kvm_main.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "iodev.h"
  18. #include <linux/kvm_host.h>
  19. #include <linux/kvm.h>
  20. #include <linux/module.h>
  21. #include <linux/errno.h>
  22. #include <linux/percpu.h>
  23. #include <linux/gfp.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/processor.h>
  45. #include <asm/io.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/pgtable.h>
  48. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  49. #include "coalesced_mmio.h"
  50. #endif
  51. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  52. #include <linux/pci.h>
  53. #include <linux/interrupt.h>
  54. #include "irq.h"
  55. #endif
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. DEFINE_SPINLOCK(kvm_lock);
  59. LIST_HEAD(vm_list);
  60. static cpumask_var_t cpus_hardware_enabled;
  61. struct kmem_cache *kvm_vcpu_cache;
  62. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  63. static __read_mostly struct preempt_ops kvm_preempt_ops;
  64. struct dentry *kvm_debugfs_dir;
  65. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  66. unsigned long arg);
  67. static bool kvm_rebooting;
  68. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  69. static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
  70. int assigned_dev_id)
  71. {
  72. struct list_head *ptr;
  73. struct kvm_assigned_dev_kernel *match;
  74. list_for_each(ptr, head) {
  75. match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
  76. if (match->assigned_dev_id == assigned_dev_id)
  77. return match;
  78. }
  79. return NULL;
  80. }
  81. static int find_index_from_host_irq(struct kvm_assigned_dev_kernel
  82. *assigned_dev, int irq)
  83. {
  84. int i, index;
  85. struct msix_entry *host_msix_entries;
  86. host_msix_entries = assigned_dev->host_msix_entries;
  87. index = -1;
  88. for (i = 0; i < assigned_dev->entries_nr; i++)
  89. if (irq == host_msix_entries[i].vector) {
  90. index = i;
  91. break;
  92. }
  93. if (index < 0) {
  94. printk(KERN_WARNING "Fail to find correlated MSI-X entry!\n");
  95. return 0;
  96. }
  97. return index;
  98. }
  99. static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
  100. {
  101. struct kvm_assigned_dev_kernel *assigned_dev;
  102. struct kvm *kvm;
  103. int irq, i;
  104. assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
  105. interrupt_work);
  106. kvm = assigned_dev->kvm;
  107. /* This is taken to safely inject irq inside the guest. When
  108. * the interrupt injection (or the ioapic code) uses a
  109. * finer-grained lock, update this
  110. */
  111. mutex_lock(&kvm->lock);
  112. spin_lock_irq(&assigned_dev->assigned_dev_lock);
  113. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  114. struct kvm_guest_msix_entry *guest_entries =
  115. assigned_dev->guest_msix_entries;
  116. for (i = 0; i < assigned_dev->entries_nr; i++) {
  117. if (!(guest_entries[i].flags &
  118. KVM_ASSIGNED_MSIX_PENDING))
  119. continue;
  120. guest_entries[i].flags &= ~KVM_ASSIGNED_MSIX_PENDING;
  121. kvm_set_irq(assigned_dev->kvm,
  122. assigned_dev->irq_source_id,
  123. guest_entries[i].vector, 1);
  124. irq = assigned_dev->host_msix_entries[i].vector;
  125. if (irq != 0)
  126. enable_irq(irq);
  127. assigned_dev->host_irq_disabled = false;
  128. }
  129. } else {
  130. kvm_set_irq(assigned_dev->kvm, assigned_dev->irq_source_id,
  131. assigned_dev->guest_irq, 1);
  132. if (assigned_dev->irq_requested_type &
  133. KVM_DEV_IRQ_GUEST_MSI) {
  134. enable_irq(assigned_dev->host_irq);
  135. assigned_dev->host_irq_disabled = false;
  136. }
  137. }
  138. spin_unlock_irq(&assigned_dev->assigned_dev_lock);
  139. mutex_unlock(&assigned_dev->kvm->lock);
  140. }
  141. static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
  142. {
  143. unsigned long flags;
  144. struct kvm_assigned_dev_kernel *assigned_dev =
  145. (struct kvm_assigned_dev_kernel *) dev_id;
  146. spin_lock_irqsave(&assigned_dev->assigned_dev_lock, flags);
  147. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  148. int index = find_index_from_host_irq(assigned_dev, irq);
  149. if (index < 0)
  150. goto out;
  151. assigned_dev->guest_msix_entries[index].flags |=
  152. KVM_ASSIGNED_MSIX_PENDING;
  153. }
  154. schedule_work(&assigned_dev->interrupt_work);
  155. disable_irq_nosync(irq);
  156. assigned_dev->host_irq_disabled = true;
  157. out:
  158. spin_unlock_irqrestore(&assigned_dev->assigned_dev_lock, flags);
  159. return IRQ_HANDLED;
  160. }
  161. /* Ack the irq line for an assigned device */
  162. static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
  163. {
  164. struct kvm_assigned_dev_kernel *dev;
  165. unsigned long flags;
  166. if (kian->gsi == -1)
  167. return;
  168. dev = container_of(kian, struct kvm_assigned_dev_kernel,
  169. ack_notifier);
  170. kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
  171. /* The guest irq may be shared so this ack may be
  172. * from another device.
  173. */
  174. spin_lock_irqsave(&dev->assigned_dev_lock, flags);
  175. if (dev->host_irq_disabled) {
  176. enable_irq(dev->host_irq);
  177. dev->host_irq_disabled = false;
  178. }
  179. spin_unlock_irqrestore(&dev->assigned_dev_lock, flags);
  180. }
  181. static void deassign_guest_irq(struct kvm *kvm,
  182. struct kvm_assigned_dev_kernel *assigned_dev)
  183. {
  184. kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
  185. assigned_dev->ack_notifier.gsi = -1;
  186. if (assigned_dev->irq_source_id != -1)
  187. kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
  188. assigned_dev->irq_source_id = -1;
  189. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_GUEST_MASK);
  190. }
  191. /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
  192. static void deassign_host_irq(struct kvm *kvm,
  193. struct kvm_assigned_dev_kernel *assigned_dev)
  194. {
  195. /*
  196. * In kvm_free_device_irq, cancel_work_sync return true if:
  197. * 1. work is scheduled, and then cancelled.
  198. * 2. work callback is executed.
  199. *
  200. * The first one ensured that the irq is disabled and no more events
  201. * would happen. But for the second one, the irq may be enabled (e.g.
  202. * for MSI). So we disable irq here to prevent further events.
  203. *
  204. * Notice this maybe result in nested disable if the interrupt type is
  205. * INTx, but it's OK for we are going to free it.
  206. *
  207. * If this function is a part of VM destroy, please ensure that till
  208. * now, the kvm state is still legal for probably we also have to wait
  209. * interrupt_work done.
  210. */
  211. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSIX) {
  212. int i;
  213. for (i = 0; i < assigned_dev->entries_nr; i++)
  214. disable_irq_nosync(assigned_dev->
  215. host_msix_entries[i].vector);
  216. cancel_work_sync(&assigned_dev->interrupt_work);
  217. for (i = 0; i < assigned_dev->entries_nr; i++)
  218. free_irq(assigned_dev->host_msix_entries[i].vector,
  219. (void *)assigned_dev);
  220. assigned_dev->entries_nr = 0;
  221. kfree(assigned_dev->host_msix_entries);
  222. kfree(assigned_dev->guest_msix_entries);
  223. pci_disable_msix(assigned_dev->dev);
  224. } else {
  225. /* Deal with MSI and INTx */
  226. disable_irq_nosync(assigned_dev->host_irq);
  227. cancel_work_sync(&assigned_dev->interrupt_work);
  228. free_irq(assigned_dev->host_irq, (void *)assigned_dev);
  229. if (assigned_dev->irq_requested_type & KVM_DEV_IRQ_HOST_MSI)
  230. pci_disable_msi(assigned_dev->dev);
  231. }
  232. assigned_dev->irq_requested_type &= ~(KVM_DEV_IRQ_HOST_MASK);
  233. }
  234. static int kvm_deassign_irq(struct kvm *kvm,
  235. struct kvm_assigned_dev_kernel *assigned_dev,
  236. unsigned long irq_requested_type)
  237. {
  238. unsigned long guest_irq_type, host_irq_type;
  239. if (!irqchip_in_kernel(kvm))
  240. return -EINVAL;
  241. /* no irq assignment to deassign */
  242. if (!assigned_dev->irq_requested_type)
  243. return -ENXIO;
  244. host_irq_type = irq_requested_type & KVM_DEV_IRQ_HOST_MASK;
  245. guest_irq_type = irq_requested_type & KVM_DEV_IRQ_GUEST_MASK;
  246. if (host_irq_type)
  247. deassign_host_irq(kvm, assigned_dev);
  248. if (guest_irq_type)
  249. deassign_guest_irq(kvm, assigned_dev);
  250. return 0;
  251. }
  252. static void kvm_free_assigned_irq(struct kvm *kvm,
  253. struct kvm_assigned_dev_kernel *assigned_dev)
  254. {
  255. kvm_deassign_irq(kvm, assigned_dev, assigned_dev->irq_requested_type);
  256. }
  257. static void kvm_free_assigned_device(struct kvm *kvm,
  258. struct kvm_assigned_dev_kernel
  259. *assigned_dev)
  260. {
  261. kvm_free_assigned_irq(kvm, assigned_dev);
  262. pci_reset_function(assigned_dev->dev);
  263. pci_release_regions(assigned_dev->dev);
  264. pci_disable_device(assigned_dev->dev);
  265. pci_dev_put(assigned_dev->dev);
  266. list_del(&assigned_dev->list);
  267. kfree(assigned_dev);
  268. }
  269. void kvm_free_all_assigned_devices(struct kvm *kvm)
  270. {
  271. struct list_head *ptr, *ptr2;
  272. struct kvm_assigned_dev_kernel *assigned_dev;
  273. list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
  274. assigned_dev = list_entry(ptr,
  275. struct kvm_assigned_dev_kernel,
  276. list);
  277. kvm_free_assigned_device(kvm, assigned_dev);
  278. }
  279. }
  280. static int assigned_device_enable_host_intx(struct kvm *kvm,
  281. struct kvm_assigned_dev_kernel *dev)
  282. {
  283. dev->host_irq = dev->dev->irq;
  284. /* Even though this is PCI, we don't want to use shared
  285. * interrupts. Sharing host devices with guest-assigned devices
  286. * on the same interrupt line is not a happy situation: there
  287. * are going to be long delays in accepting, acking, etc.
