xfs_buf_item.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_buf_item.h"
  29. #include "xfs_trans_priv.h"
  30. #include "xfs_error.h"
  31. #include "xfs_trace.h"
  32. kmem_zone_t *xfs_buf_item_zone;
  33. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  34. {
  35. return container_of(lip, struct xfs_buf_log_item, bli_item);
  36. }
  37. #ifdef XFS_TRANS_DEBUG
  38. /*
  39. * This function uses an alternate strategy for tracking the bytes
  40. * that the user requests to be logged. This can then be used
  41. * in conjunction with the bli_orig array in the buf log item to
  42. * catch bugs in our callers' code.
  43. *
  44. * We also double check the bits set in xfs_buf_item_log using a
  45. * simple algorithm to check that every byte is accounted for.
  46. */
  47. STATIC void
  48. xfs_buf_item_log_debug(
  49. xfs_buf_log_item_t *bip,
  50. uint first,
  51. uint last)
  52. {
  53. uint x;
  54. uint byte;
  55. uint nbytes;
  56. uint chunk_num;
  57. uint word_num;
  58. uint bit_num;
  59. uint bit_set;
  60. uint *wordp;
  61. ASSERT(bip->bli_logged != NULL);
  62. byte = first;
  63. nbytes = last - first + 1;
  64. bfset(bip->bli_logged, first, nbytes);
  65. for (x = 0; x < nbytes; x++) {
  66. chunk_num = byte >> XFS_BLF_SHIFT;
  67. word_num = chunk_num >> BIT_TO_WORD_SHIFT;
  68. bit_num = chunk_num & (NBWORD - 1);
  69. wordp = &(bip->bli_format.blf_data_map[word_num]);
  70. bit_set = *wordp & (1 << bit_num);
  71. ASSERT(bit_set);
  72. byte++;
  73. }
  74. }
  75. /*
  76. * This function is called when we flush something into a buffer without
  77. * logging it. This happens for things like inodes which are logged
  78. * separately from the buffer.
  79. */
  80. void
  81. xfs_buf_item_flush_log_debug(
  82. xfs_buf_t *bp,
  83. uint first,
  84. uint last)
  85. {
  86. xfs_buf_log_item_t *bip;
  87. uint nbytes;
  88. bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
  89. if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
  90. return;
  91. }
  92. ASSERT(bip->bli_logged != NULL);
  93. nbytes = last - first + 1;
  94. bfset(bip->bli_logged, first, nbytes);
  95. }
  96. /*
  97. * This function is called to verify that our callers have logged
  98. * all the bytes that they changed.
  99. *
  100. * It does this by comparing the original copy of the buffer stored in
  101. * the buf log item's bli_orig array to the current copy of the buffer
  102. * and ensuring that all bytes which mismatch are set in the bli_logged
  103. * array of the buf log item.
  104. */
  105. STATIC void
  106. xfs_buf_item_log_check(
  107. xfs_buf_log_item_t *bip)
  108. {
  109. char *orig;
  110. char *buffer;
  111. int x;
  112. xfs_buf_t *bp;
  113. ASSERT(bip->bli_orig != NULL);
  114. ASSERT(bip->bli_logged != NULL);
  115. bp = bip->bli_buf;
  116. ASSERT(XFS_BUF_COUNT(bp) > 0);
  117. ASSERT(XFS_BUF_PTR(bp) != NULL);
  118. orig = bip->bli_orig;
  119. buffer = XFS_BUF_PTR(bp);
  120. for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
  121. if (orig[x] != buffer[x] && !btst(bip->bli_logged, x))
  122. cmn_err(CE_PANIC,
  123. "xfs_buf_item_log_check bip %x buffer %x orig %x index %d",
  124. bip, bp, orig, x);
  125. }
  126. }
  127. #else
  128. #define xfs_buf_item_log_debug(x,y,z)
  129. #define xfs_buf_item_log_check(x)
  130. #endif
  131. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  132. /*
  133. * This returns the number of log iovecs needed to log the
  134. * given buf log item.
  135. *
  136. * It calculates this as 1 iovec for the buf log format structure
  137. * and 1 for each stretch of non-contiguous chunks to be logged.
  138. * Contiguous chunks are logged in a single iovec.
  139. *
  140. * If the XFS_BLI_STALE flag has been set, then log nothing.
