, we wait until it has
  5496. * incremented the context's refcount before we do put_ctx below.
  5497. */
  5498. raw_spin_lock(&child_ctx->lock);
  5499. child->perf_event_ctxp[ctxn] = NULL;
  5500. /*
  5501. * If this context is a clone; unclone it so it can't get
  5502. * swapped to another process while we're removing all
  5503. * the events from it.
  5504. */
  5505. unclone_ctx(child_ctx);
  5506. update_context_time(child_ctx);
  5507. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5508. /*
  5509. * Report the task dead after unscheduling the events so that we
  5510. * won't get any samples after PERF_RECORD_EXIT. We can however still
  5511. * get a few PERF_RECORD_READ events.
  5512. */
  5513. perf_event_task(child, child_ctx, 0);
  5514. /*
  5515. * We can recurse on the same lock type through:
  5516. *
  5517. * __perf_event_exit_task()
  5518. * sync_child_event()
  5519. * fput(parent_event->filp)
  5520. * perf_release()
  5521. * mutex_lock(&ctx->mutex)
  5522. *
  5523. * But since its the parent context it won't be the same instance.
  5524. */
  5525. mutex_lock(&child_ctx->mutex);
  5526. again:
  5527. list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
  5528. group_entry)
  5529. __perf_event_exit_task(child_event, child_ctx, child);
  5530. list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
  5531. group_entry)
  5532. __perf_event_exit_task(child_event, child_ctx, child);
  5533. /*
  5534. * If the last event was a group event, it will have appended all
  5535. * its siblings to the list, but we obtained 'tmp' before that which
  5536. * will still point to the list head terminating the iteration.
  5537. */
  5538. if (!list_empty(&child_ctx->pinned_groups) ||
  5539. !list_empty(&child_ctx->flexible_groups))
  5540. goto again;
  5541. mutex_unlock(&child_ctx->mutex);
  5542. put_ctx(child_ctx);
  5543. }
  5544. /*
  5545. * When a child task exits, feed back event values to parent events.
  5546. */
  5547. void perf_event_exit_task(struct task_struct *child)
  5548. {
  5549. struct perf_event *event, *tmp;
  5550. int ctxn;
  5551. mutex_lock(&child->perf_event_mutex);
  5552. list_for_each_entry_safe(event, tmp, &child->perf_event_list,
  5553. owner_entry) {
  5554. list_del_init(&event->owner_entry);
  5555. /*
  5556. * Ensure the list deletion is visible before we clear
  5557. * the owner, closes a race against perf_release() where
  5558. * we need to serialize on the owner->perf_event_mutex.
  5559. */
  5560. smp_wmb();
  5561. event->owner = NULL;
  5562. }
  5563. mutex_unlock(&child->perf_event_mutex);
  5564. for_each_task_context_nr(ctxn)
  5565. perf_event_exit_task_context(child, ctxn);
  5566. }
  5567. static void perf_free_event(struct perf_event *event,
  5568. struct perf_event_context *ctx)
  5569. {
  5570. struct perf_event *parent = event->parent;
  5571. if (WARN_ON_ONCE(!parent))
  5572. return;
  5573. mutex_lock(&parent->child_mutex);
  5574. list_del_init(&event->child_list);
  5575. mutex_unlock(&parent->child_mutex);
  5576. fput(parent->filp);
  5577. perf_group_detach(event);
  5578. list_del_event(event, ctx);
  5579. free_event(event);
  5580. }
  5581. /*
  5582. * free an unexposed, unused context as created by inheritance by
  5583. * perf_event_init_task below, used by fork() in case of fail.
