events.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555
  1. /*
  2. * Xen event channels
  3. *
  4. * Xen models interrupts with abstract event channels. Because each
  5. * domain gets 1024 event channels, but NR_IRQ is not that large, we
  6. * must dynamically map irqs<->event channels. The event channels
  7. * interface with the rest of the kernel by defining a xen interrupt
  8. * chip. When an event is recieved, it is mapped to an irq and sent
  9. * through the normal interrupt processing path.
  10. *
  11. * There are four kinds of events which can be mapped to an event
  12. * channel:
  13. *
  14. * 1. Inter-domain notifications. This includes all the virtual
  15. * device events, since they're driven by front-ends in another domain
  16. * (typically dom0).
  17. * 2. VIRQs, typically used for timers. These are per-cpu events.
  18. * 3. IPIs.
  19. * 4. PIRQs - Hardware interrupts.
  20. *
  21. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  22. */
  23. #include <linux/linkage.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/irq.h>
  26. #include <linux/module.h>
  27. #include <linux/string.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/slab.h>
  30. #include <linux/irqnr.h>
  31. #include <linux/pci.h>
  32. #include <asm/desc.h>
  33. #include <asm/ptrace.h>
  34. #include <asm/irq.h>
  35. #include <asm/idle.h>
  36. #include <asm/io_apic.h>
  37. #include <asm/sync_bitops.h>
  38. #include <asm/xen/pci.h>
  39. #include <asm/xen/hypercall.h>
  40. #include <asm/xen/hypervisor.h>
  41. #include <xen/xen.h>
  42. #include <xen/hvm.h>
  43. #include <xen/xen-ops.h>
  44. #include <xen/events.h>
  45. #include <xen/interface/xen.h>
  46. #include <xen/interface/event_channel.h>
  47. #include <xen/interface/hvm/hvm_op.h>
  48. #include <xen/interface/hvm/params.h>
  49. /*
  50. * This lock protects updates to the following mapping and reference-count
  51. * arrays. The lock does not need to be acquired to read the mapping tables.
  52. */
  53. static DEFINE_SPINLOCK(irq_mapping_update_lock);
  54. /* IRQ <-> VIRQ mapping. */
  55. static DEFINE_PER_CPU(int [NR_VIRQS], virq_to_irq) = {[0 ... NR_VIRQS-1] = -1};
  56. /* IRQ <-> IPI mapping */
  57. static DEFINE_PER_CPU(int [XEN_NR_IPIS], ipi_to_irq) = {[0 ... XEN_NR_IPIS-1] = -1};
  58. /* Interrupt types. */
  59. enum xen_irq_type {
  60. IRQT_UNBOUND = 0,
  61. IRQT_PIRQ,
  62. IRQT_VIRQ,
  63. IRQT_IPI,
  64. IRQT_EVTCHN
  65. };
  66. /*
  67. * Packed IRQ information:
  68. * type - enum xen_irq_type
  69. * event channel - irq->event channel mapping
  70. * cpu - cpu this event channel is bound to
  71. * index - type-specific information:
  72. * PIRQ - vector, with MSB being "needs EIO", or physical IRQ of the HVM
  73. * guest, or GSI (real passthrough IRQ) of the device.
  74. * VIRQ - virq number
  75. * IPI - IPI vector
  76. * EVTCHN -
  77. */
  78. struct irq_info
  79. {
  80. enum xen_irq_type type; /* type */
  81. unsigned short evtchn; /* event channel */
  82. unsigned short cpu; /* cpu bound */
  83. union {
  84. unsigned short virq;
  85. enum ipi_vector ipi;
  86. struct {
  87. unsigned short pirq;
  88. unsigned short gsi;
  89. unsigned char vector;
  90. unsigned char flags;
  91. } pirq;
  92. } u;
  93. };
  94. #define PIRQ_NEEDS_EOI (1 << 0)
  95. #define PIRQ_SHAREABLE (1 << 1)
  96. static struct irq_info *irq_info;
  97. static int *pirq_to_irq;
  98. static int *evtchn_to_irq;
  99. struct cpu_evtchn_s {
  100. unsigned long bits[NR_EVENT_CHANNELS/BITS_PER_LONG];
  101. };
  102. static __initdata struct cpu_evtchn_s init_evtchn_mask = {
  103. .bits[0 ... (NR_EVENT_CHANNELS/BITS_PER_LONG)-1] = ~0ul,
  104. };
  105. static struct cpu_evtchn_s __refdata *cpu_evtchn_mask_p = &init_evtchn_mask;
  106. static inline unsigned long *cpu_evtchn_mask(int cpu)
  107. {
  108. return cpu_evtchn_mask_p[cpu].bits;
  109. }
  110. /* Xen will never allocate port zero for any purpose. */
  111. #define VALID_EVTCHN(chn) ((chn) != 0)
  112. static struct irq_chip xen_dynamic_chip;
  113. static struct irq_chip xen_percpu_chip;
  114. static struct irq_chip xen_pirq_chip;
  115. /* Constructor for packed IRQ information. */
  116. static struct irq_info mk_unbound_info(void)
  117. {
  118. return (struct irq_info) { .type = IRQT_UNBOUND };
  119. }
  120. static struct irq_info mk_evtchn_info(unsigned short evtchn)
  121. {
  122. return (struct irq_info) { .type = IRQT_EVTCHN, .evtchn = evtchn,
  123. .cpu = 0 };
  124. }
  125. static struct irq_info mk_ipi_info(unsigned short evtchn, enum ipi_vector ipi)
  126. {
  127. return (struct irq_info) { .type = IRQT_IPI, .evtchn = evtchn,
  128. .cpu = 0, .u.ipi = ipi };
  129. }
  130. static struct irq_info mk_virq_info(unsigned short evtchn, unsigned short virq)
  131. {
  132. return (struct irq_info) { .type = IRQT_VIRQ, .evtchn = evtchn,
  133. .cpu = 0, .u.virq = virq };
  134. }
  135. static struct irq_info mk_pirq_info(unsigned short evtchn, unsigned short pirq,
  136. unsigned short gsi, unsigned short vector)
  137. {
  138. return (struct irq_info) { .type = IRQT_PIRQ, .evtchn = evtchn,
  139. .cpu = 0,
  140. .u.pirq = { .pirq = pirq, .gsi = gsi, .vector = vector } };
  141. }
  142. /*
  143. * Accessors for packed IRQ information.
