raid1.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include <linux/slab.h>
  34. #include <linux/delay.h>
  35. #include <linux/blkdev.h>
  36. #include <linux/seq_file.h>
  37. #include "md.h"
  38. #include "raid1.h"
  39. #include "bitmap.h"
  40. #define DEBUG 0
  41. #if DEBUG
  42. #define PRINTK(x...) printk(x)
  43. #else
  44. #define PRINTK(x...)
  45. #endif
  46. /*
  47. * Number of guaranteed r1bios in case of extreme VM load:
  48. */
  49. #define NR_RAID1_BIOS 256
  50. static void unplug_slaves(mddev_t *mddev);
  51. static void allow_barrier(conf_t *conf);
  52. static void lower_barrier(conf_t *conf);
  53. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  54. {
  55. struct pool_info *pi = data;
  56. r1bio_t *r1_bio;
  57. int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  58. /* allocate a r1bio with room for raid_disks entries in the bios array */
  59. r1_bio = kzalloc(size, gfp_flags);
  60. if (!r1_bio && pi->mddev)
  61. unplug_slaves(pi->mddev);
  62. return r1_bio;
  63. }
  64. static void r1bio_pool_free(void *r1_bio, void *data)
  65. {
  66. kfree(r1_bio);
  67. }
  68. #define RESYNC_BLOCK_SIZE (64*1024)
  69. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  70. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  71. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  72. #define RESYNC_WINDOW (2048*1024)
  73. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  74. {
  75. struct pool_info *pi = data;
  76. struct page *page;
  77. r1bio_t *r1_bio;
  78. struct bio *bio;
  79. int i, j;
  80. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  81. if (!r1_bio) {
  82. unplug_slaves(pi->mddev);
  83. return NULL;
  84. }
  85. /*
  86. * Allocate bios : 1 for reading, n-1 for writing
  87. */
  88. for (j = pi->raid_disks ; j-- ; ) {
  89. bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
  90. if (!bio)
  91. goto out_free_bio;
  92. r1_bio->bios[j] = bio;
  93. }
  94. /*
  95. * Allocate RESYNC_PAGES data pages and attach them to
  96. * the first bio.
  97. * If this is a user-requested check/repair, allocate
  98. * RESYNC_PAGES for each bio.
  99. */
  100. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  101. j = pi->raid_disks;
  102. else
  103. j = 1;
  104. while(j--) {
  105. bio = r1_bio->bios[j];
  106. for (i = 0; i < RESYNC_PAGES; i++) {
  107. page = alloc_page(gfp_flags);
  108. if (unlikely(!page))
  109. goto out_free_pages;
  110. bio->bi_io_vec[i].bv_page = page;
  111. bio->bi_vcnt = i+1;
  112. }
  113. }
  114. /* If not user-requests, copy the page pointers to all bios */
  115. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  116. for (i=0; i<RESYNC_PAGES ; i++)
  117. for (j=1; j<pi->raid_disks; j++)
  118. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  119. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  120. }
  121. r1_bio->master_bio = NULL;
  122. return r1_bio;
  123. out_free_pages:
  124. for (j=0 ; j < pi->raid_disks; j++)
  125. for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
  126. put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  127. j = -1;
  128. out_free_bio:
  129. while ( ++j < pi->raid_disks )
  130. bio_put(r1_bio->bios[j]);
  131. r1bio_pool_free(r1_bio, data);
  132. return NULL;
  133. }
  134. static void r1buf_pool_free(void *__r1_bio, void *data)
  135. {
  136. struct pool_info *pi = data;
  137. int i,j;
  138. r1bio_t *r1bio = __r1_bio;
  139. for (i = 0; i < RESYNC_PAGES; i++)
  140. for (j = pi->raid_disks; j-- ;) {
  141. if (j == 0 ||
  142. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  143. r1bio->bios[0]->bi_io_vec[i].bv_page)
  144. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  145. }
  146. for (i=0 ; i < pi->raid_disks; i++)
  147. bio_put(r1bio->bios[i]);
  148. r1bio_pool_free(r1bio, data);
  149. }
  150. static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
  151. {
  152. int i;
  153. for (i = 0; i < conf->raid_disks; i++) {
  154. struct bio **bio = r1_bio->bios + i;
  155. if (*bio && *bio != IO_BLOCKED)
  156. bio_put(*bio);
  157. *bio = NULL;
  158. }
  159. }
  160. static void free_r1bio(r1bio_t *r1_bio)
  161. {
  162. conf_t *conf = r1_bio->mddev->private;
  163. /*
  164. * Wake up any possible resync thread that waits for the device
  165. * to go idle.
  166. */
  167. allow_barrier(conf);
  168. put_all_bios(conf, r1_bio);
  169. mempool_free(r1_bio, conf->r1bio_pool);
  170. }
  171. static void put_buf(r1bio_t *r1_bio)
  172. {
  173. conf_t *conf = r1_bio->mddev->private;
  174. int i;
  175. for (i=0; i<conf->raid_disks; i++) {
  176. struct bio *bio = r1_bio->bios[i];
  177. if (bio->bi_end_io)
  178. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  179. }
  180. mempool_free(r1_bio, conf->r1buf_pool);
  181. lower_barrier(conf);
  182. }
  183. static void reschedule_retry(r1bio_t *r1_bio)
  184. {
  185. unsigned long flags;
  186. mddev_t *mddev = r1_bio->mddev;
  187. conf_t *conf = mddev->private;
  188. spin_lock_irqsave(&conf->device_lock, flags);
  189. list_add(&r1_bio->retry_list, &conf->retry_list);
  190. conf->nr_queued ++;
  191. spin_unlock_irqrestore(&conf->device_lock, flags);
  192. wake_up(&conf->wait_barrier);
  193. md_wakeup_thread(mddev->thread);
  194. }
  195. /*
  196. * raid_end_bio_io() is called when we have finished servicing a mirrored
  197. * operation and are ready to return a success/failure code to the buffer
  198. * cache layer.
  199. */
  200. static void raid_end_bio_io(r1bio_t *r1_bio)
  201. {
  202. struct bio *bio = r1_bio->master_bio;
  203. /* if nobody has done the final endio yet, do it now */
  204. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  205. PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
  206. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  207. (unsigned long long) bio->bi_sector,
  208. (unsigned long long) bio->bi_sector +
  209. (bio->bi_size >> 9) - 1);
  210. bio_endio(bio,
  211. test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
  212. }
  213. free_r1bio(r1_bio);
  214. }
  215. /*
  216. * Update disk head position estimator based on IRQ completion info.
  217. */
  218. static inline void update_head_pos(int disk, r1bio_t *r1_bio)
  219. {
  220. conf_t *conf = r1_bio->mddev->private;
  221. conf->mirrors[disk].head_position =
  222. r1_bio->sector + (r1_bio->sectors);
  223. }
  224. static void raid1_end_read_request(struct bio *bio, int error)
  225. {
  226. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  227. r1bio_t *r1_bio = bio->bi_private;
  228. int mirror;
  229. conf_t *conf = r1_bio->mddev->private;
  230. mirror = r1_bio->read_disk;
  231. /*
  232. * this branch is our 'one mirror IO has finished' event handler:
  233. */
  234. update_head_pos(mirror, r1_bio);
  235. if (uptodate)
  236. set_bit(R1BIO_Uptodate, &r1_bio->state);
  237. else {
  238. /* If all other devices have failed, we want to return
  239. * the error upwards rather than fail the last device.
  240. * Here we redefine "uptodate" to mean "Don't want to retry"
  241. */
  242. unsigned long flags;
  243. spin_lock_irqsave(&conf->device_lock, flags);
  244. if (r1_bio->mddev->degraded == conf->raid_disks ||
  245. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  246. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  247. uptodate = 1;
  248. spin_unlock_irqrestore(&conf->device_lock, flags);
  249. }
  250. if (uptodate)
  251. raid_end_bio_io(r1_bio);
  252. else {
  253. /*
  254. * oops, read error:
  255. */
  256. char b[BDEVNAME_SIZE];
  257. if (printk_ratelimit())
  258. printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
  259. mdname(conf->mddev),
  260. bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
  261. reschedule_retry(r1_bio);
  262. }
  263. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  264. }
  265. static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
  266. int behind)
  267. {
  268. if (atomic_dec_and_test(&r1_bio->remaining))
  269. {
  270. /* it really is the end of this request */
  271. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  272. /* free extra copy of the data pages */
  273. int i = vcnt;
  274. while (i--)
  275. safe_put_page(bv[i].bv_page);
  276. }
  277. /* clear the bitmap if all writes complete successfully */
  278. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  279. r1_bio->sectors,
  280. !test_bit(R1BIO_Degraded, &r1_bio->state),
  281. behind);
  282. md_write_end(r1_bio->mddev);
  283. raid_end_bio_io(r1_bio);
  284. }
  285. }
  286. static void raid1_end_write_request(struct bio *bio, int error)
  287. {
  288. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  289. r1bio_t *r1_bio = bio->bi_private;
  290. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  291. conf_t *conf = r1_bio->mddev->private;
  292. struct bio *to_put = NULL;
  293. for (mirror = 0; mirror < conf->raid_disks; mirror++)
  294. if (r1_bio->bios[mirror] == bio)
  295. break;
  296. /*
  297. * 'one mirror IO has finished' event handler:
  298. */
  299. r1_bio->bios[mirror] = NULL;
  300. to_put = bio;
  301. if (!uptodate) {
  302. md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
  303. /* an I/O failed, we can't clear the bitmap */
  304. set_bit(R1BIO_Degraded, &r1_bio->state);
  305. } else
  306. /*
  307. * Set R1BIO_Uptodate in our master bio, so that we
  308. * will return a good error code for to the higher
  309. * levels even if IO on some other mirrored buffer
  310. * fails.