  288. */
  289. if (request_irq(dev->host_irq, kvm_assigned_dev_intr,
  290. 0, "kvm_assigned_intx_device", (void *)dev))
  291. return -EIO;
  292. return 0;
  293. }
  294. #ifdef __KVM_HAVE_MSI
  295. static int assigned_device_enable_host_msi(struct kvm *kvm,
  296. struct kvm_assigned_dev_kernel *dev)
  297. {
  298. int r;
  299. if (!dev->dev->msi_enabled) {
  300. r = pci_enable_msi(dev->dev);
  301. if (r)
  302. return r;
  303. }
  304. dev->host_irq = dev->dev->irq;
  305. if (request_irq(dev->host_irq, kvm_assigned_dev_intr, 0,
  306. "kvm_assigned_msi_device", (void *)dev)) {
  307. pci_disable_msi(dev->dev);
  308. return -EIO;
  309. }
  310. return 0;
  311. }
  312. #endif
  313. #ifdef __KVM_HAVE_MSIX
  314. static int assigned_device_enable_host_msix(struct kvm *kvm,
  315. struct kvm_assigned_dev_kernel *dev)
  316. {
  317. int i, r = -EINVAL;
  318. /* host_msix_entries and guest_msix_entries should have been
  319. * initialized */
  320. if (dev->entries_nr == 0)
  321. return r;
  322. r = pci_enable_msix(dev->dev, dev->host_msix_entries, dev->entries_nr);
  323. if (r)
  324. return r;
  325. for (i = 0; i < dev->entries_nr; i++) {
  326. r = request_irq(dev->host_msix_entries[i].vector,
  327. kvm_assigned_dev_intr, 0,
  328. "kvm_assigned_msix_device",
  329. (void *)dev);
  330. /* FIXME: free requested_irq's on failure */
  331. if (r)
  332. return r;
  333. }
  334. return 0;
  335. }
  336. #endif
  337. static int assigned_device_enable_guest_intx(struct kvm *kvm,
  338. struct kvm_assigned_dev_kernel *dev,
  339. struct kvm_assigned_irq *irq)
  340. {
  341. dev->guest_irq = irq->guest_irq;
  342. dev->ack_notifier.gsi = irq->guest_irq;
  343. return 0;
  344. }
  345. #ifdef __KVM_HAVE_MSI
  346. static int assigned_device_enable_guest_msi(struct kvm *kvm,
  347. struct kvm_assigned_dev_kernel *dev,
  348. struct kvm_assigned_irq *irq)
  349. {
  350. dev->guest_irq = irq->guest_irq;
  351. dev->ack_notifier.gsi = -1;
  352. return 0;
  353. }
  354. #endif
  355. #ifdef __KVM_HAVE_MSIX
  356. static int assigned_device_enable_guest_msix(struct kvm *kvm,
  357. struct kvm_assigned_dev_kernel *dev,
  358. struct kvm_assigned_irq *irq)
  359. {
  360. dev->guest_irq = irq->guest_irq;
  361. dev->ack_notifier.gsi = -1;
  362. return 0;
  363. }
  364. #endif
  365. static int assign_host_irq(struct kvm *kvm,
  366. struct kvm_assigned_dev_kernel *dev,
  367. __u32 host_irq_type)
  368. {
  369. int r = -EEXIST;
  370. if (dev->irq_requested_type & KVM_DEV_IRQ_HOST_MASK)
  371. return r;
  372. switch (host_irq_type) {
  373. case KVM_DEV_IRQ_HOST_INTX:
  374. r = assigned_device_enable_host_intx(kvm, dev);
  375. break;
  376. #ifdef __KVM_HAVE_MSI
  377. case KVM_DEV_IRQ_HOST_MSI:
  378. r = assigned_device_enable_host_msi(kvm, dev);
  379. break;
  380. #endif
  381. #ifdef __KVM_HAVE_MSIX
  382. case KVM_DEV_IRQ_HOST_MSIX:
  383. r = assigned_device_enable_host_msix(kvm, dev);
  384. break;
  385. #endif
  386. default:
  387. r = -EINVAL;
  388. }
  389. if (!r)
  390. dev->irq_requested_type |= host_irq_type;
  391. return r;
  392. }
  393. static int assign_guest_irq(struct kvm *kvm,
  394. struct kvm_assigned_dev_kernel *dev,
  395. struct kvm_assigned_irq *irq,
  396. unsigned long guest_irq_type)
  397. {
  398. int id;
  399. int r = -EEXIST;
  400. if (dev->irq_requested_type & KVM_DEV_IRQ_GUEST_MASK)
  401. return r;
  402. id = kvm_request_irq_source_id(kvm);
  403. if (id < 0)
  404. return id;
  405. dev->irq_source_id = id;
  406. switch (guest_irq_type) {
  407. case KVM_DEV_IRQ_GUEST_INTX:
  408. r = assigned_device_enable_guest_intx(kvm, dev, irq);
  409. break;
  410. #ifdef __KVM_HAVE_MSI
  411. case KVM_DEV_IRQ_GUEST_MSI:
  412. r = assigned_device_enable_guest_msi(kvm, dev, irq);
  413. break;
  414. #endif
  415. #ifdef __KVM_HAVE_MSIX
  416. case KVM_DEV_IRQ_GUEST_MSIX:
  417. r = assigned_device_enable_guest_msix(kvm, dev, irq);
  418. break;
  419. #endif
  420. default:
  421. r = -EINVAL;
  422. }
  423. if (!r) {
  424. dev->irq_requested_type |= guest_irq_type;
  425. kvm_register_irq_ack_notifier(kvm, &dev->ack_notifier);
  426. } else
  427. kvm_free_irq_source_id(kvm, dev->irq_source_id);
  428. return r;
  429. }
  430. /* TODO Deal with KVM_DEV_IRQ_ASSIGNED_MASK_MSIX */
  431. static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
  432. struct kvm_assigned_irq *assigned_irq)
  433. {
  434. int r = -EINVAL;
  435. struct kvm_assigned_dev_kernel *match;
  436. unsigned long host_irq_type, guest_irq_type;
  437. if (!capable(CAP_SYS_RAWIO))
  438. return -EPERM;
  439. if (!irqchip_in_kernel(kvm))
  440. return r;
  441. mutex_lock(&kvm->lock);
  442. r = -ENODEV;
  443. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  444. assigned_irq->assigned_dev_id);
  445. if (!match)
  446. goto out;
  447. host_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_HOST_MASK);
  448. guest_irq_type = (assigned_irq->flags & KVM_DEV_IRQ_GUEST_MASK);
  449. r = -EINVAL;
  450. /* can only assign one type at a time */
  451. if (hweight_long(host_irq_type) > 1)
  452. goto out;
  453. if (hweight_long(guest_irq_type) > 1)
  454. goto out;
  455. if (host_irq_type == 0 && guest_irq_type == 0)
  456. goto out;
  457. r = 0;
  458. if (host_irq_type)
  459. r = assign_host_irq(kvm, match, host_irq_type);
  460. if (r)
  461. goto out;
  462. if (guest_irq_type)
  463. r = assign_guest_irq(kvm, match, assigned_irq, guest_irq_type);
  464. out:
  465. mutex_unlock(&kvm->lock);
  466. return r;
  467. }
  468. static int kvm_vm_ioctl_deassign_dev_irq(struct kvm *kvm,
  469. struct kvm_assigned_irq
  470. *assigned_irq)
  471. {
  472. int r = -ENODEV;
  473. struct kvm_assigned_dev_kernel *match;
  474. mutex_lock(&kvm->lock);
  475. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  476. assigned_irq->assigned_dev_id);
  477. if (!match)
  478. goto out;
  479. r = kvm_deassign_irq(kvm, match, assigned_irq->flags);
  480. out:
  481. mutex_unlock(&kvm->lock);
  482. return r;
  483. }
  484. static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
  485. struct kvm_assigned_pci_dev *assigned_dev)
  486. {
  487. int r = 0;
  488. struct kvm_assigned_dev_kernel *match;
  489. struct pci_dev *dev;
  490. down_read(&kvm->slots_lock);
  491. mutex_lock(&kvm->lock);
  492. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  493. assigned_dev->assigned_dev_id);
  494. if (match) {
  495. /* device already assigned */
  496. r = -EEXIST;
  497. goto out;
  498. }
  499. match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
  500. if (match == NULL) {
  501. printk(KERN_INFO "%s: Couldn't allocate memory\n",
  502. __func__);
  503. r = -ENOMEM;
  504. goto out;
  505. }
  506. dev = pci_get_bus_and_slot(assigned_dev->busnr,
  507. assigned_dev->devfn);
  508. if (!dev) {
  509. printk(KERN_INFO "%s: host device not found\n", __func__);
  510. r = -EINVAL;
  511. goto out_free;
  512. }
  513. if (pci_enable_device(dev)) {
  514. printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
  515. r = -EBUSY;
  516. goto out_put;
  517. }
  518. r = pci_request_regions(dev, "kvm_assigned_device");
  519. if (r) {
  520. printk(KERN_INFO "%s: Could not get access to device regions\n",
  521. __func__);
  522. goto out_disable;
  523. }
  524. pci_reset_function(dev);
  525. match->assigned_dev_id = assigned_dev->assigned_dev_id;
  526. match->host_busnr = assigned_dev->busnr;
  527. match->host_devfn = assigned_dev->devfn;
  528. match->flags = assigned_dev->flags;
  529. match->dev = dev;
  530. spin_lock_init(&match->assigned_dev_lock);
  531. match->irq_source_id = -1;
  532. match->kvm = kvm;
  533. match->ack_notifier.irq_acked = kvm_assigned_dev_ack_irq;
  534. INIT_WORK(&match->interrupt_work,
  535. kvm_assigned_dev_interrupt_work_handler);
  536. list_add(&match->list, &kvm->arch.assigned_dev_head);
  537. if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
  538. if (!kvm->arch.iommu_domain) {
  539. r = kvm_iommu_map_guest(kvm);
  540. if (r)
  541. goto out_list_del;
  542. }
  543. r = kvm_assign_device(kvm, match);
  544. if (r)
  545. goto out_list_del;
  546. }
  547. out:
  548. mutex_unlock(&kvm->lock);
  549. up_read(&kvm->slots_lock);
  550. return r;
  551. out_list_del:
  552. list_del(&match->list);
  553. pci_release_regions(dev);
  554. out_disable:
  555. pci_disable_device(dev);
  556. out_put:
  557. pci_dev_put(dev);
  558. out_free:
  559. kfree(match);
  560. mutex_unlock(&kvm->lock);
  561. up_read(&kvm->slots_lock);
  562. return r;
  563. }
  564. #endif
  565. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  566. static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
  567. struct kvm_assigned_pci_dev *assigned_dev)
  568. {
  569. int r = 0;
  570. struct kvm_assigned_dev_kernel *match;
  571. mutex_lock(&kvm->lock);
  572. match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  573. assigned_dev->assigned_dev_id);
  574. if (!match) {
  575. printk(KERN_INFO "%s: device hasn't been assigned before, "
  576. "so cannot be deassigned\n", __func__);
  577. r = -EINVAL;
  578. goto out;
  579. }