  141. */
  142. STATIC uint
  143. xfs_buf_item_size(
  144. struct xfs_log_item *lip)
  145. {
  146. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  147. struct xfs_buf *bp = bip->bli_buf;
  148. uint nvecs;
  149. int next_bit;
  150. int last_bit;
  151. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  152. if (bip->bli_flags & XFS_BLI_STALE) {
  153. /*
  154. * The buffer is stale, so all we need to log
  155. * is the buf log format structure with the
  156. * cancel flag in it.
  157. */
  158. trace_xfs_buf_item_size_stale(bip);
  159. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  160. return 1;
  161. }
  162. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  163. nvecs = 1;
  164. last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  165. bip->bli_format.blf_map_size, 0);
  166. ASSERT(last_bit != -1);
  167. nvecs++;
  168. while (last_bit != -1) {
  169. /*
  170. * This takes the bit number to start looking from and
  171. * returns the next set bit from there. It returns -1
  172. * if there are no more bits set or the start bit is
  173. * beyond the end of the bitmap.
  174. */
  175. next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  176. bip->bli_format.blf_map_size,
  177. last_bit + 1);
  178. /*
  179. * If we run out of bits, leave the loop,
  180. * else if we find a new set of bits bump the number of vecs,
  181. * else keep scanning the current set of bits.
  182. */
  183. if (next_bit == -1) {
  184. last_bit = -1;
  185. } else if (next_bit != last_bit + 1) {
  186. last_bit = next_bit;
  187. nvecs++;
  188. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  189. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  190. XFS_BLF_CHUNK)) {
  191. last_bit = next_bit;
  192. nvecs++;
  193. } else {
  194. last_bit++;
  195. }
  196. }
  197. trace_xfs_buf_item_size(bip);
  198. return nvecs;
  199. }
  200. /*
  201. * This is called to fill in the vector of log iovecs for the
  202. * given log buf item. It fills the first entry with a buf log
  203. * format structure, and the rest point to contiguous chunks
  204. * within the buffer.
  205. */
  206. STATIC void
  207. xfs_buf_item_format(
  208. struct xfs_log_item *lip,
  209. struct xfs_log_iovec *vecp)
  210. {
  211. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  212. struct xfs_buf *bp = bip->bli_buf;
  213. uint base_size;
  214. uint nvecs;
  215. int first_bit;
  216. int last_bit;
  217. int next_bit;
  218. uint nbits;
  219. uint buffer_offset;
  220. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  221. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  222. (bip->bli_flags & XFS_BLI_STALE));
  223. /*
  224. * The size of the base structure is the size of the
  225. * declared structure plus the space for the extra words
  226. * of the bitmap. We subtract one from the map size, because
  227. * the first element of the bitmap is accounted for in the
  228. * size of the base structure.
  229. */
  230. base_size =
  231. (uint)(sizeof(xfs_buf_log_format_t) +
  232. ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
  233. vecp->i_addr = &bip->bli_format;
  234. vecp->i_len = base_size;
  235. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  236. vecp++;
  237. nvecs = 1;
  238. /*
  239. * If it is an inode buffer, transfer the in-memory state to the
  240. * format flags and clear the in-memory state. We do not transfer
  241. * this state if the inode buffer allocation has not yet been committed
  242. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  243. * correct replay of the inode allocation.
  244. */
  245. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  246. if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  247. xfs_log_item_in_current_chkpt(lip)))
  248. bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  249. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  250. }
  251. if (bip->bli_flags & XFS_BLI_STALE) {
  252. /*
  253. * The buffer is stale, so all we need to log
  254. * is the buf log format structure with the
  255. * cancel flag in it.
  256. */
  257. trace_xfs_buf_item_format_stale(bip);
  258. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  259. bip->bli_format.blf_size = nvecs;
  260. return;
  261. }
  262. /*
  263. * Fill in an iovec for each set of contiguous chunks.
  264. */
  265. first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  266. bip->bli_format.blf_map_size, 0);
  267. ASSERT(first_bit != -1);
  268. last_bit = first_bit;
  269. nbits = 1;
  270. for (;;) {
  271. /*
  272. * This takes the bit number to start looking from and
  273. * returns the next set bit from there. It returns -1
  274. * if there are no more bits set or the start bit is
  275. * beyond the end of the bitmap.