  144. */
  145. static struct irq_info *info_for_irq(unsigned irq)
  146. {
  147. return &irq_info[irq];
  148. }
  149. static unsigned int evtchn_from_irq(unsigned irq)
  150. {
  151. if (unlikely(WARN(irq < 0 || irq >= nr_irqs, "Invalid irq %d!\n", irq)))
  152. return 0;
  153. return info_for_irq(irq)->evtchn;
  154. }
  155. unsigned irq_from_evtchn(unsigned int evtchn)
  156. {
  157. return evtchn_to_irq[evtchn];
  158. }
  159. EXPORT_SYMBOL_GPL(irq_from_evtchn);
  160. static enum ipi_vector ipi_from_irq(unsigned irq)
  161. {
  162. struct irq_info *info = info_for_irq(irq);
  163. BUG_ON(info == NULL);
  164. BUG_ON(info->type != IRQT_IPI);
  165. return info->u.ipi;
  166. }
  167. static unsigned virq_from_irq(unsigned irq)
  168. {
  169. struct irq_info *info = info_for_irq(irq);
  170. BUG_ON(info == NULL);
  171. BUG_ON(info->type != IRQT_VIRQ);
  172. return info->u.virq;
  173. }
  174. static unsigned pirq_from_irq(unsigned irq)
  175. {
  176. struct irq_info *info = info_for_irq(irq);
  177. BUG_ON(info == NULL);
  178. BUG_ON(info->type != IRQT_PIRQ);
  179. return info->u.pirq.pirq;
  180. }
  181. static unsigned gsi_from_irq(unsigned irq)
  182. {
  183. struct irq_info *info = info_for_irq(irq);
  184. BUG_ON(info == NULL);
  185. BUG_ON(info->type != IRQT_PIRQ);
  186. return info->u.pirq.gsi;
  187. }
  188. static unsigned vector_from_irq(unsigned irq)
  189. {
  190. struct irq_info *info = info_for_irq(irq);
  191. BUG_ON(info == NULL);
  192. BUG_ON(info->type != IRQT_PIRQ);
  193. return info->u.pirq.vector;
  194. }
  195. static enum xen_irq_type type_from_irq(unsigned irq)
  196. {
  197. return info_for_irq(irq)->type;
  198. }
  199. static unsigned cpu_from_irq(unsigned irq)
  200. {
  201. return info_for_irq(irq)->cpu;
  202. }
  203. static unsigned int cpu_from_evtchn(unsigned int evtchn)
  204. {
  205. int irq = evtchn_to_irq[evtchn];
  206. unsigned ret = 0;
  207. if (irq != -1)
  208. ret = cpu_from_irq(irq);
  209. return ret;
  210. }
  211. static bool pirq_needs_eoi(unsigned irq)
  212. {
  213. struct irq_info *info = info_for_irq(irq);
  214. BUG_ON(info->type != IRQT_PIRQ);
  215. return info->u.pirq.flags & PIRQ_NEEDS_EOI;
  216. }
  217. static inline unsigned long active_evtchns(unsigned int cpu,
  218. struct shared_info *sh,
  219. unsigned int idx)
  220. {
  221. return (sh->evtchn_pending[idx] &
  222. cpu_evtchn_mask(cpu)[idx] &
  223. ~sh->evtchn_mask[idx]);
  224. }
  225. static void bind_evtchn_to_cpu(unsigned int chn, unsigned int cpu)
  226. {
  227. int irq = evtchn_to_irq[chn];
  228. BUG_ON(irq == -1);
  229. #ifdef CONFIG_SMP
  230. cpumask_copy(irq_to_desc(irq)->irq_data.affinity, cpumask_of(cpu));
  231. #endif
  232. clear_bit(chn, cpu_evtchn_mask(cpu_from_irq(irq)));
  233. set_bit(chn, cpu_evtchn_mask(cpu));
  234. irq_info[irq].cpu = cpu;
  235. }
  236. static void init_evtchn_cpu_bindings(void)
  237. {
  238. int i;
  239. #ifdef CONFIG_SMP
  240. struct irq_desc *desc;
  241. /* By default all event channels notify CPU#0. */
  242. for_each_irq_desc(i, desc) {
  243. cpumask_copy(desc->irq_data.affinity, cpumask_of(0));
  244. }
  245. #endif
  246. for_each_possible_cpu(i)
  247. memset(cpu_evtchn_mask(i),
  248. (i == 0) ? ~0 : 0, sizeof(struct cpu_evtchn_s));
  249. }
  250. static inline void clear_evtchn(int port)
  251. {
  252. struct shared_info *s = HYPERVISOR_shared_info;
  253. sync_clear_bit(port, &s->evtchn_pending[0]);
  254. }
  255. static inline void set_evtchn(int port)
  256. {
  257. struct shared_info *s = HYPERVISOR_shared_info;
  258. sync_set_bit(port, &s->evtchn_pending[0]);
  259. }
  260. static inline int test_evtchn(int port)
  261. {
  262. struct shared_info *s = HYPERVISOR_shared_info;
  263. return sync_test_bit(port, &s->evtchn_pending[0]);
  264. }
  265. /**
  266. * notify_remote_via_irq - send event to remote end of event channel via irq
  267. * @irq: irq of event channel to send event to
  268. *
  269. * Unlike notify_remote_via_evtchn(), this is safe to use across
  270. * save/restore. Notifications on a broken connection are silently
  271. * dropped.
  272. */
  273. void notify_remote_via_irq(int irq)
  274. {
  275. int evtchn = evtchn_from_irq(irq);
  276. if (VALID_EVTCHN(evtchn))
  277. notify_remote_via_evtchn(evtchn);
  278. }
  279. EXPORT_SYMBOL_GPL(notify_remote_via_irq);
  280. static void mask_evtchn(int port)
  281. {
  282. struct shared_info *s = HYPERVISOR_shared_info;
  283. sync_set_bit(port, &s->evtchn_mask[0]);
  284. }
  285. static void unmask_evtchn(int port)
  286. {
  287. struct shared_info *s = HYPERVISOR_shared_info;
  288. unsigned int cpu = get_cpu();
  289. BUG_ON(!irqs_disabled());
  290. /* Slow path (hypercall) if this is a non-local port. */
  291. if (unlikely(cpu != cpu_from_evtchn(port))) {
  292. struct evtchn_unmask unmask = { .port = port };
  293. (void)HYPERVISOR_event_channel_op(EVTCHNOP_unmask, &unmask);
  294. } else {
  295. struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
  296. sync_clear_bit(port, &s->evtchn_mask[0]);
  297. /*
  298. * The following is basically the equivalent of
  299. * 'hw_resend_irq'. Just like a real IO-APIC we 'lose
  300. * the interrupt edge' if the channel is masked.
  301. */
  302. if (sync_test_bit(port, &s->evtchn_pending[0]) &&
  303. !sync_test_and_set_bit(port / BITS_PER_LONG,
  304. &vcpu_info->evtchn_pending_sel))
  305. vcpu_info->evtchn_upcall_pending = 1;
  306. }
  307. put_cpu();
  308. }
  309. static int xen_allocate_irq_dynamic(void)
  310. {
  311. int first = 0;
  312. int irq;
  313. #ifdef CONFIG_X86_IO_APIC
  314. /*
  315. * For an HVM guest or domain 0 which see "real" (emulated or
  316. * actual repectively) GSIs we allocate dynamic IRQs
  317. * e.g. those corresponding to event channels or MSIs
  318. * etc. from the range above those "real" GSIs to avoid
  319. * collisions.