  580. if (match->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
  581. kvm_deassign_device(kvm, match);
  582. kvm_free_assigned_device(kvm, match);
  583. out:
  584. mutex_unlock(&kvm->lock);
  585. return r;
  586. }
  587. #endif
  588. static inline int valid_vcpu(int n)
  589. {
  590. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  591. }
  592. inline int kvm_is_mmio_pfn(pfn_t pfn)
  593. {
  594. if (pfn_valid(pfn)) {
  595. struct page *page = compound_head(pfn_to_page(pfn));
  596. return PageReserved(page);
  597. }
  598. return true;
  599. }
  600. /*
  601. * Switches to specified vcpu, until a matching vcpu_put()
  602. */
  603. void vcpu_load(struct kvm_vcpu *vcpu)
  604. {
  605. int cpu;
  606. mutex_lock(&vcpu->mutex);
  607. cpu = get_cpu();
  608. preempt_notifier_register(&vcpu->preempt_notifier);
  609. kvm_arch_vcpu_load(vcpu, cpu);
  610. put_cpu();
  611. }
  612. void vcpu_put(struct kvm_vcpu *vcpu)
  613. {
  614. preempt_disable();
  615. kvm_arch_vcpu_put(vcpu);
  616. preempt_notifier_unregister(&vcpu->preempt_notifier);
  617. preempt_enable();
  618. mutex_unlock(&vcpu->mutex);
  619. }
  620. static void ack_flush(void *_completed)
  621. {
  622. }
  623. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  624. {
  625. int i, cpu, me;
  626. cpumask_var_t cpus;
  627. bool called = true;
  628. struct kvm_vcpu *vcpu;
  629. if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
  630. cpumask_clear(cpus);
  631. me = get_cpu();
  632. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  633. vcpu = kvm->vcpus[i];
  634. if (!vcpu)
  635. continue;
  636. if (test_and_set_bit(req, &vcpu->requests))
  637. continue;
  638. cpu = vcpu->cpu;
  639. if (cpus != NULL && cpu != -1 && cpu != me)
  640. cpumask_set_cpu(cpu, cpus);
  641. }
  642. if (unlikely(cpus == NULL))
  643. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  644. else if (!cpumask_empty(cpus))
  645. smp_call_function_many(cpus, ack_flush, NULL, 1);
  646. else
  647. called = false;
  648. put_cpu();
  649. free_cpumask_var(cpus);
  650. return called;
  651. }
  652. void kvm_flush_remote_tlbs(struct kvm *kvm)
  653. {
  654. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  655. ++kvm->stat.remote_tlb_flush;
  656. }
  657. void kvm_reload_remote_mmus(struct kvm *kvm)
  658. {
  659. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  660. }
  661. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  662. {
  663. struct page *page;
  664. int r;
  665. mutex_init(&vcpu->mutex);
  666. vcpu->cpu = -1;
  667. vcpu->kvm = kvm;
  668. vcpu->vcpu_id = id;
  669. init_waitqueue_head(&vcpu->wq);
  670. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  671. if (!page) {
  672. r = -ENOMEM;
  673. goto fail;
  674. }
  675. vcpu->run = page_address(page);
  676. r = kvm_arch_vcpu_init(vcpu);
  677. if (r < 0)
  678. goto fail_free_run;
  679. return 0;
  680. fail_free_run:
  681. free_page((unsigned long)vcpu->run);
  682. fail:
  683. return r;
  684. }
  685. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  686. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  687. {
  688. kvm_arch_vcpu_uninit(vcpu);
  689. free_page((unsigned long)vcpu->run);
  690. }
  691. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  692. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  693. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  694. {
  695. return container_of(mn, struct kvm, mmu_notifier);
  696. }
  697. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  698. struct mm_struct *mm,
  699. unsigned long address)
  700. {
  701. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  702. int need_tlb_flush;
  703. /*
  704. * When ->invalidate_page runs, the linux pte has been zapped
  705. * already but the page is still allocated until
  706. * ->invalidate_page returns. So if we increase the sequence
  707. * here the kvm page fault will notice if the spte can't be
  708. * established because the page is going to be freed. If
  709. * instead the kvm page fault establishes the spte before
  710. * ->invalidate_page runs, kvm_unmap_hva will release it
  711. * before returning.
  712. *
  713. * The sequence increase only need to be seen at spin_unlock
  714. * time, and not at spin_lock time.
  715. *
  716. * Increasing the sequence after the spin_unlock would be
  717. * unsafe because the kvm page fault could then establish the
  718. * pte after kvm_unmap_hva returned, without noticing the page
  719. * is going to be freed.
  720. */
  721. spin_lock(&kvm->mmu_lock);
  722. kvm->mmu_notifier_seq++;
  723. need_tlb_flush = kvm_unmap_hva(kvm, address);
  724. spin_unlock(&kvm->mmu_lock);
  725. /* we've to flush the tlb before the pages can be freed */
  726. if (need_tlb_flush)
  727. kvm_flush_remote_tlbs(kvm);
  728. }
  729. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  730. struct mm_struct *mm,
  731. unsigned long start,
  732. unsigned long end)
  733. {
  734. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  735. int need_tlb_flush = 0;
  736. spin_lock(&kvm->mmu_lock);
  737. /*
  738. * The count increase must become visible at unlock time as no
  739. * spte can be established without taking the mmu_lock and
  740. * count is also read inside the mmu_lock critical section.
  741. */
  742. kvm->mmu_notifier_count++;
  743. for (; start < end; start += PAGE_SIZE)
  744. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  745. spin_unlock(&kvm->mmu_lock);
  746. /* we've to flush the tlb before the pages can be freed */
  747. if (need_tlb_flush)
  748. kvm_flush_remote_tlbs(kvm);
  749. }
  750. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  751. struct mm_struct *mm,
  752. unsigned long start,
  753. unsigned long end)
  754. {
  755. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  756. spin_lock(&kvm->mmu_lock);
  757. /*
  758. * This sequence increase will notify the kvm page fault that
  759. * the page that is going to be mapped in the spte could have
  760. * been freed.
  761. */
  762. kvm->mmu_notifier_seq++;
  763. /*
  764. * The above sequence increase must be visible before the
  765. * below count decrease but both values are read by the kvm
  766. * page fault under mmu_lock spinlock so we don't need to add
  767. * a smb_wmb() here in between the two.
  768. */
  769. kvm->mmu_notifier_count--;
  770. spin_unlock(&kvm->mmu_lock);
  771. BUG_ON(kvm->mmu_notifier_count < 0);
  772. }
  773. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  774. struct mm_struct *mm,
  775. unsigned long address)
  776. {
  777. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  778. int young;
  779. spin_lock(&kvm->mmu_lock);
  780. young = kvm_age_hva(kvm, address);
  781. spin_unlock(&kvm->mmu_lock);
  782. if (young)
  783. kvm_flush_remote_tlbs(kvm);
  784. return young;
  785. }
  786. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  787. struct mm_struct *mm)
  788. {
  789. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  790. kvm_arch_flush_shadow(kvm);
  791. }
  792. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  793. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  794. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  795. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  796. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  797. .release = kvm_mmu_notifier_release,
  798. };
  799. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  800. static struct kvm *kvm_create_vm(void)
  801. {
  802. struct kvm *kvm = kvm_arch_create_vm();
  803. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  804. struct page *page;
  805. #endif
  806. if (IS_ERR(kvm))
  807. goto out;
  808. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  809. INIT_LIST_HEAD(&kvm->irq_routing);
  810. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  811. #endif
  812. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  813. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  814. if (!page) {
  815. kfree(kvm);
  816. return ERR_PTR(-ENOMEM);
  817. }
  818. kvm->coalesced_mmio_ring =
  819. (struct kvm_coalesced_mmio_ring *)page_address(page);
  820. #endif
  821. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  822. {
  823. int err;
  824. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  825. err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  826. if (err) {
  827. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  828. put_page(page);
  829. #endif
  830. kfree(kvm);
  831. return ERR_PTR(err);
  832. }
  833. }
  834. #endif
  835. kvm->mm = current->mm;
  836. atomic_inc(&kvm->mm->mm_count);
  837. spin_lock_init(&kvm->mmu_lock);
  838. kvm_io_bus_init(&kvm->pio_bus);
  839. mutex_init(&kvm->lock);
  840. kvm_io_bus_init(&kvm->mmio_bus);
  841. init_rwsem(&kvm->slots_lock);
  842. atomic_set(&kvm->users_count, 1);
  843. spin_lock(&kvm_lock);
  844. list_add(&kvm->vm_list, &vm_list);
  845. spin_unlock(&kvm_lock);
  846. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  847. kvm_coalesced_mmio_init(kvm);
  848. #endif
  849. out:
  850. return kvm;
  851. }
  852. /*
  853. * Free any memory in @free but not in @dont.