  276. */
  277. next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
  278. bip->bli_format.blf_map_size,
  279. (uint)last_bit + 1);
  280. /*
  281. * If we run out of bits fill in the last iovec and get
  282. * out of the loop.
  283. * Else if we start a new set of bits then fill in the
  284. * iovec for the series we were looking at and start
  285. * counting the bits in the new one.
  286. * Else we're still in the same set of bits so just
  287. * keep counting and scanning.
  288. */
  289. if (next_bit == -1) {
  290. buffer_offset = first_bit * XFS_BLF_CHUNK;
  291. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  292. vecp->i_len = nbits * XFS_BLF_CHUNK;
  293. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  294. nvecs++;
  295. break;
  296. } else if (next_bit != last_bit + 1) {
  297. buffer_offset = first_bit * XFS_BLF_CHUNK;
  298. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  299. vecp->i_len = nbits * XFS_BLF_CHUNK;
  300. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  301. nvecs++;
  302. vecp++;
  303. first_bit = next_bit;
  304. last_bit = next_bit;
  305. nbits = 1;
  306. } else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
  307. (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
  308. XFS_BLF_CHUNK)) {
  309. buffer_offset = first_bit * XFS_BLF_CHUNK;
  310. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  311. vecp->i_len = nbits * XFS_BLF_CHUNK;
  312. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  313. /* You would think we need to bump the nvecs here too, but we do not
  314. * this number is used by recovery, and it gets confused by the boundary
  315. * split here
  316. * nvecs++;
  317. */
  318. vecp++;
  319. first_bit = next_bit;
  320. last_bit = next_bit;
  321. nbits = 1;
  322. } else {
  323. last_bit++;
  324. nbits++;
  325. }
  326. }
  327. bip->bli_format.blf_size = nvecs;
  328. /*
  329. * Check to make sure everything is consistent.
  330. */
  331. trace_xfs_buf_item_format(bip);
  332. xfs_buf_item_log_check(bip);
  333. }
  334. /*
  335. * This is called to pin the buffer associated with the buf log item in memory
  336. * so it cannot be written out.
  337. *
  338. * We also always take a reference to the buffer log item here so that the bli
  339. * is held while the item is pinned in memory. This means that we can
  340. * unconditionally drop the reference count a transaction holds when the
  341. * transaction is completed.
  342. */
  343. STATIC void
  344. xfs_buf_item_pin(
  345. struct xfs_log_item *lip)
  346. {
  347. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  348. ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
  349. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  350. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  351. (bip->bli_flags & XFS_BLI_STALE));
  352. trace_xfs_buf_item_pin(bip);
  353. atomic_inc(&bip->bli_refcount);
  354. atomic_inc(&bip->bli_buf->b_pin_count);
  355. }
  356. /*
  357. * This is called to unpin the buffer associated with the buf log
  358. * item which was previously pinned with a call to xfs_buf_item_pin().
  359. *
  360. * Also drop the reference to the buf item for the current transaction.
  361. * If the XFS_BLI_STALE flag is set and we are the last reference,
  362. * then free up the buf log item and unlock the buffer.
  363. *
  364. * If the remove flag is set we are called from uncommit in the
  365. * forced-shutdown path. If that is true and the reference count on
  366. * the log item is going to drop to zero we need to free the item's
  367. * descriptor in the transaction.
  368. */
  369. STATIC void
  370. xfs_buf_item_unpin(
  371. struct xfs_log_item *lip,
  372. int remove)
  373. {
  374. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  375. xfs_buf_t *bp = bip->bli_buf;
  376. struct xfs_ail *ailp = lip->li_ailp;
  377. int stale = bip->bli_flags & XFS_BLI_STALE;
  378. int freed;
  379. ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
  380. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  381. trace_xfs_buf_item_unpin(bip);
  382. freed = atomic_dec_and_test(&bip->bli_refcount);
  383. if (atomic_dec_and_test(&bp->b_pin_count))
  384. wake_up_all(&bp->b_waiters);
  385. if (freed && stale) {
  386. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  387. ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
  388. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  389. ASSERT(XFS_BUF_ISSTALE(bp));
  390. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  391. trace_xfs_buf_item_unpin_stale(bip);
  392. if (remove) {
  393. /*
  394. * If we are in a transaction context, we have to
  395. * remove the log item from the transaction as we are
  396. * about to release our reference to the buffer. If we
  397. * don't, the unlock that occurs later in
  398. * xfs_trans_uncommit() will try to reference the
  399. * buffer which we no longer have a hold on.
