core.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946
  1. /*
  2. * Copyright (C) 2012 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the
  16. * Free Software Foundation, Inc.,
  17. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #define pr_fmt(fmt) "hci: %s: " fmt, __func__
  20. #include <linux/init.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/nfc.h>
  24. #include <net/nfc/nfc.h>
  25. #include <net/nfc/hci.h>
  26. #include <net/nfc/llc.h>
  27. #include "hci.h"
  28. /* Largest headroom needed for outgoing HCI commands */
  29. #define HCI_CMDS_HEADROOM 1
  30. int nfc_hci_result_to_errno(u8 result)
  31. {
  32. switch (result) {
  33. case NFC_HCI_ANY_OK:
  34. return 0;
  35. case NFC_HCI_ANY_E_REG_PAR_UNKNOWN:
  36. return -EOPNOTSUPP;
  37. case NFC_HCI_ANY_E_TIMEOUT:
  38. return -ETIME;
  39. default:
  40. return -1;
  41. }
  42. }
  43. EXPORT_SYMBOL(nfc_hci_result_to_errno);
  44. static void nfc_hci_msg_tx_work(struct work_struct *work)
  45. {
  46. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  47. msg_tx_work);
  48. struct hci_msg *msg;
  49. struct sk_buff *skb;
  50. int r = 0;
  51. mutex_lock(&hdev->msg_tx_mutex);
  52. if (hdev->shutting_down)
  53. goto exit;
  54. if (hdev->cmd_pending_msg) {
  55. if (timer_pending(&hdev->cmd_timer) == 0) {
  56. if (hdev->cmd_pending_msg->cb)
  57. hdev->cmd_pending_msg->cb(hdev->
  58. cmd_pending_msg->
  59. cb_context,
  60. NULL,
  61. -ETIME);
  62. kfree(hdev->cmd_pending_msg);
  63. hdev->cmd_pending_msg = NULL;
  64. } else {
  65. goto exit;
  66. }
  67. }
  68. next_msg:
  69. if (list_empty(&hdev->msg_tx_queue))
  70. goto exit;
  71. msg = list_first_entry(&hdev->msg_tx_queue, struct hci_msg, msg_l);
  72. list_del(&msg->msg_l);
  73. pr_debug("msg_tx_queue has a cmd to send\n");
  74. while ((skb = skb_dequeue(&msg->msg_frags)) != NULL) {
  75. r = nfc_llc_xmit_from_hci(hdev->llc, skb);
  76. if (r < 0) {
  77. kfree_skb(skb);
  78. skb_queue_purge(&msg->msg_frags);
  79. if (msg->cb)
  80. msg->cb(msg->cb_context, NULL, r);
  81. kfree(msg);
  82. break;
  83. }
  84. }
  85. if (r)
  86. goto next_msg;
  87. if (msg->wait_response == false) {
  88. kfree(msg);
  89. goto next_msg;
  90. }
  91. hdev->cmd_pending_msg = msg;
  92. mod_timer(&hdev->cmd_timer, jiffies +
  93. msecs_to_jiffies(hdev->cmd_pending_msg->completion_delay));
  94. exit:
  95. mutex_unlock(&hdev->msg_tx_mutex);
  96. }
  97. static void nfc_hci_msg_rx_work(struct work_struct *work)
  98. {
  99. struct nfc_hci_dev *hdev = container_of(work, struct nfc_hci_dev,
  100. msg_rx_work);
  101. struct sk_buff *skb;
  102. struct hcp_message *message;
  103. u8 pipe;
  104. u8 type;
  105. u8 instruction;
  106. while ((skb = skb_dequeue(&hdev->msg_rx_queue)) != NULL) {
  107. pipe = skb->data[0];
  108. skb_pull(skb, NFC_HCI_HCP_PACKET_HEADER_LEN);
  109. message = (struct hcp_message *)skb->data;
  110. type = HCP_MSG_GET_TYPE(message->header);
  111. instruction = HCP_MSG_GET_CMD(message->header);
  112. skb_pull(skb, NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  113. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, skb);
  114. }
  115. }
  116. static void __nfc_hci_cmd_completion(struct nfc_hci_dev *hdev, int err,
  117. struct sk_buff *skb)
  118. {
  119. del_timer_sync(&hdev->cmd_timer);