  854. */
  855. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  856. struct kvm_memory_slot *dont)
  857. {
  858. if (!dont || free->rmap != dont->rmap)
  859. vfree(free->rmap);
  860. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  861. vfree(free->dirty_bitmap);
  862. if (!dont || free->lpage_info != dont->lpage_info)
  863. vfree(free->lpage_info);
  864. free->npages = 0;
  865. free->dirty_bitmap = NULL;
  866. free->rmap = NULL;
  867. free->lpage_info = NULL;
  868. }
  869. void kvm_free_physmem(struct kvm *kvm)
  870. {
  871. int i;
  872. for (i = 0; i < kvm->nmemslots; ++i)
  873. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  874. }
  875. static void kvm_destroy_vm(struct kvm *kvm)
  876. {
  877. struct mm_struct *mm = kvm->mm;
  878. kvm_arch_sync_events(kvm);
  879. spin_lock(&kvm_lock);
  880. list_del(&kvm->vm_list);
  881. spin_unlock(&kvm_lock);
  882. kvm_free_irq_routing(kvm);
  883. kvm_io_bus_destroy(&kvm->pio_bus);
  884. kvm_io_bus_destroy(&kvm->mmio_bus);
  885. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  886. if (kvm->coalesced_mmio_ring != NULL)
  887. free_page((unsigned long)kvm->coalesced_mmio_ring);
  888. #endif
  889. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  890. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  891. #else
  892. kvm_arch_flush_shadow(kvm);
  893. #endif
  894. kvm_arch_destroy_vm(kvm);
  895. mmdrop(mm);
  896. }
  897. void kvm_get_kvm(struct kvm *kvm)
  898. {
  899. atomic_inc(&kvm->users_count);
  900. }
  901. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  902. void kvm_put_kvm(struct kvm *kvm)
  903. {
  904. if (atomic_dec_and_test(&kvm->users_count))
  905. kvm_destroy_vm(kvm);
  906. }
  907. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  908. static int kvm_vm_release(struct inode *inode, struct file *filp)
  909. {
  910. struct kvm *kvm = filp->private_data;
  911. kvm_put_kvm(kvm);
  912. return 0;
  913. }
  914. /*
  915. * Allocate some memory and give it an address in the guest physical address
  916. * space.
  917. *
  918. * Discontiguous memory is allowed, mostly for framebuffers.
  919. *
  920. * Must be called holding mmap_sem for write.
  921. */
  922. int __kvm_set_memory_region(struct kvm *kvm,
  923. struct kvm_userspace_memory_region *mem,
  924. int user_alloc)
  925. {
  926. int r;
  927. gfn_t base_gfn;
  928. unsigned long npages, ugfn;
  929. unsigned long largepages, i;
  930. struct kvm_memory_slot *memslot;
  931. struct kvm_memory_slot old, new;
  932. r = -EINVAL;
  933. /* General sanity checks */
  934. if (mem->memory_size & (PAGE_SIZE - 1))
  935. goto out;
  936. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  937. goto out;
  938. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  939. goto out;
  940. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  941. goto out;
  942. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  943. goto out;
  944. memslot = &kvm->memslots[mem->slot];
  945. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  946. npages = mem->memory_size >> PAGE_SHIFT;
  947. if (!npages)
  948. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  949. new = old = *memslot;
  950. new.base_gfn = base_gfn;
  951. new.npages = npages;
  952. new.flags = mem->flags;
  953. /* Disallow changing a memory slot's size. */
  954. r = -EINVAL;
  955. if (npages && old.npages && npages != old.npages)
  956. goto out_free;
  957. /* Check for overlaps */
  958. r = -EEXIST;
  959. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  960. struct kvm_memory_slot *s = &kvm->memslots[i];
  961. if (s == memslot || !s->npages)
  962. continue;
  963. if (!((base_gfn + npages <= s->base_gfn) ||
  964. (base_gfn >= s->base_gfn + s->npages)))
  965. goto out_free;
  966. }
  967. /* Free page dirty bitmap if unneeded */
  968. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  969. new.dirty_bitmap = NULL;
  970. r = -ENOMEM;
  971. /* Allocate if a slot is being created */
  972. #ifndef CONFIG_S390
  973. if (npages && !new.rmap) {
  974. new.rmap = vmalloc(npages * sizeof(struct page *));
  975. if (!new.rmap)
  976. goto out_free;
  977. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  978. new.user_alloc = user_alloc;
  979. /*
  980. * hva_to_rmmap() serialzies with the mmu_lock and to be
  981. * safe it has to ignore memslots with !user_alloc &&
  982. * !userspace_addr.
  983. */
  984. if (user_alloc)
  985. new.userspace_addr = mem->userspace_addr;
  986. else
  987. new.userspace_addr = 0;
  988. }
  989. if (npages && !new.lpage_info) {
  990. largepages = 1 + (base_gfn + npages - 1) / KVM_PAGES_PER_HPAGE;
  991. largepages -= base_gfn / KVM_PAGES_PER_HPAGE;
  992. new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
  993. if (!new.lpage_info)
  994. goto out_free;
  995. memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
  996. if (base_gfn % KVM_PAGES_PER_HPAGE)
  997. new.lpage_info[0].write_count = 1;
  998. if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
  999. new.lpage_info[largepages-1].write_count = 1;
  1000. ugfn = new.userspace_addr >> PAGE_SHIFT;
  1001. /*
  1002. * If the gfn and userspace address are not aligned wrt each
  1003. * other, disable large page support for this slot
  1004. */
  1005. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE - 1))
  1006. for (i = 0; i < largepages; ++i)
  1007. new.lpage_info[i].write_count = 1;
  1008. }
  1009. /* Allocate page dirty bitmap if needed */
  1010. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  1011. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  1012. new.dirty_bitmap = vmalloc(dirty_bytes);
  1013. if (!new.dirty_bitmap)
  1014. goto out_free;
  1015. memset(new.dirty_bitmap, 0, dirty_bytes);
  1016. }
  1017. #endif /* not defined CONFIG_S390 */
  1018. if (!npages)
  1019. kvm_arch_flush_shadow(kvm);
  1020. spin_lock(&kvm->mmu_lock);
  1021. if (mem->slot >= kvm->nmemslots)
  1022. kvm->nmemslots = mem->slot + 1;
  1023. *memslot = new;
  1024. spin_unlock(&kvm->mmu_lock);
  1025. r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
  1026. if (r) {
  1027. spin_lock(&kvm->mmu_lock);
  1028. *memslot = old;
  1029. spin_unlock(&kvm->mmu_lock);
  1030. goto out_free;
  1031. }
  1032. kvm_free_physmem_slot(&old, npages ? &new : NULL);
  1033. /* Slot deletion case: we have to update the current slot */
  1034. spin_lock(&kvm->mmu_lock);
  1035. if (!npages)
  1036. *memslot = old;
  1037. spin_unlock(&kvm->mmu_lock);
  1038. #ifdef CONFIG_DMAR
  1039. /* map the pages in iommu page table */
  1040. r = kvm_iommu_map_pages(kvm, base_gfn, npages);
  1041. if (r)
  1042. goto out;
  1043. #endif
  1044. return 0;
  1045. out_free:
  1046. kvm_free_physmem_slot(&new, &old);
  1047. out:
  1048. return r;
  1049. }
  1050. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  1051. int kvm_set_memory_region(struct kvm *kvm,
  1052. struct kvm_userspace_memory_region *mem,
  1053. int user_alloc)
  1054. {
  1055. int r;
  1056. down_write(&kvm->slots_lock);
  1057. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  1058. up_write(&kvm->slots_lock);
  1059. return r;
  1060. }
  1061. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  1062. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  1063. struct
  1064. kvm_userspace_memory_region *mem,
  1065. int user_alloc)
  1066. {
  1067. if (mem->slot >= KVM_MEMORY_SLOTS)
  1068. return -EINVAL;
  1069. return kvm_set_memory_region(kvm, mem, user_alloc);
  1070. }
  1071. int kvm_get_dirty_log(struct kvm *kvm,
  1072. struct kvm_dirty_log *log, int *is_dirty)
  1073. {
  1074. struct kvm_memory_slot *memslot;
  1075. int r, i;
  1076. int n;
  1077. unsigned long any = 0;
  1078. r = -EINVAL;
  1079. if (log->slot >= KVM_MEMORY_SLOTS)
  1080. goto out;
  1081. memslot = &kvm->memslots[log->slot];
  1082. r = -ENOENT;
  1083. if (!memslot->dirty_bitmap)
  1084. goto out;
  1085. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1086. for (i = 0; !any && i < n/sizeof(long); ++i)
  1087. any = memslot->dirty_bitmap[i];
  1088. r = -EFAULT;
  1089. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1090. goto out;
  1091. if (any)
  1092. *is_dirty = 1;
  1093. r = 0;
  1094. out:
  1095. return r;
  1096. }
  1097. int is_error_page(struct page *page)
  1098. {
  1099. return page == bad_page;
  1100. }
  1101. EXPORT_SYMBOL_GPL(is_error_page);
  1102. int is_error_pfn(pfn_t pfn)
  1103. {
  1104. return pfn == bad_pfn;
  1105. }
  1106. EXPORT_SYMBOL_GPL(is_error_pfn);
  1107. static inline unsigned long bad_hva(void)
  1108. {
  1109. return PAGE_OFFSET;
  1110. }
  1111. int kvm_is_error_hva(unsigned long addr)
  1112. {
  1113. return addr == bad_hva();
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  1116. struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
  1117. {
  1118. int i;
  1119. for (i = 0; i < kvm->nmemslots; ++i) {
  1120. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1121. if (gfn >= memslot->base_gfn
  1122. && gfn < memslot->base_gfn + memslot->npages)
  1123. return memslot;
  1124. }
  1125. return NULL;
  1126. }
  1127. EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
  1128. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  1129. {
  1130. gfn = unalias_gfn(kvm, gfn);
  1131. return gfn_to_memslot_unaliased(kvm, gfn);
  1132. }
  1133. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  1134. {
  1135. int i;
  1136. gfn = unalias_gfn(kvm, gfn);
