ctatc.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define DAIONUM 7
  31. #define MAX_MULTI_CHN 8
  32. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  33. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  34. | ((IEC958_AES1_CON_MIXER \
  35. | IEC958_AES1_CON_ORIGINAL) << 8) \
  36. | (0x10 << 16) \
  37. | ((IEC958_AES3_CON_FS_48000) << 24))
  38. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  44. "UAA", CTUAA),
  45. SND_PCI_QUIRK_VENDOR(PCI_VENDOR_ID_CREATIVE,
  46. "Unknown", CT20K1_UNKNOWN),
  47. { } /* terminator */
  48. };
  49. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  50. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  51. "SB0760", CTSB0760),
  52. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  53. "SB0880", CTSB0880),
  54. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  55. "SB0880", CTSB0880),
  56. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  57. "SB0880", CTSB0880),
  58. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  59. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  60. CTHENDRIX),
  61. { } /* terminator */
  62. };
  63. static const char *ct_subsys_name[NUM_CTCARDS] = {
  64. [CTSB055X] = "SB055x",
  65. [CTSB073X] = "SB073x",
  66. [CTSB0760] = "SB076x",
  67. [CTUAA] = "UAA",
  68. [CT20K1_UNKNOWN] = "Unknown",
  69. [CTHENDRIX] = "Hendrix",
  70. [CTSB0880] = "SB0880",
  71. };
  72. static struct {
  73. int (*create)(struct ct_atc *atc,
  74. enum CTALSADEVS device, const char *device_name);
  75. int (*destroy)(void *alsa_dev);
  76. const char *public_name;
  77. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  78. [FRONT] = { .create = ct_alsa_pcm_create,
  79. .destroy = NULL,
  80. .public_name = "Front/WaveIn"},
  81. [SURROUND] = { .create = ct_alsa_pcm_create,
  82. .destroy = NULL,
  83. .public_name = "Surround"},
  84. [CLFE] = { .create = ct_alsa_pcm_create,
  85. .destroy = NULL,
  86. .public_name = "Center/LFE"},
  87. [SIDE] = { .create = ct_alsa_pcm_create,
  88. .destroy = NULL,
  89. .public_name = "Side"},
  90. [IEC958] = { .create = ct_alsa_pcm_create,
  91. .destroy = NULL,
  92. .public_name = "IEC958 Non-audio"},
  93. [MIXER] = { .create = ct_alsa_mix_create,
  94. .destroy = NULL,
  95. .public_name = "Mixer"}
  96. };
  97. typedef int (*create_t)(void *, void **);
  98. typedef int (*destroy_t)(void *);
  99. static struct {
  100. int (*create)(void *hw, void **rmgr);
  101. int (*destroy)(void *mgr);
  102. } rsc_mgr_funcs[NUM_RSCTYP] = {
  103. [SRC] = { .create = (create_t)src_mgr_create,
  104. .destroy = (destroy_t)src_mgr_destroy },
  105. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  106. .destroy = (destroy_t)srcimp_mgr_destroy },
  107. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  108. .destroy = (destroy_t)amixer_mgr_destroy },
  109. [SUM] = { .create = (create_t)sum_mgr_create,
  110. .destroy = (destroy_t)sum_mgr_destroy },
  111. [DAIO] = { .create = (create_t)daio_mgr_create,
  112. .destroy = (destroy_t)daio_mgr_destroy }
  113. };
  114. static int
  115. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  116. /* *
  117. * Only mono and interleaved modes are supported now.
  118. * Always allocates a contiguous channel block.
  119. * */
  120. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  121. {
  122. struct snd_pcm_runtime *runtime;
  123. struct ct_vm *vm;
  124. if (NULL == apcm->substream)
  125. return 0;
  126. runtime = apcm->substream->runtime;
  127. vm = atc->vm;
  128. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  129. if (NULL == apcm->vm_block)
  130. return -ENOENT;
  131. return 0;
  132. }
  133. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  134. {
  135. struct ct_vm *vm;
  136. if (NULL == apcm->vm_block)
  137. return;
  138. vm = atc->vm;
  139. vm->unmap(vm, apcm->vm_block);
  140. apcm->vm_block = NULL;
  141. }
  142. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  143. {
  144. struct ct_vm *vm;
  145. void *kvirt_addr;
  146. unsigned long phys_addr;
  147. vm = atc->vm;
  148. kvirt_addr = vm->get_ptp_virt(vm, index);
  149. if (kvirt_addr == NULL)
  150. phys_addr = (~0UL);
  151. else
  152. phys_addr = virt_to_phys(kvirt_addr);
  153. return phys_addr;
  154. }
  155. static unsigned int convert_format(snd_pcm_format_t snd_format)
  156. {
  157. switch (snd_format) {
  158. case SNDRV_PCM_FORMAT_U8:
  159. return SRC_SF_U8;
  160. case SNDRV_PCM_FORMAT_S16_LE:
  161. return SRC_SF_S16;
  162. case SNDRV_PCM_FORMAT_S24_3LE:
  163. return SRC_SF_S24;
  164. case SNDRV_PCM_FORMAT_S32_LE:
  165. return SRC_SF_S32;
  166. case SNDRV_PCM_FORMAT_FLOAT_LE:
  167. return SRC_SF_F32;
  168. default:
  169. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  170. snd_format);
  171. return SRC_SF_S16;
  172. }
  173. }
  174. static unsigned int
  175. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  176. {
  177. unsigned int pitch;
  178. int b;
  179. /* get pitch and convert to fixed-point 8.24 format. */
  180. pitch = (input_rate / output_rate) << 24;
  181. input_rate %= output_rate;
  182. input_rate /= 100;
  183. output_rate /= 100;
  184. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  185. b--;
  186. if (b >= 0) {
  187. input_rate <<= (31 - b);
  188. input_rate /= output_rate;
  189. b = 24 - (31 - b);
  190. if (b >= 0)
  191. input_rate <<= b;
  192. else
  193. input_rate >>= -b;
  194. pitch |= input_rate;
  195. }
  196. return pitch;
  197. }
  198. static int select_rom(unsigned int pitch)
  199. {
  200. if ((pitch > 0x00428f5c) && (pitch < 0x01b851ec)) {
  201. /* 0.26 <= pitch <= 1.72 */
  202. return 1;
  203. } else if ((0x01d66666 == pitch) || (0x01d66667 == pitch)) {
