task_mmu.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/mount.h>
  4. #include <linux/seq_file.h>
  5. #include <linux/highmem.h>
  6. #include <linux/ptrace.h>
  7. #include <linux/slab.h>
  8. #include <linux/pagemap.h>
  9. #include <linux/mempolicy.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <asm/elf.h>
  13. #include <asm/uaccess.h>
  14. #include <asm/tlbflush.h>
  15. #include "internal.h"
  16. void task_mem(struct seq_file *m, struct mm_struct *mm)
  17. {
  18. unsigned long data, text, lib, swap;
  19. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  20. /*
  21. * Note: to minimize their overhead, mm maintains hiwater_vm and
  22. * hiwater_rss only when about to *lower* total_vm or rss. Any
  23. * collector of these hiwater stats must therefore get total_vm
  24. * and rss too, which will usually be the higher. Barriers? not
  25. * worth the effort, such snapshots can always be inconsistent.
  26. */
  27. hiwater_vm = total_vm = mm->total_vm;
  28. if (hiwater_vm < mm->hiwater_vm)
  29. hiwater_vm = mm->hiwater_vm;
  30. hiwater_rss = total_rss = get_mm_rss(mm);
  31. if (hiwater_rss < mm->hiwater_rss)
  32. hiwater_rss = mm->hiwater_rss;
  33. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  34. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  35. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  36. swap = get_mm_counter(mm, MM_SWAPENTS);
  37. seq_printf(m,
  38. "VmPeak:\t%8lu kB\n"
  39. "VmSize:\t%8lu kB\n"
  40. "VmLck:\t%8lu kB\n"
  41. "VmHWM:\t%8lu kB\n"
  42. "VmRSS:\t%8lu kB\n"
  43. "VmData:\t%8lu kB\n"
  44. "VmStk:\t%8lu kB\n"
  45. "VmExe:\t%8lu kB\n"
  46. "VmLib:\t%8lu kB\n"
  47. "VmPTE:\t%8lu kB\n"
  48. "VmSwap:\t%8lu kB\n",
  49. hiwater_vm << (PAGE_SHIFT-10),
  50. (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  51. mm->locked_vm << (PAGE_SHIFT-10),
  52. hiwater_rss << (PAGE_SHIFT-10),
  53. total_rss << (PAGE_SHIFT-10),
  54. data << (PAGE_SHIFT-10),
  55. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  56. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  57. swap << (PAGE_SHIFT-10));
  58. }
  59. unsigned long task_vsize(struct mm_struct *mm)
  60. {
  61. return PAGE_SIZE * mm->total_vm;
  62. }
  63. unsigned long task_statm(struct mm_struct *mm,
  64. unsigned long *shared, unsigned long *text,
  65. unsigned long *data, unsigned long *resident)
  66. {
  67. *shared = get_mm_counter(mm, MM_FILEPAGES);
  68. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  69. >> PAGE_SHIFT;
  70. *data = mm->total_vm - mm->shared_vm;
  71. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  72. return mm->total_vm;
  73. }
  74. static void pad_len_spaces(struct seq_file *m, int len)
  75. {
  76. len = 25 + sizeof(void*) * 6 - len;
  77. if (len < 1)
  78. len = 1;
  79. seq_printf(m, "%*c", len, ' ');
  80. }
  81. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  82. {
  83. if (vma && vma != priv->tail_vma) {
  84. struct mm_struct *mm = vma->vm_mm;
  85. up_read(&mm->mmap_sem);
  86. mmput(mm);
  87. }
  88. }
  89. static void *m_start(struct seq_file *m, loff_t *pos)
  90. {
  91. struct proc_maps_private *priv = m->private;
  92. unsigned long last_addr = m->version;
  93. struct mm_struct *mm;
  94. struct vm_area_struct *vma, *tail_vma = NULL;
  95. loff_t l = *pos;
  96. /* Clear the per syscall fields in priv */
  97. priv->task = NULL;
  98. priv->tail_vma = NULL;
  99. /*
  100. * We remember last_addr rather than next_addr to hit with
  101. * mmap_cache most of the time. We have zero last_addr at
  102. * the beginning and also after lseek. We will have -1 last_addr
  103. * after the end of the vmas.