  1137. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1138. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  1139. if (gfn >= memslot->base_gfn
  1140. && gfn < memslot->base_gfn + memslot->npages)
  1141. return 1;
  1142. }
  1143. return 0;
  1144. }
  1145. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  1146. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  1147. {
  1148. struct kvm_memory_slot *slot;
  1149. gfn = unalias_gfn(kvm, gfn);
  1150. slot = gfn_to_memslot_unaliased(kvm, gfn);
  1151. if (!slot)
  1152. return bad_hva();
  1153. return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
  1154. }
  1155. EXPORT_SYMBOL_GPL(gfn_to_hva);
  1156. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  1157. {
  1158. struct page *page[1];
  1159. unsigned long addr;
  1160. int npages;
  1161. pfn_t pfn;
  1162. might_sleep();
  1163. addr = gfn_to_hva(kvm, gfn);
  1164. if (kvm_is_error_hva(addr)) {
  1165. get_page(bad_page);
  1166. return page_to_pfn(bad_page);
  1167. }
  1168. npages = get_user_pages_fast(addr, 1, 1, page);
  1169. if (unlikely(npages != 1)) {
  1170. struct vm_area_struct *vma;
  1171. down_read(&current->mm->mmap_sem);
  1172. vma = find_vma(current->mm, addr);
  1173. if (vma == NULL || addr < vma->vm_start ||
  1174. !(vma->vm_flags & VM_PFNMAP)) {
  1175. up_read(&current->mm->mmap_sem);
  1176. get_page(bad_page);
  1177. return page_to_pfn(bad_page);
  1178. }
  1179. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  1180. up_read(&current->mm->mmap_sem);
  1181. BUG_ON(!kvm_is_mmio_pfn(pfn));
  1182. } else
  1183. pfn = page_to_pfn(page[0]);
  1184. return pfn;
  1185. }
  1186. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  1187. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  1188. {
  1189. pfn_t pfn;
  1190. pfn = gfn_to_pfn(kvm, gfn);
  1191. if (!kvm_is_mmio_pfn(pfn))
  1192. return pfn_to_page(pfn);
  1193. WARN_ON(kvm_is_mmio_pfn(pfn));
  1194. get_page(bad_page);
  1195. return bad_page;
  1196. }
  1197. EXPORT_SYMBOL_GPL(gfn_to_page);
  1198. void kvm_release_page_clean(struct page *page)
  1199. {
  1200. kvm_release_pfn_clean(page_to_pfn(page));
  1201. }
  1202. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  1203. void kvm_release_pfn_clean(pfn_t pfn)
  1204. {
  1205. if (!kvm_is_mmio_pfn(pfn))
  1206. put_page(pfn_to_page(pfn));
  1207. }
  1208. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  1209. void kvm_release_page_dirty(struct page *page)
  1210. {
  1211. kvm_release_pfn_dirty(page_to_pfn(page));
  1212. }
  1213. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  1214. void kvm_release_pfn_dirty(pfn_t pfn)
  1215. {
  1216. kvm_set_pfn_dirty(pfn);
  1217. kvm_release_pfn_clean(pfn);
  1218. }
  1219. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  1220. void kvm_set_page_dirty(struct page *page)
  1221. {
  1222. kvm_set_pfn_dirty(page_to_pfn(page));
  1223. }
  1224. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  1225. void kvm_set_pfn_dirty(pfn_t pfn)
  1226. {
  1227. if (!kvm_is_mmio_pfn(pfn)) {
  1228. struct page *page = pfn_to_page(pfn);
  1229. if (!PageReserved(page))
  1230. SetPageDirty(page);
  1231. }
  1232. }
  1233. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  1234. void kvm_set_pfn_accessed(pfn_t pfn)
  1235. {
  1236. if (!kvm_is_mmio_pfn(pfn))
  1237. mark_page_accessed(pfn_to_page(pfn));
  1238. }
  1239. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  1240. void kvm_get_pfn(pfn_t pfn)
  1241. {
  1242. if (!kvm_is_mmio_pfn(pfn))
  1243. get_page(pfn_to_page(pfn));
  1244. }
  1245. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  1246. static int next_segment(unsigned long len, int offset)
  1247. {
  1248. if (len > PAGE_SIZE - offset)
  1249. return PAGE_SIZE - offset;
  1250. else
  1251. return len;
  1252. }
  1253. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  1254. int len)
  1255. {
  1256. int r;
  1257. unsigned long addr;
  1258. addr = gfn_to_hva(kvm, gfn);
  1259. if (kvm_is_error_hva(addr))
  1260. return -EFAULT;
  1261. r = copy_from_user(data, (void __user *)addr + offset, len);
  1262. if (r)
  1263. return -EFAULT;
  1264. return 0;
  1265. }
  1266. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1267. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1268. {
  1269. gfn_t gfn = gpa >> PAGE_SHIFT;
  1270. int seg;
  1271. int offset = offset_in_page(gpa);
  1272. int ret;
  1273. while ((seg = next_segment(len, offset)) != 0) {
  1274. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1275. if (ret < 0)
  1276. return ret;
  1277. offset = 0;
  1278. len -= seg;
  1279. data += seg;
  1280. ++gfn;
  1281. }
  1282. return 0;
  1283. }
  1284. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1285. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1286. unsigned long len)
  1287. {
  1288. int r;
  1289. unsigned long addr;
  1290. gfn_t gfn = gpa >> PAGE_SHIFT;
  1291. int offset = offset_in_page(gpa);
  1292. addr = gfn_to_hva(kvm, gfn);
  1293. if (kvm_is_error_hva(addr))
  1294. return -EFAULT;
  1295. pagefault_disable();
  1296. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1297. pagefault_enable();
  1298. if (r)
  1299. return -EFAULT;
  1300. return 0;
  1301. }
  1302. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1303. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1304. int offset, int len)
  1305. {
  1306. int r;
  1307. unsigned long addr;
  1308. addr = gfn_to_hva(kvm, gfn);
  1309. if (kvm_is_error_hva(addr))
  1310. return -EFAULT;
  1311. r = copy_to_user((void __user *)addr + offset, data, len);
  1312. if (r)
  1313. return -EFAULT;
  1314. mark_page_dirty(kvm, gfn);
  1315. return 0;
  1316. }
  1317. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1318. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1319. unsigned long len)
  1320. {
  1321. gfn_t gfn = gpa >> PAGE_SHIFT;
  1322. int seg;
  1323. int offset = offset_in_page(gpa);
  1324. int ret;
  1325. while ((seg = next_segment(len, offset)) != 0) {
  1326. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1327. if (ret < 0)
  1328. return ret;
  1329. offset = 0;
  1330. len -= seg;
  1331. data += seg;
  1332. ++gfn;
  1333. }
  1334. return 0;
  1335. }
  1336. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1337. {
  1338. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1339. }
  1340. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1341. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1342. {
  1343. gfn_t gfn = gpa >> PAGE_SHIFT;
  1344. int seg;
  1345. int offset = offset_in_page(gpa);
  1346. int ret;
  1347. while ((seg = next_segment(len, offset)) != 0) {
  1348. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1349. if (ret < 0)
  1350. return ret;
  1351. offset = 0;
  1352. len -= seg;
  1353. ++gfn;
  1354. }
  1355. return 0;
  1356. }
  1357. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1358. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1359. {
  1360. struct kvm_memory_slot *memslot;
  1361. gfn = unalias_gfn(kvm, gfn);
  1362. memslot = gfn_to_memslot_unaliased(kvm, gfn);
  1363. if (memslot && memslot->dirty_bitmap) {
  1364. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1365. /* avoid RMW */
  1366. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  1367. set_bit(rel_gfn, memslot->dirty_bitmap);
  1368. }
  1369. }
  1370. /*
  1371. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1372. */
  1373. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1374. {
  1375. DEFINE_WAIT(wait);
  1376. for (;;) {
  1377. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1378. if ((kvm_arch_interrupt_allowed(vcpu) &&
  1379. kvm_cpu_has_interrupt(vcpu)) ||
  1380. kvm_arch_vcpu_runnable(vcpu)) {
  1381. set_bit(KVM_REQ_UNHALT, &vcpu->requests);
  1382. break;
  1383. }
  1384. if (kvm_cpu_has_pending_timer(vcpu))
  1385. break;
  1386. if (signal_pending(current))
  1387. break;
  1388. vcpu_put(vcpu);
  1389. schedule();
  1390. vcpu_load(vcpu);
  1391. }
  1392. finish_wait(&vcpu->wq, &wait);
  1393. }
  1394. void kvm_resched(struct kvm_vcpu *vcpu)
  1395. {
  1396. if (!need_resched())
  1397. return;
  1398. cond_resched();
  1399. }
  1400. EXPORT_SYMBOL_GPL(kvm_resched);
  1401. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1402. {
  1403. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1404. struct page *page;
  1405. if (vmf->pgoff == 0)
  1406. page = virt_to_page(vcpu->run);
  1407. #ifdef CONFIG_X86
  1408. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1409. page = virt_to_page(vcpu->arch.pio_data);
  1410. #endif
  1411. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1412. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1413. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1414. #endif
  1415. else
  1416. return VM_FAULT_SIGBUS;
  1417. get_page(page);
  1418. vmf->page = page;
  1419. return 0;
  1420. }
  1421. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  1422. .fault = kvm_vcpu_fault,
  1423. };
  1424. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1425. {
  1426. vma->vm_ops = &kvm_vcpu_vm_ops;
  1427. return 0;
  1428. }
  1429. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1430. {
  1431. struct kvm_vcpu *vcpu = filp->private_data;
  1432. kvm_put_kvm(vcpu->kvm);
  1433. return 0;
  1434. }
  1435. static struct file_operations kvm_vcpu_fops = {
  1436. .release = kvm_vcpu_release,
  1437. .unlocked_ioctl = kvm_vcpu_ioctl,
  1438. .compat_ioctl = kvm_vcpu_ioctl,
  1439. .mmap = kvm_vcpu_mmap,
  1440. };
  1441. /*
  1442. * Allocates an inode for the vcpu.