  204. /* pitch == 1.8375 */
  205. return 2;
  206. } else if (0x02000000 == pitch) {
  207. /* pitch == 2 */
  208. return 3;
  209. } else if ((pitch >= 0x0) && (pitch <= 0x08000000)) {
  210. /* 0 <= pitch <= 8 */
  211. return 0;
  212. } else {
  213. return -ENOENT;
  214. }
  215. }
  216. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  217. {
  218. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  219. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  220. struct src_desc desc = {0};
  221. struct amixer_desc mix_dsc = {0};
  222. struct src *src;
  223. struct amixer *amixer;
  224. int err;
  225. int n_amixer = apcm->substream->runtime->channels, i = 0;
  226. int device = apcm->substream->pcm->device;
  227. unsigned int pitch;
  228. unsigned long flags;
  229. if (NULL != apcm->src) {
  230. /* Prepared pcm playback */
  231. return 0;
  232. }
  233. /* first release old resources */
  234. atc->pcm_release_resources(atc, apcm);
  235. /* Get SRC resource */
  236. desc.multi = apcm->substream->runtime->channels;
  237. desc.msr = atc->msr;
  238. desc.mode = MEMRD;
  239. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  240. if (err)
  241. goto error1;
  242. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  243. (atc->rsr * atc->msr));
  244. src = apcm->src;
  245. src->ops->set_pitch(src, pitch);
  246. src->ops->set_rom(src, select_rom(pitch));
  247. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  248. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  249. /* Get AMIXER resource */
  250. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  251. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  252. if (NULL == apcm->amixers) {
  253. err = -ENOMEM;
  254. goto error1;
  255. }
  256. mix_dsc.msr = atc->msr;
  257. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  258. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  259. (struct amixer **)&apcm->amixers[i]);
  260. if (err)
  261. goto error1;
  262. apcm->n_amixer++;
  263. }
  264. /* Set up device virtual mem map */
  265. err = ct_map_audio_buffer(atc, apcm);
  266. if (err < 0)
  267. goto error1;
  268. /* Connect resources */
  269. src = apcm->src;
  270. for (i = 0; i < n_amixer; i++) {
  271. amixer = apcm->amixers[i];
  272. spin_lock_irqsave(&atc->atc_lock, flags);
  273. amixer->ops->setup(amixer, &src->rsc,
  274. INIT_VOL, atc->pcm[i+device*2]);
  275. spin_unlock_irqrestore(&atc->atc_lock, flags);
  276. src = src->ops->next_interleave(src);
  277. if (NULL == src)
  278. src = apcm->src;
  279. }
  280. ct_timer_prepare(apcm->timer);
  281. return 0;
  282. error1:
  283. atc_pcm_release_resources(atc, apcm);
  284. return err;
  285. }
  286. static int
  287. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  288. {
  289. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  290. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  291. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  292. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  293. struct srcimp *srcimp;
  294. int i;
  295. if (NULL != apcm->srcimps) {
  296. for (i = 0; i < apcm->n_srcimp; i++) {
  297. srcimp = apcm->srcimps[i];
  298. srcimp->ops->unmap(srcimp);
  299. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  300. apcm->srcimps[i] = NULL;
  301. }
  302. kfree(apcm->srcimps);
  303. apcm->srcimps = NULL;
  304. }
  305. if (NULL != apcm->srccs) {
  306. for (i = 0; i < apcm->n_srcc; i++) {
  307. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  308. apcm->srccs[i] = NULL;
  309. }
  310. kfree(apcm->srccs);
  311. apcm->srccs = NULL;
  312. }
  313. if (NULL != apcm->amixers) {
  314. for (i = 0; i < apcm->n_amixer; i++) {
  315. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  316. apcm->amixers[i] = NULL;
  317. }
  318. kfree(apcm->amixers);
  319. apcm->amixers = NULL;
  320. }
  321. if (NULL != apcm->mono) {
  322. sum_mgr->put_sum(sum_mgr, apcm->mono);
  323. apcm->mono = NULL;
  324. }
  325. if (NULL != apcm->src) {
  326. src_mgr->put_src(src_mgr, apcm->src);
  327. apcm->src = NULL;
  328. }
  329. if (NULL != apcm->vm_block) {
  330. /* Undo device virtual mem map */
  331. ct_unmap_audio_buffer(atc, apcm);
  332. apcm->vm_block = NULL;
  333. }
  334. return 0;
  335. }
  336. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  337. {
  338. unsigned int max_cisz;
  339. struct src *src = apcm->src;
  340. if (apcm->started)
  341. return 0;
  342. apcm->started = 1;
  343. max_cisz = src->multi * src->rsc.msr;
  344. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  345. src->ops->set_sa(src, apcm->vm_block->addr);
  346. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  347. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  348. src->ops->set_cisz(src, max_cisz);
  349. src->ops->set_bm(src, 1);
  350. src->ops->set_state(src, SRC_STATE_INIT);
  351. src->ops->commit_write(src);
  352. ct_timer_start(apcm->timer);
  353. return 0;
  354. }
  355. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  356. {
  357. struct src *src;
  358. int i;
  359. ct_timer_stop(apcm->timer);
  360. src = apcm->src;
  361. src->ops->set_bm(src, 0);
  362. src->ops->set_state(src, SRC_STATE_OFF);
  363. src->ops->commit_write(src);
  364. if (NULL != apcm->srccs) {
  365. for (i = 0; i < apcm->n_srcc; i++) {
  366. src = apcm->srccs[i];
  367. src->ops->set_bm(src, 0);
  368. src->ops->set_state(src, SRC_STATE_OFF);
  369. src->ops->commit_write(src);
  370. }
  371. }
  372. apcm->started = 0;
  373. return 0;
  374. }
  375. static int
  376. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  377. {
  378. struct src *src = apcm->src;