  400. */
  401. if (lip->li_desc)
  402. xfs_trans_del_item(lip);
  403. /*
  404. * Since the transaction no longer refers to the buffer,
  405. * the buffer should no longer refer to the transaction.
  406. */
  407. XFS_BUF_SET_FSPRIVATE2(bp, NULL);
  408. }
  409. /*
  410. * If we get called here because of an IO error, we may
  411. * or may not have the item on the AIL. xfs_trans_ail_delete()
  412. * will take care of that situation.
  413. * xfs_trans_ail_delete() drops the AIL lock.
  414. */
  415. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  416. xfs_buf_do_callbacks(bp);
  417. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  418. XFS_BUF_CLR_IODONE_FUNC(bp);
  419. } else {
  420. spin_lock(&ailp->xa_lock);
  421. xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
  422. xfs_buf_item_relse(bp);
  423. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
  424. }
  425. xfs_buf_relse(bp);
  426. }
  427. }
  428. /*
  429. * This is called to attempt to lock the buffer associated with this
  430. * buf log item. Don't sleep on the buffer lock. If we can't get
  431. * the lock right away, return 0. If we can get the lock, take a
  432. * reference to the buffer. If this is a delayed write buffer that
  433. * needs AIL help to be written back, invoke the pushbuf routine
  434. * rather than the normal success path.
  435. */
  436. STATIC uint
  437. xfs_buf_item_trylock(
  438. struct xfs_log_item *lip)
  439. {
  440. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  441. struct xfs_buf *bp = bip->bli_buf;
  442. if (XFS_BUF_ISPINNED(bp))
  443. return XFS_ITEM_PINNED;
  444. if (!XFS_BUF_CPSEMA(bp))
  445. return XFS_ITEM_LOCKED;
  446. /* take a reference to the buffer. */
  447. XFS_BUF_HOLD(bp);
  448. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  449. trace_xfs_buf_item_trylock(bip);
  450. if (XFS_BUF_ISDELAYWRITE(bp))
  451. return XFS_ITEM_PUSHBUF;
  452. return XFS_ITEM_SUCCESS;
  453. }
  454. /*
  455. * Release the buffer associated with the buf log item. If there is no dirty
  456. * logged data associated with the buffer recorded in the buf log item, then
  457. * free the buf log item and remove the reference to it in the buffer.
  458. *
  459. * This call ignores the recursion count. It is only called when the buffer
  460. * should REALLY be unlocked, regardless of the recursion count.
  461. *
  462. * We unconditionally drop the transaction's reference to the log item. If the
  463. * item was logged, then another reference was taken when it was pinned, so we
  464. * can safely drop the transaction reference now. This also allows us to avoid
  465. * potential races with the unpin code freeing the bli by not referencing the
  466. * bli after we've dropped the reference count.
  467. *
  468. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  469. * if necessary but do not unlock the buffer. This is for support of
  470. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  471. * free the item.
  472. */
  473. STATIC void
  474. xfs_buf_item_unlock(
  475. struct xfs_log_item *lip)
  476. {
  477. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  478. struct xfs_buf *bp = bip->bli_buf;
  479. int aborted;
  480. uint hold;
  481. /* Clear the buffer's association with this transaction. */
  482. XFS_BUF_SET_FSPRIVATE2(bp, NULL);
  483. /*
  484. * If this is a transaction abort, don't return early. Instead, allow
  485. * the brelse to happen. Normally it would be done for stale
  486. * (cancelled) buffers at unpin time, but we'll never go through the
  487. * pin/unpin cycle if we abort inside commit.
  488. */
  489. aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
  490. /*
  491. * Before possibly freeing the buf item, determine if we should
  492. * release the buffer at the end of this routine.
  493. */
  494. hold = bip->bli_flags & XFS_BLI_HOLD;
  495. /* Clear the per transaction state. */
  496. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
  497. /*
  498. * If the buf item is marked stale, then don't do anything. We'll
  499. * unlock the buffer and free the buf item when the buffer is unpinned
  500. * for the last time.