  1443. */
  1444. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1445. {
  1446. int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
  1447. if (fd < 0)
  1448. kvm_put_kvm(vcpu->kvm);
  1449. return fd;
  1450. }
  1451. /*
  1452. * Creates some virtual cpus. Good luck creating more than one.
  1453. */
  1454. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  1455. {
  1456. int r;
  1457. struct kvm_vcpu *vcpu;
  1458. if (!valid_vcpu(n))
  1459. return -EINVAL;
  1460. vcpu = kvm_arch_vcpu_create(kvm, n);
  1461. if (IS_ERR(vcpu))
  1462. return PTR_ERR(vcpu);
  1463. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1464. r = kvm_arch_vcpu_setup(vcpu);
  1465. if (r)
  1466. return r;
  1467. mutex_lock(&kvm->lock);
  1468. if (kvm->vcpus[n]) {
  1469. r = -EEXIST;
  1470. goto vcpu_destroy;
  1471. }
  1472. kvm->vcpus[n] = vcpu;
  1473. mutex_unlock(&kvm->lock);
  1474. /* Now it's all set up, let userspace reach it */
  1475. kvm_get_kvm(kvm);
  1476. r = create_vcpu_fd(vcpu);
  1477. if (r < 0)
  1478. goto unlink;
  1479. return r;
  1480. unlink:
  1481. mutex_lock(&kvm->lock);
  1482. kvm->vcpus[n] = NULL;
  1483. vcpu_destroy:
  1484. mutex_unlock(&kvm->lock);
  1485. kvm_arch_vcpu_destroy(vcpu);
  1486. return r;
  1487. }
  1488. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1489. {
  1490. if (sigset) {
  1491. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1492. vcpu->sigset_active = 1;
  1493. vcpu->sigset = *sigset;
  1494. } else
  1495. vcpu->sigset_active = 0;
  1496. return 0;
  1497. }
  1498. #ifdef __KVM_HAVE_MSIX
  1499. static int kvm_vm_ioctl_set_msix_nr(struct kvm *kvm,
  1500. struct kvm_assigned_msix_nr *entry_nr)
  1501. {
  1502. int r = 0;
  1503. struct kvm_assigned_dev_kernel *adev;
  1504. mutex_lock(&kvm->lock);
  1505. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1506. entry_nr->assigned_dev_id);
  1507. if (!adev) {
  1508. r = -EINVAL;
  1509. goto msix_nr_out;
  1510. }
  1511. if (adev->entries_nr == 0) {
  1512. adev->entries_nr = entry_nr->entry_nr;
  1513. if (adev->entries_nr == 0 ||
  1514. adev->entries_nr >= KVM_MAX_MSIX_PER_DEV) {
  1515. r = -EINVAL;
  1516. goto msix_nr_out;
  1517. }
  1518. adev->host_msix_entries = kzalloc(sizeof(struct msix_entry) *
  1519. entry_nr->entry_nr,
  1520. GFP_KERNEL);
  1521. if (!adev->host_msix_entries) {
  1522. r = -ENOMEM;
  1523. goto msix_nr_out;
  1524. }
  1525. adev->guest_msix_entries = kzalloc(
  1526. sizeof(struct kvm_guest_msix_entry) *
  1527. entry_nr->entry_nr, GFP_KERNEL);
  1528. if (!adev->guest_msix_entries) {
  1529. kfree(adev->host_msix_entries);
  1530. r = -ENOMEM;
  1531. goto msix_nr_out;
  1532. }
  1533. } else /* Not allowed set MSI-X number twice */
  1534. r = -EINVAL;
  1535. msix_nr_out:
  1536. mutex_unlock(&kvm->lock);
  1537. return r;
  1538. }
  1539. static int kvm_vm_ioctl_set_msix_entry(struct kvm *kvm,
  1540. struct kvm_assigned_msix_entry *entry)
  1541. {
  1542. int r = 0, i;
  1543. struct kvm_assigned_dev_kernel *adev;
  1544. mutex_lock(&kvm->lock);
  1545. adev = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
  1546. entry->assigned_dev_id);
  1547. if (!adev) {
  1548. r = -EINVAL;
  1549. goto msix_entry_out;
  1550. }
  1551. for (i = 0; i < adev->entries_nr; i++)
  1552. if (adev->guest_msix_entries[i].vector == 0 ||
  1553. adev->guest_msix_entries[i].entry == entry->entry) {
  1554. adev->guest_msix_entries[i].entry = entry->entry;
  1555. adev->guest_msix_entries[i].vector = entry->gsi;
  1556. adev->host_msix_entries[i].entry = entry->entry;
  1557. break;
  1558. }
  1559. if (i == adev->entries_nr) {
  1560. r = -ENOSPC;
  1561. goto msix_entry_out;
  1562. }
  1563. msix_entry_out:
  1564. mutex_unlock(&kvm->lock);
  1565. return r;
  1566. }
  1567. #endif
  1568. static long kvm_vcpu_ioctl(struct file *filp,
  1569. unsigned int ioctl, unsigned long arg)
  1570. {
  1571. struct kvm_vcpu *vcpu = filp->private_data;
  1572. void __user *argp = (void __user *)arg;
  1573. int r;
  1574. struct kvm_fpu *fpu = NULL;
  1575. struct kvm_sregs *kvm_sregs = NULL;
  1576. if (vcpu->kvm->mm != current->mm)
  1577. return -EIO;
  1578. switch (ioctl) {
  1579. case KVM_RUN:
  1580. r = -EINVAL;
  1581. if (arg)
  1582. goto out;
  1583. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1584. break;
  1585. case KVM_GET_REGS: {
  1586. struct kvm_regs *kvm_regs;
  1587. r = -ENOMEM;
  1588. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1589. if (!kvm_regs)
  1590. goto out;
  1591. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1592. if (r)
  1593. goto out_free1;
  1594. r = -EFAULT;
  1595. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1596. goto out_free1;
  1597. r = 0;
  1598. out_free1:
  1599. kfree(kvm_regs);
  1600. break;
  1601. }
  1602. case KVM_SET_REGS: {
  1603. struct kvm_regs *kvm_regs;
  1604. r = -ENOMEM;
  1605. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1606. if (!kvm_regs)
  1607. goto out;
  1608. r = -EFAULT;
  1609. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1610. goto out_free2;
  1611. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1612. if (r)
  1613. goto out_free2;
  1614. r = 0;
  1615. out_free2:
  1616. kfree(kvm_regs);
  1617. break;
  1618. }
  1619. case KVM_GET_SREGS: {
  1620. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1621. r = -ENOMEM;
  1622. if (!kvm_sregs)
  1623. goto out;
  1624. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1625. if (r)
  1626. goto out;
  1627. r = -EFAULT;
  1628. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1629. goto out;
  1630. r = 0;
  1631. break;
  1632. }
  1633. case KVM_SET_SREGS: {
  1634. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1635. r = -ENOMEM;
  1636. if (!kvm_sregs)
  1637. goto out;
  1638. r = -EFAULT;
  1639. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1640. goto out;
  1641. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1642. if (r)
  1643. goto out;
  1644. r = 0;
  1645. break;
  1646. }
  1647. case KVM_GET_MP_STATE: {
  1648. struct kvm_mp_state mp_state;
  1649. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1650. if (r)
  1651. goto out;
  1652. r = -EFAULT;
  1653. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1654. goto out;
  1655. r = 0;
  1656. break;
  1657. }
  1658. case KVM_SET_MP_STATE: {
  1659. struct kvm_mp_state mp_state;
  1660. r = -EFAULT;
  1661. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1662. goto out;
  1663. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1664. if (r)
  1665. goto out;
  1666. r = 0;
  1667. break;
  1668. }
  1669. case KVM_TRANSLATE: {
  1670. struct kvm_translation tr;
  1671. r = -EFAULT;
  1672. if (copy_from_user(&tr, argp, sizeof tr))
  1673. goto out;
  1674. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1675. if (r)
  1676. goto out;
  1677. r = -EFAULT;
  1678. if (copy_to_user(argp, &tr, sizeof tr))
  1679. goto out;
  1680. r = 0;
  1681. break;
  1682. }
  1683. case KVM_SET_GUEST_DEBUG: {
  1684. struct kvm_guest_debug dbg;
  1685. r = -EFAULT;
  1686. if (copy_from_user(&dbg, argp, sizeof dbg))
  1687. goto out;
  1688. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1689. if (r)
  1690. goto out;
  1691. r = 0;
  1692. break;
  1693. }
  1694. case KVM_SET_SIGNAL_MASK: {
  1695. struct kvm_signal_mask __user *sigmask_arg = argp;
  1696. struct kvm_signal_mask kvm_sigmask;
  1697. sigset_t sigset, *p;
  1698. p = NULL;
  1699. if (argp) {
  1700. r = -EFAULT;
  1701. if (copy_from_user(&kvm_sigmask, argp,
  1702. sizeof kvm_sigmask))
  1703. goto out;
  1704. r = -EINVAL;
  1705. if (kvm_sigmask.len != sizeof sigset)
  1706. goto out;
  1707. r = -EFAULT;
  1708. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1709. sizeof sigset))
  1710. goto out;
  1711. p = &sigset;
  1712. }
  1713. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  1714. break;
  1715. }
  1716. case KVM_GET_FPU: {
  1717. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1718. r = -ENOMEM;
  1719. if (!fpu)
  1720. goto out;
  1721. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1722. if (r)
  1723. goto out;
  1724. r = -EFAULT;
  1725. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1726. goto out;
  1727. r = 0;
  1728. break;
  1729. }
  1730. case KVM_SET_FPU: {
  1731. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1732. r = -ENOMEM;
  1733. if (!fpu)
  1734. goto out;
  1735. r = -EFAULT;
  1736. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1737. goto out;
  1738. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1739. if (r)
  1740. goto out;
  1741. r = 0;
  1742. break;
  1743. }
  1744. default:
  1745. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1746. }
  1747. out:
  1748. kfree(fpu);
  1749. kfree(kvm_sregs);
  1750. return r;
  1751. }
  1752. static long kvm_vm_ioctl(struct file *filp,
  1753. unsigned int ioctl, unsigned long arg)
  1754. {
  1755. struct kvm *kvm = filp->private_data;
  1756. void __user *argp = (void __user *)arg;
  1757. int r;
  1758. if (kvm->mm != current->mm)
  1759. return -EIO;
  1760. switch (ioctl) {
  1761. case KVM_CREATE_VCPU:
  1762. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1763. if (r < 0)
  1764. goto out;
  1765. break;
  1766. case KVM_SET_USER_MEMORY_REGION: {
  1767. struct kvm_userspace_memory_region kvm_userspace_mem;
  1768. r = -EFAULT;