  311. *
  312. * The 'master' represents the composite IO operation
  313. * to user-side. So if something waits for IO, then it
  314. * will wait for the 'master' bio.
  315. */
  316. set_bit(R1BIO_Uptodate, &r1_bio->state);
  317. update_head_pos(mirror, r1_bio);
  318. if (behind) {
  319. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  320. atomic_dec(&r1_bio->behind_remaining);
  321. /*
  322. * In behind mode, we ACK the master bio once the I/O
  323. * has safely reached all non-writemostly
  324. * disks. Setting the Returned bit ensures that this
  325. * gets done only once -- we don't ever want to return
  326. * -EIO here, instead we'll wait
  327. */
  328. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  329. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  330. /* Maybe we can return now */
  331. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  332. struct bio *mbio = r1_bio->master_bio;
  333. PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
  334. (unsigned long long) mbio->bi_sector,
  335. (unsigned long long) mbio->bi_sector +
  336. (mbio->bi_size >> 9) - 1);
  337. bio_endio(mbio, 0);
  338. }
  339. }
  340. }
  341. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  342. /*
  343. * Let's see if all mirrored write operations have finished
  344. * already.
  345. */
  346. r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
  347. if (to_put)
  348. bio_put(to_put);
  349. }
  350. /*
  351. * This routine returns the disk from which the requested read should
  352. * be done. There is a per-array 'next expected sequential IO' sector
  353. * number - if this matches on the next IO then we use the last disk.
  354. * There is also a per-disk 'last know head position' sector that is
  355. * maintained from IRQ contexts, both the normal and the resync IO
  356. * completion handlers update this position correctly. If there is no
  357. * perfect sequential match then we pick the disk whose head is closest.
  358. *
  359. * If there are 2 mirrors in the same 2 devices, performance degrades
  360. * because position is mirror, not device based.
  361. *
  362. * The rdev for the device selected will have nr_pending incremented.
  363. */
  364. static int read_balance(conf_t *conf, r1bio_t *r1_bio)
  365. {
  366. const sector_t this_sector = r1_bio->sector;
  367. const int sectors = r1_bio->sectors;
  368. int new_disk = -1;
  369. int start_disk;
  370. int i;
  371. sector_t new_distance, current_distance;
  372. mdk_rdev_t *rdev;
  373. int choose_first;
  374. rcu_read_lock();
  375. /*
  376. * Check if we can balance. We can balance on the whole
  377. * device if no resync is going on, or below the resync window.
  378. * We take the first readable disk when above the resync window.
  379. */
  380. retry:
  381. if (conf->mddev->recovery_cp < MaxSector &&
  382. (this_sector + sectors >= conf->next_resync)) {
  383. choose_first = 1;
  384. start_disk = 0;
  385. } else {
  386. choose_first = 0;
  387. start_disk = conf->last_used;
  388. }
  389. /* make sure the disk is operational */
  390. for (i = 0 ; i < conf->raid_disks ; i++) {
  391. int disk = start_disk + i;
  392. if (disk >= conf->raid_disks)
  393. disk -= conf->raid_disks;
  394. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  395. if (r1_bio->bios[disk] == IO_BLOCKED
  396. || rdev == NULL
  397. || !test_bit(In_sync, &rdev->flags))
  398. continue;
  399. new_disk = disk;
  400. if (!test_bit(WriteMostly, &rdev->flags))
  401. break;
  402. }
  403. if (new_disk < 0 || choose_first)
  404. goto rb_out;
  405. /*
  406. * Don't change to another disk for sequential reads:
  407. */
  408. if (conf->next_seq_sect == this_sector)
  409. goto rb_out;
  410. if (this_sector == conf->mirrors[new_disk].head_position)
  411. goto rb_out;
  412. current_distance = abs(this_sector
  413. - conf->mirrors[new_disk].head_position);
  414. /* look for a better disk - i.e. head is closer */
  415. start_disk = new_disk;
  416. for (i = 1; i < conf->raid_disks; i++) {
  417. int disk = start_disk + 1;
  418. if (disk >= conf->raid_disks)
  419. disk -= conf->raid_disks;
  420. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  421. if (r1_bio->bios[disk] == IO_BLOCKED
  422. || rdev == NULL
  423. || !test_bit(In_sync, &rdev->flags)
  424. || test_bit(WriteMostly, &rdev->flags))
  425. continue;
  426. if (!atomic_read(&rdev->nr_pending)) {
  427. new_disk = disk;
  428. break;
  429. }
  430. new_distance = abs(this_sector - conf->mirrors[disk].head_position);
  431. if (new_distance < current_distance) {
  432. current_distance = new_distance;
  433. new_disk = disk;
  434. }
  435. }
  436. rb_out:
  437. if (new_disk >= 0) {
  438. rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  439. if (!rdev)
  440. goto retry;
  441. atomic_inc(&rdev->nr_pending);
  442. if (!test_bit(In_sync, &rdev->flags)) {
  443. /* cannot risk returning a device that failed
  444. * before we inc'ed nr_pending
  445. */
  446. rdev_dec_pending(rdev, conf->mddev);
  447. goto retry;
  448. }
  449. conf->next_seq_sect = this_sector + sectors;
  450. conf->last_used = new_disk;
  451. }
  452. rcu_read_unlock();
  453. return new_disk;
  454. }
  455. static void unplug_slaves(mddev_t *mddev)
  456. {
  457. conf_t *conf = mddev->private;
  458. int i;
  459. rcu_read_lock();
  460. for (i=0; i<mddev->raid_disks; i++) {
  461. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  462. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  463. struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
  464. atomic_inc(&rdev->nr_pending);
  465. rcu_read_unlock();
  466. blk_unplug(r_queue);
  467. rdev_dec_pending(rdev, mddev);
  468. rcu_read_lock();
  469. }
  470. }
  471. rcu_read_unlock();
  472. }
  473. static void raid1_unplug(struct request_queue *q)
  474. {
  475. mddev_t *mddev = q->queuedata;
  476. unplug_slaves(mddev);
  477. md_wakeup_thread(mddev->thread);
  478. }
  479. static int raid1_congested(void *data, int bits)
  480. {
  481. mddev_t *mddev = data;
  482. conf_t *conf = mddev->private;
  483. int i, ret = 0;
  484. if (mddev_congested(mddev, bits))
  485. return 1;
  486. rcu_read_lock();
  487. for (i = 0; i < mddev->raid_disks; i++) {
  488. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  489. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  490. struct request_queue *q = bdev_get_queue(rdev->bdev);
  491. /* Note the '|| 1' - when read_balance prefers
  492. * non-congested targets, it can be removed
  493. */
  494. if ((bits & (1<<BDI_async_congested)) || 1)
  495. ret |= bdi_congested(&q->backing_dev_info, bits);
  496. else
  497. ret &= bdi_congested(&q->backing_dev_info, bits);
  498. }
  499. }
  500. rcu_read_unlock();
  501. return ret;
  502. }
  503. static int flush_pending_writes(conf_t *conf)
  504. {
  505. /* Any writes that have been queued but are awaiting
  506. * bitmap updates get flushed here.
  507. * We return 1 if any requests were actually submitted.
  508. */
  509. int rv = 0;
  510. spin_lock_irq(&conf->device_lock);
  511. if (conf->pending_bio_list.head) {
  512. struct bio *bio;
  513. bio = bio_list_get(&conf->pending_bio_list);
  514. /* Only take the spinlock to quiet a warning */
  515. spin_lock(conf->mddev->queue->queue_lock);
  516. blk_remove_plug(conf->mddev->queue);
  517. spin_unlock(conf->mddev->queue->queue_lock);
  518. spin_unlock_irq(&conf->device_lock);
  519. /* flush any pending bitmap writes to
  520. * disk before proceeding w/ I/O */
  521. bitmap_unplug(conf->mddev->bitmap);
  522. while (bio) { /* submit pending writes */
  523. struct bio *next = bio->bi_next;
  524. bio->bi_next = NULL;
  525. generic_make_request(bio);
  526. bio = next;
  527. }
  528. rv = 1;
  529. } else
  530. spin_unlock_irq(&conf->device_lock);
  531. return rv;
  532. }
  533. /* Barriers....
  534. * Sometimes we need to suspend IO while we do something else,
  535. * either some resync/recovery, or reconfigure the array.
  536. * To do this we raise a 'barrier'.
  537. * The 'barrier' is a counter that can be raised multiple times
  538. * to count how many activities are happening which preclude
  539. * normal IO.
  540. * We can only raise the barrier if there is no pending IO.
  541. * i.e. if nr_pending == 0.
  542. * We choose only to raise the barrier if no-one is waiting for the
  543. * barrier to go down. This means that as soon as an IO request
  544. * is ready, no other operations which require a barrier will start
  545. * until the IO request has had a chance.
  546. *
  547. * So: regular IO calls 'wait_barrier'. When that returns there
  548. * is no backgroup IO happening, It must arrange to call
  549. * allow_barrier when it has finished its IO.
  550. * backgroup IO calls must call raise_barrier. Once that returns
  551. * there is no normal IO happeing. It must arrange to call
  552. * lower_barrier when the particular background IO completes.