  5584. */
  5585. void perf_event_free_task(struct task_struct *task)
  5586. {
  5587. struct perf_event_context *ctx;
  5588. struct perf_event *event, *tmp;
  5589. int ctxn;
  5590. for_each_task_context_nr(ctxn) {
  5591. ctx = task->perf_event_ctxp[ctxn];
  5592. if (!ctx)
  5593. continue;
  5594. mutex_lock(&ctx->mutex);
  5595. again:
  5596. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
  5597. group_entry)
  5598. perf_free_event(event, ctx);
  5599. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
  5600. group_entry)
  5601. perf_free_event(event, ctx);
  5602. if (!list_empty(&ctx->pinned_groups) ||
  5603. !list_empty(&ctx->flexible_groups))
  5604. goto again;
  5605. mutex_unlock(&ctx->mutex);
  5606. put_ctx(ctx);
  5607. }
  5608. }
  5609. void perf_event_delayed_put(struct task_struct *task)
  5610. {
  5611. int ctxn;
  5612. for_each_task_context_nr(ctxn)
  5613. WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
  5614. }
  5615. /*
  5616. * inherit a event from parent task to child task:
  5617. */
  5618. static struct perf_event *
  5619. inherit_event(struct perf_event *parent_event,
  5620. struct task_struct *parent,
  5621. struct perf_event_context *parent_ctx,
  5622. struct task_struct *child,
  5623. struct perf_event *group_leader,
  5624. struct perf_event_context *child_ctx)
  5625. {
  5626. struct perf_event *child_event;
  5627. unsigned long flags;
  5628. /*
  5629. * Instead of creating recursive hierarchies of events,
  5630. * we link inherited events back to the original parent,
  5631. * which has a filp for sure, which we use as the reference
  5632. * count:
  5633. */
  5634. if (parent_event->parent)
  5635. parent_event = parent_event->parent;
  5636. child_event = perf_event_alloc(&parent_event->attr,
  5637. parent_event->cpu,
  5638. child,
  5639. group_leader, parent_event,
  5640. NULL);
  5641. if (IS_ERR(child_event))
  5642. return child_event;
  5643. get_ctx(child_ctx);
  5644. /*
  5645. * Make the child state follow the state of the parent event,
  5646. * not its attr.disabled bit. We hold the parent's mutex,
  5647. * so we won't race with perf_event_{en, dis}able_family.
  5648. */
  5649. if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
  5650. child_event->state = PERF_EVENT_STATE_INACTIVE;
  5651. else
  5652. child_event->state = PERF_EVENT_STATE_OFF;
  5653. if (parent_event->attr.freq) {
  5654. u64 sample_period = parent_event->hw.sample_period;
  5655. struct hw_perf_event *hwc = &child_event->hw;
  5656. hwc->sample_period = sample_period;
  5657. hwc->last_period = sample_period;
  5658. local64_set(&hwc->period_left, sample_period);
  5659. }
  5660. child_event->ctx = child_ctx;
  5661. child_event->overflow_handler = parent_event->overflow_handler;
  5662. /*
  5663. * Precalculate sample_data sizes
  5664. */
  5665. perf_event__header_size(child_event);
  5666. perf_event__id_header_size(child_event);
  5667. /*
  5668. * Link it up in the child's context:
  5669. */
  5670. raw_spin_lock_irqsave(&child_ctx->lock, flags);
  5671. add_event_to_ctx(child_event, child_ctx);
  5672. raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
  5673. /*
  5674. * Get a reference to the parent filp - we will fput it
  5675. * when the child event exits. This is safe to do because
  5676. * we are in the parent and we know that the filp still
  5677. * exists and has a nonzero count:
  5678. */
  5679. atomic_long_inc(&parent_event->filp->f_count);
  5680. /*
  5681. * Link this into the parent event's child list
  5682. */
  5683. WARN_ON_ONCE(parent_event->ctx->parent_ctx);
  5684. mutex_lock(&parent_event->child_mutex);
  5685. list_add_tail(&child_event->child_list, &parent_event->child_list);
  5686. mutex_unlock(&parent_event->child_mutex);
  5687. return child_event;
  5688. }
  5689. static int inherit_group(struct perf_event *parent_event,
  5690. struct task_struct *parent,
  5691. struct perf_event_context *parent_ctx,
  5692. struct task_struct *child,
  5693. struct perf_event_context *child_ctx)
  5694. {
  5695. struct perf_event *leader;
  5696. struct perf_event *sub;
  5697. struct perf_event *child_ctr;
  5698. leader = inherit_event(parent_event, parent, parent_ctx,
  5699. child, NULL, child_ctx);
  5700. if (IS_ERR(leader))
  5701. return PTR_ERR(leader);
  5702. list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
  5703. child_ctr = inherit_event(sub, parent, parent_ctx,
  5704. child, leader, child_ctx);
  5705. if (IS_ERR(child_ctr))
  5706. return PTR_ERR(child_ctr);
  5707. }
  5708. return 0;
  5709. }
  5710. static int
  5711. inherit_task_group(struct perf_event *event, struct task_struct *parent,
  5712. struct perf_event_context *parent_ctx,
  5713. struct task_struct *child, int ctxn,
  5714. int *inherited_all)
  5715. {
  5716. int ret;
  5717. struct perf_event_context *child_ctx;
  5718. if (!event->attr.inherit) {
  5719. *inherited_all = 0;
  5720. return 0;
  5721. }
  5722. child_ctx = child->perf_event_ctxp[ctxn];
  5723. if (!child_ctx) {
  5724. /*
  5725. * This is executed from the parent task context, so
  5726. * inherit events that have been marked for cloning.