  1769. if (copy_from_user(&kvm_userspace_mem, argp,
  1770. sizeof kvm_userspace_mem))
  1771. goto out;
  1772. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1773. if (r)
  1774. goto out;
  1775. break;
  1776. }
  1777. case KVM_GET_DIRTY_LOG: {
  1778. struct kvm_dirty_log log;
  1779. r = -EFAULT;
  1780. if (copy_from_user(&log, argp, sizeof log))
  1781. goto out;
  1782. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1783. if (r)
  1784. goto out;
  1785. break;
  1786. }
  1787. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1788. case KVM_REGISTER_COALESCED_MMIO: {
  1789. struct kvm_coalesced_mmio_zone zone;
  1790. r = -EFAULT;
  1791. if (copy_from_user(&zone, argp, sizeof zone))
  1792. goto out;
  1793. r = -ENXIO;
  1794. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1795. if (r)
  1796. goto out;
  1797. r = 0;
  1798. break;
  1799. }
  1800. case KVM_UNREGISTER_COALESCED_MMIO: {
  1801. struct kvm_coalesced_mmio_zone zone;
  1802. r = -EFAULT;
  1803. if (copy_from_user(&zone, argp, sizeof zone))
  1804. goto out;
  1805. r = -ENXIO;
  1806. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1807. if (r)
  1808. goto out;
  1809. r = 0;
  1810. break;
  1811. }
  1812. #endif
  1813. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1814. case KVM_ASSIGN_PCI_DEVICE: {
  1815. struct kvm_assigned_pci_dev assigned_dev;
  1816. r = -EFAULT;
  1817. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1818. goto out;
  1819. r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
  1820. if (r)
  1821. goto out;
  1822. break;
  1823. }
  1824. case KVM_ASSIGN_IRQ: {
  1825. r = -EOPNOTSUPP;
  1826. break;
  1827. }
  1828. #ifdef KVM_CAP_ASSIGN_DEV_IRQ
  1829. case KVM_ASSIGN_DEV_IRQ: {
  1830. struct kvm_assigned_irq assigned_irq;
  1831. r = -EFAULT;
  1832. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1833. goto out;
  1834. r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
  1835. if (r)
  1836. goto out;
  1837. break;
  1838. }
  1839. case KVM_DEASSIGN_DEV_IRQ: {
  1840. struct kvm_assigned_irq assigned_irq;
  1841. r = -EFAULT;
  1842. if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
  1843. goto out;
  1844. r = kvm_vm_ioctl_deassign_dev_irq(kvm, &assigned_irq);
  1845. if (r)
  1846. goto out;
  1847. break;
  1848. }
  1849. #endif
  1850. #endif
  1851. #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
  1852. case KVM_DEASSIGN_PCI_DEVICE: {
  1853. struct kvm_assigned_pci_dev assigned_dev;
  1854. r = -EFAULT;
  1855. if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
  1856. goto out;
  1857. r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
  1858. if (r)
  1859. goto out;
  1860. break;
  1861. }
  1862. #endif
  1863. #ifdef KVM_CAP_IRQ_ROUTING
  1864. case KVM_SET_GSI_ROUTING: {
  1865. struct kvm_irq_routing routing;
  1866. struct kvm_irq_routing __user *urouting;
  1867. struct kvm_irq_routing_entry *entries;
  1868. r = -EFAULT;
  1869. if (copy_from_user(&routing, argp, sizeof(routing)))
  1870. goto out;
  1871. r = -EINVAL;
  1872. if (routing.nr >= KVM_MAX_IRQ_ROUTES)
  1873. goto out;
  1874. if (routing.flags)
  1875. goto out;
  1876. r = -ENOMEM;
  1877. entries = vmalloc(routing.nr * sizeof(*entries));
  1878. if (!entries)
  1879. goto out;
  1880. r = -EFAULT;
  1881. urouting = argp;
  1882. if (copy_from_user(entries, urouting->entries,
  1883. routing.nr * sizeof(*entries)))
  1884. goto out_free_irq_routing;
  1885. r = kvm_set_irq_routing(kvm, entries, routing.nr,
  1886. routing.flags);
  1887. out_free_irq_routing:
  1888. vfree(entries);
  1889. break;
  1890. }
  1891. #ifdef __KVM_HAVE_MSIX
  1892. case KVM_ASSIGN_SET_MSIX_NR: {
  1893. struct kvm_assigned_msix_nr entry_nr;
  1894. r = -EFAULT;
  1895. if (copy_from_user(&entry_nr, argp, sizeof entry_nr))
  1896. goto out;
  1897. r = kvm_vm_ioctl_set_msix_nr(kvm, &entry_nr);
  1898. if (r)
  1899. goto out;
  1900. break;
  1901. }
  1902. case KVM_ASSIGN_SET_MSIX_ENTRY: {
  1903. struct kvm_assigned_msix_entry entry;
  1904. r = -EFAULT;
  1905. if (copy_from_user(&entry, argp, sizeof entry))
  1906. goto out;
  1907. r = kvm_vm_ioctl_set_msix_entry(kvm, &entry);
  1908. if (r)
  1909. goto out;
  1910. break;
  1911. }
  1912. #endif
  1913. #endif /* KVM_CAP_IRQ_ROUTING */
  1914. default:
  1915. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1916. }
  1917. out:
  1918. return r;
  1919. }
  1920. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1921. {
  1922. struct page *page[1];
  1923. unsigned long addr;
  1924. int npages;
  1925. gfn_t gfn = vmf->pgoff;
  1926. struct kvm *kvm = vma->vm_file->private_data;
  1927. addr = gfn_to_hva(kvm, gfn);
  1928. if (kvm_is_error_hva(addr))
  1929. return VM_FAULT_SIGBUS;
  1930. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1931. NULL);
  1932. if (unlikely(npages != 1))
  1933. return VM_FAULT_SIGBUS;
  1934. vmf->page = page[0];
  1935. return 0;
  1936. }
  1937. static struct vm_operations_struct kvm_vm_vm_ops = {
  1938. .fault = kvm_vm_fault,
  1939. };
  1940. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1941. {
  1942. vma->vm_ops = &kvm_vm_vm_ops;
  1943. return 0;
  1944. }
  1945. static struct file_operations kvm_vm_fops = {
  1946. .release = kvm_vm_release,
  1947. .unlocked_ioctl = kvm_vm_ioctl,
  1948. .compat_ioctl = kvm_vm_ioctl,
  1949. .mmap = kvm_vm_mmap,
  1950. };
  1951. static int kvm_dev_ioctl_create_vm(void)
  1952. {
  1953. int fd;
  1954. struct kvm *kvm;
  1955. kvm = kvm_create_vm();
  1956. if (IS_ERR(kvm))
  1957. return PTR_ERR(kvm);
  1958. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
  1959. if (fd < 0)
  1960. kvm_put_kvm(kvm);
  1961. return fd;
  1962. }
  1963. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1964. {
  1965. switch (arg) {
  1966. case KVM_CAP_USER_MEMORY:
  1967. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1968. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1969. return 1;
  1970. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1971. case KVM_CAP_IRQ_ROUTING:
  1972. return KVM_MAX_IRQ_ROUTES;
  1973. #endif
  1974. default:
  1975. break;
  1976. }
  1977. return kvm_dev_ioctl_check_extension(arg);
  1978. }
  1979. static long kvm_dev_ioctl(struct file *filp,
  1980. unsigned int ioctl, unsigned long arg)
  1981. {
  1982. long r = -EINVAL;
  1983. switch (ioctl) {
  1984. case KVM_GET_API_VERSION:
  1985. r = -EINVAL;
  1986. if (arg)
  1987. goto out;
  1988. r = KVM_API_VERSION;
  1989. break;
  1990. case KVM_CREATE_VM:
  1991. r = -EINVAL;
  1992. if (arg)
  1993. goto out;
  1994. r = kvm_dev_ioctl_create_vm();
  1995. break;
  1996. case KVM_CHECK_EXTENSION:
  1997. r = kvm_dev_ioctl_check_extension_generic(arg);
  1998. break;
  1999. case KVM_GET_VCPU_MMAP_SIZE:
  2000. r = -EINVAL;
  2001. if (arg)
  2002. goto out;
  2003. r = PAGE_SIZE; /* struct kvm_run */
  2004. #ifdef CONFIG_X86
  2005. r += PAGE_SIZE; /* pio data page */
  2006. #endif
  2007. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  2008. r += PAGE_SIZE; /* coalesced mmio ring page */
  2009. #endif
  2010. break;
  2011. case KVM_TRACE_ENABLE:
  2012. case KVM_TRACE_PAUSE:
  2013. case KVM_TRACE_DISABLE:
  2014. r = kvm_trace_ioctl(ioctl, arg);
  2015. break;
  2016. default:
  2017. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  2018. }
  2019. out:
  2020. return r;
  2021. }
  2022. static struct file_operations kvm_chardev_ops = {
  2023. .unlocked_ioctl = kvm_dev_ioctl,
  2024. .compat_ioctl = kvm_dev_ioctl,
  2025. };
  2026. static struct miscdevice kvm_dev = {
  2027. KVM_MINOR,
  2028. "kvm",
  2029. &kvm_chardev_ops,
  2030. };
  2031. static void hardware_enable(void *junk)
  2032. {
  2033. int cpu = raw_smp_processor_id();
  2034. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2035. return;
  2036. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  2037. kvm_arch_hardware_enable(NULL);
  2038. }
  2039. static void hardware_disable(void *junk)
  2040. {
  2041. int cpu = raw_smp_processor_id();
  2042. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  2043. return;
  2044. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  2045. kvm_arch_hardware_disable(NULL);
  2046. }
  2047. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2048. void *v)
  2049. {
  2050. int cpu = (long)v;
  2051. val &= ~CPU_TASKS_FROZEN;
  2052. switch (val) {
  2053. case CPU_DYING:
  2054. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2055. cpu);
  2056. hardware_disable(NULL);
  2057. break;
  2058. case CPU_UP_CANCELED:
  2059. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2060. cpu);
  2061. smp_call_function_single(cpu, hardware_disable, NULL, 1);
  2062. break;
  2063. case CPU_ONLINE:
  2064. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2065. cpu);
  2066. smp_call_function_single(cpu, hardware_enable, NULL, 1);
  2067. break;
  2068. }
  2069. return NOTIFY_OK;
  2070. }
  2071. asmlinkage void kvm_handle_fault_on_reboot(void)
  2072. {
  2073. if (kvm_rebooting)
  2074. /* spin while reset goes on */
  2075. while (true)
  2076. ;
  2077. /* Fault while not rebooting. We want the trace. */
  2078. BUG();
  2079. }
  2080. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  2081. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2082. void *v)
  2083. {
  2084. /*
  2085. * Some (well, at least mine) BIOSes hang on reboot if
  2086. * in vmx root mode.