  553. */
  554. #define RESYNC_DEPTH 32
  555. static void raise_barrier(conf_t *conf)
  556. {
  557. spin_lock_irq(&conf->resync_lock);
  558. /* Wait until no block IO is waiting */
  559. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  560. conf->resync_lock,
  561. raid1_unplug(conf->mddev->queue));
  562. /* block any new IO from starting */
  563. conf->barrier++;
  564. /* Now wait for all pending IO to complete */
  565. wait_event_lock_irq(conf->wait_barrier,
  566. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  567. conf->resync_lock,
  568. raid1_unplug(conf->mddev->queue));
  569. spin_unlock_irq(&conf->resync_lock);
  570. }
  571. static void lower_barrier(conf_t *conf)
  572. {
  573. unsigned long flags;
  574. BUG_ON(conf->barrier <= 0);
  575. spin_lock_irqsave(&conf->resync_lock, flags);
  576. conf->barrier--;
  577. spin_unlock_irqrestore(&conf->resync_lock, flags);
  578. wake_up(&conf->wait_barrier);
  579. }
  580. static void wait_barrier(conf_t *conf)
  581. {
  582. spin_lock_irq(&conf->resync_lock);
  583. if (conf->barrier) {
  584. conf->nr_waiting++;
  585. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  586. conf->resync_lock,
  587. raid1_unplug(conf->mddev->queue));
  588. conf->nr_waiting--;
  589. }
  590. conf->nr_pending++;
  591. spin_unlock_irq(&conf->resync_lock);
  592. }
  593. static void allow_barrier(conf_t *conf)
  594. {
  595. unsigned long flags;
  596. spin_lock_irqsave(&conf->resync_lock, flags);
  597. conf->nr_pending--;
  598. spin_unlock_irqrestore(&conf->resync_lock, flags);
  599. wake_up(&conf->wait_barrier);
  600. }
  601. static void freeze_array(conf_t *conf)
  602. {
  603. /* stop syncio and normal IO and wait for everything to
  604. * go quite.
  605. * We increment barrier and nr_waiting, and then
  606. * wait until nr_pending match nr_queued+1
  607. * This is called in the context of one normal IO request
  608. * that has failed. Thus any sync request that might be pending
  609. * will be blocked by nr_pending, and we need to wait for
  610. * pending IO requests to complete or be queued for re-try.
  611. * Thus the number queued (nr_queued) plus this request (1)
  612. * must match the number of pending IOs (nr_pending) before
  613. * we continue.
  614. */
  615. spin_lock_irq(&conf->resync_lock);
  616. conf->barrier++;
  617. conf->nr_waiting++;
  618. wait_event_lock_irq(conf->wait_barrier,
  619. conf->nr_pending == conf->nr_queued+1,
  620. conf->resync_lock,
  621. ({ flush_pending_writes(conf);
  622. raid1_unplug(conf->mddev->queue); }));
  623. spin_unlock_irq(&conf->resync_lock);
  624. }
  625. static void unfreeze_array(conf_t *conf)
  626. {
  627. /* reverse the effect of the freeze */
  628. spin_lock_irq(&conf->resync_lock);
  629. conf->barrier--;
  630. conf->nr_waiting--;
  631. wake_up(&conf->wait_barrier);
  632. spin_unlock_irq(&conf->resync_lock);
  633. }
  634. /* duplicate the data pages for behind I/O
  635. * We return a list of bio_vec rather than just page pointers
  636. * as it makes freeing easier
  637. */
  638. static struct bio_vec *alloc_behind_pages(struct bio *bio)
  639. {
  640. int i;
  641. struct bio_vec *bvec;
  642. struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
  643. GFP_NOIO);
  644. if (unlikely(!pages))
  645. goto do_sync_io;
  646. bio_for_each_segment(bvec, bio, i) {
  647. pages[i].bv_page = alloc_page(GFP_NOIO);
  648. if (unlikely(!pages[i].bv_page))
  649. goto do_sync_io;
  650. memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
  651. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  652. kunmap(pages[i].bv_page);
  653. kunmap(bvec->bv_page);
  654. }
  655. return pages;
  656. do_sync_io:
  657. if (pages)
  658. for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
  659. put_page(pages[i].bv_page);
  660. kfree(pages);
  661. PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  662. return NULL;
  663. }
  664. static int make_request(mddev_t *mddev, struct bio * bio)
  665. {
  666. conf_t *conf = mddev->private;
  667. mirror_info_t *mirror;
  668. r1bio_t *r1_bio;
  669. struct bio *read_bio;
  670. int i, targets = 0, disks;
  671. struct bitmap *bitmap;
  672. unsigned long flags;
  673. struct bio_vec *behind_pages = NULL;
  674. const int rw = bio_data_dir(bio);
  675. const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
  676. const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
  677. mdk_rdev_t *blocked_rdev;
  678. /*
  679. * Register the new request and wait if the reconstruction
  680. * thread has put up a bar for new requests.
  681. * Continue immediately if no resync is active currently.
  682. */
  683. md_write_start(mddev, bio); /* wait on superblock update early */
  684. if (bio_data_dir(bio) == WRITE &&
  685. bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
  686. bio->bi_sector < mddev->suspend_hi) {
  687. /* As the suspend_* range is controlled by
  688. * userspace, we want an interruptible
  689. * wait.
  690. */
  691. DEFINE_WAIT(w);
  692. for (;;) {
  693. flush_signals(current);
  694. prepare_to_wait(&conf->wait_barrier,
  695. &w, TASK_INTERRUPTIBLE);
  696. if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
  697. bio->bi_sector >= mddev->suspend_hi)
  698. break;
  699. schedule();
  700. }
  701. finish_wait(&conf->wait_barrier, &w);
  702. }
  703. wait_barrier(conf);
  704. bitmap = mddev->bitmap;
  705. /*
  706. * make_request() can abort the operation when READA is being
  707. * used and no empty request is available.
  708. *
  709. */
  710. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  711. r1_bio->master_bio = bio;
  712. r1_bio->sectors = bio->bi_size >> 9;
  713. r1_bio->state = 0;
  714. r1_bio->mddev = mddev;
  715. r1_bio->sector = bio->bi_sector;
  716. if (rw == READ) {
  717. /*
  718. * read balancing logic:
  719. */
  720. int rdisk = read_balance(conf, r1_bio);
  721. if (rdisk < 0) {
  722. /* couldn't find anywhere to read from */
  723. raid_end_bio_io(r1_bio);
  724. return 0;
  725. }
  726. mirror = conf->mirrors + rdisk;
  727. if (test_bit(WriteMostly, &mirror->rdev->flags) &&
  728. bitmap) {
  729. /* Reading from a write-mostly device must
  730. * take care not to over-take any writes
  731. * that are 'behind'
  732. */
  733. wait_event(bitmap->behind_wait,
  734. atomic_read(&bitmap->behind_writes) == 0);
  735. }
  736. r1_bio->read_disk = rdisk;
  737. read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  738. r1_bio->bios[rdisk] = read_bio;
  739. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  740. read_bio->bi_bdev = mirror->rdev->bdev;
  741. read_bio->bi_end_io = raid1_end_read_request;
  742. read_bio->bi_rw = READ | do_sync;
  743. read_bio->bi_private = r1_bio;
  744. generic_make_request(read_bio);
  745. return 0;
  746. }
  747. /*
  748. * WRITE:
  749. */
  750. /* first select target devices under spinlock and
  751. * inc refcount on their rdev. Record them by setting
  752. * bios[x] to bio
  753. */
  754. disks = conf->raid_disks;
  755. retry_write:
  756. blocked_rdev = NULL;
  757. rcu_read_lock();
  758. for (i = 0; i < disks; i++) {
  759. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  760. if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
  761. atomic_inc(&rdev->nr_pending);
  762. blocked_rdev = rdev;
  763. break;
  764. }
  765. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  766. atomic_inc(&rdev->nr_pending);
  767. if (test_bit(Faulty, &rdev->flags)) {
  768. rdev_dec_pending(rdev, mddev);
  769. r1_bio->bios[i] = NULL;
  770. } else {
  771. r1_bio->bios[i] = bio;
  772. targets++;
  773. }
  774. } else
  775. r1_bio->bios[i] = NULL;
  776. }
  777. rcu_read_unlock();
  778. if (unlikely(blocked_rdev)) {
  779. /* Wait for this device to become unblocked */
  780. int j;
  781. for (j = 0; j < i; j++)
  782. if (r1_bio->bios[j])
  783. rdev_dec_pending(conf->mirrors[j].rdev, mddev);
  784. allow_barrier(conf);
  785. md_wait_for_blocked_rdev(blocked_rdev, mddev);
  786. wait_barrier(conf);
  787. goto retry_write;
  788. }
  789. BUG_ON(targets == 0); /* we never fail the last device */
  790. if (targets < conf->raid_disks) {
  791. /* array is degraded, we will not clear the bitmap
  792. * on I/O completion (see raid1_end_write_request) */
  793. set_bit(R1BIO_Degraded, &r1_bio->state);
  794. }
  795. /* do behind I/O ?