  104. */
  105. if (last_addr == -1UL)
  106. return NULL;
  107. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  108. if (!priv->task)
  109. return NULL;
  110. mm = mm_for_maps(priv->task);
  111. if (!mm)
  112. return NULL;
  113. down_read(&mm->mmap_sem);
  114. tail_vma = get_gate_vma(priv->task);
  115. priv->tail_vma = tail_vma;
  116. /* Start with last addr hint */
  117. vma = find_vma(mm, last_addr);
  118. if (last_addr && vma) {
  119. vma = vma->vm_next;
  120. goto out;
  121. }
  122. /*
  123. * Check the vma index is within the range and do
  124. * sequential scan until m_index.
  125. */
  126. vma = NULL;
  127. if ((unsigned long)l < mm->map_count) {
  128. vma = mm->mmap;
  129. while (l-- && vma)
  130. vma = vma->vm_next;
  131. goto out;
  132. }
  133. if (l != mm->map_count)
  134. tail_vma = NULL; /* After gate vma */
  135. out:
  136. if (vma)
  137. return vma;
  138. /* End of vmas has been reached */
  139. m->version = (tail_vma != NULL)? 0: -1UL;
  140. up_read(&mm->mmap_sem);
  141. mmput(mm);
  142. return tail_vma;
  143. }
  144. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  145. {
  146. struct proc_maps_private *priv = m->private;
  147. struct vm_area_struct *vma = v;
  148. struct vm_area_struct *tail_vma = priv->tail_vma;
  149. (*pos)++;
  150. if (vma && (vma != tail_vma) && vma->vm_next)
  151. return vma->vm_next;
  152. vma_stop(priv, vma);
  153. return (vma != tail_vma)? tail_vma: NULL;
  154. }
  155. static void m_stop(struct seq_file *m, void *v)
  156. {
  157. struct proc_maps_private *priv = m->private;
  158. struct vm_area_struct *vma = v;
  159. vma_stop(priv, vma);
  160. if (priv->task)
  161. put_task_struct(priv->task);
  162. }
  163. static int do_maps_open(struct inode *inode, struct file *file,
  164. const struct seq_operations *ops)
  165. {
  166. struct proc_maps_private *priv;
  167. int ret = -ENOMEM;
  168. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  169. if (priv) {
  170. priv->pid = proc_pid(inode);
  171. ret = seq_open(file, ops);
  172. if (!ret) {
  173. struct seq_file *m = file->private_data;
  174. m->private = priv;
  175. } else {
  176. kfree(priv);
  177. }
  178. }
  179. return ret;
  180. }
  181. static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  182. {
  183. struct mm_struct *mm = vma->vm_mm;
  184. struct file *file = vma->vm_file;
  185. int flags = vma->vm_flags;
  186. unsigned long ino = 0;
  187. unsigned long long pgoff = 0;
  188. unsigned long start;
  189. dev_t dev = 0;
  190. int len;
  191. if (file) {
  192. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  193. dev = inode->i_sb->s_dev;
  194. ino = inode->i_ino;
  195. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  196. }
  197. /* We don't show the stack guard page in /proc/maps */