  320. */
  321. if (xen_initial_domain() || xen_hvm_domain())
  322. first = get_nr_irqs_gsi();
  323. #endif
  324. retry:
  325. irq = irq_alloc_desc_from(first, -1);
  326. if (irq == -ENOMEM && first > NR_IRQS_LEGACY) {
  327. printk(KERN_ERR "Out of dynamic IRQ space and eating into GSI space. You should increase nr_irqs\n");
  328. first = max(NR_IRQS_LEGACY, first - NR_IRQS_LEGACY);
  329. goto retry;
  330. }
  331. if (irq < 0)
  332. panic("No available IRQ to bind to: increase nr_irqs!\n");
  333. return irq;
  334. }
  335. static int xen_allocate_irq_gsi(unsigned gsi)
  336. {
  337. int irq;
  338. /*
  339. * A PV guest has no concept of a GSI (since it has no ACPI
  340. * nor access to/knowledge of the physical APICs). Therefore
  341. * all IRQs are dynamically allocated from the entire IRQ
  342. * space.
  343. */
  344. if (xen_pv_domain() && !xen_initial_domain())
  345. return xen_allocate_irq_dynamic();
  346. /* Legacy IRQ descriptors are already allocated by the arch. */
  347. if (gsi < NR_IRQS_LEGACY)
  348. return gsi;
  349. irq = irq_alloc_desc_at(gsi, -1);
  350. if (irq < 0)
  351. panic("Unable to allocate to IRQ%d (%d)\n", gsi, irq);
  352. return irq;
  353. }
  354. static void xen_free_irq(unsigned irq)
  355. {
  356. /* Legacy IRQ descriptors are managed by the arch. */
  357. if (irq < NR_IRQS_LEGACY)
  358. return;
  359. irq_free_desc(irq);
  360. }
  361. static void pirq_unmask_notify(int irq)
  362. {
  363. struct physdev_eoi eoi = { .irq = pirq_from_irq(irq) };
  364. if (unlikely(pirq_needs_eoi(irq))) {
  365. int rc = HYPERVISOR_physdev_op(PHYSDEVOP_eoi, &eoi);
  366. WARN_ON(rc);
  367. }
  368. }
  369. static void pirq_query_unmask(int irq)
  370. {
  371. struct physdev_irq_status_query irq_status;
  372. struct irq_info *info = info_for_irq(irq);
  373. BUG_ON(info->type != IRQT_PIRQ);
  374. irq_status.irq = pirq_from_irq(irq);
  375. if (HYPERVISOR_physdev_op(PHYSDEVOP_irq_status_query, &irq_status))
  376. irq_status.flags = 0;
  377. info->u.pirq.flags &= ~PIRQ_NEEDS_EOI;
  378. if (irq_status.flags & XENIRQSTAT_needs_eoi)
  379. info->u.pirq.flags |= PIRQ_NEEDS_EOI;
  380. }
  381. static bool probing_irq(int irq)
  382. {
  383. struct irq_desc *desc = irq_to_desc(irq);
  384. return desc && desc->action == NULL;
  385. }
  386. static unsigned int __startup_pirq(unsigned int irq)
  387. {
  388. struct evtchn_bind_pirq bind_pirq;
  389. struct irq_info *info = info_for_irq(irq);
  390. int evtchn = evtchn_from_irq(irq);
  391. int rc;
  392. BUG_ON(info->type != IRQT_PIRQ);
  393. if (VALID_EVTCHN(evtchn))
  394. goto out;
  395. bind_pirq.pirq = pirq_from_irq(irq);
  396. /* NB. We are happy to share unless we are probing. */
  397. bind_pirq.flags = info->u.pirq.flags & PIRQ_SHAREABLE ?
  398. BIND_PIRQ__WILL_SHARE : 0;
  399. rc = HYPERVISOR_event_channel_op(EVTCHNOP_bind_pirq, &bind_pirq);
  400. if (rc != 0) {
  401. if (!probing_irq(irq))
  402. printk(KERN_INFO "Failed to obtain physical IRQ %d\n",
  403. irq);
  404. return 0;
  405. }
  406. evtchn = bind_pirq.port;
  407. pirq_query_unmask(irq);
  408. evtchn_to_irq[evtchn] = irq;
  409. bind_evtchn_to_cpu(evtchn, 0);
  410. info->evtchn = evtchn;
  411. out:
  412. unmask_evtchn(evtchn);
  413. pirq_unmask_notify(irq);
  414. return 0;
  415. }
  416. static unsigned int startup_pirq(struct irq_data *data)
  417. {
  418. return __startup_pirq(data->irq);
  419. }
  420. static void shutdown_pirq(struct irq_data *data)
  421. {
  422. struct evtchn_close close;
  423. unsigned int irq = data->irq;
  424. struct irq_info *info = info_for_irq(irq);
  425. int evtchn = evtchn_from_irq(irq);
  426. BUG_ON(info->type != IRQT_PIRQ);
  427. if (!VALID_EVTCHN(evtchn))
  428. return;
  429. mask_evtchn(evtchn);
  430. close.port = evtchn;
  431. if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
  432. BUG();
  433. bind_evtchn_to_cpu(evtchn, 0);
  434. evtchn_to_irq[evtchn] = -1;
  435. info->evtchn = 0;
  436. }
  437. static void enable_pirq(struct irq_data *data)
  438. {
  439. startup_pirq(data);
  440. }
  441. static void disable_pirq(struct irq_data *data)
  442. {
  443. }
  444. static void ack_pirq(struct irq_data *data)
  445. {
  446. int evtchn = evtchn_from_irq(data->irq);
  447. move_native_irq(data->irq);
  448. if (VALID_EVTCHN(evtchn)) {
  449. mask_evtchn(evtchn);
  450. clear_evtchn(evtchn);
  451. }
  452. }
  453. static int find_irq_by_gsi(unsigned gsi)
  454. {
  455. int irq;
  456. for (irq = 0; irq < nr_irqs; irq++) {
  457. struct irq_info *info = info_for_irq(irq);
  458. if (info == NULL || info->type != IRQT_PIRQ)
  459. continue;
  460. if (gsi_from_irq(irq) == gsi)
  461. return irq;
  462. }
  463. return -1;
  464. }
  465. int xen_allocate_pirq(unsigned gsi, int shareable, char *name)
  466. {
  467. return xen_map_pirq_gsi(gsi, gsi, shareable, name);
  468. }
  469. /* xen_map_pirq_gsi might allocate irqs from the top down, as a
  470. * consequence don't assume that the irq number returned has a low value
  471. * or can be used as a pirq number unless you know otherwise.
  472. *
  473. * One notable exception is when xen_map_pirq_gsi is called passing an
  474. * hardware gsi as argument, in that case the irq number returned
  475. * matches the gsi number passed as second argument.
  476. *
  477. * Note: We don't assign an event channel until the irq actually started
  478. * up. Return an existing irq if we've already got one for the gsi.