  5727. * First allocate and initialize a context for the
  5728. * child.
  5729. */
  5730. child_ctx = alloc_perf_context(event->pmu, child);
  5731. if (!child_ctx)
  5732. return -ENOMEM;
  5733. child->perf_event_ctxp[ctxn] = child_ctx;
  5734. }
  5735. ret = inherit_group(event, parent, parent_ctx,
  5736. child, child_ctx);
  5737. if (ret)
  5738. *inherited_all = 0;
  5739. return ret;
  5740. }
  5741. /*
  5742. * Initialize the perf_event context in task_struct
  5743. */
  5744. int perf_event_init_context(struct task_struct *child, int ctxn)
  5745. {
  5746. struct perf_event_context *child_ctx, *parent_ctx;
  5747. struct perf_event_context *cloned_ctx;
  5748. struct perf_event *event;
  5749. struct task_struct *parent = current;
  5750. int inherited_all = 1;
  5751. unsigned long flags;
  5752. int ret = 0;
  5753. if (likely(!parent->perf_event_ctxp[ctxn]))
  5754. return 0;
  5755. /*
  5756. * If the parent's context is a clone, pin it so it won't get
  5757. * swapped under us.
  5758. */
  5759. parent_ctx = perf_pin_task_context(parent, ctxn);
  5760. /*
  5761. * No need to check if parent_ctx != NULL here; since we saw
  5762. * it non-NULL earlier, the only reason for it to become NULL
  5763. * is if we exit, and since we're currently in the middle of
  5764. * a fork we can't be exiting at the same time.
  5765. */
  5766. /*
  5767. * Lock the parent list. No need to lock the child - not PID
  5768. * hashed yet and not running, so nobody can access it.
  5769. */
  5770. mutex_lock(&parent_ctx->mutex);
  5771. /*
  5772. * We dont have to disable NMIs - we are only looking at
  5773. * the list, not manipulating it:
  5774. */
  5775. list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
  5776. ret = inherit_task_group(event, parent, parent_ctx,
  5777. child, ctxn, &inherited_all);
  5778. if (ret)
  5779. break;
  5780. }
  5781. /*
  5782. * We can't hold ctx->lock when iterating the ->flexible_group list due
  5783. * to allocations, but we need to prevent rotation because
  5784. * rotate_ctx() will change the list from interrupt context.
  5785. */
  5786. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5787. parent_ctx->rotate_disable = 1;
  5788. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5789. list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
  5790. ret = inherit_task_group(event, parent, parent_ctx,
  5791. child, ctxn, &inherited_all);
  5792. if (ret)
  5793. break;
  5794. }
  5795. raw_spin_lock_irqsave(&parent_ctx->lock, flags);
  5796. parent_ctx->rotate_disable = 0;
  5797. child_ctx = child->perf_event_ctxp[ctxn];
  5798. if (child_ctx && inherited_all) {
  5799. /*
  5800. * Mark the child context as a clone of the parent
  5801. * context, or of whatever the parent is a clone of.
  5802. *
  5803. * Note that if the parent is a clone, the holding of
  5804. * parent_ctx->lock avoids it from being uncloned.