  120. if (hdev->cmd_pending_msg->cb)
  121. hdev->cmd_pending_msg->cb(hdev->cmd_pending_msg->cb_context,
  122. skb, err);
  123. else
  124. kfree_skb(skb);
  125. kfree(hdev->cmd_pending_msg);
  126. hdev->cmd_pending_msg = NULL;
  127. schedule_work(&hdev->msg_tx_work);
  128. }
  129. void nfc_hci_resp_received(struct nfc_hci_dev *hdev, u8 result,
  130. struct sk_buff *skb)
  131. {
  132. mutex_lock(&hdev->msg_tx_mutex);
  133. if (hdev->cmd_pending_msg == NULL) {
  134. kfree_skb(skb);
  135. goto exit;
  136. }
  137. __nfc_hci_cmd_completion(hdev, nfc_hci_result_to_errno(result), skb);
  138. exit:
  139. mutex_unlock(&hdev->msg_tx_mutex);
  140. }
  141. void nfc_hci_cmd_received(struct nfc_hci_dev *hdev, u8 pipe, u8 cmd,
  142. struct sk_buff *skb)
  143. {
  144. kfree_skb(skb);
  145. }
  146. u32 nfc_hci_sak_to_protocol(u8 sak)
  147. {
  148. switch (NFC_HCI_TYPE_A_SEL_PROT(sak)) {
  149. case NFC_HCI_TYPE_A_SEL_PROT_MIFARE:
  150. return NFC_PROTO_MIFARE_MASK;
  151. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443:
  152. return NFC_PROTO_ISO14443_MASK;
  153. case NFC_HCI_TYPE_A_SEL_PROT_DEP:
  154. return NFC_PROTO_NFC_DEP_MASK;
  155. case NFC_HCI_TYPE_A_SEL_PROT_ISO14443_DEP:
  156. return NFC_PROTO_ISO14443_MASK | NFC_PROTO_NFC_DEP_MASK;
  157. default:
  158. return 0xffffffff;
  159. }
  160. }
  161. EXPORT_SYMBOL(nfc_hci_sak_to_protocol);
  162. int nfc_hci_target_discovered(struct nfc_hci_dev *hdev, u8 gate)
  163. {
  164. struct nfc_target *targets;
  165. struct sk_buff *atqa_skb = NULL;
  166. struct sk_buff *sak_skb = NULL;
  167. struct sk_buff *uid_skb = NULL;
  168. int r;
  169. pr_debug("from gate %d\n", gate);
  170. targets = kzalloc(sizeof(struct nfc_target), GFP_KERNEL);
  171. if (targets == NULL)
  172. return -ENOMEM;
  173. switch (gate) {
  174. case NFC_HCI_RF_READER_A_GATE:
  175. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  176. NFC_HCI_RF_READER_A_ATQA, &atqa_skb);
  177. if (r < 0)
  178. goto exit;
  179. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  180. NFC_HCI_RF_READER_A_SAK, &sak_skb);
  181. if (r < 0)
  182. goto exit;
  183. if (atqa_skb->len != 2 || sak_skb->len != 1) {
  184. r = -EPROTO;
  185. goto exit;
  186. }
  187. targets->supported_protocols =
  188. nfc_hci_sak_to_protocol(sak_skb->data[0]);
  189. if (targets->supported_protocols == 0xffffffff) {
  190. r = -EPROTO;
  191. goto exit;
  192. }
  193. targets->sens_res = be16_to_cpu(*(u16 *)atqa_skb->data);
  194. targets->sel_res = sak_skb->data[0];
  195. r = nfc_hci_get_param(hdev, NFC_HCI_RF_READER_A_GATE,
  196. NFC_HCI_RF_READER_A_UID, &uid_skb);
  197. if (r < 0)
  198. goto exit;
  199. if (uid_skb->len == 0 || uid_skb->len > NFC_NFCID1_MAXSIZE) {
  200. r = -EPROTO;
  201. goto exit;
  202. }
  203. memcpy(targets->nfcid1, uid_skb->data, uid_skb->len);
  204. targets->nfcid1_len = uid_skb->len;
  205. if (hdev->ops->complete_target_discovered) {
  206. r = hdev->ops->complete_target_discovered(hdev, gate,
  207. targets);
  208. if (r < 0)
  209. goto exit;
  210. }
  211. break;
  212. case NFC_HCI_RF_READER_B_GATE:
  213. targets->supported_protocols = NFC_PROTO_ISO14443_B_MASK;
  214. break;
  215. default:
  216. if (hdev->ops->target_from_gate)
  217. r = hdev->ops->target_from_gate(hdev, gate, targets);