  379. u32 size, max_cisz;
  380. int position;
  381. if (!src)
  382. return 0;
  383. position = src->ops->get_ca(src);
  384. size = apcm->vm_block->size;
  385. max_cisz = src->multi * src->rsc.msr;
  386. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  387. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  388. }
  389. struct src_node_conf_t {
  390. unsigned int pitch;
  391. unsigned int msr:8;
  392. unsigned int mix_msr:8;
  393. unsigned int imp_msr:8;
  394. unsigned int vo:1;
  395. };
  396. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  397. struct src_node_conf_t *conf, int *n_srcc)
  398. {
  399. unsigned int pitch;
  400. /* get pitch and convert to fixed-point 8.24 format. */
  401. pitch = atc_get_pitch((atc->rsr * atc->msr),
  402. apcm->substream->runtime->rate);
  403. *n_srcc = 0;
  404. if (1 == atc->msr) {
  405. *n_srcc = apcm->substream->runtime->channels;
  406. conf[0].pitch = pitch;
  407. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  408. conf[0].vo = 1;
  409. } else if (2 == atc->msr) {
  410. if (0x8000000 < pitch) {
  411. /* Need two-stage SRCs, SRCIMPs and
  412. * AMIXERs for converting format */
  413. conf[0].pitch = (atc->msr << 24);
  414. conf[0].msr = conf[0].mix_msr = 1;
  415. conf[0].imp_msr = atc->msr;
  416. conf[0].vo = 0;
  417. conf[1].pitch = atc_get_pitch(atc->rsr,
  418. apcm->substream->runtime->rate);
  419. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  420. conf[1].vo = 1;
  421. *n_srcc = apcm->substream->runtime->channels * 2;
  422. } else if (0x1000000 < pitch) {
  423. /* Need one-stage SRCs, SRCIMPs and
  424. * AMIXERs for converting format */
  425. conf[0].pitch = pitch;
  426. conf[0].msr = conf[0].mix_msr
  427. = conf[0].imp_msr = atc->msr;
  428. conf[0].vo = 1;
  429. *n_srcc = apcm->substream->runtime->channels;
  430. }
  431. }
  432. }
  433. static int
  434. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  435. {
  436. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  437. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  438. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  439. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  440. struct src_desc src_dsc = {0};
  441. struct src *src;
  442. struct srcimp_desc srcimp_dsc = {0};
  443. struct srcimp *srcimp;
  444. struct amixer_desc mix_dsc = {0};
  445. struct sum_desc sum_dsc = {0};
  446. unsigned int pitch;
  447. int multi, err, i;
  448. int n_srcimp, n_amixer, n_srcc, n_sum;
  449. struct src_node_conf_t src_node_conf[2] = {{0} };
  450. /* first release old resources */
  451. atc_pcm_release_resources(atc, apcm);
  452. /* The numbers of converting SRCs and SRCIMPs should be determined
  453. * by pitch value. */
  454. multi = apcm->substream->runtime->channels;
  455. /* get pitch and convert to fixed-point 8.24 format. */
  456. pitch = atc_get_pitch((atc->rsr * atc->msr),
  457. apcm->substream->runtime->rate);
  458. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  459. n_sum = (1 == multi) ? 1 : 0;
  460. n_amixer = n_sum * 2 + n_srcc;
  461. n_srcimp = n_srcc;
  462. if ((multi > 1) && (0x8000000 >= pitch)) {
  463. /* Need extra AMIXERs and SRCIMPs for special treatment
  464. * of interleaved recording of conjugate channels */
  465. n_amixer += multi * atc->msr;
  466. n_srcimp += multi * atc->msr;
  467. } else {
  468. n_srcimp += multi;
  469. }
  470. if (n_srcc) {
  471. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  472. if (NULL == apcm->srccs)
  473. return -ENOMEM;
  474. }
  475. if (n_amixer) {
  476. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  477. if (NULL == apcm->amixers) {
  478. err = -ENOMEM;
  479. goto error1;
  480. }
  481. }
  482. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  483. if (NULL == apcm->srcimps) {
  484. err = -ENOMEM;
  485. goto error1;
  486. }
  487. /* Allocate SRCs for sample rate conversion if needed */
  488. src_dsc.multi = 1;
  489. src_dsc.mode = ARCRW;
  490. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  491. src_dsc.msr = src_node_conf[i/multi].msr;
  492. err = src_mgr->get_src(src_mgr, &src_dsc,
  493. (struct src **)&apcm->srccs[i]);
  494. if (err)
  495. goto error1;
  496. src = apcm->srccs[i];
  497. pitch = src_node_conf[i/multi].pitch;
  498. src->ops->set_pitch(src, pitch);
  499. src->ops->set_rom(src, select_rom(pitch));
  500. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  501. apcm->n_srcc++;
  502. }
  503. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  504. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  505. if (i < (n_sum*2))
  506. mix_dsc.msr = atc->msr;
  507. else if (i < (n_sum*2+n_srcc))
  508. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  509. else
  510. mix_dsc.msr = 1;
  511. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  512. (struct amixer **)&apcm->amixers[i]);
  513. if (err)
  514. goto error1;
  515. apcm->n_amixer++;
  516. }
  517. /* Allocate a SUM resource to mix all input channels together */
  518. sum_dsc.msr = atc->msr;
  519. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  520. if (err)
  521. goto error1;
  522. pitch = atc_get_pitch((atc->rsr * atc->msr),
  523. apcm->substream->runtime->rate);
  524. /* Allocate SRCIMP resources */
  525. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  526. if (i < (n_srcc))
  527. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  528. else if (1 == multi)
  529. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  530. else
  531. srcimp_dsc.msr = 1;
  532. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  533. if (err)
  534. goto error1;
  535. apcm->srcimps[i] = srcimp;
  536. apcm->n_srcimp++;