  501. */
  502. if (bip->bli_flags & XFS_BLI_STALE) {
  503. trace_xfs_buf_item_unlock_stale(bip);
  504. ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
  505. if (!aborted) {
  506. atomic_dec(&bip->bli_refcount);
  507. return;
  508. }
  509. }
  510. trace_xfs_buf_item_unlock(bip);
  511. /*
  512. * If the buf item isn't tracking any data, free it, otherwise drop the
  513. * reference we hold to it.
  514. */
  515. if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
  516. bip->bli_format.blf_map_size))
  517. xfs_buf_item_relse(bp);
  518. else
  519. atomic_dec(&bip->bli_refcount);
  520. if (!hold)
  521. xfs_buf_relse(bp);
  522. }
  523. /*
  524. * This is called to find out where the oldest active copy of the
  525. * buf log item in the on disk log resides now that the last log
  526. * write of it completed at the given lsn.
  527. * We always re-log all the dirty data in a buffer, so usually the
  528. * latest copy in the on disk log is the only one that matters. For
  529. * those cases we simply return the given lsn.
  530. *
  531. * The one exception to this is for buffers full of newly allocated
  532. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  533. * flag set, indicating that only the di_next_unlinked fields from the
  534. * inodes in the buffers will be replayed during recovery. If the
  535. * original newly allocated inode images have not yet been flushed
  536. * when the buffer is so relogged, then we need to make sure that we
  537. * keep the old images in the 'active' portion of the log. We do this
  538. * by returning the original lsn of that transaction here rather than
  539. * the current one.
  540. */
  541. STATIC xfs_lsn_t
  542. xfs_buf_item_committed(
  543. struct xfs_log_item *lip,
  544. xfs_lsn_t lsn)
  545. {
  546. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  547. trace_xfs_buf_item_committed(bip);
  548. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  549. return lip->li_lsn;
  550. return lsn;
  551. }
  552. /*
  553. * The buffer is locked, but is not a delayed write buffer. This happens
  554. * if we race with IO completion and hence we don't want to try to write it
  555. * again. Just release the buffer.
  556. */
  557. STATIC void
  558. xfs_buf_item_push(
  559. struct xfs_log_item *lip)
  560. {
  561. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  562. struct xfs_buf *bp = bip->bli_buf;
  563. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  564. ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
  565. trace_xfs_buf_item_push(bip);
  566. xfs_buf_relse(bp);
  567. }
  568. /*
  569. * The buffer is locked and is a delayed write buffer. Promote the buffer
  570. * in the delayed write queue as the caller knows that they must invoke
  571. * the xfsbufd to get this buffer written. We have to unlock the buffer
  572. * to allow the xfsbufd to write it, too.
  573. */
  574. STATIC void
  575. xfs_buf_item_pushbuf(
  576. struct xfs_log_item *lip)
  577. {
  578. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  579. struct xfs_buf *bp = bip->bli_buf;
  580. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  581. ASSERT(XFS_BUF_ISDELAYWRITE(bp));
  582. trace_xfs_buf_item_pushbuf(bip);
  583. xfs_buf_delwri_promote(bp);
  584. xfs_buf_relse(bp);
  585. }
  586. STATIC void
  587. xfs_buf_item_committing(
  588. struct xfs_log_item *lip,
  589. xfs_lsn_t commit_lsn)
  590. {
  591. }
  592. /*
  593. * This is the ops vector shared by all buf log items.
  594. */
  595. static struct xfs_item_ops xfs_buf_item_ops = {
  596. .iop_size = xfs_buf_item_size,
  597. .iop_format = xfs_buf_item_format,
  598. .iop_pin = xfs_buf_item_pin,
  599. .iop_unpin = xfs_buf_item_unpin,
  600. .iop_trylock = xfs_buf_item_trylock,
  601. .iop_unlock = xfs_buf_item_unlock,
  602. .iop_committed = xfs_buf_item_committed,
  603. .iop_push = xfs_buf_item_push,
  604. .iop_pushbuf = xfs_buf_item_pushbuf,
  605. .iop_committing = xfs_buf_item_committing
  606. };
  607. /*
  608. * Allocate a new buf log item to go with the given buffer.
  609. * Set the buffer's b_fsprivate field to point to the new
  610. * buf log item. If there are other item's attached to the
  611. * buffer (see xfs_buf_attach_iodone() below), then put the
  612. * buf log item at the front.