  218. else
  219. r = -EPROTO;
  220. if (r < 0)
  221. goto exit;
  222. if (hdev->ops->complete_target_discovered) {
  223. r = hdev->ops->complete_target_discovered(hdev, gate,
  224. targets);
  225. if (r < 0)
  226. goto exit;
  227. }
  228. break;
  229. }
  230. /* if driver set the new gate, we will skip the old one */
  231. if (targets->hci_reader_gate == 0x00)
  232. targets->hci_reader_gate = gate;
  233. r = nfc_targets_found(hdev->ndev, targets, 1);
  234. exit:
  235. kfree(targets);
  236. kfree_skb(atqa_skb);
  237. kfree_skb(sak_skb);
  238. kfree_skb(uid_skb);
  239. return r;
  240. }
  241. EXPORT_SYMBOL(nfc_hci_target_discovered);
  242. void nfc_hci_event_received(struct nfc_hci_dev *hdev, u8 pipe, u8 event,
  243. struct sk_buff *skb)
  244. {
  245. int r = 0;
  246. u8 gate = nfc_hci_pipe2gate(hdev, pipe);
  247. if (gate == 0xff) {
  248. pr_err("Discarded event %x to unopened pipe %x\n", event, pipe);
  249. goto exit;
  250. }
  251. switch (event) {
  252. case NFC_HCI_EVT_TARGET_DISCOVERED:
  253. if (skb->len < 1) { /* no status data? */
  254. r = -EPROTO;
  255. goto exit;
  256. }
  257. if (skb->data[0] == 3) {
  258. /* TODO: Multiple targets in field, none activated
  259. * poll is supposedly stopped, but there is no
  260. * single target to activate, so nothing to report
  261. * up.
  262. * if we need to restart poll, we must save the
  263. * protocols from the initial poll and reuse here.
  264. */
  265. }
  266. if (skb->data[0] != 0) {
  267. r = -EPROTO;
  268. goto exit;
  269. }
  270. r = nfc_hci_target_discovered(hdev, gate);
  271. break;
  272. default:
  273. if (hdev->ops->event_received) {
  274. r = hdev->ops->event_received(hdev, gate, event, skb);
  275. goto exit_noskb;
  276. } else {
  277. r = -EINVAL;
  278. }
  279. break;
  280. }
  281. exit:
  282. kfree_skb(skb);
  283. exit_noskb:
  284. if (r) {
  285. /* TODO: There was an error dispatching the event,
  286. * how to propagate up to nfc core?
  287. */
  288. }
  289. }
  290. static void nfc_hci_cmd_timeout(unsigned long data)
  291. {
  292. struct nfc_hci_dev *hdev = (struct nfc_hci_dev *)data;
  293. schedule_work(&hdev->msg_tx_work);
  294. }
  295. static int hci_dev_connect_gates(struct nfc_hci_dev *hdev, u8 gate_count,
  296. struct nfc_hci_gate *gates)
  297. {
  298. int r;
  299. while (gate_count--) {
  300. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID,
  301. gates->gate, gates->pipe);
  302. if (r < 0)
  303. return r;
  304. gates++;
  305. }
  306. return 0;
  307. }
  308. static int hci_dev_session_init(struct nfc_hci_dev *hdev)
  309. {
  310. struct sk_buff *skb = NULL;
  311. int r;
  312. if (hdev->init_data.gates[0].gate != NFC_HCI_ADMIN_GATE)
  313. return -EPROTO;
  314. r = nfc_hci_connect_gate(hdev, NFC_HCI_HOST_CONTROLLER_ID,
  315. hdev->init_data.gates[0].gate,
  316. hdev->init_data.gates[0].pipe);
  317. if (r < 0)
  318. goto exit;
  319. r = nfc_hci_get_param(hdev, NFC_HCI_ADMIN_GATE,
  320. NFC_HCI_ADMIN_SESSION_IDENTITY, &skb);
  321. if (r < 0)
  322. goto disconnect_all;
  323. if (skb->len && skb->len == strlen(hdev->init_data.session_id))
  324. if (memcmp(hdev->init_data.session_id, skb->data,
  325. skb->len) == 0) {
  326. /* TODO ELa: restore gate<->pipe table from
  327. * some TBD location.
