inet_timewait_sock.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic TIME_WAIT sockets functions
  7. *
  8. * From code orinally in TCP
  9. */
  10. #include <linux/kernel.h>
  11. #include <net/inet_hashtables.h>
  12. #include <net/inet_timewait_sock.h>
  13. #include <net/ip.h>
  14. /* Must be called with locally disabled BHs. */
  15. static void __inet_twsk_kill(struct inet_timewait_sock *tw,
  16. struct inet_hashinfo *hashinfo)
  17. {
  18. struct inet_bind_hashbucket *bhead;
  19. struct inet_bind_bucket *tb;
  20. /* Unlink from established hashes. */
  21. spinlock_t *lock = inet_ehash_lockp(hashinfo, tw->tw_hash);
  22. spin_lock(lock);
  23. if (hlist_nulls_unhashed(&tw->tw_node)) {
  24. spin_unlock(lock);
  25. return;
  26. }
  27. hlist_nulls_del_rcu(&tw->tw_node);
  28. sk_nulls_node_init(&tw->tw_node);
  29. spin_unlock(lock);
  30. /* Disassociate with bind bucket. */
  31. bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), tw->tw_num,
  32. hashinfo->bhash_size)];
  33. spin_lock(&bhead->lock);
  34. tb = tw->tw_tb;
  35. __hlist_del(&tw->tw_bind_node);
  36. tw->tw_tb = NULL;
  37. inet_bind_bucket_destroy(hashinfo->bind_bucket_cachep, tb);
  38. spin_unlock(&bhead->lock);
  39. #ifdef SOCK_REFCNT_DEBUG
  40. if (atomic_read(&tw->tw_refcnt) != 1) {
  41. printk(KERN_DEBUG "%s timewait_sock %p refcnt=%d\n",
  42. tw->tw_prot->name, tw, atomic_read(&tw->tw_refcnt));
  43. }
  44. #endif
  45. inet_twsk_put(tw);
  46. }
  47. static noinline void inet_twsk_free(struct inet_timewait_sock *tw)
  48. {
  49. struct module *owner = tw->tw_prot->owner;
  50. twsk_destructor((struct sock *)tw);
  51. #ifdef SOCK_REFCNT_DEBUG
  52. pr_debug("%s timewait_sock %p released\n", tw->tw_prot->name, tw);
  53. #endif
  54. release_net(twsk_net(tw));
  55. kmem_cache_free(tw->tw_prot->twsk_prot->twsk_slab, tw);
  56. module_put(owner);
  57. }
  58. void inet_twsk_put(struct inet_timewait_sock *tw)
  59. {
  60. if (atomic_dec_and_test(&tw->tw_refcnt))
  61. inet_twsk_free(tw);
  62. }
  63. EXPORT_SYMBOL_GPL(inet_twsk_put);
  64. /*
  65. * Enter the time wait state. This is called with locally disabled BH.
  66. * Essentially we whip up a timewait bucket, copy the relevant info into it
  67. * from the SK, and mess with hash chains and list linkage.
  68. */
  69. void __inet_twsk_hashdance(struct inet_timewait_sock *tw, struct sock *sk,
  70. struct inet_hashinfo *hashinfo)
  71. {
  72. const struct inet_sock *inet = inet_sk(sk);
  73. const struct inet_connection_sock *icsk = inet_csk(sk);
  74. struct inet_ehash_bucket *ehead = inet_ehash_bucket(hashinfo, sk->sk_hash);
  75. spinlock_t *lock = inet_ehash_lockp(hashinfo, sk->sk_hash);
  76. struct inet_bind_hashbucket *bhead;
  77. /* Step 1: Put TW into bind hash. Original socket stays there too.
  78. Note, that any socket with inet->num != 0 MUST be bound in
  79. binding cache, even if it is closed.
  80. */
  81. bhead = &hashinfo->bhash[inet_bhashfn(twsk_net(tw), inet->num,
  82. hashinfo->bhash_size)];
  83. spin_lock(&bhead->lock);
  84. tw->tw_tb = icsk->icsk_bind_hash;
  85. WARN_ON(!icsk->icsk_bind_hash);
  86. inet_twsk_add_bind_node(tw, &tw->tw_tb->owners);
  87. spin_unlock(&bhead->lock);
  88. spin_lock(lock);
  89. /*
  90. * Step 2: Hash TW into TIMEWAIT chain.
  91. * Should be done before removing sk from established chain
  92. * because readers are lockless and search established first.