  479. */
  480. int xen_map_pirq_gsi(unsigned pirq, unsigned gsi, int shareable, char *name)
  481. {
  482. int irq = 0;
  483. struct physdev_irq irq_op;
  484. spin_lock(&irq_mapping_update_lock);
  485. if ((pirq > nr_irqs) || (gsi > nr_irqs)) {
  486. printk(KERN_WARNING "xen_map_pirq_gsi: %s %s is incorrect!\n",
  487. pirq > nr_irqs ? "pirq" :"",
  488. gsi > nr_irqs ? "gsi" : "");
  489. goto out;
  490. }
  491. irq = find_irq_by_gsi(gsi);
  492. if (irq != -1) {
  493. printk(KERN_INFO "xen_map_pirq_gsi: returning irq %d for gsi %u\n",
  494. irq, gsi);
  495. goto out; /* XXX need refcount? */
  496. }
  497. irq = xen_allocate_irq_gsi(gsi);
  498. set_irq_chip_and_handler_name(irq, &xen_pirq_chip,
  499. handle_level_irq, name);
  500. irq_op.irq = irq;
  501. irq_op.vector = 0;
  502. /* Only the privileged domain can do this. For non-priv, the pcifront
  503. * driver provides a PCI bus that does the call to do exactly
  504. * this in the priv domain. */
  505. if (xen_initial_domain() &&
  506. HYPERVISOR_physdev_op(PHYSDEVOP_alloc_irq_vector, &irq_op)) {
  507. xen_free_irq(irq);
  508. irq = -ENOSPC;
  509. goto out;
  510. }
  511. irq_info[irq] = mk_pirq_info(0, pirq, gsi, irq_op.vector);
  512. irq_info[irq].u.pirq.flags |= shareable ? PIRQ_SHAREABLE : 0;
  513. pirq_to_irq[pirq] = irq;
  514. out:
  515. spin_unlock(&irq_mapping_update_lock);
  516. return irq;
  517. }
  518. #ifdef CONFIG_PCI_MSI
  519. int xen_allocate_pirq_msi(struct pci_dev *dev, struct msi_desc *msidesc)
  520. {
  521. int rc;
  522. struct physdev_get_free_pirq op_get_free_pirq;
  523. op_get_free_pirq.type = MAP_PIRQ_TYPE_MSI;
  524. rc = HYPERVISOR_physdev_op(PHYSDEVOP_get_free_pirq, &op_get_free_pirq);
  525. WARN_ONCE(rc == -ENOSYS,
  526. "hypervisor does not support the PHYSDEVOP_get_free_pirq interface\n");
  527. return rc ? -1 : op_get_free_pirq.pirq;
  528. }
  529. int xen_bind_pirq_msi_to_irq(struct pci_dev *dev, struct msi_desc *msidesc,
  530. int pirq, int vector, const char *name)
  531. {
  532. int irq, ret;
  533. spin_lock(&irq_mapping_update_lock);
  534. irq = xen_allocate_irq_dynamic();
  535. if (irq == -1)
  536. goto out;
  537. set_irq_chip_and_handler_name(irq, &xen_pirq_chip,
  538. handle_level_irq, name);
  539. irq_info[irq] = mk_pirq_info(0, pirq, 0, vector);
  540. pirq_to_irq[pirq] = irq;
  541. ret = irq_set_msi_desc(irq, msidesc);
  542. if (ret < 0)
  543. goto error_irq;
  544. out:
  545. spin_unlock(&irq_mapping_update_lock);
  546. return irq;
  547. error_irq:
  548. spin_unlock(&irq_mapping_update_lock);
  549. xen_free_irq(irq);
  550. return -1;
  551. }
  552. #endif
  553. int xen_destroy_irq(int irq)
  554. {
  555. struct irq_desc *desc;
  556. struct physdev_unmap_pirq unmap_irq;
  557. struct irq_info *info = info_for_irq(irq);
  558. int rc = -ENOENT;
  559. spin_lock(&irq_mapping_update_lock);
  560. desc = irq_to_desc(irq);
  561. if (!desc)
  562. goto out;
  563. if (xen_initial_domain()) {
  564. unmap_irq.pirq = info->u.pirq.pirq;
  565. unmap_irq.domid = DOMID_SELF;
  566. rc = HYPERVISOR_physdev_op(PHYSDEVOP_unmap_pirq, &unmap_irq);
  567. if (rc) {
  568. printk(KERN_WARNING "unmap irq failed %d\n", rc);
  569. goto out;
  570. }
  571. }
  572. pirq_to_irq[info->u.pirq.pirq] = -1;
  573. irq_info[irq] = mk_unbound_info();
  574. xen_free_irq(irq);
  575. out:
  576. spin_unlock(&irq_mapping_update_lock);
  577. return rc;
  578. }
  579. int xen_vector_from_irq(unsigned irq)
  580. {
  581. return vector_from_irq(irq);
  582. }
  583. int xen_gsi_from_irq(unsigned irq)
  584. {
  585. return gsi_from_irq(irq);
  586. }
  587. int xen_irq_from_pirq(unsigned pirq)
  588. {
  589. return pirq_to_irq[pirq];
  590. }
  591. int bind_evtchn_to_irq(unsigned int evtchn)
  592. {
  593. int irq;
  594. spin_lock(&irq_mapping_update_lock);
  595. irq = evtchn_to_irq[evtchn];
  596. if (irq == -1) {
  597. irq = xen_allocate_irq_dynamic();
  598. set_irq_chip_and_handler_name(irq, &xen_dynamic_chip,
  599. handle_fasteoi_irq, "event");
  600. evtchn_to_irq[evtchn] = irq;
  601. irq_info[irq] = mk_evtchn_info(evtchn);
  602. }
  603. spin_unlock(&irq_mapping_update_lock);
  604. return irq;
  605. }
  606. EXPORT_SYMBOL_GPL(bind_evtchn_to_irq);
  607. static int bind_ipi_to_irq(unsigned int ipi, unsigned int cpu)
  608. {
  609. struct evtchn_bind_ipi bind_ipi;
  610. int evtchn, irq;
  611. spin_lock(&irq_mapping_update_lock);
  612. irq = per_cpu(ipi_to_irq, cpu)[ipi];
  613. if (irq == -1) {
  614. irq = xen_allocate_irq_dynamic();
  615. if (irq < 0)
  616. goto out;
  617. set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
  618. handle_percpu_irq, "ipi");
  619. bind_ipi.vcpu = cpu;
  620. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
  621. &bind_ipi) != 0)
  622. BUG();
  623. evtchn = bind_ipi.port;
  624. evtchn_to_irq[evtchn] = irq;
  625. irq_info[irq] = mk_ipi_info(evtchn, ipi);
  626. per_cpu(ipi_to_irq, cpu)[ipi] = irq;
  627. bind_evtchn_to_cpu(evtchn, cpu);
  628. }
  629. out:
  630. spin_unlock(&irq_mapping_update_lock);
  631. return irq;
  632. }
  633. static int bind_interdomain_evtchn_to_irq(unsigned int remote_domain,
  634. unsigned int remote_port)
  635. {
  636. struct evtchn_bind_interdomain bind_interdomain;
  637. int err;
  638. bind_interdomain.remote_dom = remote_domain;
  639. bind_interdomain.remote_port = remote_port;
  640. err = HYPERVISOR_event_channel_op(EVTCHNOP_bind_interdomain,
  641. &bind_interdomain);