  796. * Not if there are too many, or cannot allocate memory,
  797. * or a reader on WriteMostly is waiting for behind writes
  798. * to flush */
  799. if (bitmap &&
  800. (atomic_read(&bitmap->behind_writes)
  801. < mddev->bitmap_info.max_write_behind) &&
  802. !waitqueue_active(&bitmap->behind_wait) &&
  803. (behind_pages = alloc_behind_pages(bio)) != NULL)
  804. set_bit(R1BIO_BehindIO, &r1_bio->state);
  805. atomic_set(&r1_bio->remaining, 1);
  806. atomic_set(&r1_bio->behind_remaining, 0);
  807. bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
  808. test_bit(R1BIO_BehindIO, &r1_bio->state));
  809. for (i = 0; i < disks; i++) {
  810. struct bio *mbio;
  811. if (!r1_bio->bios[i])
  812. continue;
  813. mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
  814. r1_bio->bios[i] = mbio;
  815. mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
  816. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  817. mbio->bi_end_io = raid1_end_write_request;
  818. mbio->bi_rw = WRITE | do_flush_fua | do_sync;
  819. mbio->bi_private = r1_bio;
  820. if (behind_pages) {
  821. struct bio_vec *bvec;
  822. int j;
  823. /* Yes, I really want the '__' version so that
  824. * we clear any unused pointer in the io_vec, rather
  825. * than leave them unchanged. This is important
  826. * because when we come to free the pages, we won't
  827. * know the original bi_idx, so we just free
  828. * them all
  829. */
  830. __bio_for_each_segment(bvec, mbio, j, 0)
  831. bvec->bv_page = behind_pages[j].bv_page;
  832. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  833. atomic_inc(&r1_bio->behind_remaining);
  834. }
  835. atomic_inc(&r1_bio->remaining);
  836. spin_lock_irqsave(&conf->device_lock, flags);
  837. bio_list_add(&conf->pending_bio_list, mbio);
  838. blk_plug_device_unlocked(mddev->queue);
  839. spin_unlock_irqrestore(&conf->device_lock, flags);
  840. }
  841. r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
  842. kfree(behind_pages); /* the behind pages are attached to the bios now */
  843. /* In case raid1d snuck in to freeze_array */
  844. wake_up(&conf->wait_barrier);
  845. if (do_sync)
  846. md_wakeup_thread(mddev->thread);
  847. return 0;
  848. }
  849. static void status(struct seq_file *seq, mddev_t *mddev)
  850. {
  851. conf_t *conf = mddev->private;
  852. int i;
  853. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  854. conf->raid_disks - mddev->degraded);
  855. rcu_read_lock();
  856. for (i = 0; i < conf->raid_disks; i++) {
  857. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  858. seq_printf(seq, "%s",
  859. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  860. }
  861. rcu_read_unlock();
  862. seq_printf(seq, "]");
  863. }
  864. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  865. {
  866. char b[BDEVNAME_SIZE];
  867. conf_t *conf = mddev->private;
  868. /*
  869. * If it is not operational, then we have already marked it as dead
  870. * else if it is the last working disks, ignore the error, let the
  871. * next level up know.
  872. * else mark the drive as failed
  873. */
  874. if (test_bit(In_sync, &rdev->flags)
  875. && (conf->raid_disks - mddev->degraded) == 1) {
  876. /*
  877. * Don't fail the drive, act as though we were just a
  878. * normal single drive.
  879. * However don't try a recovery from this drive as
  880. * it is very likely to fail.
  881. */
  882. mddev->recovery_disabled = 1;
  883. return;
  884. }
  885. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  886. unsigned long flags;
  887. spin_lock_irqsave(&conf->device_lock, flags);
  888. mddev->degraded++;
  889. set_bit(Faulty, &rdev->flags);
  890. spin_unlock_irqrestore(&conf->device_lock, flags);
  891. /*
  892. * if recovery is running, make sure it aborts.
  893. */
  894. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  895. } else
  896. set_bit(Faulty, &rdev->flags);
  897. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  898. printk(KERN_ALERT
  899. "md/raid1:%s: Disk failure on %s, disabling device.\n"
  900. "md/raid1:%s: Operation continuing on %d devices.\n",
  901. mdname(mddev), bdevname(rdev->bdev, b),
  902. mdname(mddev), conf->raid_disks - mddev->degraded);
  903. }
  904. static void print_conf(conf_t *conf)
  905. {
  906. int i;
  907. printk(KERN_DEBUG "RAID1 conf printout:\n");
  908. if (!conf) {
  909. printk(KERN_DEBUG "(!conf)\n");
  910. return;
  911. }
  912. printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  913. conf->raid_disks);
  914. rcu_read_lock();
  915. for (i = 0; i < conf->raid_disks; i++) {
  916. char b[BDEVNAME_SIZE];
  917. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  918. if (rdev)
  919. printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
  920. i, !test_bit(In_sync, &rdev->flags),
  921. !test_bit(Faulty, &rdev->flags),
  922. bdevname(rdev->bdev,b));
  923. }
  924. rcu_read_unlock();
  925. }
  926. static void close_sync(conf_t *conf)
  927. {
  928. wait_barrier(conf);
  929. allow_barrier(conf);
  930. mempool_destroy(conf->r1buf_pool);
  931. conf->r1buf_pool = NULL;
  932. }
  933. static int raid1_spare_active(mddev_t *mddev)
  934. {
  935. int i;
  936. conf_t *conf = mddev->private;
  937. int count = 0;
  938. unsigned long flags;
  939. /*
  940. * Find all failed disks within the RAID1 configuration
  941. * and mark them readable.
  942. * Called under mddev lock, so rcu protection not needed.
  943. */
  944. for (i = 0; i < conf->raid_disks; i++) {
  945. mdk_rdev_t *rdev = conf->mirrors[i].rdev;
  946. if (rdev
  947. && !test_bit(Faulty, &rdev->flags)
  948. && !test_and_set_bit(In_sync, &rdev->flags)) {
  949. count++;
  950. sysfs_notify_dirent(rdev->sysfs_state);
  951. }
  952. }
  953. spin_lock_irqsave(&conf->device_lock, flags);
  954. mddev->degraded -= count;
  955. spin_unlock_irqrestore(&conf->device_lock, flags);
  956. print_conf(conf);
  957. return count;
  958. }
  959. static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  960. {
  961. conf_t *conf = mddev->private;
  962. int err = -EEXIST;
  963. int mirror = 0;
  964. mirror_info_t *p;
  965. int first = 0;
  966. int last = mddev->raid_disks - 1;
  967. if (rdev->raid_disk >= 0)
  968. first = last = rdev->raid_disk;
  969. for (mirror = first; mirror <= last; mirror++)
  970. if ( !(p=conf->mirrors+mirror)->rdev) {
  971. disk_stack_limits(mddev->gendisk, rdev->bdev,
  972. rdev->data_offset << 9);
  973. /* as we don't honour merge_bvec_fn, we must
  974. * never risk violating it, so limit
  975. * ->max_segments to one lying with a single
  976. * page, as a one page request is never in
  977. * violation.
  978. */
  979. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  980. blk_queue_max_segments(mddev->queue, 1);
  981. blk_queue_segment_boundary(mddev->queue,
  982. PAGE_CACHE_SIZE - 1);
  983. }
  984. p->head_position = 0;
  985. rdev->raid_disk = mirror;
  986. err = 0;
  987. /* As all devices are equivalent, we don't need a full recovery
  988. * if this was recently any drive of the array
  989. */
  990. if (rdev->saved_raid_disk < 0)
  991. conf->fullsync = 1;
  992. rcu_assign_pointer(p->rdev, rdev);
  993. break;
  994. }
  995. md_integrity_add_rdev(rdev, mddev);
  996. print_conf(conf);
  997. return err;
  998. }
  999. static int raid1_remove_disk(mddev_t *mddev, int number)
  1000. {
  1001. conf_t *conf = mddev->private;
  1002. int err = 0;
  1003. mdk_rdev_t *rdev;
  1004. mirror_info_t *p = conf->mirrors+ number;
  1005. print_conf(conf);
  1006. rdev = p->rdev;
  1007. if (rdev) {
  1008. if (test_bit(In_sync, &rdev->flags) ||
  1009. atomic_read(&rdev->nr_pending)) {
  1010. err = -EBUSY;
  1011. goto abort;
  1012. }
  1013. /* Only remove non-faulty devices if recovery
  1014. * is not possible.
  1015. */
  1016. if (!test_bit(Faulty, &rdev->flags) &&
  1017. !mddev->recovery_disabled &&
  1018. mddev->degraded < conf->raid_disks) {
  1019. err = -EBUSY;
  1020. goto abort;
  1021. }
  1022. p->rdev = NULL;
  1023. synchronize_rcu();
  1024. if (atomic_read(&rdev->nr_pending)) {
  1025. /* lost the race, try later */
  1026. err = -EBUSY;
  1027. p->rdev = rdev;
  1028. goto abort;
  1029. }
  1030. md_integrity_register(mddev);
  1031. }
  1032. abort:
  1033. print_conf(conf);
  1034. return err;
  1035. }
  1036. static void end_sync_read(struct bio *bio, int error)
  1037. {
  1038. r1bio_t *r1_bio = bio->bi_private;
  1039. int i;
  1040. for (i=r1_bio->mddev->raid_disks; i--; )
  1041. if (r1_bio->bios[i] == bio)
  1042. break;
  1043. BUG_ON(i < 0);
  1044. update_head_pos(i, r1_bio);
  1045. /*
  1046. * we have read a block, now it needs to be re-written,
  1047. * or re-read if the read failed.