  537. }
  538. /* Allocate a SRC for writing data to host memory */
  539. src_dsc.multi = apcm->substream->runtime->channels;
  540. src_dsc.msr = 1;
  541. src_dsc.mode = MEMWR;
  542. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  543. if (err)
  544. goto error1;
  545. src = apcm->src;
  546. src->ops->set_pitch(src, pitch);
  547. /* Set up device virtual mem map */
  548. err = ct_map_audio_buffer(atc, apcm);
  549. if (err < 0)
  550. goto error1;
  551. return 0;
  552. error1:
  553. atc_pcm_release_resources(atc, apcm);
  554. return err;
  555. }
  556. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  557. {
  558. struct src *src;
  559. struct amixer *amixer;
  560. struct srcimp *srcimp;
  561. struct ct_mixer *mixer = atc->mixer;
  562. struct sum *mono;
  563. struct rsc *out_ports[8] = {NULL};
  564. int err, i, j, n_sum, multi;
  565. unsigned int pitch;
  566. int mix_base = 0, imp_base = 0;
  567. if (NULL != apcm->src) {
  568. /* Prepared pcm capture */
  569. return 0;
  570. }
  571. /* Get needed resources. */
  572. err = atc_pcm_capture_get_resources(atc, apcm);
  573. if (err)
  574. return err;
  575. /* Connect resources */
  576. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  577. &out_ports[0], &out_ports[1]);
  578. multi = apcm->substream->runtime->channels;
  579. if (1 == multi) {
  580. mono = apcm->mono;
  581. for (i = 0; i < 2; i++) {
  582. amixer = apcm->amixers[i];
  583. amixer->ops->setup(amixer, out_ports[i],
  584. MONO_SUM_SCALE, mono);
  585. }
  586. out_ports[0] = &mono->rsc;
  587. n_sum = 1;
  588. mix_base = n_sum * 2;
  589. }
  590. for (i = 0; i < apcm->n_srcc; i++) {
  591. src = apcm->srccs[i];
  592. srcimp = apcm->srcimps[imp_base+i];
  593. amixer = apcm->amixers[mix_base+i];
  594. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  595. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  596. out_ports[i%multi] = &amixer->rsc;
  597. }
  598. pitch = atc_get_pitch((atc->rsr * atc->msr),
  599. apcm->substream->runtime->rate);
  600. if ((multi > 1) && (pitch <= 0x8000000)) {
  601. /* Special connection for interleaved
  602. * recording with conjugate channels */
  603. for (i = 0; i < multi; i++) {
  604. out_ports[i]->ops->master(out_ports[i]);
  605. for (j = 0; j < atc->msr; j++) {
  606. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  607. amixer->ops->set_input(amixer, out_ports[i]);
  608. amixer->ops->set_scale(amixer, INIT_VOL);
  609. amixer->ops->set_sum(amixer, NULL);
  610. amixer->ops->commit_raw_write(amixer);
  611. out_ports[i]->ops->next_conj(out_ports[i]);
  612. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  613. srcimp->ops->map(srcimp, apcm->src,
  614. &amixer->rsc);
  615. }
  616. }
  617. } else {
  618. for (i = 0; i < multi; i++) {
  619. srcimp = apcm->srcimps[apcm->n_srcc+i];
  620. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  621. }
  622. }
  623. ct_timer_prepare(apcm->timer);
  624. return 0;
  625. }
  626. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  627. {
  628. struct src *src;
  629. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  630. int i, multi;
  631. if (apcm->started)
  632. return 0;
  633. apcm->started = 1;
  634. multi = apcm->substream->runtime->channels;
  635. /* Set up converting SRCs */
  636. for (i = 0; i < apcm->n_srcc; i++) {
  637. src = apcm->srccs[i];
  638. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  639. src_mgr->src_disable(src_mgr, src);
  640. }
  641. /* Set up recording SRC */
  642. src = apcm->src;
  643. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  644. src->ops->set_sa(src, apcm->vm_block->addr);
  645. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  646. src->ops->set_ca(src, apcm->vm_block->addr);
  647. src_mgr->src_disable(src_mgr, src);
  648. /* Disable relevant SRCs firstly */
  649. src_mgr->commit_write(src_mgr);
  650. /* Enable SRCs respectively */
  651. for (i = 0; i < apcm->n_srcc; i++) {
  652. src = apcm->srccs[i];
  653. src->ops->set_state(src, SRC_STATE_RUN);
  654. src->ops->commit_write(src);
  655. src_mgr->src_enable_s(src_mgr, src);
  656. }
  657. src = apcm->src;
  658. src->ops->set_bm(src, 1);
  659. src->ops->set_state(src, SRC_STATE_RUN);
  660. src->ops->commit_write(src);
  661. src_mgr->src_enable_s(src_mgr, src);
  662. /* Enable relevant SRCs synchronously */
  663. src_mgr->commit_write(src_mgr);
  664. ct_timer_start(apcm->timer);
  665. return 0;
  666. }
  667. static int
  668. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  669. {
  670. struct src *src = apcm->src;
  671. if (!src)
  672. return 0;
  673. return src->ops->get_ca(src) - apcm->vm_block->addr;
  674. }
  675. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  676. struct ct_atc_pcm *apcm)
  677. {
  678. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  679. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  680. struct src_desc desc = {0};
  681. struct amixer_desc mix_dsc = {0};
  682. struct src *src;
  683. int err;
  684. int n_amixer = apcm->substream->runtime->channels, i;
  685. unsigned int pitch, rsr = atc->pll_rate;
  686. /* first release old resources */
  687. atc_pcm_release_resources(atc, apcm);
  688. /* Get SRC resource */
  689. desc.multi = apcm->substream->runtime->channels;
  690. desc.msr = 1;
  691. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  692. desc.msr <<= 1;
  693. desc.mode = MEMRD;
  694. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  695. if (err)
  696. goto error1;
  697. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  698. src = apcm->src;
  699. src->ops->set_pitch(src, pitch);
  700. src->ops->set_rom(src, select_rom(pitch));