  93. */
  94. atomic_inc(&tw->tw_refcnt);
  95. inet_twsk_add_node_rcu(tw, &ehead->twchain);
  96. /* Step 3: Remove SK from established hash. */
  97. if (__sk_nulls_del_node_init_rcu(sk))
  98. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  99. spin_unlock(lock);
  100. }
  101. EXPORT_SYMBOL_GPL(__inet_twsk_hashdance);
  102. struct inet_timewait_sock *inet_twsk_alloc(const struct sock *sk, const int state)
  103. {
  104. struct inet_timewait_sock *tw =
  105. kmem_cache_alloc(sk->sk_prot_creator->twsk_prot->twsk_slab,
  106. GFP_ATOMIC);
  107. if (tw != NULL) {
  108. const struct inet_sock *inet = inet_sk(sk);
  109. /* Give us an identity. */
  110. tw->tw_daddr = inet->daddr;
  111. tw->tw_rcv_saddr = inet->rcv_saddr;
  112. tw->tw_bound_dev_if = sk->sk_bound_dev_if;
  113. tw->tw_num = inet->num;
  114. tw->tw_state = TCP_TIME_WAIT;
  115. tw->tw_substate = state;
  116. tw->tw_sport = inet->sport;
  117. tw->tw_dport = inet->dport;
  118. tw->tw_family = sk->sk_family;
  119. tw->tw_reuse = sk->sk_reuse;
  120. tw->tw_hash = sk->sk_hash;
  121. tw->tw_ipv6only = 0;
  122. tw->tw_transparent = inet->transparent;
  123. tw->tw_prot = sk->sk_prot_creator;
  124. twsk_net_set(tw, hold_net(sock_net(sk)));
  125. atomic_set(&tw->tw_refcnt, 1);
  126. inet_twsk_dead_node_init(tw);
  127. __module_get(tw->tw_prot->owner);
  128. }
  129. return tw;
  130. }
  131. EXPORT_SYMBOL_GPL(inet_twsk_alloc);
  132. /* Returns non-zero if quota exceeded. */
  133. static int inet_twdr_do_twkill_work(struct inet_timewait_death_row *twdr,
  134. const int slot)
  135. {
  136. struct inet_timewait_sock *tw;
  137. struct hlist_node *node;
  138. unsigned int killed;
  139. int ret;
  140. /* NOTE: compare this to previous version where lock
  141. * was released after detaching chain. It was racy,
  142. * because tw buckets are scheduled in not serialized context
  143. * in 2.3 (with netfilter), and with softnet it is common, because
  144. * soft irqs are not sequenced.
  145. */
  146. killed = 0;
  147. ret = 0;
  148. rescan:
  149. inet_twsk_for_each_inmate(tw, node, &twdr->cells[slot]) {
  150. __inet_twsk_del_dead_node(tw);
  151. spin_unlock(&twdr->death_lock);
  152. __inet_twsk_kill(tw, twdr->hashinfo);
  153. #ifdef CONFIG_NET_NS
  154. NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_TIMEWAITED);
  155. #endif
  156. inet_twsk_put(tw);
  157. killed++;
  158. spin_lock(&twdr->death_lock);
  159. if (killed > INET_TWDR_TWKILL_QUOTA) {
  160. ret = 1;
  161. break;
  162. }
  163. /* While we dropped twdr->death_lock, another cpu may have
  164. * killed off the next TW bucket in the list, therefore
  165. * do a fresh re-read of the hlist head node with the
  166. * lock reacquired. We still use the hlist traversal
  167. * macro in order to get the prefetches.