  328. * note: it doesn't seem possible to get the chip
  329. * currently open gate/pipe table.
  330. * It is only possible to obtain the supported
  331. * gate list.
  332. */
  333. /* goto exit
  334. * For now, always do a full initialization */
  335. }
  336. r = nfc_hci_disconnect_all_gates(hdev);
  337. if (r < 0)
  338. goto exit;
  339. r = hci_dev_connect_gates(hdev, hdev->init_data.gate_count,
  340. hdev->init_data.gates);
  341. if (r < 0)
  342. goto disconnect_all;
  343. r = nfc_hci_set_param(hdev, NFC_HCI_ADMIN_GATE,
  344. NFC_HCI_ADMIN_SESSION_IDENTITY,
  345. hdev->init_data.session_id,
  346. strlen(hdev->init_data.session_id));
  347. if (r == 0)
  348. goto exit;
  349. disconnect_all:
  350. nfc_hci_disconnect_all_gates(hdev);
  351. exit:
  352. kfree_skb(skb);
  353. return r;
  354. }
  355. static int hci_dev_version(struct nfc_hci_dev *hdev)
  356. {
  357. int r;
  358. struct sk_buff *skb;
  359. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  360. NFC_HCI_ID_MGMT_VERSION_SW, &skb);
  361. if (r == -EOPNOTSUPP) {
  362. pr_info("Software/Hardware info not available\n");
  363. return 0;
  364. }
  365. if (r < 0)
  366. return r;
  367. if (skb->len != 3) {
  368. kfree_skb(skb);
  369. return -EINVAL;
  370. }
  371. hdev->sw_romlib = (skb->data[0] & 0xf0) >> 4;
  372. hdev->sw_patch = skb->data[0] & 0x0f;
  373. hdev->sw_flashlib_major = skb->data[1];
  374. hdev->sw_flashlib_minor = skb->data[2];
  375. kfree_skb(skb);
  376. r = nfc_hci_get_param(hdev, NFC_HCI_ID_MGMT_GATE,
  377. NFC_HCI_ID_MGMT_VERSION_HW, &skb);
  378. if (r < 0)
  379. return r;
  380. if (skb->len != 3) {
  381. kfree_skb(skb);
  382. return -EINVAL;
  383. }
  384. hdev->hw_derivative = (skb->data[0] & 0xe0) >> 5;
  385. hdev->hw_version = skb->data[0] & 0x1f;
  386. hdev->hw_mpw = (skb->data[1] & 0xc0) >> 6;
  387. hdev->hw_software = skb->data[1] & 0x3f;
  388. hdev->hw_bsid = skb->data[2];
  389. kfree_skb(skb);
  390. pr_info("SOFTWARE INFO:\n");
  391. pr_info("RomLib : %d\n", hdev->sw_romlib);
  392. pr_info("Patch : %d\n", hdev->sw_patch);
  393. pr_info("FlashLib Major : %d\n", hdev->sw_flashlib_major);
  394. pr_info("FlashLib Minor : %d\n", hdev->sw_flashlib_minor);
  395. pr_info("HARDWARE INFO:\n");
  396. pr_info("Derivative : %d\n", hdev->hw_derivative);
  397. pr_info("HW Version : %d\n", hdev->hw_version);
  398. pr_info("#MPW : %d\n", hdev->hw_mpw);
  399. pr_info("Software : %d\n", hdev->hw_software);
  400. pr_info("BSID Version : %d\n", hdev->hw_bsid);
  401. return 0;
  402. }
  403. static int hci_dev_up(struct nfc_dev *nfc_dev)
  404. {
  405. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  406. int r = 0;
  407. if (hdev->ops->open) {
  408. r = hdev->ops->open(hdev);
  409. if (r < 0)
  410. return r;
  411. }
  412. r = nfc_llc_start(hdev->llc);
  413. if (r < 0)
  414. goto exit_close;