  701. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  702. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  703. src->ops->set_bp(src, 1);
  704. /* Get AMIXER resource */
  705. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  706. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  707. if (NULL == apcm->amixers) {
  708. err = -ENOMEM;
  709. goto error1;
  710. }
  711. mix_dsc.msr = desc.msr;
  712. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  713. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  714. (struct amixer **)&apcm->amixers[i]);
  715. if (err)
  716. goto error1;
  717. apcm->n_amixer++;
  718. }
  719. /* Set up device virtual mem map */
  720. err = ct_map_audio_buffer(atc, apcm);
  721. if (err < 0)
  722. goto error1;
  723. return 0;
  724. error1:
  725. atc_pcm_release_resources(atc, apcm);
  726. return err;
  727. }
  728. static int atc_pll_init(struct ct_atc *atc, int rate)
  729. {
  730. struct hw *hw = atc->hw;
  731. int err;
  732. err = hw->pll_init(hw, rate);
  733. atc->pll_rate = err ? 0 : rate;
  734. return err;
  735. }
  736. static int
  737. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  738. {
  739. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  740. unsigned long flags;
  741. unsigned int rate = apcm->substream->runtime->rate;
  742. unsigned int status;
  743. int err;
  744. unsigned char iec958_con_fs;
  745. switch (rate) {
  746. case 48000:
  747. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  748. break;
  749. case 44100:
  750. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  751. break;
  752. case 32000:
  753. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  754. break;
  755. default:
  756. return -ENOENT;
  757. }
  758. spin_lock_irqsave(&atc->atc_lock, flags);
  759. dao->ops->get_spos(dao, &status);
  760. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  761. status &= ((~IEC958_AES3_CON_FS) << 24);
  762. status |= (iec958_con_fs << 24);
  763. dao->ops->set_spos(dao, status);
  764. dao->ops->commit_write(dao);
  765. }
  766. if ((rate != atc->pll_rate) && (32000 != rate))
  767. err = atc_pll_init(atc, rate);
  768. spin_unlock_irqrestore(&atc->atc_lock, flags);
  769. return err;
  770. }
  771. static int
  772. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  773. {
  774. struct src *src;
  775. struct amixer *amixer;
  776. struct dao *dao;
  777. int err;
  778. int i;
  779. unsigned long flags;
  780. if (NULL != apcm->src)
  781. return 0;
  782. /* Configure SPDIFOO and PLL to passthrough mode;
  783. * determine pll_rate. */
  784. err = spdif_passthru_playback_setup(atc, apcm);
  785. if (err)
  786. return err;
  787. /* Get needed resources. */
  788. err = spdif_passthru_playback_get_resources(atc, apcm);
  789. if (err)
  790. return err;
  791. /* Connect resources */
  792. src = apcm->src;
  793. for (i = 0; i < apcm->n_amixer; i++) {
  794. amixer = apcm->amixers[i];
  795. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  796. src = src->ops->next_interleave(src);
  797. if (NULL == src)
  798. src = apcm->src;
  799. }
  800. /* Connect to SPDIFOO */
  801. spin_lock_irqsave(&atc->atc_lock, flags);
  802. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  803. amixer = apcm->amixers[0];
  804. dao->ops->set_left_input(dao, &amixer->rsc);
  805. amixer = apcm->amixers[1];
  806. dao->ops->set_right_input(dao, &amixer->rsc);
  807. spin_unlock_irqrestore(&atc->atc_lock, flags);
  808. ct_timer_prepare(apcm->timer);
  809. return 0;
  810. }
  811. static int atc_select_line_in(struct ct_atc *atc)
  812. {
  813. struct hw *hw = atc->hw;
  814. struct ct_mixer *mixer = atc->mixer;
  815. struct src *src;
  816. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  817. return 0;
  818. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  819. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  820. hw->select_adc_source(hw, ADC_LINEIN);
  821. src = atc->srcs[2];
  822. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  823. src = atc->srcs[3];
  824. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  825. return 0;
  826. }
  827. static int atc_select_mic_in(struct ct_atc *atc)
  828. {
  829. struct hw *hw = atc->hw;
  830. struct ct_mixer *mixer = atc->mixer;
  831. struct src *src;
  832. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  833. return 0;
  834. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  835. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  836. hw->select_adc_source(hw, ADC_MICIN);
  837. src = atc->srcs[2];
  838. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  839. src = atc->srcs[3];
  840. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  841. return 0;
  842. }
  843. static int atc_have_digit_io_switch(struct ct_atc *atc)
  844. {
  845. struct hw *hw = atc->hw;
  846. return hw->have_digit_io_switch(hw);
  847. }
  848. static int atc_select_digit_io(struct ct_atc *atc)
  849. {
  850. struct hw *hw = atc->hw;
  851. if (hw->is_adc_source_selected(hw, ADC_NONE))
  852. return 0;
  853. hw->select_adc_source(hw, ADC_NONE);
  854. return 0;
  855. }
  856. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  857. {
  858. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  859. if (state)
  860. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  861. else
  862. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  863. daio_mgr->commit_write(daio_mgr);
  864. return 0;
  865. }
  866. static int
  867. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  868. {
  869. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  870. return dao->ops->get_spos(dao, status);