  198. start = vma->vm_start;
  199. if (vma->vm_flags & VM_GROWSDOWN)
  200. if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
  201. start += PAGE_SIZE;
  202. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  203. start,
  204. vma->vm_end,
  205. flags & VM_READ ? 'r' : '-',
  206. flags & VM_WRITE ? 'w' : '-',
  207. flags & VM_EXEC ? 'x' : '-',
  208. flags & VM_MAYSHARE ? 's' : 'p',
  209. pgoff,
  210. MAJOR(dev), MINOR(dev), ino, &len);
  211. /*
  212. * Print the dentry name for named mappings, and a
  213. * special [heap] marker for the heap:
  214. */
  215. if (file) {
  216. pad_len_spaces(m, len);
  217. seq_path(m, &file->f_path, "\n");
  218. } else {
  219. const char *name = arch_vma_name(vma);
  220. if (!name) {
  221. if (mm) {
  222. if (vma->vm_start <= mm->start_brk &&
  223. vma->vm_end >= mm->brk) {
  224. name = "[heap]";
  225. } else if (vma->vm_start <= mm->start_stack &&
  226. vma->vm_end >= mm->start_stack) {
  227. name = "[stack]";
  228. }
  229. } else {
  230. name = "[vdso]";
  231. }
  232. }
  233. if (name) {
  234. pad_len_spaces(m, len);
  235. seq_puts(m, name);
  236. }
  237. }
  238. seq_putc(m, '\n');
  239. }
  240. static int show_map(struct seq_file *m, void *v)
  241. {
  242. struct vm_area_struct *vma = v;
  243. struct proc_maps_private *priv = m->private;
  244. struct task_struct *task = priv->task;
  245. show_map_vma(m, vma);
  246. if (m->count < m->size) /* vma is copied successfully */
  247. m->version = (vma != get_gate_vma(task))? vma->vm_start: 0;
  248. return 0;
  249. }
  250. static const struct seq_operations proc_pid_maps_op = {
  251. .start = m_start,
  252. .next = m_next,
  253. .stop = m_stop,
  254. .show = show_map
  255. };
  256. static int maps_open(struct inode *inode, struct file *file)
  257. {
  258. return do_maps_open(inode, file, &proc_pid_maps_op);
  259. }
  260. const struct file_operations proc_maps_operations = {
  261. .open = maps_open,
  262. .read = seq_read,
  263. .llseek = seq_lseek,
  264. .release = seq_release_private,
  265. };
  266. /*
  267. * Proportional Set Size(PSS): my share of RSS.
  268. *
  269. * PSS of a process is the count of pages it has in memory, where each
  270. * page is divided by the number of processes sharing it. So if a
  271. * process has 1000 pages all to itself, and 1000 shared with one other
  272. * process, its PSS will be 1500.
  273. *
  274. * To keep (accumulated) division errors low, we adopt a 64bit
  275. * fixed-point pss counter to minimize division errors. So (pss >>
  276. * PSS_SHIFT) would be the real byte count.
  277. *
  278. * A shift of 12 before division means (assuming 4K page size):
  279. * - 1M 3-user-pages add up to 8KB errors;
  280. * - supports mapcount up to 2^24, or 16M;
  281. * - supports PSS up to 2^52 bytes, or 4PB.