  415. r = hci_dev_session_init(hdev);
  416. if (r < 0)
  417. goto exit_llc;
  418. r = nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  419. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  420. if (r < 0)
  421. goto exit_llc;
  422. if (hdev->ops->hci_ready) {
  423. r = hdev->ops->hci_ready(hdev);
  424. if (r < 0)
  425. goto exit_llc;
  426. }
  427. r = hci_dev_version(hdev);
  428. if (r < 0)
  429. goto exit_llc;
  430. return 0;
  431. exit_llc:
  432. nfc_llc_stop(hdev->llc);
  433. exit_close:
  434. if (hdev->ops->close)
  435. hdev->ops->close(hdev);
  436. return r;
  437. }
  438. static int hci_dev_down(struct nfc_dev *nfc_dev)
  439. {
  440. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  441. nfc_llc_stop(hdev->llc);
  442. if (hdev->ops->close)
  443. hdev->ops->close(hdev);
  444. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  445. return 0;
  446. }
  447. static int hci_start_poll(struct nfc_dev *nfc_dev,
  448. u32 im_protocols, u32 tm_protocols)
  449. {
  450. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  451. if (hdev->ops->start_poll)
  452. return hdev->ops->start_poll(hdev, im_protocols, tm_protocols);
  453. else
  454. return nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  455. NFC_HCI_EVT_READER_REQUESTED,
  456. NULL, 0);
  457. }
  458. static void hci_stop_poll(struct nfc_dev *nfc_dev)
  459. {
  460. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  461. nfc_hci_send_event(hdev, NFC_HCI_RF_READER_A_GATE,
  462. NFC_HCI_EVT_END_OPERATION, NULL, 0);
  463. }
  464. static int hci_dep_link_up(struct nfc_dev *nfc_dev, struct nfc_target *target,
  465. __u8 comm_mode, __u8 *gb, size_t gb_len)
  466. {
  467. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  468. if (hdev->ops->dep_link_up)
  469. return hdev->ops->dep_link_up(hdev, target, comm_mode,
  470. gb, gb_len);
  471. return 0;
  472. }
  473. static int hci_dep_link_down(struct nfc_dev *nfc_dev)
  474. {
  475. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  476. if (hdev->ops->dep_link_down)
  477. return hdev->ops->dep_link_down(hdev);
  478. return 0;
  479. }
  480. static int hci_activate_target(struct nfc_dev *nfc_dev,
  481. struct nfc_target *target, u32 protocol)
  482. {
  483. return 0;
  484. }
  485. static void hci_deactivate_target(struct nfc_dev *nfc_dev,
  486. struct nfc_target *target)
  487. {
  488. }
  489. #define HCI_CB_TYPE_TRANSCEIVE 1
  490. static void hci_transceive_cb(void *context, struct sk_buff *skb, int err)
  491. {
  492. struct nfc_hci_dev *hdev = context;
  493. switch (hdev->async_cb_type) {
  494. case HCI_CB_TYPE_TRANSCEIVE:
  495. /*
  496. * TODO: Check RF Error indicator to make sure data is valid.
  497. * It seems that HCI cmd can complete without error, but data
  498. * can be invalid if an RF error occured? Ignore for now.