  871. }
  872. static int
  873. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  874. {
  875. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  876. dao->ops->set_spos(dao, status);
  877. dao->ops->commit_write(dao);
  878. return 0;
  879. }
  880. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  881. {
  882. return atc_daio_unmute(atc, state, LINEO1);
  883. }
  884. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  885. {
  886. return atc_daio_unmute(atc, state, LINEO4);
  887. }
  888. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  889. {
  890. return atc_daio_unmute(atc, state, LINEO3);
  891. }
  892. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  893. {
  894. return atc_daio_unmute(atc, state, LINEO2);
  895. }
  896. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  897. {
  898. return atc_daio_unmute(atc, state, LINEIM);
  899. }
  900. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  901. {
  902. return atc_daio_unmute(atc, state, SPDIFOO);
  903. }
  904. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  905. {
  906. return atc_daio_unmute(atc, state, SPDIFIO);
  907. }
  908. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  909. {
  910. return atc_dao_get_status(atc, status, SPDIFOO);
  911. }
  912. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  913. {
  914. return atc_dao_set_status(atc, status, SPDIFOO);
  915. }
  916. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  917. {
  918. unsigned long flags;
  919. struct dao_desc da_dsc = {0};
  920. struct dao *dao;
  921. int err;
  922. struct ct_mixer *mixer = atc->mixer;
  923. struct rsc *rscs[2] = {NULL};
  924. unsigned int spos = 0;
  925. spin_lock_irqsave(&atc->atc_lock, flags);
  926. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  927. da_dsc.msr = state ? 1 : atc->msr;
  928. da_dsc.passthru = state ? 1 : 0;
  929. err = dao->ops->reinit(dao, &da_dsc);
  930. if (state) {
  931. spos = IEC958_DEFAULT_CON;
  932. } else {
  933. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  934. &rscs[0], &rscs[1]);
  935. dao->ops->set_left_input(dao, rscs[0]);
  936. dao->ops->set_right_input(dao, rscs[1]);
  937. /* Restore PLL to atc->rsr if needed. */
  938. if (atc->pll_rate != atc->rsr)
  939. err = atc_pll_init(atc, atc->rsr);
  940. }
  941. dao->ops->set_spos(dao, spos);
  942. dao->ops->commit_write(dao);
  943. spin_unlock_irqrestore(&atc->atc_lock, flags);
  944. return err;
  945. }
  946. static int ct_atc_destroy(struct ct_atc *atc)
  947. {
  948. struct daio_mgr *daio_mgr;
  949. struct dao *dao;
  950. struct dai *dai;
  951. struct daio *daio;
  952. struct sum_mgr *sum_mgr;
  953. struct src_mgr *src_mgr;
  954. struct srcimp_mgr *srcimp_mgr;
  955. struct srcimp *srcimp;
  956. struct ct_mixer *mixer;
  957. int i = 0;
  958. if (NULL == atc)
  959. return 0;
  960. if (atc->timer) {
  961. ct_timer_free(atc->timer);
  962. atc->timer = NULL;
  963. }
  964. /* Stop hardware and disable all interrupts */
  965. if (NULL != atc->hw)
  966. ((struct hw *)atc->hw)->card_stop(atc->hw);
  967. /* Destroy internal mixer objects */
  968. if (NULL != atc->mixer) {
  969. mixer = atc->mixer;
  970. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  971. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  972. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  973. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  974. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  975. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  976. ct_mixer_destroy(atc->mixer);
  977. }
  978. if (NULL != atc->daios) {
  979. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  980. for (i = 0; i < atc->n_daio; i++) {
  981. daio = atc->daios[i];
  982. if (daio->type < LINEIM) {
  983. dao = container_of(daio, struct dao, daio);
  984. dao->ops->clear_left_input(dao);
  985. dao->ops->clear_right_input(dao);
  986. } else {
  987. dai = container_of(daio, struct dai, daio);
  988. /* some thing to do for dai ... */
  989. }
  990. daio_mgr->put_daio(daio_mgr, daio);
  991. }
  992. kfree(atc->daios);
  993. }
  994. if (NULL != atc->pcm) {
  995. sum_mgr = atc->rsc_mgrs[SUM];
  996. for (i = 0; i < atc->n_pcm; i++)
  997. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  998. kfree(atc->pcm);
  999. }
  1000. if (NULL != atc->srcs) {
  1001. src_mgr = atc->rsc_mgrs[SRC];
  1002. for (i = 0; i < atc->n_src; i++)
  1003. src_mgr->put_src(src_mgr, atc->srcs[i]);
  1004. kfree(atc->srcs);
  1005. }
  1006. if (NULL != atc->srcimps) {
  1007. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1008. for (i = 0; i < atc->n_srcimp; i++) {
  1009. srcimp = atc->srcimps[i];
  1010. srcimp->ops->unmap(srcimp);
  1011. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  1012. }
  1013. kfree(atc->srcimps);
  1014. }
  1015. for (i = 0; i < NUM_RSCTYP; i++) {
  1016. if ((NULL != rsc_mgr_funcs[i].destroy) &&
  1017. (NULL != atc->rsc_mgrs[i]))
  1018. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1019. }
  1020. if (NULL != atc->hw)
  1021. destroy_hw_obj((struct hw *)atc->hw);
  1022. /* Destroy device virtual memory manager object */
  1023. if (NULL != atc->vm) {
  1024. ct_vm_destroy(atc->vm);
  1025. atc->vm = NULL;
  1026. }
  1027. kfree(atc);
  1028. return 0;
  1029. }
  1030. static int atc_dev_free(struct snd_device *dev)
  1031. {
  1032. struct ct_atc *atc = dev->device_data;
  1033. return ct_atc_destroy(atc);
  1034. }
  1035. static int __devinit atc_identify_card(struct ct_atc *atc)
  1036. {
  1037. const struct snd_pci_quirk *p;
  1038. const struct snd_pci_quirk *list;
  1039. switch (atc->chip_type) {
  1040. case ATC20K1:
  1041. atc->chip_name = "20K1";
  1042. list = subsys_20k1_list;
  1043. break;
  1044. case ATC20K2:
  1045. atc->chip_name = "20K2";
  1046. list = subsys_20k2_list;
  1047. break;
  1048. default:
  1049. return -ENOENT;
  1050. }
  1051. p = snd_pci_quirk_lookup(atc->pci, list);
  1052. if (!p)
  1053. return -ENOENT;
  1054. atc->model = p->value;
  1055. atc->model_name = ct_subsys_name[atc->model];
  1056. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1057. atc->chip_name, atc->model_name,
  1058. atc->pci->subsystem_vendor,
  1059. atc->pci->subsystem_device);
  1060. return 0;
  1061. }
  1062. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1063. {
  1064. enum CTALSADEVS i;
  1065. int err;
  1066. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1067. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1068. if (NULL == alsa_dev_funcs[i].create)
  1069. continue;
  1070. err = alsa_dev_funcs[i].create(atc, i,
  1071. alsa_dev_funcs[i].public_name);
  1072. if (err) {
  1073. printk(KERN_ERR "ctxfi: "
  1074. "Creating alsa device %d failed!\n", i);
  1075. return err;
  1076. }
  1077. }
  1078. return 0;
  1079. }
  1080. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1081. {
  1082. struct hw *hw;
  1083. struct card_conf info = {0};
  1084. int i, err;
  1085. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1086. if (err) {
  1087. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1088. return err;
  1089. }
  1090. atc->hw = hw;
  1091. /* Initialize card hardware. */
  1092. info.rsr = atc->rsr;
  1093. info.msr = atc->msr;
  1094. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1095. err = hw->card_init(hw, &info);
  1096. if (err < 0)
  1097. return err;
  1098. for (i = 0; i < NUM_RSCTYP; i++) {
  1099. if (NULL == rsc_mgr_funcs[i].create)
  1100. continue;
  1101. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1102. if (err) {
  1103. printk(KERN_ERR "ctxfi: "
  1104. "Failed to create rsc_mgr %d!!!\n", i);
  1105. return err;
  1106. }
  1107. }
  1108. return 0;
  1109. }
  1110. static int __devinit atc_get_resources(struct ct_atc *atc)
  1111. {
  1112. struct daio_desc da_desc = {0};
  1113. struct daio_mgr *daio_mgr;
  1114. struct src_desc src_dsc = {0};
  1115. struct src_mgr *src_mgr;
  1116. struct srcimp_desc srcimp_dsc = {0};
  1117. struct srcimp_mgr *srcimp_mgr;
  1118. struct sum_desc sum_dsc = {0};
  1119. struct sum_mgr *sum_mgr;
  1120. int err, i;
  1121. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1122. if (NULL == atc->daios)
  1123. return -ENOMEM;
  1124. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1125. if (NULL == atc->srcs)
  1126. return -ENOMEM;
  1127. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1128. if (NULL == atc->srcimps)
  1129. return -ENOMEM;
  1130. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1131. if (NULL == atc->pcm)
  1132. return -ENOMEM;
  1133. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1134. da_desc.msr = atc->msr;
  1135. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1136. da_desc.type = i;
  1137. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1138. (struct daio **)&atc->daios[i]);
  1139. if (err) {
  1140. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1141. "resource %d!!!\n", i);
  1142. return err;
  1143. }
  1144. atc->n_daio++;
  1145. }
  1146. if (atc->model == CTSB073X)
  1147. da_desc.type = SPDIFI1;
  1148. else
  1149. da_desc.type = SPDIFIO;
  1150. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1151. (struct daio **)&atc->daios[i]);
  1152. if (err) {
  1153. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1154. return err;
  1155. }
  1156. atc->n_daio++;
  1157. src_mgr = atc->rsc_mgrs[SRC];
  1158. src_dsc.multi = 1;
  1159. src_dsc.msr = atc->msr;
  1160. src_dsc.mode = ARCRW;
  1161. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1162. err = src_mgr->get_src(src_mgr, &src_dsc,
  1163. (struct src **)&atc->srcs[i]);
  1164. if (err)
  1165. return err;
  1166. atc->n_src++;
  1167. }
  1168. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1169. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1170. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1171. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1172. (struct srcimp **)&atc->srcimps[i]);
  1173. if (err)
  1174. return err;
  1175. atc->n_srcimp++;
  1176. }
  1177. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1178. for (i = 0; i < (2*1); i++) {
  1179. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1180. (struct srcimp **)&atc->srcimps[2*1+i]);
  1181. if (err)
  1182. return err;
  1183. atc->n_srcimp++;
  1184. }
  1185. sum_mgr = atc->rsc_mgrs[SUM];
  1186. sum_dsc.msr = atc->msr;
  1187. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1188. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1189. (struct sum **)&atc->pcm[i]);
  1190. if (err)
  1191. return err;
  1192. atc->n_pcm++;
  1193. }
  1194. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1195. if (err) {
  1196. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1197. return err;
  1198. }
  1199. return 0;
  1200. }
  1201. static void __devinit
  1202. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1203. struct src **srcs, struct srcimp **srcimps)
  1204. {
  1205. struct rsc *rscs[2] = {NULL};
  1206. struct src *src;
  1207. struct srcimp *srcimp;
  1208. int i = 0;
  1209. rscs[0] = &dai->daio.rscl;
  1210. rscs[1] = &dai->daio.rscr;
  1211. for (i = 0; i < 2; i++) {
  1212. src = srcs[i];
  1213. srcimp = srcimps[i];
  1214. srcimp->ops->map(srcimp, src, rscs[i]);
  1215. src_mgr->src_disable(src_mgr, src);
  1216. }
  1217. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1218. src = srcs[0];