  282. */
  283. #define PSS_SHIFT 12
  284. #ifdef CONFIG_PROC_PAGE_MONITOR
  285. struct mem_size_stats {
  286. struct vm_area_struct *vma;
  287. unsigned long resident;
  288. unsigned long shared_clean;
  289. unsigned long shared_dirty;
  290. unsigned long private_clean;
  291. unsigned long private_dirty;
  292. unsigned long referenced;
  293. unsigned long anonymous;
  294. unsigned long swap;
  295. u64 pss;
  296. };
  297. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  298. struct mm_walk *walk)
  299. {
  300. struct mem_size_stats *mss = walk->private;
  301. struct vm_area_struct *vma = mss->vma;
  302. pte_t *pte, ptent;
  303. spinlock_t *ptl;
  304. struct page *page;
  305. int mapcount;
  306. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  307. for (; addr != end; pte++, addr += PAGE_SIZE) {
  308. ptent = *pte;
  309. if (is_swap_pte(ptent)) {
  310. mss->swap += PAGE_SIZE;
  311. continue;
  312. }
  313. if (!pte_present(ptent))
  314. continue;
  315. page = vm_normal_page(vma, addr, ptent);
  316. if (!page)
  317. continue;
  318. if (PageAnon(page))
  319. mss->anonymous += PAGE_SIZE;
  320. mss->resident += PAGE_SIZE;
  321. /* Accumulate the size in pages that have been accessed. */
  322. if (pte_young(ptent) || PageReferenced(page))
  323. mss->referenced += PAGE_SIZE;
  324. mapcount = page_mapcount(page);
  325. if (mapcount >= 2) {
  326. if (pte_dirty(ptent) || PageDirty(page))
  327. mss->shared_dirty += PAGE_SIZE;
  328. else
  329. mss->shared_clean += PAGE_SIZE;
  330. mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
  331. } else {
  332. if (pte_dirty(ptent) || PageDirty(page))
  333. mss->private_dirty += PAGE_SIZE;
  334. else
  335. mss->private_clean += PAGE_SIZE;
  336. mss->pss += (PAGE_SIZE << PSS_SHIFT);
  337. }
  338. }
  339. pte_unmap_unlock(pte - 1, ptl);
  340. cond_resched();
  341. return 0;
  342. }
  343. static int show_smap(struct seq_file *m, void *v)
  344. {
  345. struct proc_maps_private *priv = m->private;
  346. struct task_struct *task = priv->task;
  347. struct vm_area_struct *vma = v;
  348. struct mem_size_stats mss;
  349. struct mm_walk smaps_walk = {
  350. .pmd_entry = smaps_pte_range,
  351. .mm = vma->vm_mm,
  352. .private = &mss,
  353. };
  354. memset(&mss, 0, sizeof mss);
  355. mss.vma = vma;
  356. /* mmap_sem is held in m_start */
  357. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  358. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  359. show_map_vma(m, vma);
  360. seq_printf(m,
  361. "Size: %8lu kB\n"
  362. "Rss: %8lu kB\n"
  363. "Pss: %8lu kB\n"
  364. "Shared_Clean: %8lu kB\n"
  365. "Shared_Dirty: %8lu kB\n"
  366. "Private_Clean: %8lu kB\n"
  367. "Private_Dirty: %8lu kB\n"
  368. "Referenced: %8lu kB\n"
  369. "Anonymous: %8lu kB\n"
  370. "Swap: %8lu kB\n"
  371. "KernelPageSize: %8lu kB\n"
  372. "MMUPageSize: %8lu kB\n"
  373. "Locked: %8lu kB\n",
  374. (vma->vm_end - vma->vm_start) >> 10,
  375. mss.resident >> 10,
  376. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  377. mss.shared_clean >> 10,
  378. mss.shared_dirty >> 10,
  379. mss.private_clean >> 10,
  380. mss.private_dirty >> 10,
  381. mss.referenced >> 10,
  382. mss.anonymous >> 10,
  383. mss.swap >> 10,
  384. vma_kernel_pagesize(vma) >> 10,
  385. vma_mmu_pagesize(vma) >> 10,
  386. (vma->vm_flags & VM_LOCKED) ?