  613. */
  614. void
  615. xfs_buf_item_init(
  616. xfs_buf_t *bp,
  617. xfs_mount_t *mp)
  618. {
  619. xfs_log_item_t *lip;
  620. xfs_buf_log_item_t *bip;
  621. int chunks;
  622. int map_size;
  623. /*
  624. * Check to see if there is already a buf log item for
  625. * this buffer. If there is, it is guaranteed to be
  626. * the first. If we do already have one, there is
  627. * nothing to do here so return.
  628. */
  629. ASSERT(bp->b_target->bt_mount == mp);
  630. if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
  631. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  632. if (lip->li_type == XFS_LI_BUF) {
  633. return;
  634. }
  635. }
  636. /*
  637. * chunks is the number of XFS_BLF_CHUNK size pieces
  638. * the buffer can be divided into. Make sure not to
  639. * truncate any pieces. map_size is the size of the
  640. * bitmap needed to describe the chunks of the buffer.
  641. */
  642. chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
  643. map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
  644. bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
  645. KM_SLEEP);
  646. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  647. bip->bli_buf = bp;
  648. xfs_buf_hold(bp);
  649. bip->bli_format.blf_type = XFS_LI_BUF;
  650. bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
  651. bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
  652. bip->bli_format.blf_map_size = map_size;
  653. #ifdef XFS_TRANS_DEBUG
  654. /*
  655. * Allocate the arrays for tracking what needs to be logged
  656. * and what our callers request to be logged. bli_orig
  657. * holds a copy of the original, clean buffer for comparison
  658. * against, and bli_logged keeps a 1 bit flag per byte in
  659. * the buffer to indicate which bytes the callers have asked
  660. * to have logged.
  661. */
  662. bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
  663. memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
  664. bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
  665. #endif
  666. /*
  667. * Put the buf item into the list of items attached to the
  668. * buffer at the front.
  669. */
  670. if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
  671. bip->bli_item.li_bio_list =
  672. XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  673. }
  674. XFS_BUF_SET_FSPRIVATE(bp, bip);
  675. }
  676. /*
  677. * Mark bytes first through last inclusive as dirty in the buf
  678. * item's bitmap.
  679. */
  680. void
  681. xfs_buf_item_log(
  682. xfs_buf_log_item_t *bip,
  683. uint first,
  684. uint last)
  685. {
  686. uint first_bit;
  687. uint last_bit;
  688. uint bits_to_set;
  689. uint bits_set;
  690. uint word_num;
  691. uint *wordp;
  692. uint bit;
  693. uint end_bit;
  694. uint mask;
  695. /*
  696. * Mark the item as having some dirty data for
  697. * quick reference in xfs_buf_item_dirty.
  698. */
  699. bip->bli_flags |= XFS_BLI_DIRTY;
  700. /*
  701. * Convert byte offsets to bit numbers.
  702. */
  703. first_bit = first >> XFS_BLF_SHIFT;
  704. last_bit = last >> XFS_BLF_SHIFT;
  705. /*
  706. * Calculate the total number of bits to be set.
  707. */
  708. bits_to_set = last_bit - first_bit + 1;
  709. /*
  710. * Get a pointer to the first word in the bitmap
  711. * to set a bit in.
  712. */
  713. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  714. wordp = &(bip->bli_format.blf_data_map[word_num]);
  715. /*
  716. * Calculate the starting bit in the first word.
  717. */
  718. bit = first_bit & (uint)(NBWORD - 1);
  719. /*
  720. * First set any bits in the first word of our range.
  721. * If it starts at bit 0 of the word, it will be
  722. * set below rather than here. That is what the variable
  723. * bit tells us. The variable bits_set tracks the number
  724. * of bits that have been set so far. End_bit is the number
  725. * of the last bit to be set in this word plus one.
  726. */
  727. if (bit) {
  728. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  729. mask = ((1 << (end_bit - bit)) - 1) << bit;
  730. *wordp |= mask;
  731. wordp++;
  732. bits_set = end_bit - bit;
  733. } else {
  734. bits_set = 0;
  735. }
  736. /*
  737. * Now set bits a whole word at a time that are between
  738. * first_bit and last_bit.