  1048. * We don't do much here, just schedule handling by raid1d
  1049. */
  1050. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  1051. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1052. if (atomic_dec_and_test(&r1_bio->remaining))
  1053. reschedule_retry(r1_bio);
  1054. }
  1055. static void end_sync_write(struct bio *bio, int error)
  1056. {
  1057. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  1058. r1bio_t *r1_bio = bio->bi_private;
  1059. mddev_t *mddev = r1_bio->mddev;
  1060. conf_t *conf = mddev->private;
  1061. int i;
  1062. int mirror=0;
  1063. for (i = 0; i < conf->raid_disks; i++)
  1064. if (r1_bio->bios[i] == bio) {
  1065. mirror = i;
  1066. break;
  1067. }
  1068. if (!uptodate) {
  1069. sector_t sync_blocks = 0;
  1070. sector_t s = r1_bio->sector;
  1071. long sectors_to_go = r1_bio->sectors;
  1072. /* make sure these bits doesn't get cleared. */
  1073. do {
  1074. bitmap_end_sync(mddev->bitmap, s,
  1075. &sync_blocks, 1);
  1076. s += sync_blocks;
  1077. sectors_to_go -= sync_blocks;
  1078. } while (sectors_to_go > 0);
  1079. md_error(mddev, conf->mirrors[mirror].rdev);
  1080. }
  1081. update_head_pos(mirror, r1_bio);
  1082. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1083. sector_t s = r1_bio->sectors;
  1084. put_buf(r1_bio);
  1085. md_done_sync(mddev, s, uptodate);
  1086. }
  1087. }
  1088. static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
  1089. {
  1090. conf_t *conf = mddev->private;
  1091. int i;
  1092. int disks = conf->raid_disks;
  1093. struct bio *bio, *wbio;
  1094. bio = r1_bio->bios[r1_bio->read_disk];
  1095. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1096. /* We have read all readable devices. If we haven't
  1097. * got the block, then there is no hope left.
  1098. * If we have, then we want to do a comparison
  1099. * and skip the write if everything is the same.
  1100. * If any blocks failed to read, then we need to
  1101. * attempt an over-write
  1102. */
  1103. int primary;
  1104. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1105. for (i=0; i<mddev->raid_disks; i++)
  1106. if (r1_bio->bios[i]->bi_end_io == end_sync_read)
  1107. md_error(mddev, conf->mirrors[i].rdev);
  1108. md_done_sync(mddev, r1_bio->sectors, 1);
  1109. put_buf(r1_bio);
  1110. return;
  1111. }
  1112. for (primary=0; primary<mddev->raid_disks; primary++)
  1113. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1114. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1115. r1_bio->bios[primary]->bi_end_io = NULL;
  1116. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1117. break;
  1118. }
  1119. r1_bio->read_disk = primary;
  1120. for (i=0; i<mddev->raid_disks; i++)
  1121. if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
  1122. int j;
  1123. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1124. struct bio *pbio = r1_bio->bios[primary];
  1125. struct bio *sbio = r1_bio->bios[i];
  1126. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1127. for (j = vcnt; j-- ; ) {
  1128. struct page *p, *s;
  1129. p = pbio->bi_io_vec[j].bv_page;
  1130. s = sbio->bi_io_vec[j].bv_page;
  1131. if (memcmp(page_address(p),
  1132. page_address(s),
  1133. PAGE_SIZE))
  1134. break;
  1135. }
  1136. } else
  1137. j = 0;
  1138. if (j >= 0)
  1139. mddev->resync_mismatches += r1_bio->sectors;
  1140. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1141. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1142. sbio->bi_end_io = NULL;
  1143. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1144. } else {
  1145. /* fixup the bio for reuse */
  1146. int size;
  1147. sbio->bi_vcnt = vcnt;
  1148. sbio->bi_size = r1_bio->sectors << 9;
  1149. sbio->bi_idx = 0;
  1150. sbio->bi_phys_segments = 0;
  1151. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1152. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1153. sbio->bi_next = NULL;
  1154. sbio->bi_sector = r1_bio->sector +
  1155. conf->mirrors[i].rdev->data_offset;
  1156. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1157. size = sbio->bi_size;
  1158. for (j = 0; j < vcnt ; j++) {
  1159. struct bio_vec *bi;
  1160. bi = &sbio->bi_io_vec[j];
  1161. bi->bv_offset = 0;
  1162. if (size > PAGE_SIZE)
  1163. bi->bv_len = PAGE_SIZE;
  1164. else
  1165. bi->bv_len = size;
  1166. size -= PAGE_SIZE;
  1167. memcpy(page_address(bi->bv_page),
  1168. page_address(pbio->bi_io_vec[j].bv_page),
  1169. PAGE_SIZE);
  1170. }
  1171. }
  1172. }
  1173. }
  1174. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1175. /* ouch - failed to read all of that.
  1176. * Try some synchronous reads of other devices to get
  1177. * good data, much like with normal read errors. Only
  1178. * read into the pages we already have so we don't
  1179. * need to re-issue the read request.
  1180. * We don't need to freeze the array, because being in an
  1181. * active sync request, there is no normal IO, and
  1182. * no overlapping syncs.
  1183. */
  1184. sector_t sect = r1_bio->sector;
  1185. int sectors = r1_bio->sectors;
  1186. int idx = 0;
  1187. while(sectors) {
  1188. int s = sectors;
  1189. int d = r1_bio->read_disk;
  1190. int success = 0;
  1191. mdk_rdev_t *rdev;
  1192. if (s > (PAGE_SIZE>>9))
  1193. s = PAGE_SIZE >> 9;
  1194. do {
  1195. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1196. /* No rcu protection needed here devices
  1197. * can only be removed when no resync is
  1198. * active, and resync is currently active
  1199. */
  1200. rdev = conf->mirrors[d].rdev;
  1201. if (sync_page_io(rdev,
  1202. sect,
  1203. s<<9,
  1204. bio->bi_io_vec[idx].bv_page,
  1205. READ, false)) {
  1206. success = 1;
  1207. break;
  1208. }
  1209. }
  1210. d++;
  1211. if (d == conf->raid_disks)
  1212. d = 0;
  1213. } while (!success && d != r1_bio->read_disk);
  1214. if (success) {
  1215. int start = d;
  1216. /* write it back and re-read */
  1217. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1218. while (d != r1_bio->read_disk) {
  1219. if (d == 0)
  1220. d = conf->raid_disks;
  1221. d--;
  1222. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1223. continue;
  1224. rdev = conf->mirrors[d].rdev;
  1225. atomic_add(s, &rdev->corrected_errors);
  1226. if (sync_page_io(rdev,
  1227. sect,
  1228. s<<9,
  1229. bio->bi_io_vec[idx].bv_page,
  1230. WRITE, false) == 0)
  1231. md_error(mddev, rdev);
  1232. }
  1233. d = start;
  1234. while (d != r1_bio->read_disk) {
  1235. if (d == 0)
  1236. d = conf->raid_disks;
  1237. d--;
  1238. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1239. continue;
  1240. rdev = conf->mirrors[d].rdev;
  1241. if (sync_page_io(rdev,
  1242. sect,
  1243. s<<9,
  1244. bio->bi_io_vec[idx].bv_page,
  1245. READ, false) == 0)
  1246. md_error(mddev, rdev);
  1247. }
  1248. } else {
  1249. char b[BDEVNAME_SIZE];
  1250. /* Cannot read from anywhere, array is toast */
  1251. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1252. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
  1253. " for block %llu\n",
  1254. mdname(mddev),
  1255. bdevname(bio->bi_bdev, b),
  1256. (unsigned long long)r1_bio->sector);
  1257. md_done_sync(mddev, r1_bio->sectors, 0);
  1258. put_buf(r1_bio);
  1259. return;
  1260. }
  1261. sectors -= s;
  1262. sect += s;
  1263. idx ++;
  1264. }
  1265. }
  1266. /*
  1267. * schedule writes
  1268. */
  1269. atomic_set(&r1_bio->remaining, 1);
  1270. for (i = 0; i < disks ; i++) {
  1271. wbio = r1_bio->bios[i];
  1272. if (wbio->bi_end_io == NULL ||
  1273. (wbio->bi_end_io == end_sync_read &&
  1274. (i == r1_bio->read_disk ||
  1275. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1276. continue;
  1277. wbio->bi_rw = WRITE;
  1278. wbio->bi_end_io = end_sync_write;
  1279. atomic_inc(&r1_bio->remaining);
  1280. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1281. generic_make_request(wbio);
  1282. }
  1283. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1284. /* if we're here, all write(s) have completed, so clean up */
  1285. md_done_sync(mddev, r1_bio->sectors, 1);
  1286. put_buf(r1_bio);
  1287. }
  1288. }
  1289. /*
  1290. * This is a kernel thread which:
  1291. *
  1292. * 1. Retries failed read operations on working mirrors.
  1293. * 2. Updates the raid superblock when problems encounter.
  1294. * 3. Performs writes following reads for array syncronising.
  1295. */
  1296. static void fix_read_error(conf_t *conf, int read_disk,
  1297. sector_t sect, int sectors)
  1298. {
  1299. mddev_t *mddev = conf->mddev;
  1300. while(sectors) {
  1301. int s = sectors;
  1302. int d = read_disk;
  1303. int success = 0;
  1304. int start;
  1305. mdk_rdev_t *rdev;
  1306. if (s > (PAGE_SIZE>>9))
  1307. s = PAGE_SIZE >> 9;
  1308. do {
  1309. /* Note: no rcu protection needed here
  1310. * as this is synchronous in the raid1d thread
  1311. * which is the thread that might remove
  1312. * a device. If raid1d ever becomes multi-threaded....