  642. return err ? : bind_evtchn_to_irq(bind_interdomain.local_port);
  643. }
  644. int bind_virq_to_irq(unsigned int virq, unsigned int cpu)
  645. {
  646. struct evtchn_bind_virq bind_virq;
  647. int evtchn, irq;
  648. spin_lock(&irq_mapping_update_lock);
  649. irq = per_cpu(virq_to_irq, cpu)[virq];
  650. if (irq == -1) {
  651. irq = xen_allocate_irq_dynamic();
  652. set_irq_chip_and_handler_name(irq, &xen_percpu_chip,
  653. handle_percpu_irq, "virq");
  654. bind_virq.virq = virq;
  655. bind_virq.vcpu = cpu;
  656. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
  657. &bind_virq) != 0)
  658. BUG();
  659. evtchn = bind_virq.port;
  660. evtchn_to_irq[evtchn] = irq;
  661. irq_info[irq] = mk_virq_info(evtchn, virq);
  662. per_cpu(virq_to_irq, cpu)[virq] = irq;
  663. bind_evtchn_to_cpu(evtchn, cpu);
  664. }
  665. spin_unlock(&irq_mapping_update_lock);
  666. return irq;
  667. }
  668. static void unbind_from_irq(unsigned int irq)
  669. {
  670. struct evtchn_close close;
  671. int evtchn = evtchn_from_irq(irq);
  672. spin_lock(&irq_mapping_update_lock);
  673. if (VALID_EVTCHN(evtchn)) {
  674. close.port = evtchn;
  675. if (HYPERVISOR_event_channel_op(EVTCHNOP_close, &close) != 0)
  676. BUG();
  677. switch (type_from_irq(irq)) {
  678. case IRQT_VIRQ:
  679. per_cpu(virq_to_irq, cpu_from_evtchn(evtchn))
  680. [virq_from_irq(irq)] = -1;
  681. break;
  682. case IRQT_IPI:
  683. per_cpu(ipi_to_irq, cpu_from_evtchn(evtchn))
  684. [ipi_from_irq(irq)] = -1;
  685. break;
  686. default:
  687. break;
  688. }
  689. /* Closed ports are implicitly re-bound to VCPU0. */
  690. bind_evtchn_to_cpu(evtchn, 0);
  691. evtchn_to_irq[evtchn] = -1;
  692. }
  693. if (irq_info[irq].type != IRQT_UNBOUND) {
  694. irq_info[irq] = mk_unbound_info();
  695. xen_free_irq(irq);
  696. }
  697. spin_unlock(&irq_mapping_update_lock);
  698. }
  699. int bind_evtchn_to_irqhandler(unsigned int evtchn,
  700. irq_handler_t handler,
  701. unsigned long irqflags,
  702. const char *devname, void *dev_id)
  703. {
  704. unsigned int irq;
  705. int retval;
  706. irq = bind_evtchn_to_irq(evtchn);
  707. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  708. if (retval != 0) {
  709. unbind_from_irq(irq);
  710. return retval;
  711. }
  712. return irq;
  713. }
  714. EXPORT_SYMBOL_GPL(bind_evtchn_to_irqhandler);
  715. int bind_interdomain_evtchn_to_irqhandler(unsigned int remote_domain,
  716. unsigned int remote_port,
  717. irq_handler_t handler,
  718. unsigned long irqflags,
  719. const char *devname,
  720. void *dev_id)
  721. {
  722. int irq, retval;
  723. irq = bind_interdomain_evtchn_to_irq(remote_domain, remote_port);
  724. if (irq < 0)
  725. return irq;
  726. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  727. if (retval != 0) {
  728. unbind_from_irq(irq);
  729. return retval;
  730. }
  731. return irq;
  732. }
  733. EXPORT_SYMBOL_GPL(bind_interdomain_evtchn_to_irqhandler);
  734. int bind_virq_to_irqhandler(unsigned int virq, unsigned int cpu,
  735. irq_handler_t handler,
  736. unsigned long irqflags, const char *devname, void *dev_id)
  737. {
  738. unsigned int irq;
  739. int retval;
  740. irq = bind_virq_to_irq(virq, cpu);
  741. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  742. if (retval != 0) {
  743. unbind_from_irq(irq);
  744. return retval;
  745. }
  746. return irq;
  747. }
  748. EXPORT_SYMBOL_GPL(bind_virq_to_irqhandler);
  749. int bind_ipi_to_irqhandler(enum ipi_vector ipi,
  750. unsigned int cpu,
  751. irq_handler_t handler,
  752. unsigned long irqflags,
  753. const char *devname,
  754. void *dev_id)
  755. {
  756. int irq, retval;
  757. irq = bind_ipi_to_irq(ipi, cpu);
  758. if (irq < 0)
  759. return irq;
  760. irqflags |= IRQF_NO_SUSPEND | IRQF_FORCE_RESUME;
  761. retval = request_irq(irq, handler, irqflags, devname, dev_id);
  762. if (retval != 0) {
  763. unbind_from_irq(irq);
  764. return retval;
  765. }
  766. return irq;
  767. }
  768. void unbind_from_irqhandler(unsigned int irq, void *dev_id)
  769. {
  770. free_irq(irq, dev_id);
  771. unbind_from_irq(irq);
  772. }
  773. EXPORT_SYMBOL_GPL(unbind_from_irqhandler);
  774. void xen_send_IPI_one(unsigned int cpu, enum ipi_vector vector)
  775. {
  776. int irq = per_cpu(ipi_to_irq, cpu)[vector];
  777. BUG_ON(irq < 0);
  778. notify_remote_via_irq(irq);
  779. }
  780. irqreturn_t xen_debug_interrupt(int irq, void *dev_id)
  781. {
  782. struct shared_info *sh = HYPERVISOR_shared_info;
  783. int cpu = smp_processor_id();
  784. unsigned long *cpu_evtchn = cpu_evtchn_mask(cpu);
  785. int i;
  786. unsigned long flags;
  787. static DEFINE_SPINLOCK(debug_lock);
  788. struct vcpu_info *v;
  789. spin_lock_irqsave(&debug_lock, flags);
  790. printk("\nvcpu %d\n ", cpu);
  791. for_each_online_cpu(i) {
  792. int pending;
  793. v = per_cpu(xen_vcpu, i);
  794. pending = (get_irq_regs() && i == cpu)
  795. ? xen_irqs_disabled(get_irq_regs())
  796. : v->evtchn_upcall_mask;
  797. printk("%d: masked=%d pending=%d event_sel %0*lx\n ", i,
  798. pending, v->evtchn_upcall_pending,
  799. (int)(sizeof(v->evtchn_pending_sel)*2),
  800. v->evtchn_pending_sel);
  801. }
  802. v = per_cpu(xen_vcpu, cpu);
  803. printk("\npending:\n ");
  804. for (i = ARRAY_SIZE(sh->evtchn_pending)-1; i >= 0; i--)
  805. printk("%0*lx%s", (int)sizeof(sh->evtchn_pending[0])*2,
  806. sh->evtchn_pending[i],
  807. i % 8 == 0 ? "\n " : " ");
  808. printk("\nglobal mask:\n ");
  809. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