  499. */
  500. if (err == 0)
  501. skb_trim(skb, skb->len - 1); /* RF Err ind */
  502. hdev->async_cb(hdev->async_cb_context, skb, err);
  503. break;
  504. default:
  505. if (err == 0)
  506. kfree_skb(skb);
  507. break;
  508. }
  509. }
  510. static int hci_transceive(struct nfc_dev *nfc_dev, struct nfc_target *target,
  511. struct sk_buff *skb, data_exchange_cb_t cb,
  512. void *cb_context)
  513. {
  514. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  515. int r;
  516. pr_debug("target_idx=%d\n", target->idx);
  517. switch (target->hci_reader_gate) {
  518. case NFC_HCI_RF_READER_A_GATE:
  519. case NFC_HCI_RF_READER_B_GATE:
  520. if (hdev->ops->im_transceive) {
  521. r = hdev->ops->im_transceive(hdev, target, skb, cb,
  522. cb_context);
  523. if (r <= 0) /* handled */
  524. break;
  525. }
  526. *skb_push(skb, 1) = 0; /* CTR, see spec:10.2.2.1 */
  527. hdev->async_cb_type = HCI_CB_TYPE_TRANSCEIVE;
  528. hdev->async_cb = cb;
  529. hdev->async_cb_context = cb_context;
  530. r = nfc_hci_send_cmd_async(hdev, target->hci_reader_gate,
  531. NFC_HCI_WR_XCHG_DATA, skb->data,
  532. skb->len, hci_transceive_cb, hdev);
  533. break;
  534. default:
  535. if (hdev->ops->im_transceive) {
  536. r = hdev->ops->im_transceive(hdev, target, skb, cb,
  537. cb_context);
  538. if (r == 1)
  539. r = -ENOTSUPP;
  540. } else {
  541. r = -ENOTSUPP;
  542. }
  543. break;
  544. }
  545. kfree_skb(skb);
  546. return r;
  547. }
  548. static int hci_tm_send(struct nfc_dev *nfc_dev, struct sk_buff *skb)
  549. {
  550. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  551. if (hdev->ops->tm_send)
  552. return hdev->ops->tm_send(hdev, skb);
  553. else
  554. return -ENOTSUPP;
  555. }
  556. static int hci_check_presence(struct nfc_dev *nfc_dev,
  557. struct nfc_target *target)
  558. {
  559. struct nfc_hci_dev *hdev = nfc_get_drvdata(nfc_dev);
  560. if (hdev->ops->check_presence)
  561. return hdev->ops->check_presence(hdev, target);
  562. return 0;
  563. }
  564. static void nfc_hci_failure(struct nfc_hci_dev *hdev, int err)
  565. {
  566. mutex_lock(&hdev->msg_tx_mutex);
  567. if (hdev->cmd_pending_msg == NULL) {
  568. nfc_driver_failure(hdev->ndev, err);
  569. goto exit;
  570. }
  571. __nfc_hci_cmd_completion(hdev, err, NULL);
  572. exit:
  573. mutex_unlock(&hdev->msg_tx_mutex);
  574. }
  575. static void nfc_hci_llc_failure(struct nfc_hci_dev *hdev, int err)
  576. {
  577. nfc_hci_failure(hdev, err);
  578. }
  579. static void nfc_hci_recv_from_llc(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  580. {
  581. struct hcp_packet *packet;
  582. u8 type;
  583. u8 instruction;
  584. struct sk_buff *hcp_skb;
  585. u8 pipe;
  586. struct sk_buff *frag_skb;
  587. int msg_len;
  588. packet = (struct hcp_packet *)skb->data;
  589. if ((packet->header & ~NFC_HCI_FRAGMENT) == 0) {
  590. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  591. return;
  592. }
  593. /* it's the last fragment. Does it need re-aggregation? */
  594. if (skb_queue_len(&hdev->rx_hcp_frags)) {
  595. pipe = packet->header & NFC_HCI_FRAGMENT;
  596. skb_queue_tail(&hdev->rx_hcp_frags, skb);
  597. msg_len = 0;
  598. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  599. msg_len += (frag_skb->len -
  600. NFC_HCI_HCP_PACKET_HEADER_LEN);
  601. }
  602. hcp_skb = nfc_alloc_recv_skb(NFC_HCI_HCP_PACKET_HEADER_LEN +
  603. msg_len, GFP_KERNEL);
  604. if (hcp_skb == NULL) {
  605. nfc_hci_failure(hdev, -ENOMEM);
  606. return;
  607. }
  608. *skb_put(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN) = pipe;
  609. skb_queue_walk(&hdev->rx_hcp_frags, frag_skb) {
  610. msg_len = frag_skb->len - NFC_HCI_HCP_PACKET_HEADER_LEN;
  611. memcpy(skb_put(hcp_skb, msg_len),
  612. frag_skb->data + NFC_HCI_HCP_PACKET_HEADER_LEN,
  613. msg_len);
  614. }
  615. skb_queue_purge(&hdev->rx_hcp_frags);
  616. } else {
  617. packet->header &= NFC_HCI_FRAGMENT;
  618. hcp_skb = skb;
  619. }
  620. /* if this is a response, dispatch immediately to
  621. * unblock waiting cmd context. Otherwise, enqueue to dispatch
  622. * in separate context where handler can also execute command.