  5805. */
  5806. cloned_ctx = parent_ctx->parent_ctx;
  5807. if (cloned_ctx) {
  5808. child_ctx->parent_ctx = cloned_ctx;
  5809. child_ctx->parent_gen = parent_ctx->parent_gen;
  5810. } else {
  5811. child_ctx->parent_ctx = parent_ctx;
  5812. child_ctx->parent_gen = parent_ctx->generation;
  5813. }
  5814. get_ctx(child_ctx->parent_ctx);
  5815. }
  5816. raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
  5817. mutex_unlock(&parent_ctx->mutex);
  5818. perf_unpin_context(parent_ctx);
  5819. put_ctx(parent_ctx);
  5820. return ret;
  5821. }
  5822. /*
  5823. * Initialize the perf_event context in task_struct
  5824. */
  5825. int perf_event_init_task(struct task_struct *child)
  5826. {
  5827. int ctxn, ret;
  5828. memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
  5829. mutex_init(&child->perf_event_mutex);
  5830. INIT_LIST_HEAD(&child->perf_event_list);
  5831. for_each_task_context_nr(ctxn) {
  5832. ret = perf_event_init_context(child, ctxn);
  5833. if (ret)
  5834. return ret;
  5835. }
  5836. return 0;
  5837. }
  5838. static void __init perf_event_init_all_cpus(void)
  5839. {
  5840. struct swevent_htable *swhash;
  5841. int cpu;
  5842. for_each_possible_cpu(cpu) {
  5843. swhash = &per_cpu(swevent_htable, cpu);
  5844. mutex_init(&swhash->hlist_mutex);
  5845. INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
  5846. }
  5847. }
  5848. static void __cpuinit perf_event_init_cpu(int cpu)
  5849. {
  5850. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5851. mutex_lock(&swhash->hlist_mutex);
  5852. if (swhash->hlist_refcount > 0) {
  5853. struct swevent_hlist *hlist;
  5854. hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
  5855. WARN_ON(!hlist);
  5856. rcu_assign_pointer(swhash->swevent_hlist, hlist);
  5857. }
  5858. mutex_unlock(&swhash->hlist_mutex);
  5859. }
  5860. #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
  5861. static void perf_pmu_rotate_stop(struct pmu *pmu)
  5862. {
  5863. struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
  5864. WARN_ON(!irqs_disabled());
  5865. list_del_init(&cpuctx->rotation_list);
  5866. }
  5867. static void __perf_event_exit_context(void *__info)
  5868. {
  5869. struct perf_event_context *ctx = __info;
  5870. struct perf_event *event, *tmp;
  5871. perf_pmu_rotate_stop(ctx->pmu);
  5872. list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
  5873. __perf_remove_from_context(event);
  5874. list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
  5875. __perf_remove_from_context(event);
  5876. }
  5877. static void perf_event_exit_cpu_context(int cpu)
  5878. {
  5879. struct perf_event_context *ctx;
  5880. struct pmu *pmu;
  5881. int idx;
  5882. idx = srcu_read_lock(&pmus_srcu);
  5883. list_for_each_entry_rcu(pmu, &pmus, entry) {
  5884. ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
  5885. mutex_lock(&ctx->mutex);
  5886. smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
  5887. mutex_unlock(&ctx->mutex);
  5888. }
  5889. srcu_read_unlock(&pmus_srcu, idx);
  5890. }
  5891. static void perf_event_exit_cpu(int cpu)
  5892. {
  5893. struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
  5894. mutex_lock(&swhash->hlist_mutex);
  5895. swevent_hlist_release(swhash);
  5896. mutex_unlock(&swhash->hlist_mutex);
  5897. perf_event_exit_cpu_context(cpu);
  5898. }
  5899. #else
  5900. static inline void perf_event_exit_cpu(int cpu) { }
  5901. #endif
  5902. static int
  5903. perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
  5904. {
  5905. int cpu;
  5906. for_each_online_cpu(cpu)
  5907. perf_event_exit_cpu(cpu);
  5908. return NOTIFY_OK;
  5909. }
  5910. /*
  5911. * Run the perf reboot notifier at the very last possible moment so that
  5912. * the generic watchdog code runs as long as possible.