  810. printk("%0*lx%s",
  811. (int)(sizeof(sh->evtchn_mask[0])*2),
  812. sh->evtchn_mask[i],
  813. i % 8 == 0 ? "\n " : " ");
  814. printk("\nglobally unmasked:\n ");
  815. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--)
  816. printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
  817. sh->evtchn_pending[i] & ~sh->evtchn_mask[i],
  818. i % 8 == 0 ? "\n " : " ");
  819. printk("\nlocal cpu%d mask:\n ", cpu);
  820. for (i = (NR_EVENT_CHANNELS/BITS_PER_LONG)-1; i >= 0; i--)
  821. printk("%0*lx%s", (int)(sizeof(cpu_evtchn[0])*2),
  822. cpu_evtchn[i],
  823. i % 8 == 0 ? "\n " : " ");
  824. printk("\nlocally unmasked:\n ");
  825. for (i = ARRAY_SIZE(sh->evtchn_mask)-1; i >= 0; i--) {
  826. unsigned long pending = sh->evtchn_pending[i]
  827. & ~sh->evtchn_mask[i]
  828. & cpu_evtchn[i];
  829. printk("%0*lx%s", (int)(sizeof(sh->evtchn_mask[0])*2),
  830. pending, i % 8 == 0 ? "\n " : " ");
  831. }
  832. printk("\npending list:\n");
  833. for (i = 0; i < NR_EVENT_CHANNELS; i++) {
  834. if (sync_test_bit(i, sh->evtchn_pending)) {
  835. int word_idx = i / BITS_PER_LONG;
  836. printk(" %d: event %d -> irq %d%s%s%s\n",
  837. cpu_from_evtchn(i), i,
  838. evtchn_to_irq[i],
  839. sync_test_bit(word_idx, &v->evtchn_pending_sel)
  840. ? "" : " l2-clear",
  841. !sync_test_bit(i, sh->evtchn_mask)
  842. ? "" : " globally-masked",
  843. sync_test_bit(i, cpu_evtchn)
  844. ? "" : " locally-masked");
  845. }
  846. }
  847. spin_unlock_irqrestore(&debug_lock, flags);
  848. return IRQ_HANDLED;
  849. }
  850. static DEFINE_PER_CPU(unsigned, xed_nesting_count);
  851. /*
  852. * Search the CPUs pending events bitmasks. For each one found, map
  853. * the event number to an irq, and feed it into do_IRQ() for
  854. * handling.
  855. *
  856. * Xen uses a two-level bitmap to speed searching. The first level is
  857. * a bitset of words which contain pending event bits. The second
  858. * level is a bitset of pending events themselves.
  859. */
  860. static void __xen_evtchn_do_upcall(void)
  861. {
  862. int cpu = get_cpu();
  863. struct shared_info *s = HYPERVISOR_shared_info;
  864. struct vcpu_info *vcpu_info = __this_cpu_read(xen_vcpu);
  865. unsigned count;
  866. do {
  867. unsigned long pending_words;
  868. vcpu_info->evtchn_upcall_pending = 0;
  869. if (__this_cpu_inc_return(xed_nesting_count) - 1)
  870. goto out;
  871. #ifndef CONFIG_X86 /* No need for a barrier -- XCHG is a barrier on x86. */
  872. /* Clear master flag /before/ clearing selector flag. */
  873. wmb();
  874. #endif
  875. pending_words = xchg(&vcpu_info->evtchn_pending_sel, 0);
  876. while (pending_words != 0) {
  877. unsigned long pending_bits;
  878. int word_idx = __ffs(pending_words);
  879. pending_words &= ~(1UL << word_idx);
  880. while ((pending_bits = active_evtchns(cpu, s, word_idx)) != 0) {
  881. int bit_idx = __ffs(pending_bits);
  882. int port = (word_idx * BITS_PER_LONG) + bit_idx;
  883. int irq = evtchn_to_irq[port];
  884. struct irq_desc *desc;
  885. mask_evtchn(port);
  886. clear_evtchn(port);
  887. if (irq != -1) {
  888. desc = irq_to_desc(irq);
  889. if (desc)
  890. generic_handle_irq_desc(irq, desc);
  891. }
  892. }
  893. }
  894. BUG_ON(!irqs_disabled());
  895. count = __this_cpu_read(xed_nesting_count);
  896. __this_cpu_write(xed_nesting_count, 0);
  897. } while (count != 1 || vcpu_info->evtchn_upcall_pending);
  898. out:
  899. put_cpu();
  900. }
  901. void xen_evtchn_do_upcall(struct pt_regs *regs)
  902. {
  903. struct pt_regs *old_regs = set_irq_regs(regs);
  904. exit_idle();
  905. irq_enter();
  906. __xen_evtchn_do_upcall();
  907. irq_exit();
  908. set_irq_regs(old_regs);
  909. }
  910. void xen_hvm_evtchn_do_upcall(void)
  911. {
  912. __xen_evtchn_do_upcall();
  913. }
  914. EXPORT_SYMBOL_GPL(xen_hvm_evtchn_do_upcall);
  915. /* Rebind a new event channel to an existing irq. */
  916. void rebind_evtchn_irq(int evtchn, int irq)
  917. {
  918. struct irq_info *info = info_for_irq(irq);
  919. /* Make sure the irq is masked, since the new event channel
  920. will also be masked. */
  921. disable_irq(irq);
  922. spin_lock(&irq_mapping_update_lock);
  923. /* After resume the irq<->evtchn mappings are all cleared out */
  924. BUG_ON(evtchn_to_irq[evtchn] != -1);
  925. /* Expect irq to have been bound before,
  926. so there should be a proper type */
  927. BUG_ON(info->type == IRQT_UNBOUND);
  928. evtchn_to_irq[evtchn] = irq;
  929. irq_info[irq] = mk_evtchn_info(evtchn);
  930. spin_unlock(&irq_mapping_update_lock);
  931. /* new event channels are always bound to cpu 0 */
  932. irq_set_affinity(irq, cpumask_of(0));
  933. /* Unmask the event channel. */
  934. enable_irq(irq);
  935. }
  936. /* Rebind an evtchn so that it gets delivered to a specific cpu */
  937. static int rebind_irq_to_cpu(unsigned irq, unsigned tcpu)
  938. {
  939. struct evtchn_bind_vcpu bind_vcpu;
  940. int evtchn = evtchn_from_irq(irq);
  941. /* events delivered via platform PCI interrupts are always
  942. * routed to vcpu 0 */
  943. if (!VALID_EVTCHN(evtchn) ||
  944. (xen_hvm_domain() && !xen_have_vector_callback))
  945. return -1;
  946. /* Send future instances of this interrupt to other vcpu. */
  947. bind_vcpu.port = evtchn;
  948. bind_vcpu.vcpu = tcpu;
  949. /*
  950. * If this fails, it usually just indicates that we're dealing with a
  951. * virq or IPI channel, which don't actually need to be rebound. Ignore
  952. * it, but don't do the xenlinux-level rebind in that case.