  1313. */
  1314. rdev = conf->mirrors[d].rdev;
  1315. if (rdev &&
  1316. test_bit(In_sync, &rdev->flags) &&
  1317. sync_page_io(rdev, sect, s<<9,
  1318. conf->tmppage, READ, false))
  1319. success = 1;
  1320. else {
  1321. d++;
  1322. if (d == conf->raid_disks)
  1323. d = 0;
  1324. }
  1325. } while (!success && d != read_disk);
  1326. if (!success) {
  1327. /* Cannot read from anywhere -- bye bye array */
  1328. md_error(mddev, conf->mirrors[read_disk].rdev);
  1329. break;
  1330. }
  1331. /* write it back and re-read */
  1332. start = d;
  1333. while (d != read_disk) {
  1334. if (d==0)
  1335. d = conf->raid_disks;
  1336. d--;
  1337. rdev = conf->mirrors[d].rdev;
  1338. if (rdev &&
  1339. test_bit(In_sync, &rdev->flags)) {
  1340. if (sync_page_io(rdev, sect, s<<9,
  1341. conf->tmppage, WRITE, false)
  1342. == 0)
  1343. /* Well, this device is dead */
  1344. md_error(mddev, rdev);
  1345. }
  1346. }
  1347. d = start;
  1348. while (d != read_disk) {
  1349. char b[BDEVNAME_SIZE];
  1350. if (d==0)
  1351. d = conf->raid_disks;
  1352. d--;
  1353. rdev = conf->mirrors[d].rdev;
  1354. if (rdev &&
  1355. test_bit(In_sync, &rdev->flags)) {
  1356. if (sync_page_io(rdev, sect, s<<9,
  1357. conf->tmppage, READ, false)
  1358. == 0)
  1359. /* Well, this device is dead */
  1360. md_error(mddev, rdev);
  1361. else {
  1362. atomic_add(s, &rdev->corrected_errors);
  1363. printk(KERN_INFO
  1364. "md/raid1:%s: read error corrected "
  1365. "(%d sectors at %llu on %s)\n",
  1366. mdname(mddev), s,
  1367. (unsigned long long)(sect +
  1368. rdev->data_offset),
  1369. bdevname(rdev->bdev, b));
  1370. }
  1371. }
  1372. }
  1373. sectors -= s;
  1374. sect += s;
  1375. }
  1376. }
  1377. static void raid1d(mddev_t *mddev)
  1378. {
  1379. r1bio_t *r1_bio;
  1380. struct bio *bio;
  1381. unsigned long flags;
  1382. conf_t *conf = mddev->private;
  1383. struct list_head *head = &conf->retry_list;
  1384. int unplug=0;
  1385. mdk_rdev_t *rdev;
  1386. md_check_recovery(mddev);
  1387. for (;;) {
  1388. char b[BDEVNAME_SIZE];
  1389. unplug += flush_pending_writes(conf);
  1390. spin_lock_irqsave(&conf->device_lock, flags);
  1391. if (list_empty(head)) {
  1392. spin_unlock_irqrestore(&conf->device_lock, flags);
  1393. break;
  1394. }
  1395. r1_bio = list_entry(head->prev, r1bio_t, retry_list);
  1396. list_del(head->prev);
  1397. conf->nr_queued--;
  1398. spin_unlock_irqrestore(&conf->device_lock, flags);
  1399. mddev = r1_bio->mddev;
  1400. conf = mddev->private;
  1401. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1402. sync_request_write(mddev, r1_bio);
  1403. unplug = 1;
  1404. } else {
  1405. int disk;
  1406. /* we got a read error. Maybe the drive is bad. Maybe just
  1407. * the block and we can fix it.
  1408. * We freeze all other IO, and try reading the block from
  1409. * other devices. When we find one, we re-write
  1410. * and check it that fixes the read error.
  1411. * This is all done synchronously while the array is
  1412. * frozen
  1413. */
  1414. if (mddev->ro == 0) {
  1415. freeze_array(conf);
  1416. fix_read_error(conf, r1_bio->read_disk,
  1417. r1_bio->sector,
  1418. r1_bio->sectors);
  1419. unfreeze_array(conf);
  1420. } else
  1421. md_error(mddev,
  1422. conf->mirrors[r1_bio->read_disk].rdev);
  1423. bio = r1_bio->bios[r1_bio->read_disk];
  1424. if ((disk=read_balance(conf, r1_bio)) == -1) {
  1425. printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
  1426. " read error for block %llu\n",
  1427. mdname(mddev),
  1428. bdevname(bio->bi_bdev,b),
  1429. (unsigned long long)r1_bio->sector);
  1430. raid_end_bio_io(r1_bio);
  1431. } else {
  1432. const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
  1433. r1_bio->bios[r1_bio->read_disk] =
  1434. mddev->ro ? IO_BLOCKED : NULL;
  1435. r1_bio->read_disk = disk;
  1436. bio_put(bio);
  1437. bio = bio_clone_mddev(r1_bio->master_bio,
  1438. GFP_NOIO, mddev);
  1439. r1_bio->bios[r1_bio->read_disk] = bio;
  1440. rdev = conf->mirrors[disk].rdev;
  1441. if (printk_ratelimit())
  1442. printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
  1443. " other mirror: %s\n",
  1444. mdname(mddev),
  1445. (unsigned long long)r1_bio->sector,
  1446. bdevname(rdev->bdev,b));
  1447. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1448. bio->bi_bdev = rdev->bdev;
  1449. bio->bi_end_io = raid1_end_read_request;
  1450. bio->bi_rw = READ | do_sync;
  1451. bio->bi_private = r1_bio;
  1452. unplug = 1;
  1453. generic_make_request(bio);
  1454. }
  1455. }
  1456. cond_resched();
  1457. }
  1458. if (unplug)
  1459. unplug_slaves(mddev);
  1460. }
  1461. static int init_resync(conf_t *conf)
  1462. {
  1463. int buffs;
  1464. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1465. BUG_ON(conf->r1buf_pool);
  1466. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1467. conf->poolinfo);
  1468. if (!conf->r1buf_pool)
  1469. return -ENOMEM;
  1470. conf->next_resync = 0;
  1471. return 0;
  1472. }
  1473. /*
  1474. * perform a "sync" on one "block"
  1475. *
  1476. * We need to make sure that no normal I/O request - particularly write
  1477. * requests - conflict with active sync requests.
  1478. *
  1479. * This is achieved by tracking pending requests and a 'barrier' concept
  1480. * that can be installed to exclude normal IO requests.
  1481. */
  1482. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1483. {
  1484. conf_t *conf = mddev->private;
  1485. r1bio_t *r1_bio;
  1486. struct bio *bio;
  1487. sector_t max_sector, nr_sectors;
  1488. int disk = -1;
  1489. int i;
  1490. int wonly = -1;
  1491. int write_targets = 0, read_targets = 0;
  1492. sector_t sync_blocks;
  1493. int still_degraded = 0;
  1494. if (!conf->r1buf_pool)
  1495. if (init_resync(conf))
  1496. return 0;
  1497. max_sector = mddev->dev_sectors;
  1498. if (sector_nr >= max_sector) {
  1499. /* If we aborted, we need to abort the
  1500. * sync on the 'current' bitmap chunk (there will
  1501. * only be one in raid1 resync.
  1502. * We can find the current addess in mddev->curr_resync
  1503. */
  1504. if (mddev->curr_resync < max_sector) /* aborted */
  1505. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1506. &sync_blocks, 1);
  1507. else /* completed sync */
  1508. conf->fullsync = 0;
  1509. bitmap_close_sync(mddev->bitmap);
  1510. close_sync(conf);
  1511. return 0;
  1512. }
  1513. if (mddev->bitmap == NULL &&
  1514. mddev->recovery_cp == MaxSector &&
  1515. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1516. conf->fullsync == 0) {
  1517. *skipped = 1;
  1518. return max_sector - sector_nr;
  1519. }
  1520. /* before building a request, check if we can skip these blocks..
  1521. * This call the bitmap_start_sync doesn't actually record anything
  1522. */
  1523. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1524. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1525. /* We can skip this block, and probably several more */
  1526. *skipped = 1;
  1527. return sync_blocks;
  1528. }
  1529. /*
  1530. * If there is non-resync activity waiting for a turn,
  1531. * and resync is going fast enough,
  1532. * then let it though before starting on this new sync request.
  1533. */
  1534. if (!go_faster && conf->nr_waiting)
  1535. msleep_interruptible(1000);
  1536. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1537. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1538. raise_barrier(conf);
  1539. conf->next_resync = sector_nr;
  1540. rcu_read_lock();
  1541. /*
  1542. * If we get a correctably read error during resync or recovery,
  1543. * we might want to read from a different device. So we
  1544. * flag all drives that could conceivably be read from for READ,
  1545. * and any others (which will be non-In_sync devices) for WRITE.
  1546. * If a read fails, we try reading from something else for which READ
  1547. * is OK.