  2087. *
  2088. * And Intel TXT required VMX off for all cpu when system shutdown.
  2089. */
  2090. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2091. kvm_rebooting = true;
  2092. on_each_cpu(hardware_disable, NULL, 1);
  2093. return NOTIFY_OK;
  2094. }
  2095. static struct notifier_block kvm_reboot_notifier = {
  2096. .notifier_call = kvm_reboot,
  2097. .priority = 0,
  2098. };
  2099. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2100. {
  2101. memset(bus, 0, sizeof(*bus));
  2102. }
  2103. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2104. {
  2105. int i;
  2106. for (i = 0; i < bus->dev_count; i++) {
  2107. struct kvm_io_device *pos = bus->devs[i];
  2108. kvm_iodevice_destructor(pos);
  2109. }
  2110. }
  2111. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
  2112. gpa_t addr, int len, int is_write)
  2113. {
  2114. int i;
  2115. for (i = 0; i < bus->dev_count; i++) {
  2116. struct kvm_io_device *pos = bus->devs[i];
  2117. if (pos->in_range(pos, addr, len, is_write))
  2118. return pos;
  2119. }
  2120. return NULL;
  2121. }
  2122. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2123. {
  2124. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2125. bus->devs[bus->dev_count++] = dev;
  2126. }
  2127. static struct notifier_block kvm_cpu_notifier = {
  2128. .notifier_call = kvm_cpu_hotplug,
  2129. .priority = 20, /* must be > scheduler priority */
  2130. };
  2131. static int vm_stat_get(void *_offset, u64 *val)
  2132. {
  2133. unsigned offset = (long)_offset;
  2134. struct kvm *kvm;
  2135. *val = 0;
  2136. spin_lock(&kvm_lock);
  2137. list_for_each_entry(kvm, &vm_list, vm_list)
  2138. *val += *(u32 *)((void *)kvm + offset);
  2139. spin_unlock(&kvm_lock);
  2140. return 0;
  2141. }
  2142. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  2143. static int vcpu_stat_get(void *_offset, u64 *val)
  2144. {
  2145. unsigned offset = (long)_offset;
  2146. struct kvm *kvm;
  2147. struct kvm_vcpu *vcpu;
  2148. int i;
  2149. *val = 0;
  2150. spin_lock(&kvm_lock);
  2151. list_for_each_entry(kvm, &vm_list, vm_list)
  2152. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2153. vcpu = kvm->vcpus[i];
  2154. if (vcpu)
  2155. *val += *(u32 *)((void *)vcpu + offset);
  2156. }
  2157. spin_unlock(&kvm_lock);
  2158. return 0;
  2159. }
  2160. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  2161. static struct file_operations *stat_fops[] = {
  2162. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  2163. [KVM_STAT_VM] = &vm_stat_fops,
  2164. };
  2165. static void kvm_init_debug(void)
  2166. {
  2167. struct kvm_stats_debugfs_item *p;
  2168. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  2169. for (p = debugfs_entries; p->name; ++p)
  2170. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  2171. (void *)(long)p->offset,
  2172. stat_fops[p->kind]);
  2173. }
  2174. static void kvm_exit_debug(void)
  2175. {
  2176. struct kvm_stats_debugfs_item *p;
  2177. for (p = debugfs_entries; p->name; ++p)
  2178. debugfs_remove(p->dentry);
  2179. debugfs_remove(kvm_debugfs_dir);
  2180. }
  2181. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2182. {
  2183. hardware_disable(NULL);
  2184. return 0;
  2185. }
  2186. static int kvm_resume(struct sys_device *dev)
  2187. {
  2188. hardware_enable(NULL);
  2189. return 0;
  2190. }
  2191. static struct sysdev_class kvm_sysdev_class = {
  2192. .name = "kvm",
  2193. .suspend = kvm_suspend,
  2194. .resume = kvm_resume,
  2195. };
  2196. static struct sys_device kvm_sysdev = {
  2197. .id = 0,
  2198. .cls = &kvm_sysdev_class,
  2199. };
  2200. struct page *bad_page;
  2201. pfn_t bad_pfn;
  2202. static inline
  2203. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2204. {
  2205. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2206. }
  2207. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2208. {
  2209. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2210. kvm_arch_vcpu_load(vcpu, cpu);
  2211. }
  2212. static void kvm_sched_out(struct preempt_notifier *pn,
  2213. struct task_struct *next)
  2214. {
  2215. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2216. kvm_arch_vcpu_put(vcpu);
  2217. }
  2218. int kvm_init(void *opaque, unsigned int vcpu_size,
  2219. struct module *module)
  2220. {
  2221. int r;
  2222. int cpu;
  2223. kvm_init_debug();
  2224. r = kvm_arch_init(opaque);
  2225. if (r)
  2226. goto out_fail;
  2227. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2228. if (bad_page == NULL) {
  2229. r = -ENOMEM;
  2230. goto out;
  2231. }
  2232. bad_pfn = page_to_pfn(bad_page);
  2233. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2234. r = -ENOMEM;
  2235. goto out_free_0;
  2236. }
  2237. r = kvm_arch_hardware_setup();
  2238. if (r < 0)
  2239. goto out_free_0a;
  2240. for_each_online_cpu(cpu) {
  2241. smp_call_function_single(cpu,
  2242. kvm_arch_check_processor_compat,
  2243. &r, 1);
  2244. if (r < 0)
  2245. goto out_free_1;
  2246. }
  2247. on_each_cpu(hardware_enable, NULL, 1);
  2248. r = register_cpu_notifier(&kvm_cpu_notifier);
  2249. if (r)
  2250. goto out_free_2;
  2251. register_reboot_notifier(&kvm_reboot_notifier);
  2252. r = sysdev_class_register(&kvm_sysdev_class);
  2253. if (r)
  2254. goto out_free_3;
  2255. r = sysdev_register(&kvm_sysdev);
  2256. if (r)
  2257. goto out_free_4;
  2258. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2259. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2260. __alignof__(struct kvm_vcpu),
  2261. 0, NULL);
  2262. if (!kvm_vcpu_cache) {
  2263. r = -ENOMEM;
  2264. goto out_free_5;
  2265. }
  2266. kvm_chardev_ops.owner = module;
  2267. kvm_vm_fops.owner = module;
  2268. kvm_vcpu_fops.owner = module;
  2269. r = misc_register(&kvm_dev);
  2270. if (r) {
  2271. printk(KERN_ERR "kvm: misc device register failed\n");
  2272. goto out_free;
  2273. }
  2274. kvm_preempt_ops.sched_in = kvm_sched_in;
  2275. kvm_preempt_ops.sched_out = kvm_sched_out;
  2276. return 0;
  2277. out_free:
  2278. kmem_cache_destroy(kvm_vcpu_cache);
  2279. out_free_5:
  2280. sysdev_unregister(&kvm_sysdev);
  2281. out_free_4:
  2282. sysdev_class_unregister(&kvm_sysdev_class);
  2283. out_free_3:
  2284. unregister_reboot_notifier(&kvm_reboot_notifier);
  2285. unregister_cpu_notifier(&kvm_cpu_notifier);
  2286. out_free_2:
  2287. on_each_cpu(hardware_disable, NULL, 1);
  2288. out_free_1:
  2289. kvm_arch_hardware_unsetup();
  2290. out_free_0a:
  2291. free_cpumask_var(cpus_hardware_enabled);
  2292. out_free_0:
  2293. __free_page(bad_page);
  2294. out:
  2295. kvm_arch_exit();
  2296. kvm_exit_debug();
  2297. out_fail:
  2298. return r;
  2299. }
  2300. EXPORT_SYMBOL_GPL(kvm_init);
  2301. void kvm_exit(void)
  2302. {
  2303. kvm_trace_cleanup();
  2304. misc_deregister(&kvm_dev);
  2305. kmem_cache_destroy(kvm_vcpu_cache);
  2306. sysdev_unregister(&kvm_sysdev);
  2307. sysdev_class_unregister(&kvm_sysdev_class);
  2308. unregister_reboot_notifier(&kvm_reboot_notifier);
  2309. unregister_cpu_notifier(&kvm_cpu_notifier);
  2310. on_each_cpu(hardware_disable, NULL, 1);
  2311. kvm_arch_hardware_unsetup();
  2312. kvm_arch_exit();
  2313. kvm_exit_debug();
  2314. free_cpumask_var(cpus_hardware_enabled);
  2315. __free_page(bad_page);
  2316. }
  2317. EXPORT_SYMBOL_GPL(kvm_exit);