  739. */
  740. while ((bits_to_set - bits_set) >= NBWORD) {
  741. *wordp |= 0xffffffff;
  742. bits_set += NBWORD;
  743. wordp++;
  744. }
  745. /*
  746. * Finally, set any bits left to be set in one last partial word.
  747. */
  748. end_bit = bits_to_set - bits_set;
  749. if (end_bit) {
  750. mask = (1 << end_bit) - 1;
  751. *wordp |= mask;
  752. }
  753. xfs_buf_item_log_debug(bip, first, last);
  754. }
  755. /*
  756. * Return 1 if the buffer has some data that has been logged (at any
  757. * point, not just the current transaction) and 0 if not.
  758. */
  759. uint
  760. xfs_buf_item_dirty(
  761. xfs_buf_log_item_t *bip)
  762. {
  763. return (bip->bli_flags & XFS_BLI_DIRTY);
  764. }
  765. STATIC void
  766. xfs_buf_item_free(
  767. xfs_buf_log_item_t *bip)
  768. {
  769. #ifdef XFS_TRANS_DEBUG
  770. kmem_free(bip->bli_orig);
  771. kmem_free(bip->bli_logged);
  772. #endif /* XFS_TRANS_DEBUG */
  773. kmem_zone_free(xfs_buf_item_zone, bip);
  774. }
  775. /*
  776. * This is called when the buf log item is no longer needed. It should
  777. * free the buf log item associated with the given buffer and clear
  778. * the buffer's pointer to the buf log item. If there are no more
  779. * items in the list, clear the b_iodone field of the buffer (see
  780. * xfs_buf_attach_iodone() below).
  781. */
  782. void
  783. xfs_buf_item_relse(
  784. xfs_buf_t *bp)
  785. {
  786. xfs_buf_log_item_t *bip;
  787. trace_xfs_buf_item_relse(bp, _RET_IP_);
  788. bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
  789. XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
  790. if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
  791. (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
  792. XFS_BUF_CLR_IODONE_FUNC(bp);
  793. }
  794. xfs_buf_rele(bp);
  795. xfs_buf_item_free(bip);
  796. }
  797. /*
  798. * Add the given log item with its callback to the list of callbacks
  799. * to be called when the buffer's I/O completes. If it is not set
  800. * already, set the buffer's b_iodone() routine to be
  801. * xfs_buf_iodone_callbacks() and link the log item into the list of
  802. * items rooted at b_fsprivate. Items are always added as the second
  803. * entry in the list if there is a first, because the buf item code
  804. * assumes that the buf log item is first.
  805. */
  806. void
  807. xfs_buf_attach_iodone(
  808. xfs_buf_t *bp,
  809. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  810. xfs_log_item_t *lip)
  811. {
  812. xfs_log_item_t *head_lip;
  813. ASSERT(XFS_BUF_ISBUSY(bp));
  814. ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
  815. lip->li_cb = cb;
  816. if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
  817. head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  818. lip->li_bio_list = head_lip->li_bio_list;
  819. head_lip->li_bio_list = lip;
  820. } else {
  821. XFS_BUF_SET_FSPRIVATE(bp, lip);
  822. }
  823. ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
  824. (XFS_BUF_IODONE_FUNC(bp) == NULL));
  825. XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
  826. }
  827. /*
  828. * We can have many callbacks on a buffer. Running the callbacks individually
  829. * can cause a lot of contention on the AIL lock, so we allow for a single
  830. * callback to be able to scan the remaining lip->li_bio_list for other items
  831. * of the same type and callback to be processed in the first call.
  832. *
  833. * As a result, the loop walking the callback list below will also modify the
  834. * list. it removes the first item from the list and then runs the callback.
  835. * The loop then restarts from the new head of the list. This allows the
  836. * callback to scan and modify the list attached to the buffer and we don't
  837. * have to care about maintaining a next item pointer.
  838. */
  839. STATIC void
  840. xfs_buf_do_callbacks(
  841. struct xfs_buf *bp)
  842. {
  843. struct xfs_log_item *lip;
  844. while ((lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *)) != NULL) {
  845. XFS_BUF_SET_FSPRIVATE(bp, lip->li_bio_list);
  846. ASSERT(lip->li_cb != NULL);
  847. /*
  848. * Clear the next pointer so we don't have any
  849. * confusion if the item is added to another buf.
  850. * Don't touch the log item after calling its
  851. * callback, because it could have freed itself.