  387. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  388. if (m->count < m->size) /* vma is copied successfully */
  389. m->version = (vma != get_gate_vma(task)) ? vma->vm_start : 0;
  390. return 0;
  391. }
  392. static const struct seq_operations proc_pid_smaps_op = {
  393. .start = m_start,
  394. .next = m_next,
  395. .stop = m_stop,
  396. .show = show_smap
  397. };
  398. static int smaps_open(struct inode *inode, struct file *file)
  399. {
  400. return do_maps_open(inode, file, &proc_pid_smaps_op);
  401. }
  402. const struct file_operations proc_smaps_operations = {
  403. .open = smaps_open,
  404. .read = seq_read,
  405. .llseek = seq_lseek,
  406. .release = seq_release_private,
  407. };
  408. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  409. unsigned long end, struct mm_walk *walk)
  410. {
  411. struct vm_area_struct *vma = walk->private;
  412. pte_t *pte, ptent;
  413. spinlock_t *ptl;
  414. struct page *page;
  415. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  416. for (; addr != end; pte++, addr += PAGE_SIZE) {
  417. ptent = *pte;
  418. if (!pte_present(ptent))
  419. continue;
  420. page = vm_normal_page(vma, addr, ptent);
  421. if (!page)
  422. continue;
  423. /* Clear accessed and referenced bits. */
  424. ptep_test_and_clear_young(vma, addr, pte);
  425. ClearPageReferenced(page);
  426. }
  427. pte_unmap_unlock(pte - 1, ptl);
  428. cond_resched();
  429. return 0;
  430. }
  431. #define CLEAR_REFS_ALL 1
  432. #define CLEAR_REFS_ANON 2
  433. #define CLEAR_REFS_MAPPED 3
  434. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  435. size_t count, loff_t *ppos)
  436. {
  437. struct task_struct *task;
  438. char buffer[PROC_NUMBUF];
  439. struct mm_struct *mm;
  440. struct vm_area_struct *vma;
  441. long type;
  442. memset(buffer, 0, sizeof(buffer));
  443. if (count > sizeof(buffer) - 1)
  444. count = sizeof(buffer) - 1;
  445. if (copy_from_user(buffer, buf, count))
  446. return -EFAULT;
  447. if (strict_strtol(strstrip(buffer), 10, &type))
  448. return -EINVAL;
  449. if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
  450. return -EINVAL;
  451. task = get_proc_task(file->f_path.dentry->d_inode);
  452. if (!task)
  453. return -ESRCH;
  454. mm = get_task_mm(task);
  455. if (mm) {
  456. struct mm_walk clear_refs_walk = {
  457. .pmd_entry = clear_refs_pte_range,
  458. .mm = mm,
  459. };
  460. down_read(&mm->mmap_sem);
  461. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  462. clear_refs_walk.private = vma;
  463. if (is_vm_hugetlb_page(vma))
  464. continue;
  465. /*
  466. * Writing 1 to /proc/pid/clear_refs affects all pages.
  467. *
  468. * Writing 2 to /proc/pid/clear_refs only affects
  469. * Anonymous pages.
  470. *
  471. * Writing 3 to /proc/pid/clear_refs only affects file
  472. * mapped pages.
  473. */
  474. if (type == CLEAR_REFS_ANON && vma->vm_file)
  475. continue;
  476. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  477. continue;
  478. walk_page_range(vma->vm_start, vma->vm_end,
  479. &clear_refs_walk);
  480. }
  481. flush_tlb_mm(mm);
  482. up_read(&mm->mmap_sem);
  483. mmput(mm);
  484. }
  485. put_task_struct(task);
  486. return count;
  487. }
  488. const struct file_operations proc_clear_refs_operations = {
  489. .write = clear_refs_write,
  490. .llseek = noop_llseek,
  491. };
  492. struct pagemapread {
  493. int pos, len;
  494. u64 *buffer;
  495. };
  496. #define PM_ENTRY_BYTES sizeof(u64)
  497. #define PM_STATUS_BITS 3
  498. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  499. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  500. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  501. #define PM_PSHIFT_BITS 6
  502. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  503. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  504. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  505. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  506. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  507. #define PM_PRESENT PM_STATUS(4LL)
  508. #define PM_SWAP PM_STATUS(2LL)
  509. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  510. #define PM_END_OF_BUFFER 1