  623. */
  624. packet = (struct hcp_packet *)hcp_skb->data;
  625. type = HCP_MSG_GET_TYPE(packet->message.header);
  626. if (type == NFC_HCI_HCP_RESPONSE) {
  627. pipe = packet->header;
  628. instruction = HCP_MSG_GET_CMD(packet->message.header);
  629. skb_pull(hcp_skb, NFC_HCI_HCP_PACKET_HEADER_LEN +
  630. NFC_HCI_HCP_MESSAGE_HEADER_LEN);
  631. nfc_hci_hcp_message_rx(hdev, pipe, type, instruction, hcp_skb);
  632. } else {
  633. skb_queue_tail(&hdev->msg_rx_queue, hcp_skb);
  634. schedule_work(&hdev->msg_rx_work);
  635. }
  636. }
  637. static struct nfc_ops hci_nfc_ops = {
  638. .dev_up = hci_dev_up,
  639. .dev_down = hci_dev_down,
  640. .start_poll = hci_start_poll,
  641. .stop_poll = hci_stop_poll,
  642. .dep_link_up = hci_dep_link_up,
  643. .dep_link_down = hci_dep_link_down,
  644. .activate_target = hci_activate_target,
  645. .deactivate_target = hci_deactivate_target,
  646. .im_transceive = hci_transceive,
  647. .tm_send = hci_tm_send,
  648. .check_presence = hci_check_presence,
  649. };
  650. struct nfc_hci_dev *nfc_hci_allocate_device(struct nfc_hci_ops *ops,
  651. struct nfc_hci_init_data *init_data,
  652. u32 protocols,
  653. const char *llc_name,
  654. int tx_headroom,
  655. int tx_tailroom,
  656. int max_link_payload)
  657. {
  658. struct nfc_hci_dev *hdev;
  659. if (ops->xmit == NULL)
  660. return NULL;
  661. if (protocols == 0)
  662. return NULL;
  663. hdev = kzalloc(sizeof(struct nfc_hci_dev), GFP_KERNEL);
  664. if (hdev == NULL)
  665. return NULL;
  666. hdev->llc = nfc_llc_allocate(llc_name, hdev, ops->xmit,
  667. nfc_hci_recv_from_llc, tx_headroom,
  668. tx_tailroom, nfc_hci_llc_failure);
  669. if (hdev->llc == NULL) {
  670. kfree(hdev);
  671. return NULL;
  672. }
  673. hdev->ndev = nfc_allocate_device(&hci_nfc_ops, protocols,
  674. tx_headroom + HCI_CMDS_HEADROOM,
  675. tx_tailroom);
  676. if (!hdev->ndev) {
  677. nfc_llc_free(hdev->llc);
  678. kfree(hdev);
  679. return NULL;
  680. }
  681. hdev->ops = ops;
  682. hdev->max_data_link_payload = max_link_payload;
  683. hdev->init_data = *init_data;
  684. nfc_set_drvdata(hdev->ndev, hdev);
  685. memset(hdev->gate2pipe, NFC_HCI_INVALID_PIPE, sizeof(hdev->gate2pipe));
  686. return hdev;
  687. }
  688. EXPORT_SYMBOL(nfc_hci_allocate_device);
  689. void nfc_hci_free_device(struct nfc_hci_dev *hdev)
  690. {
  691. nfc_free_device(hdev->ndev);
  692. nfc_llc_free(hdev->llc);
  693. kfree(hdev);
  694. }
  695. EXPORT_SYMBOL(nfc_hci_free_device);
  696. int nfc_hci_register_device(struct nfc_hci_dev *hdev)