  953. */
  954. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_vcpu, &bind_vcpu) >= 0)
  955. bind_evtchn_to_cpu(evtchn, tcpu);
  956. return 0;
  957. }
  958. static int set_affinity_irq(struct irq_data *data, const struct cpumask *dest,
  959. bool force)
  960. {
  961. unsigned tcpu = cpumask_first(dest);
  962. return rebind_irq_to_cpu(data->irq, tcpu);
  963. }
  964. int resend_irq_on_evtchn(unsigned int irq)
  965. {
  966. int masked, evtchn = evtchn_from_irq(irq);
  967. struct shared_info *s = HYPERVISOR_shared_info;
  968. if (!VALID_EVTCHN(evtchn))
  969. return 1;
  970. masked = sync_test_and_set_bit(evtchn, s->evtchn_mask);
  971. sync_set_bit(evtchn, s->evtchn_pending);
  972. if (!masked)
  973. unmask_evtchn(evtchn);
  974. return 1;
  975. }
  976. static void enable_dynirq(struct irq_data *data)
  977. {
  978. int evtchn = evtchn_from_irq(data->irq);
  979. if (VALID_EVTCHN(evtchn))
  980. unmask_evtchn(evtchn);
  981. }
  982. static void disable_dynirq(struct irq_data *data)
  983. {
  984. int evtchn = evtchn_from_irq(data->irq);
  985. if (VALID_EVTCHN(evtchn))
  986. mask_evtchn(evtchn);
  987. }
  988. static void ack_dynirq(struct irq_data *data)
  989. {
  990. int evtchn = evtchn_from_irq(data->irq);
  991. move_masked_irq(data->irq);
  992. if (VALID_EVTCHN(evtchn))
  993. unmask_evtchn(evtchn);
  994. }
  995. static int retrigger_dynirq(struct irq_data *data)
  996. {
  997. int evtchn = evtchn_from_irq(data->irq);
  998. struct shared_info *sh = HYPERVISOR_shared_info;
  999. int ret = 0;
  1000. if (VALID_EVTCHN(evtchn)) {
  1001. int masked;
  1002. masked = sync_test_and_set_bit(evtchn, sh->evtchn_mask);
  1003. sync_set_bit(evtchn, sh->evtchn_pending);
  1004. if (!masked)
  1005. unmask_evtchn(evtchn);
  1006. ret = 1;
  1007. }
  1008. return ret;
  1009. }
  1010. static void restore_cpu_pirqs(void)
  1011. {
  1012. int pirq, rc, irq, gsi;
  1013. struct physdev_map_pirq map_irq;
  1014. for (pirq = 0; pirq < nr_irqs; pirq++) {
  1015. irq = pirq_to_irq[pirq];
  1016. if (irq == -1)
  1017. continue;
  1018. /* save/restore of PT devices doesn't work, so at this point the
  1019. * only devices present are GSI based emulated devices */
  1020. gsi = gsi_from_irq(irq);
  1021. if (!gsi)
  1022. continue;
  1023. map_irq.domid = DOMID_SELF;
  1024. map_irq.type = MAP_PIRQ_TYPE_GSI;
  1025. map_irq.index = gsi;
  1026. map_irq.pirq = pirq;
  1027. rc = HYPERVISOR_physdev_op(PHYSDEVOP_map_pirq, &map_irq);
  1028. if (rc) {
  1029. printk(KERN_WARNING "xen map irq failed gsi=%d irq=%d pirq=%d rc=%d\n",
  1030. gsi, irq, pirq, rc);
  1031. irq_info[irq] = mk_unbound_info();
  1032. pirq_to_irq[pirq] = -1;
  1033. continue;
  1034. }
  1035. printk(KERN_DEBUG "xen: --> irq=%d, pirq=%d\n", irq, map_irq.pirq);
  1036. __startup_pirq(irq);
  1037. }
  1038. }
  1039. static void restore_cpu_virqs(unsigned int cpu)
  1040. {
  1041. struct evtchn_bind_virq bind_virq;
  1042. int virq, irq, evtchn;
  1043. for (virq = 0; virq < NR_VIRQS; virq++) {
  1044. if ((irq = per_cpu(virq_to_irq, cpu)[virq]) == -1)
  1045. continue;
  1046. BUG_ON(virq_from_irq(irq) != virq);
  1047. /* Get a new binding from Xen. */
  1048. bind_virq.virq = virq;
  1049. bind_virq.vcpu = cpu;
  1050. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_virq,
  1051. &bind_virq) != 0)
  1052. BUG();
  1053. evtchn = bind_virq.port;
  1054. /* Record the new mapping. */
  1055. evtchn_to_irq[evtchn] = irq;
  1056. irq_info[irq] = mk_virq_info(evtchn, virq);
  1057. bind_evtchn_to_cpu(evtchn, cpu);
  1058. }
  1059. }
  1060. static void restore_cpu_ipis(unsigned int cpu)
  1061. {
  1062. struct evtchn_bind_ipi bind_ipi;
  1063. int ipi, irq, evtchn;
  1064. for (ipi = 0; ipi < XEN_NR_IPIS; ipi++) {
  1065. if ((irq = per_cpu(ipi_to_irq, cpu)[ipi]) == -1)
  1066. continue;
  1067. BUG_ON(ipi_from_irq(irq) != ipi);
  1068. /* Get a new binding from Xen. */
  1069. bind_ipi.vcpu = cpu;
  1070. if (HYPERVISOR_event_channel_op(EVTCHNOP_bind_ipi,
  1071. &bind_ipi) != 0)
  1072. BUG();
  1073. evtchn = bind_ipi.port;
  1074. /* Record the new mapping. */
  1075. evtchn_to_irq[evtchn] = irq;
  1076. irq_info[irq] = mk_ipi_info(evtchn, ipi);
  1077. bind_evtchn_to_cpu(evtchn, cpu);
  1078. }
  1079. }
  1080. /* Clear an irq's pending state, in preparation for polling on it */
  1081. void xen_clear_irq_pending(int irq)
  1082. {
  1083. int evtchn = evtchn_from_irq(irq);
  1084. if (VALID_EVTCHN(evtchn))
  1085. clear_evtchn(evtchn);
  1086. }
  1087. EXPORT_SYMBOL(xen_clear_irq_pending);
  1088. void xen_set_irq_pending(int irq)
  1089. {
  1090. int evtchn = evtchn_from_irq(irq);
  1091. if (VALID_EVTCHN(evtchn))
  1092. set_evtchn(evtchn);
  1093. }
  1094. bool xen_test_irq_pending(int irq)
  1095. {
  1096. int evtchn = evtchn_from_irq(irq);
  1097. bool ret = false;
  1098. if (VALID_EVTCHN(evtchn))
  1099. ret = test_evtchn(evtchn);
  1100. return ret;
  1101. }
  1102. /* Poll waiting for an irq to become pending with timeout. In the usual case,
  1103. * the irq will be disabled so it won't deliver an interrupt. */