  1548. */
  1549. r1_bio->mddev = mddev;
  1550. r1_bio->sector = sector_nr;
  1551. r1_bio->state = 0;
  1552. set_bit(R1BIO_IsSync, &r1_bio->state);
  1553. for (i=0; i < conf->raid_disks; i++) {
  1554. mdk_rdev_t *rdev;
  1555. bio = r1_bio->bios[i];
  1556. /* take from bio_init */
  1557. bio->bi_next = NULL;
  1558. bio->bi_flags &= ~(BIO_POOL_MASK-1);
  1559. bio->bi_flags |= 1 << BIO_UPTODATE;
  1560. bio->bi_comp_cpu = -1;
  1561. bio->bi_rw = READ;
  1562. bio->bi_vcnt = 0;
  1563. bio->bi_idx = 0;
  1564. bio->bi_phys_segments = 0;
  1565. bio->bi_size = 0;
  1566. bio->bi_end_io = NULL;
  1567. bio->bi_private = NULL;
  1568. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1569. if (rdev == NULL ||
  1570. test_bit(Faulty, &rdev->flags)) {
  1571. still_degraded = 1;
  1572. continue;
  1573. } else if (!test_bit(In_sync, &rdev->flags)) {
  1574. bio->bi_rw = WRITE;
  1575. bio->bi_end_io = end_sync_write;
  1576. write_targets ++;
  1577. } else {
  1578. /* may need to read from here */
  1579. bio->bi_rw = READ;
  1580. bio->bi_end_io = end_sync_read;
  1581. if (test_bit(WriteMostly, &rdev->flags)) {
  1582. if (wonly < 0)
  1583. wonly = i;
  1584. } else {
  1585. if (disk < 0)
  1586. disk = i;
  1587. }
  1588. read_targets++;
  1589. }
  1590. atomic_inc(&rdev->nr_pending);
  1591. bio->bi_sector = sector_nr + rdev->data_offset;
  1592. bio->bi_bdev = rdev->bdev;
  1593. bio->bi_private = r1_bio;
  1594. }
  1595. rcu_read_unlock();
  1596. if (disk < 0)
  1597. disk = wonly;
  1598. r1_bio->read_disk = disk;
  1599. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  1600. /* extra read targets are also write targets */
  1601. write_targets += read_targets-1;
  1602. if (write_targets == 0 || read_targets == 0) {
  1603. /* There is nowhere to write, so all non-sync
  1604. * drives must be failed - so we are finished
  1605. */
  1606. sector_t rv = max_sector - sector_nr;
  1607. *skipped = 1;
  1608. put_buf(r1_bio);
  1609. return rv;
  1610. }
  1611. if (max_sector > mddev->resync_max)
  1612. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  1613. nr_sectors = 0;
  1614. sync_blocks = 0;
  1615. do {
  1616. struct page *page;
  1617. int len = PAGE_SIZE;
  1618. if (sector_nr + (len>>9) > max_sector)
  1619. len = (max_sector - sector_nr) << 9;
  1620. if (len == 0)
  1621. break;
  1622. if (sync_blocks == 0) {
  1623. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1624. &sync_blocks, still_degraded) &&
  1625. !conf->fullsync &&
  1626. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1627. break;
  1628. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  1629. if ((len >> 9) > sync_blocks)
  1630. len = sync_blocks<<9;
  1631. }
  1632. for (i=0 ; i < conf->raid_disks; i++) {
  1633. bio = r1_bio->bios[i];
  1634. if (bio->bi_end_io) {
  1635. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1636. if (bio_add_page(bio, page, len, 0) == 0) {
  1637. /* stop here */
  1638. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1639. while (i > 0) {
  1640. i--;
  1641. bio = r1_bio->bios[i];
  1642. if (bio->bi_end_io==NULL)
  1643. continue;
  1644. /* remove last page from this bio */
  1645. bio->bi_vcnt--;
  1646. bio->bi_size -= len;
  1647. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  1648. }
  1649. goto bio_full;
  1650. }
  1651. }
  1652. }
  1653. nr_sectors += len>>9;
  1654. sector_nr += len>>9;
  1655. sync_blocks -= (len>>9);
  1656. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  1657. bio_full:
  1658. r1_bio->sectors = nr_sectors;
  1659. /* For a user-requested sync, we read all readable devices and do a
  1660. * compare
  1661. */
  1662. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1663. atomic_set(&r1_bio->remaining, read_targets);
  1664. for (i=0; i<conf->raid_disks; i++) {
  1665. bio = r1_bio->bios[i];
  1666. if (bio->bi_end_io == end_sync_read) {
  1667. md_sync_acct(bio->bi_bdev, nr_sectors);
  1668. generic_make_request(bio);
  1669. }
  1670. }
  1671. } else {
  1672. atomic_set(&r1_bio->remaining, 1);
  1673. bio = r1_bio->bios[r1_bio->read_disk];
  1674. md_sync_acct(bio->bi_bdev, nr_sectors);
  1675. generic_make_request(bio);
  1676. }
  1677. return nr_sectors;
  1678. }
  1679. static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
  1680. {
  1681. if (sectors)
  1682. return sectors;
  1683. return mddev->dev_sectors;
  1684. }
  1685. static conf_t *setup_conf(mddev_t *mddev)
  1686. {
  1687. conf_t *conf;
  1688. int i;
  1689. mirror_info_t *disk;
  1690. mdk_rdev_t *rdev;
  1691. int err = -ENOMEM;
  1692. conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
  1693. if (!conf)
  1694. goto abort;
  1695. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1696. GFP_KERNEL);
  1697. if (!conf->mirrors)
  1698. goto abort;
  1699. conf->tmppage = alloc_page(GFP_KERNEL);
  1700. if (!conf->tmppage)
  1701. goto abort;
  1702. conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  1703. if (!conf->poolinfo)
  1704. goto abort;
  1705. conf->poolinfo->raid_disks = mddev->raid_disks;
  1706. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1707. r1bio_pool_free,
  1708. conf->poolinfo);
  1709. if (!conf->r1bio_pool)
  1710. goto abort;
  1711. conf->poolinfo->mddev = mddev;
  1712. spin_lock_init(&conf->device_lock);
  1713. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1714. int disk_idx = rdev->raid_disk;
  1715. if (disk_idx >= mddev->raid_disks
  1716. || disk_idx < 0)
  1717. continue;
  1718. disk = conf->mirrors + disk_idx;
  1719. disk->rdev = rdev;
  1720. disk->head_position = 0;
  1721. }
  1722. conf->raid_disks = mddev->raid_disks;
  1723. conf->mddev = mddev;
  1724. INIT_LIST_HEAD(&conf->retry_list);
  1725. spin_lock_init(&conf->resync_lock);
  1726. init_waitqueue_head(&conf->wait_barrier);
  1727. bio_list_init(&conf->pending_bio_list);
  1728. conf->last_used = -1;
  1729. for (i = 0; i < conf->raid_disks; i++) {
  1730. disk = conf->mirrors + i;
  1731. if (!disk->rdev ||
  1732. !test_bit(In_sync, &disk->rdev->flags)) {
  1733. disk->head_position = 0;
  1734. if (disk->rdev)
  1735. conf->fullsync = 1;
  1736. } else if (conf->last_used < 0)
  1737. /*
  1738. * The first working device is used as a
  1739. * starting point to read balancing.
  1740. */
  1741. conf->last_used = i;
  1742. }
  1743. err = -EIO;
  1744. if (conf->last_used < 0) {
  1745. printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
  1746. mdname(mddev));
  1747. goto abort;
  1748. }
  1749. err = -ENOMEM;
  1750. conf->thread = md_register_thread(raid1d, mddev, NULL);
  1751. if (!conf->thread) {
  1752. printk(KERN_ERR
  1753. "md/raid1:%s: couldn't allocate thread\n",
  1754. mdname(mddev));
  1755. goto abort;
  1756. }
  1757. return conf;
  1758. abort:
  1759. if (conf) {
  1760. if (conf->r1bio_pool)
  1761. mempool_destroy(conf->r1bio_pool);
  1762. kfree(conf->mirrors);
  1763. safe_put_page(conf->tmppage);
  1764. kfree(conf->poolinfo);
  1765. kfree(conf);
  1766. }
  1767. return ERR_PTR(err);
  1768. }
  1769. static int run(mddev_t *mddev)
  1770. {
  1771. conf_t *conf;
  1772. int i;
  1773. mdk_rdev_t *rdev;
  1774. if (mddev->level != 1) {
  1775. printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
  1776. mdname(mddev), mddev->level);
  1777. return -EIO;
  1778. }
  1779. if (mddev->reshape_position != MaxSector) {
  1780. printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
  1781. mdname(mddev));
  1782. return -EIO;
  1783. }
  1784. /*
  1785. * copy the already verified devices into our private RAID1
  1786. * bookkeeping area. [whatever we allocate in run(),
  1787. * should be freed in stop()]
  1788. */
  1789. if (mddev->private == NULL)
  1790. conf = setup_conf(mddev);
  1791. else
  1792. conf = mddev->private;
  1793. if (IS_ERR(conf))
  1794. return PTR_ERR(conf);
  1795. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1796. disk_stack_limits(mddev->gendisk, rdev->bdev,
  1797. rdev->data_offset << 9);
  1798. /* as we don't honour merge_bvec_fn, we must never risk
  1799. * violating it, so limit ->max_segments to 1 lying within
  1800. * a single page, as a one page request is never in violation.