  511. static int add_to_pagemap(unsigned long addr, u64 pfn,
  512. struct pagemapread *pm)
  513. {
  514. pm->buffer[pm->pos++] = pfn;
  515. if (pm->pos >= pm->len)
  516. return PM_END_OF_BUFFER;
  517. return 0;
  518. }
  519. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  520. struct mm_walk *walk)
  521. {
  522. struct pagemapread *pm = walk->private;
  523. unsigned long addr;
  524. int err = 0;
  525. for (addr = start; addr < end; addr += PAGE_SIZE) {
  526. err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
  527. if (err)
  528. break;
  529. }
  530. return err;
  531. }
  532. static u64 swap_pte_to_pagemap_entry(pte_t pte)
  533. {
  534. swp_entry_t e = pte_to_swp_entry(pte);
  535. return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
  536. }
  537. static u64 pte_to_pagemap_entry(pte_t pte)
  538. {
  539. u64 pme = 0;
  540. if (is_swap_pte(pte))
  541. pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
  542. | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
  543. else if (pte_present(pte))
  544. pme = PM_PFRAME(pte_pfn(pte))
  545. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  546. return pme;
  547. }
  548. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  549. struct mm_walk *walk)
  550. {
  551. struct vm_area_struct *vma;
  552. struct pagemapread *pm = walk->private;
  553. pte_t *pte;
  554. int err = 0;
  555. /* find the first VMA at or above 'addr' */
  556. vma = find_vma(walk->mm, addr);
  557. for (; addr != end; addr += PAGE_SIZE) {
  558. u64 pfn = PM_NOT_PRESENT;
  559. /* check to see if we've left 'vma' behind
  560. * and need a new, higher one */
  561. if (vma && (addr >= vma->vm_end))
  562. vma = find_vma(walk->mm, addr);
  563. /* check that 'vma' actually covers this address,
  564. * and that it isn't a huge page vma */
  565. if (vma && (vma->vm_start <= addr) &&
  566. !is_vm_hugetlb_page(vma)) {
  567. pte = pte_offset_map(pmd, addr);
  568. pfn = pte_to_pagemap_entry(*pte);
  569. /* unmap before userspace copy */
  570. pte_unmap(pte);
  571. }
  572. err = add_to_pagemap(addr, pfn, pm);
  573. if (err)
  574. return err;
  575. }
  576. cond_resched();
  577. return err;
  578. }
  579. #ifdef CONFIG_HUGETLB_PAGE
  580. static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
  581. {
  582. u64 pme = 0;
  583. if (pte_present(pte))
  584. pme = PM_PFRAME(pte_pfn(pte) + offset)
  585. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  586. return pme;
  587. }
  588. /* This function walks within one hugetlb entry in the single call */
  589. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  590. unsigned long addr, unsigned long end,
  591. struct mm_walk *walk)
  592. {
  593. struct pagemapread *pm = walk->private;
  594. int err = 0;
  595. u64 pfn;
  596. for (; addr != end; addr += PAGE_SIZE) {
  597. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  598. pfn = huge_pte_to_pagemap_entry(*pte, offset);
  599. err = add_to_pagemap(addr, pfn, pm);
  600. if (err)
  601. return err;
  602. }
  603. cond_resched();
  604. return err;
  605. }
  606. #endif /* HUGETLB_PAGE */
  607. /*
  608. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  609. *
  610. * For each page in the address space, this file contains one 64-bit entry
  611. * consisting of the following:
  612. *
  613. * Bits 0-55 page frame number (PFN) if present
  614. * Bits 0-4 swap type if swapped
  615. * Bits 5-55 swap offset if swapped
  616. * Bits 55-60 page shift (page size = 1<<page shift)
  617. * Bit 61 reserved for future use
  618. * Bit 62 page swapped
  619. * Bit 63 page present
  620. *
  621. * If the page is not present but in swap, then the PFN contains an
  622. * encoding of the swap file number and the page's offset into the
  623. * swap. Unmapped pages return a null PFN. This allows determining
  624. * precisely which pages are mapped (or in swap) and comparing mapped
  625. * pages between processes.
  626. *
  627. * Efficient users of this interface will use /proc/pid/maps to
  628. * determine which areas of memory are actually mapped and llseek to
  629. * skip over unmapped regions.