  1219. src->ops->set_pm(src, 1);
  1220. for (i = 0; i < 2; i++) {
  1221. src = srcs[i];
  1222. src->ops->set_state(src, SRC_STATE_RUN);
  1223. src->ops->commit_write(src);
  1224. src_mgr->src_enable_s(src_mgr, src);
  1225. }
  1226. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1227. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1228. dai->ops->set_enb_src(dai, 1);
  1229. dai->ops->set_enb_srt(dai, 1);
  1230. dai->ops->commit_write(dai);
  1231. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1232. }
  1233. static void __devinit atc_connect_resources(struct ct_atc *atc)
  1234. {
  1235. struct dai *dai;
  1236. struct dao *dao;
  1237. struct src *src;
  1238. struct sum *sum;
  1239. struct ct_mixer *mixer;
  1240. struct rsc *rscs[2] = {NULL};
  1241. int i, j;
  1242. mixer = atc->mixer;
  1243. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1244. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1245. dao = container_of(atc->daios[j], struct dao, daio);
  1246. dao->ops->set_left_input(dao, rscs[0]);
  1247. dao->ops->set_right_input(dao, rscs[1]);
  1248. }
  1249. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1250. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1251. (struct src **)&atc->srcs[2],
  1252. (struct srcimp **)&atc->srcimps[2]);
  1253. src = atc->srcs[2];
  1254. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1255. src = atc->srcs[3];
  1256. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1257. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1258. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1259. (struct src **)&atc->srcs[0],
  1260. (struct srcimp **)&atc->srcimps[0]);
  1261. src = atc->srcs[0];
  1262. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1263. src = atc->srcs[1];
  1264. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1265. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1266. sum = atc->pcm[j];
  1267. mixer->set_input_left(mixer, i, &sum->rsc);
  1268. sum = atc->pcm[j+1];
  1269. mixer->set_input_right(mixer, i, &sum->rsc);
  1270. }
  1271. }
  1272. static struct ct_atc atc_preset __devinitdata = {
  1273. .map_audio_buffer = ct_map_audio_buffer,
  1274. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1275. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1276. .pcm_release_resources = atc_pcm_release_resources,
  1277. .pcm_playback_start = atc_pcm_playback_start,
  1278. .pcm_playback_stop = atc_pcm_stop,
  1279. .pcm_playback_position = atc_pcm_playback_position,
  1280. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1281. .pcm_capture_start = atc_pcm_capture_start,
  1282. .pcm_capture_stop = atc_pcm_stop,
  1283. .pcm_capture_position = atc_pcm_capture_position,
  1284. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1285. .get_ptp_phys = atc_get_ptp_phys,
  1286. .select_line_in = atc_select_line_in,
  1287. .select_mic_in = atc_select_mic_in,
  1288. .select_digit_io = atc_select_digit_io,
  1289. .line_front_unmute = atc_line_front_unmute,
  1290. .line_surround_unmute = atc_line_surround_unmute,
  1291. .line_clfe_unmute = atc_line_clfe_unmute,
  1292. .line_rear_unmute = atc_line_rear_unmute,
  1293. .line_in_unmute = atc_line_in_unmute,
  1294. .spdif_out_unmute = atc_spdif_out_unmute,
  1295. .spdif_in_unmute = atc_spdif_in_unmute,
  1296. .spdif_out_get_status = atc_spdif_out_get_status,
  1297. .spdif_out_set_status = atc_spdif_out_set_status,
  1298. .spdif_out_passthru = atc_spdif_out_passthru,
  1299. .have_digit_io_switch = atc_have_digit_io_switch,
  1300. };
  1301. /**
  1302. * ct_atc_create - create and initialize a hardware manager
  1303. * @card: corresponding alsa card object
  1304. * @pci: corresponding kernel pci device object
  1305. * @ratc: return created object address in it
  1306. *
  1307. * Creates and initializes a hardware manager.
  1308. *
  1309. * Creates kmallocated ct_atc structure. Initializes hardware.
  1310. * Returns 0 if suceeds, or negative error code if fails.
  1311. */
  1312. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1313. unsigned int rsr, unsigned int msr,
  1314. int chip_type, struct ct_atc **ratc)
  1315. {
  1316. struct ct_atc *atc;
  1317. static struct snd_device_ops ops = {
  1318. .dev_free = atc_dev_free,
  1319. };
  1320. int err;
  1321. *ratc = NULL;
  1322. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1323. if (NULL == atc)
  1324. return -ENOMEM;
  1325. /* Set operations */
  1326. *atc = atc_preset;
  1327. atc->card = card;
  1328. atc->pci = pci;
  1329. atc->rsr = rsr;
  1330. atc->msr = msr;
  1331. atc->chip_type = chip_type;
  1332. spin_lock_init(&atc->atc_lock);
  1333. /* Find card model */
  1334. err = atc_identify_card(atc);
  1335. if (err < 0) {
  1336. printk(KERN_ERR "ctatc: Card not recognised\n");
  1337. goto error1;
  1338. }
  1339. /* Set up device virtual memory management object */
  1340. err = ct_vm_create(&atc->vm);
  1341. if (err < 0)
  1342. goto error1;
  1343. /* Create all atc hw devices */
  1344. err = atc_create_hw_devs(atc);
  1345. if (err < 0)
  1346. goto error1;
  1347. /* Get resources */
  1348. err = atc_get_resources(atc);
  1349. if (err < 0)
  1350. goto error1;
  1351. /* Build topology */
  1352. atc_connect_resources(atc);
  1353. atc->timer = ct_timer_new(atc);
  1354. if (!atc->timer)
  1355. goto error1;
  1356. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1357. if (err < 0)
  1358. goto error1;
  1359. snd_card_set_dev(card, &pci->dev);
  1360. *ratc = atc;
  1361. return 0;
  1362. error1:
  1363. ct_atc_destroy(atc);
  1364. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1365. return err;
  1366. }