  1801. */
  1802. if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
  1803. blk_queue_max_segments(mddev->queue, 1);
  1804. blk_queue_segment_boundary(mddev->queue,
  1805. PAGE_CACHE_SIZE - 1);
  1806. }
  1807. }
  1808. mddev->degraded = 0;
  1809. for (i=0; i < conf->raid_disks; i++)
  1810. if (conf->mirrors[i].rdev == NULL ||
  1811. !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
  1812. test_bit(Faulty, &conf->mirrors[i].rdev->flags))
  1813. mddev->degraded++;
  1814. if (conf->raid_disks - mddev->degraded == 1)
  1815. mddev->recovery_cp = MaxSector;
  1816. if (mddev->recovery_cp != MaxSector)
  1817. printk(KERN_NOTICE "md/raid1:%s: not clean"
  1818. " -- starting background reconstruction\n",
  1819. mdname(mddev));
  1820. printk(KERN_INFO
  1821. "md/raid1:%s: active with %d out of %d mirrors\n",
  1822. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1823. mddev->raid_disks);
  1824. /*
  1825. * Ok, everything is just fine now
  1826. */
  1827. mddev->thread = conf->thread;
  1828. conf->thread = NULL;
  1829. mddev->private = conf;
  1830. md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
  1831. mddev->queue->unplug_fn = raid1_unplug;
  1832. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  1833. mddev->queue->backing_dev_info.congested_data = mddev;
  1834. md_integrity_register(mddev);
  1835. return 0;
  1836. }
  1837. static int stop(mddev_t *mddev)
  1838. {
  1839. conf_t *conf = mddev->private;
  1840. struct bitmap *bitmap = mddev->bitmap;
  1841. /* wait for behind writes to complete */
  1842. if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  1843. printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
  1844. mdname(mddev));
  1845. /* need to kick something here to make sure I/O goes? */
  1846. wait_event(bitmap->behind_wait,
  1847. atomic_read(&bitmap->behind_writes) == 0);
  1848. }
  1849. raise_barrier(conf);
  1850. lower_barrier(conf);
  1851. md_unregister_thread(mddev->thread);
  1852. mddev->thread = NULL;
  1853. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1854. if (conf->r1bio_pool)
  1855. mempool_destroy(conf->r1bio_pool);
  1856. kfree(conf->mirrors);
  1857. kfree(conf->poolinfo);
  1858. kfree(conf);
  1859. mddev->private = NULL;
  1860. return 0;
  1861. }
  1862. static int raid1_resize(mddev_t *mddev, sector_t sectors)
  1863. {
  1864. /* no resync is happening, and there is enough space
  1865. * on all devices, so we can resize.
  1866. * We need to make sure resync covers any new space.
  1867. * If the array is shrinking we should possibly wait until
  1868. * any io in the removed space completes, but it hardly seems
  1869. * worth it.
  1870. */
  1871. md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
  1872. if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
  1873. return -EINVAL;
  1874. set_capacity(mddev->gendisk, mddev->array_sectors);
  1875. revalidate_disk(mddev->gendisk);
  1876. if (sectors > mddev->dev_sectors &&
  1877. mddev->recovery_cp == MaxSector) {
  1878. mddev->recovery_cp = mddev->dev_sectors;
  1879. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1880. }
  1881. mddev->dev_sectors = sectors;
  1882. mddev->resync_max_sectors = sectors;
  1883. return 0;
  1884. }
  1885. static int raid1_reshape(mddev_t *mddev)
  1886. {
  1887. /* We need to:
  1888. * 1/ resize the r1bio_pool
  1889. * 2/ resize conf->mirrors
  1890. *
  1891. * We allocate a new r1bio_pool if we can.
  1892. * Then raise a device barrier and wait until all IO stops.
  1893. * Then resize conf->mirrors and swap in the new r1bio pool.
  1894. *
  1895. * At the same time, we "pack" the devices so that all the missing
  1896. * devices have the higher raid_disk numbers.
  1897. */
  1898. mempool_t *newpool, *oldpool;
  1899. struct pool_info *newpoolinfo;
  1900. mirror_info_t *newmirrors;
  1901. conf_t *conf = mddev->private;
  1902. int cnt, raid_disks;
  1903. unsigned long flags;
  1904. int d, d2, err;
  1905. /* Cannot change chunk_size, layout, or level */
  1906. if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
  1907. mddev->layout != mddev->new_layout ||
  1908. mddev->level != mddev->new_level) {
  1909. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1910. mddev->new_layout = mddev->layout;
  1911. mddev->new_level = mddev->level;
  1912. return -EINVAL;
  1913. }
  1914. err = md_allow_write(mddev);
  1915. if (err)
  1916. return err;
  1917. raid_disks = mddev->raid_disks + mddev->delta_disks;
  1918. if (raid_disks < conf->raid_disks) {
  1919. cnt=0;
  1920. for (d= 0; d < conf->raid_disks; d++)
  1921. if (conf->mirrors[d].rdev)
  1922. cnt++;
  1923. if (cnt > raid_disks)
  1924. return -EBUSY;
  1925. }
  1926. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  1927. if (!newpoolinfo)
  1928. return -ENOMEM;
  1929. newpoolinfo->mddev = mddev;
  1930. newpoolinfo->raid_disks = raid_disks;
  1931. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1932. r1bio_pool_free, newpoolinfo);
  1933. if (!newpool) {
  1934. kfree(newpoolinfo);
  1935. return -ENOMEM;
  1936. }
  1937. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  1938. if (!newmirrors) {
  1939. kfree(newpoolinfo);
  1940. mempool_destroy(newpool);
  1941. return -ENOMEM;
  1942. }
  1943. raise_barrier(conf);
  1944. /* ok, everything is stopped */
  1945. oldpool = conf->r1bio_pool;
  1946. conf->r1bio_pool = newpool;
  1947. for (d = d2 = 0; d < conf->raid_disks; d++) {
  1948. mdk_rdev_t *rdev = conf->mirrors[d].rdev;
  1949. if (rdev && rdev->raid_disk != d2) {
  1950. char nm[20];
  1951. sprintf(nm, "rd%d", rdev->raid_disk);
  1952. sysfs_remove_link(&mddev->kobj, nm);
  1953. rdev->raid_disk = d2;
  1954. sprintf(nm, "rd%d", rdev->raid_disk);
  1955. sysfs_remove_link(&mddev->kobj, nm);
  1956. if (sysfs_create_link(&mddev->kobj,
  1957. &rdev->kobj, nm))
  1958. printk(KERN_WARNING
  1959. "md/raid1:%s: cannot register "
  1960. "%s\n",
  1961. mdname(mddev), nm);
  1962. }
  1963. if (rdev)
  1964. newmirrors[d2++].rdev = rdev;
  1965. }
  1966. kfree(conf->mirrors);
  1967. conf->mirrors = newmirrors;
  1968. kfree(conf->poolinfo);
  1969. conf->poolinfo = newpoolinfo;
  1970. spin_lock_irqsave(&conf->device_lock, flags);
  1971. mddev->degraded += (raid_disks - conf->raid_disks);
  1972. spin_unlock_irqrestore(&conf->device_lock, flags);
  1973. conf->raid_disks = mddev->raid_disks = raid_disks;
  1974. mddev->delta_disks = 0;
  1975. conf->last_used = 0; /* just make sure it is in-range */
  1976. lower_barrier(conf);
  1977. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1978. md_wakeup_thread(mddev->thread);
  1979. mempool_destroy(oldpool);
  1980. return 0;
  1981. }
  1982. static void raid1_quiesce(mddev_t *mddev, int state)
  1983. {
  1984. conf_t *conf = mddev->private;
  1985. switch(state) {
  1986. case 2: /* wake for suspend */
  1987. wake_up(&conf->wait_barrier);
  1988. break;
  1989. case 1:
  1990. raise_barrier(conf);
  1991. break;
  1992. case 0:
  1993. lower_barrier(conf);
  1994. break;
  1995. }
  1996. }
  1997. static void *raid1_takeover(mddev_t *mddev)
  1998. {
  1999. /* raid1 can take over:
  2000. * raid5 with 2 devices, any layout or chunk size
  2001. */
  2002. if (mddev->level == 5 && mddev->raid_disks == 2) {
  2003. conf_t *conf;
  2004. mddev->new_level = 1;
  2005. mddev->new_layout = 0;
  2006. mddev->new_chunk_sectors = 0;
  2007. conf = setup_conf(mddev);
  2008. if (!IS_ERR(conf))
  2009. conf->barrier = 1;
  2010. return conf;
  2011. }
  2012. return ERR_PTR(-EINVAL);
  2013. }
  2014. static struct mdk_personality raid1_personality =
  2015. {
  2016. .name = "raid1",
  2017. .level = 1,
  2018. .owner = THIS_MODULE,
  2019. .make_request = make_request,
  2020. .run = run,
  2021. .stop = stop,
  2022. .status = status,
  2023. .error_handler = error,
  2024. .hot_add_disk = raid1_add_disk,
  2025. .hot_remove_disk= raid1_remove_disk,
  2026. .spare_active = raid1_spare_active,
  2027. .sync_request = sync_request,
  2028. .resize = raid1_resize,
  2029. .size = raid1_size,
  2030. .check_reshape = raid1_reshape,
  2031. .quiesce = raid1_quiesce,
  2032. .takeover = raid1_takeover,
  2033. };
  2034. static int __init raid_init(void)
  2035. {
  2036. return register_md_personality(&raid1_personality);
  2037. }
  2038. static void raid_exit(void)
  2039. {
  2040. unregister_md_personality(&raid1_personality);
  2041. }
  2042. module_init(raid_init);
  2043. module_exit(raid_exit);
  2044. MODULE_LICENSE("GPL");
  2045. MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
  2046. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  2047. MODULE_ALIAS("md-raid1");
  2048. MODULE_ALIAS("md-level-1");