  5913. */
  5914. static struct notifier_block perf_reboot_notifier = {
  5915. .notifier_call = perf_reboot,
  5916. .priority = INT_MIN,
  5917. };
  5918. static int __cpuinit
  5919. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  5920. {
  5921. unsigned int cpu = (long)hcpu;
  5922. switch (action & ~CPU_TASKS_FROZEN) {
  5923. case CPU_UP_PREPARE:
  5924. case CPU_DOWN_FAILED:
  5925. perf_event_init_cpu(cpu);
  5926. break;
  5927. case CPU_UP_CANCELED:
  5928. case CPU_DOWN_PREPARE:
  5929. perf_event_exit_cpu(cpu);
  5930. break;
  5931. default:
  5932. break;
  5933. }
  5934. return NOTIFY_OK;
  5935. }
  5936. void __init perf_event_init(void)
  5937. {
  5938. int ret;
  5939. idr_init(&pmu_idr);
  5940. perf_event_init_all_cpus();
  5941. init_srcu_struct(&pmus_srcu);
  5942. perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
  5943. perf_pmu_register(&perf_cpu_clock, NULL, -1);
  5944. perf_pmu_register(&perf_task_clock, NULL, -1);
  5945. perf_tp_register();
  5946. perf_cpu_notifier(perf_cpu_notify);
  5947. register_reboot_notifier(&perf_reboot_notifier);
  5948. ret = init_hw_breakpoint();
  5949. WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
  5950. }
  5951. static int __init perf_event_sysfs_init(void)
  5952. {
  5953. struct pmu *pmu;
  5954. int ret;
  5955. mutex_lock(&pmus_lock);
  5956. ret = bus_register(&pmu_bus);
  5957. if (ret)
  5958. goto unlock;
  5959. list_for_each_entry(pmu, &pmus, entry) {
  5960. if (!pmu->name || pmu->type < 0)
  5961. continue;
  5962. ret = pmu_dev_alloc(pmu);
  5963. WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
  5964. }
  5965. pmu_bus_running = 1;
  5966. ret = 0;
  5967. unlock:
  5968. mutex_unlock(&pmus_lock);
  5969. return ret;
  5970. }
  5971. device_initcall(perf_event_sysfs_init);
  5972. #ifdef CONFIG_CGROUP_PERF
  5973. static struct cgroup_subsys_state *perf_cgroup_create(
  5974. struct cgroup_subsys *ss, struct cgroup *cont)
  5975. {
  5976. struct perf_cgroup *jc;
  5977. jc = kzalloc(sizeof(*jc), GFP_KERNEL);
  5978. if (!jc)
  5979. return ERR_PTR(-ENOMEM);
  5980. jc->info = alloc_percpu(struct perf_cgroup_info);
  5981. if (!jc->info) {
  5982. kfree(jc);
  5983. return ERR_PTR(-ENOMEM);
  5984. }
  5985. return &jc->css;
  5986. }
  5987. static void perf_cgroup_destroy(struct cgroup_subsys *ss,
  5988. struct cgroup *cont)
  5989. {
  5990. struct perf_cgroup *jc;
  5991. jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
  5992. struct perf_cgroup, css);
  5993. free_percpu(jc->info);
  5994. kfree(jc);
  5995. }
  5996. static int __perf_cgroup_move(void *info)
  5997. {
  5998. struct task_struct *task = info;
  5999. perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
  6000. return 0;
  6001. }
  6002. static void perf_cgroup_move(struct task_struct *task)
  6003. {
  6004. task_function_call(task, __perf_cgroup_move, task);
  6005. }
  6006. static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6007. struct cgroup *old_cgrp, struct task_struct *task,
  6008. bool threadgroup)
  6009. {
  6010. perf_cgroup_move(task);
  6011. if (threadgroup) {
  6012. struct task_struct *c;
  6013. rcu_read_lock();
  6014. list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
  6015. perf_cgroup_move(c);
  6016. }
  6017. rcu_read_unlock();
  6018. }
  6019. }
  6020. static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
  6021. struct cgroup *old_cgrp, struct task_struct *task)
  6022. {
  6023. /*
  6024. * cgroup_exit() is called in the copy_process() failure path.
  6025. * Ignore this case since the task hasn't ran yet, this avoids
  6026. * trying to poke a half freed task state from generic code.
  6027. */
  6028. if (!(task->flags & PF_EXITING))
  6029. return;
  6030. perf_cgroup_move(task);
  6031. }
  6032. struct cgroup_subsys perf_subsys = {
  6033. .name = "perf_event",
  6034. .subsys_id = perf_subsys_id,
  6035. .create = perf_cgroup_create,
  6036. .destroy = perf_cgroup_destroy,
  6037. .exit = perf_cgroup_exit,
  6038. .attach = perf_cgroup_attach,
  6039. };
  6040. #endif /* CONFIG_CGROUP_PERF */