  1104. void xen_poll_irq_timeout(int irq, u64 timeout)
  1105. {
  1106. evtchn_port_t evtchn = evtchn_from_irq(irq);
  1107. if (VALID_EVTCHN(evtchn)) {
  1108. struct sched_poll poll;
  1109. poll.nr_ports = 1;
  1110. poll.timeout = timeout;
  1111. set_xen_guest_handle(poll.ports, &evtchn);
  1112. if (HYPERVISOR_sched_op(SCHEDOP_poll, &poll) != 0)
  1113. BUG();
  1114. }
  1115. }
  1116. EXPORT_SYMBOL(xen_poll_irq_timeout);
  1117. /* Poll waiting for an irq to become pending. In the usual case, the
  1118. * irq will be disabled so it won't deliver an interrupt. */
  1119. void xen_poll_irq(int irq)
  1120. {
  1121. xen_poll_irq_timeout(irq, 0 /* no timeout */);
  1122. }
  1123. void xen_irq_resume(void)
  1124. {
  1125. unsigned int cpu, irq, evtchn;
  1126. init_evtchn_cpu_bindings();
  1127. /* New event-channel space is not 'live' yet. */
  1128. for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
  1129. mask_evtchn(evtchn);
  1130. /* No IRQ <-> event-channel mappings. */
  1131. for (irq = 0; irq < nr_irqs; irq++)
  1132. irq_info[irq].evtchn = 0; /* zap event-channel binding */
  1133. for (evtchn = 0; evtchn < NR_EVENT_CHANNELS; evtchn++)
  1134. evtchn_to_irq[evtchn] = -1;
  1135. for_each_possible_cpu(cpu) {
  1136. restore_cpu_virqs(cpu);
  1137. restore_cpu_ipis(cpu);
  1138. }
  1139. restore_cpu_pirqs();
  1140. }
  1141. static struct irq_chip xen_dynamic_chip __read_mostly = {
  1142. .name = "xen-dyn",
  1143. .irq_disable = disable_dynirq,
  1144. .irq_mask = disable_dynirq,
  1145. .irq_unmask = enable_dynirq,
  1146. .irq_eoi = ack_dynirq,
  1147. .irq_set_affinity = set_affinity_irq,
  1148. .irq_retrigger = retrigger_dynirq,
  1149. };
  1150. static struct irq_chip xen_pirq_chip __read_mostly = {
  1151. .name = "xen-pirq",
  1152. .irq_startup = startup_pirq,
  1153. .irq_shutdown = shutdown_pirq,
  1154. .irq_enable = enable_pirq,
  1155. .irq_unmask = enable_pirq,
  1156. .irq_disable = disable_pirq,
  1157. .irq_mask = disable_pirq,
  1158. .irq_ack = ack_pirq,
  1159. .irq_set_affinity = set_affinity_irq,
  1160. .irq_retrigger = retrigger_dynirq,
  1161. };
  1162. static struct irq_chip xen_percpu_chip __read_mostly = {
  1163. .name = "xen-percpu",
  1164. .irq_disable = disable_dynirq,
  1165. .irq_mask = disable_dynirq,
  1166. .irq_unmask = enable_dynirq,
  1167. .irq_ack = ack_dynirq,
  1168. };
  1169. int xen_set_callback_via(uint64_t via)
  1170. {
  1171. struct xen_hvm_param a;
  1172. a.domid = DOMID_SELF;
  1173. a.index = HVM_PARAM_CALLBACK_IRQ;
  1174. a.value = via;
  1175. return HYPERVISOR_hvm_op(HVMOP_set_param, &a);
  1176. }
  1177. EXPORT_SYMBOL_GPL(xen_set_callback_via);
  1178. #ifdef CONFIG_XEN_PVHVM
  1179. /* Vector callbacks are better than PCI interrupts to receive event
  1180. * channel notifications because we can receive vector callbacks on any
  1181. * vcpu and we don't need PCI support or APIC interactions. */
  1182. void xen_callback_vector(void)
  1183. {
  1184. int rc;
  1185. uint64_t callback_via;
  1186. if (xen_have_vector_callback) {
  1187. callback_via = HVM_CALLBACK_VECTOR(XEN_HVM_EVTCHN_CALLBACK);
  1188. rc = xen_set_callback_via(callback_via);
  1189. if (rc) {
  1190. printk(KERN_ERR "Request for Xen HVM callback vector"
  1191. " failed.\n");
  1192. xen_have_vector_callback = 0;
  1193. return;
  1194. }
  1195. printk(KERN_INFO "Xen HVM callback vector for event delivery is "
  1196. "enabled\n");
  1197. /* in the restore case the vector has already been allocated */
  1198. if (!test_bit(XEN_HVM_EVTCHN_CALLBACK, used_vectors))
  1199. alloc_intr_gate(XEN_HVM_EVTCHN_CALLBACK, xen_hvm_callback_vector);
  1200. }
  1201. }
  1202. #else
  1203. void xen_callback_vector(void) {}
  1204. #endif
  1205. void __init xen_init_IRQ(void)
  1206. {
  1207. int i;
  1208. cpu_evtchn_mask_p = kcalloc(nr_cpu_ids, sizeof(struct cpu_evtchn_s),
  1209. GFP_KERNEL);
  1210. irq_info = kcalloc(nr_irqs, sizeof(*irq_info), GFP_KERNEL);
  1211. /* We are using nr_irqs as the maximum number of pirq available but
  1212. * that number is actually chosen by Xen and we don't know exactly
  1213. * what it is. Be careful choosing high pirq numbers. */
  1214. pirq_to_irq = kcalloc(nr_irqs, sizeof(*pirq_to_irq), GFP_KERNEL);
  1215. for (i = 0; i < nr_irqs; i++)
  1216. pirq_to_irq[i] = -1;
  1217. evtchn_to_irq = kcalloc(NR_EVENT_CHANNELS, sizeof(*evtchn_to_irq),
  1218. GFP_KERNEL);
  1219. for (i = 0; i < NR_EVENT_CHANNELS; i++)
  1220. evtchn_to_irq[i] = -1;
  1221. init_evtchn_cpu_bindings();
  1222. /* No event channels are 'live' right now. */
  1223. for (i = 0; i < NR_EVENT_CHANNELS; i++)
  1224. mask_evtchn(i);
  1225. if (xen_hvm_domain()) {
  1226. xen_callback_vector();
  1227. native_init_IRQ();
  1228. /* pci_xen_hvm_init must be called after native_init_IRQ so that
  1229. * __acpi_register_gsi can point at the right function */
  1230. pci_xen_hvm_init();
  1231. } else {
  1232. irq_ctx_init(smp_processor_id());
  1233. if (xen_initial_domain())
  1234. xen_setup_pirqs();
  1235. }
  1236. }