  697. {
  698. mutex_init(&hdev->msg_tx_mutex);
  699. INIT_LIST_HEAD(&hdev->msg_tx_queue);
  700. INIT_WORK(&hdev->msg_tx_work, nfc_hci_msg_tx_work);
  701. init_timer(&hdev->cmd_timer);
  702. hdev->cmd_timer.data = (unsigned long)hdev;
  703. hdev->cmd_timer.function = nfc_hci_cmd_timeout;
  704. skb_queue_head_init(&hdev->rx_hcp_frags);
  705. INIT_WORK(&hdev->msg_rx_work, nfc_hci_msg_rx_work);
  706. skb_queue_head_init(&hdev->msg_rx_queue);
  707. return nfc_register_device(hdev->ndev);
  708. }
  709. EXPORT_SYMBOL(nfc_hci_register_device);
  710. void nfc_hci_unregister_device(struct nfc_hci_dev *hdev)
  711. {
  712. struct hci_msg *msg, *n;
  713. mutex_lock(&hdev->msg_tx_mutex);
  714. if (hdev->cmd_pending_msg) {
  715. if (hdev->cmd_pending_msg->cb)
  716. hdev->cmd_pending_msg->cb(
  717. hdev->cmd_pending_msg->cb_context,
  718. NULL, -ESHUTDOWN);
  719. kfree(hdev->cmd_pending_msg);
  720. hdev->cmd_pending_msg = NULL;
  721. }
  722. hdev->shutting_down = true;
  723. mutex_unlock(&hdev->msg_tx_mutex);
  724. del_timer_sync(&hdev->cmd_timer);
  725. cancel_work_sync(&hdev->msg_tx_work);
  726. cancel_work_sync(&hdev->msg_rx_work);
  727. nfc_unregister_device(hdev->ndev);
  728. skb_queue_purge(&hdev->rx_hcp_frags);
  729. skb_queue_purge(&hdev->msg_rx_queue);
  730. list_for_each_entry_safe(msg, n, &hdev->msg_tx_queue, msg_l) {
  731. list_del(&msg->msg_l);
  732. skb_queue_purge(&msg->msg_frags);
  733. kfree(msg);
  734. }
  735. }
  736. EXPORT_SYMBOL(nfc_hci_unregister_device);
  737. void nfc_hci_set_clientdata(struct nfc_hci_dev *hdev, void *clientdata)
  738. {
  739. hdev->clientdata = clientdata;
  740. }
  741. EXPORT_SYMBOL(nfc_hci_set_clientdata);
  742. void *nfc_hci_get_clientdata(struct nfc_hci_dev *hdev)
  743. {
  744. return hdev->clientdata;
  745. }
  746. EXPORT_SYMBOL(nfc_hci_get_clientdata);
  747. void nfc_hci_driver_failure(struct nfc_hci_dev *hdev, int err)
  748. {
  749. nfc_hci_failure(hdev, err);
  750. }
  751. EXPORT_SYMBOL(nfc_hci_driver_failure);
  752. void nfc_hci_recv_frame(struct nfc_hci_dev *hdev, struct sk_buff *skb)
  753. {
  754. nfc_llc_rcv_from_drv(hdev->llc, skb);
  755. }
  756. EXPORT_SYMBOL(nfc_hci_recv_frame);
  757. static int __init nfc_hci_init(void)
  758. {
  759. return nfc_llc_init();
  760. }
  761. static void __exit nfc_hci_exit(void)
  762. {
  763. nfc_llc_exit();
  764. }
  765. subsys_initcall(nfc_hci_init);
  766. module_exit(nfc_hci_exit);
  767. MODULE_LICENSE("GPL");
  768. MODULE_DESCRIPTION("NFC HCI Core");