  630. */
  631. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  632. #define PAGEMAP_WALK_MASK (PMD_MASK)
  633. static ssize_t pagemap_read(struct file *file, char __user *buf,
  634. size_t count, loff_t *ppos)
  635. {
  636. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  637. struct mm_struct *mm;
  638. struct pagemapread pm;
  639. int ret = -ESRCH;
  640. struct mm_walk pagemap_walk = {};
  641. unsigned long src;
  642. unsigned long svpfn;
  643. unsigned long start_vaddr;
  644. unsigned long end_vaddr;
  645. int copied = 0;
  646. if (!task)
  647. goto out;
  648. ret = -EACCES;
  649. if (!ptrace_may_access(task, PTRACE_MODE_READ))
  650. goto out_task;
  651. ret = -EINVAL;
  652. /* file position must be aligned */
  653. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  654. goto out_task;
  655. ret = 0;
  656. if (!count)
  657. goto out_task;
  658. mm = get_task_mm(task);
  659. if (!mm)
  660. goto out_task;
  661. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  662. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  663. ret = -ENOMEM;
  664. if (!pm.buffer)
  665. goto out_mm;
  666. pagemap_walk.pmd_entry = pagemap_pte_range;
  667. pagemap_walk.pte_hole = pagemap_pte_hole;
  668. #ifdef CONFIG_HUGETLB_PAGE
  669. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  670. #endif
  671. pagemap_walk.mm = mm;
  672. pagemap_walk.private = &pm;
  673. src = *ppos;
  674. svpfn = src / PM_ENTRY_BYTES;
  675. start_vaddr = svpfn << PAGE_SHIFT;
  676. end_vaddr = TASK_SIZE_OF(task);
  677. /* watch out for wraparound */
  678. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  679. start_vaddr = end_vaddr;
  680. /*
  681. * The odds are that this will stop walking way
  682. * before end_vaddr, because the length of the
  683. * user buffer is tracked in "pm", and the walk
  684. * will stop when we hit the end of the buffer.
  685. */
  686. ret = 0;
  687. while (count && (start_vaddr < end_vaddr)) {
  688. int len;
  689. unsigned long end;
  690. pm.pos = 0;
  691. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  692. /* overflow ? */
  693. if (end < start_vaddr || end > end_vaddr)
  694. end = end_vaddr;
  695. down_read(&mm->mmap_sem);
  696. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  697. up_read(&mm->mmap_sem);
  698. start_vaddr = end;
  699. len = min(count, PM_ENTRY_BYTES * pm.pos);
  700. if (copy_to_user(buf, pm.buffer, len)) {
  701. ret = -EFAULT;
  702. goto out_free;
  703. }
  704. copied += len;
  705. buf += len;
  706. count -= len;
  707. }
  708. *ppos += copied;
  709. if (!ret || ret == PM_END_OF_BUFFER)
  710. ret = copied;
  711. out_free:
  712. kfree(pm.buffer);
  713. out_mm:
  714. mmput(mm);
  715. out_task:
  716. put_task_struct(task);
  717. out:
  718. return ret;
  719. }
  720. const struct file_operations proc_pagemap_operations = {
  721. .llseek = mem_lseek, /* borrow this */
  722. .read = pagemap_read,
  723. };
  724. #endif /* CONFIG_PROC_PAGE_MONITOR */
  725. #ifdef CONFIG_NUMA
  726. extern int show_numa_map(struct seq_file *m, void *v);
  727. static const struct seq_operations proc_pid_numa_maps_op = {
  728. .start = m_start,
  729. .next = m_next,
  730. .stop = m_stop,
  731. .show = show_numa_map,
  732. };
  733. static int numa_maps_open(struct inode *inode, struct file *file)
  734. {
  735. return do_maps_open(inode, file, &proc_pid_numa_maps_op);
  736. }
  737. const struct file_operations proc_numa_maps_operations = {
  738. .open = numa_maps_open,
  739. .read = seq_read,
  740. .llseek = seq_lseek,
  741. .release = seq_release_private,
  742. };
  743. #endif