  852. */
  853. lip->li_bio_list = NULL;
  854. lip->li_cb(bp, lip);
  855. }
  856. }
  857. /*
  858. * This is the iodone() function for buffers which have had callbacks
  859. * attached to them by xfs_buf_attach_iodone(). It should remove each
  860. * log item from the buffer's list and call the callback of each in turn.
  861. * When done, the buffer's fsprivate field is set to NULL and the buffer
  862. * is unlocked with a call to iodone().
  863. */
  864. void
  865. xfs_buf_iodone_callbacks(
  866. struct xfs_buf *bp)
  867. {
  868. struct xfs_log_item *lip = bp->b_fspriv;
  869. struct xfs_mount *mp = lip->li_mountp;
  870. static ulong lasttime;
  871. static xfs_buftarg_t *lasttarg;
  872. if (likely(!XFS_BUF_GETERROR(bp)))
  873. goto do_callbacks;
  874. /*
  875. * If we've already decided to shutdown the filesystem because of
  876. * I/O errors, there's no point in giving this a retry.
  877. */
  878. if (XFS_FORCED_SHUTDOWN(mp)) {
  879. XFS_BUF_SUPER_STALE(bp);
  880. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  881. goto do_callbacks;
  882. }
  883. if (XFS_BUF_TARGET(bp) != lasttarg ||
  884. time_after(jiffies, (lasttime + 5*HZ))) {
  885. lasttime = jiffies;
  886. cmn_err(CE_ALERT, "Device %s, XFS metadata write error"
  887. " block 0x%llx in %s",
  888. XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
  889. (__uint64_t)XFS_BUF_ADDR(bp), mp->m_fsname);
  890. }
  891. lasttarg = XFS_BUF_TARGET(bp);
  892. /*
  893. * If the write was asynchronous then noone will be looking for the
  894. * error. Clear the error state and write the buffer out again.
  895. *
  896. * During sync or umount we'll write all pending buffers again
  897. * synchronous, which will catch these errors if they keep hanging
  898. * around.
  899. */
  900. if (XFS_BUF_ISASYNC(bp)) {
  901. XFS_BUF_ERROR(bp, 0); /* errno of 0 unsets the flag */
  902. if (!XFS_BUF_ISSTALE(bp)) {
  903. XFS_BUF_DELAYWRITE(bp);
  904. XFS_BUF_DONE(bp);
  905. XFS_BUF_SET_START(bp);
  906. }
  907. ASSERT(XFS_BUF_IODONE_FUNC(bp));
  908. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  909. xfs_buf_relse(bp);
  910. return;
  911. }
  912. /*
  913. * If the write of the buffer was synchronous, we want to make
  914. * sure to return the error to the caller of xfs_bwrite().
  915. */
  916. XFS_BUF_STALE(bp);
  917. XFS_BUF_DONE(bp);
  918. XFS_BUF_UNDELAYWRITE(bp);
  919. trace_xfs_buf_error_relse(bp, _RET_IP_);
  920. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  921. do_callbacks:
  922. xfs_buf_do_callbacks(bp);
  923. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  924. XFS_BUF_CLR_IODONE_FUNC(bp);
  925. xfs_buf_ioend(bp, 0);
  926. }
  927. /*
  928. * This is the iodone() function for buffers which have been
  929. * logged. It is called when they are eventually flushed out.
  930. * It should remove the buf item from the AIL, and free the buf item.
  931. * It is called by xfs_buf_iodone_callbacks() above which will take
  932. * care of cleaning up the buffer itself.
  933. */
  934. void
  935. xfs_buf_iodone(
  936. struct xfs_buf *bp,
  937. struct xfs_log_item *lip)
  938. {
  939. struct xfs_ail *ailp = lip->li_ailp;
  940. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  941. xfs_buf_rele(bp);
  942. /*
  943. * If we are forcibly shutting down, this may well be
  944. * off the AIL already. That's because we simulate the
  945. * log-committed callbacks to unpin these buffers. Or we may never
  946. * have put this item on AIL because of the transaction was
  947. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  948. *
  949. * Either way, AIL is useless if we're forcing a shutdown.
  950. */
  951. spin_lock(&ailp->xa_lock);
  952. xfs_trans_ail_delete(ailp, lip);
  953. xfs_buf_item_free(BUF_ITEM(lip));
  954. }