  168. */
  169. goto rescan;
  170. }
  171. twdr->tw_count -= killed;
  172. #ifndef CONFIG_NET_NS
  173. NET_ADD_STATS_BH(&init_net, LINUX_MIB_TIMEWAITED, killed);
  174. #endif
  175. return ret;
  176. }
  177. void inet_twdr_hangman(unsigned long data)
  178. {
  179. struct inet_timewait_death_row *twdr;
  180. int unsigned need_timer;
  181. twdr = (struct inet_timewait_death_row *)data;
  182. spin_lock(&twdr->death_lock);
  183. if (twdr->tw_count == 0)
  184. goto out;
  185. need_timer = 0;
  186. if (inet_twdr_do_twkill_work(twdr, twdr->slot)) {
  187. twdr->thread_slots |= (1 << twdr->slot);
  188. schedule_work(&twdr->twkill_work);
  189. need_timer = 1;
  190. } else {
  191. /* We purged the entire slot, anything left? */
  192. if (twdr->tw_count)
  193. need_timer = 1;
  194. }
  195. twdr->slot = ((twdr->slot + 1) & (INET_TWDR_TWKILL_SLOTS - 1));
  196. if (need_timer)
  197. mod_timer(&twdr->tw_timer, jiffies + twdr->period);
  198. out:
  199. spin_unlock(&twdr->death_lock);
  200. }
  201. EXPORT_SYMBOL_GPL(inet_twdr_hangman);
  202. void inet_twdr_twkill_work(struct work_struct *work)
  203. {
  204. struct inet_timewait_death_row *twdr =
  205. container_of(work, struct inet_timewait_death_row, twkill_work);
  206. int i;
  207. BUILD_BUG_ON((INET_TWDR_TWKILL_SLOTS - 1) >
  208. (sizeof(twdr->thread_slots) * 8));
  209. while (twdr->thread_slots) {
  210. spin_lock_bh(&twdr->death_lock);
  211. for (i = 0; i < INET_TWDR_TWKILL_SLOTS; i++) {
  212. if (!(twdr->thread_slots & (1 << i)))
  213. continue;
  214. while (inet_twdr_do_twkill_work(twdr, i) != 0) {
  215. if (need_resched()) {
  216. spin_unlock_bh(&twdr->death_lock);
  217. schedule();
  218. spin_lock_bh(&twdr->death_lock);
  219. }
  220. }
  221. twdr->thread_slots &= ~(1 << i);
  222. }
  223. spin_unlock_bh(&twdr->death_lock);
  224. }
  225. }
  226. EXPORT_SYMBOL_GPL(inet_twdr_twkill_work);
  227. /* These are always called from BH context. See callers in
  228. * tcp_input.c to verify this.
  229. */
  230. /* This is for handling early-kills of TIME_WAIT sockets. */
  231. void inet_twsk_deschedule(struct inet_timewait_sock *tw,
  232. struct inet_timewait_death_row *twdr)
  233. {
  234. spin_lock(&twdr->death_lock);
  235. if (inet_twsk_del_dead_node(tw)) {
  236. inet_twsk_put(tw);
  237. if (--twdr->tw_count == 0)
  238. del_timer(&twdr->tw_timer);
  239. }
  240. spin_unlock(&twdr->death_lock);
  241. __inet_twsk_kill(tw, twdr->hashinfo);
  242. }
  243. EXPORT_SYMBOL(inet_twsk_deschedule);
  244. void inet_twsk_schedule(struct inet_timewait_sock *tw,
  245. struct inet_timewait_death_row *twdr,
  246. const int timeo, const int timewait_len)
  247. {
  248. struct hlist_head *list;
  249. int slot;
  250. /* timeout := RTO * 3.5
  251. *
  252. * 3.5 = 1+2+0.5 to wait for two retransmits.
  253. *
  254. * RATIONALE: if FIN arrived and we entered TIME-WAIT state,
  255. * our ACK acking that FIN can be lost. If N subsequent retransmitted
  256. * FINs (or previous seqments) are lost (probability of such event
  257. * is p^(N+1), where p is probability to lose single packet and
  258. * time to detect the loss is about RTO*(2^N - 1) with exponential
  259. * backoff). Normal timewait length is calculated so, that we
  260. * waited at least for one retransmitted FIN (maximal RTO is 120sec).
  261. * [ BTW Linux. following BSD, violates this requirement waiting
  262. * only for 60sec, we should wait at least for 240 secs.
  263. * Well, 240 consumes too much of resources 8)
  264. * ]
  265. * This interval is not reduced to catch old duplicate and
  266. * responces to our wandering segments living for two MSLs.
  267. * However, if we use PAWS to detect
  268. * old duplicates, we can reduce the interval to bounds required
  269. * by RTO, rather than MSL. So, if peer understands PAWS, we
  270. * kill tw bucket after 3.5*RTO (it is important that this number
  271. * is greater than TS tick!) and detect old duplicates with help
  272. * of PAWS.
  273. */
  274. slot = (timeo + (1 << INET_TWDR_RECYCLE_TICK) - 1) >> INET_TWDR_RECYCLE_TICK;
  275. spin_lock(&twdr->death_lock);
  276. /* Unlink it, if it was scheduled */
  277. if (inet_twsk_del_dead_node(tw))
  278. twdr->tw_count--;
  279. else
  280. atomic_inc(&tw->tw_refcnt);
  281. if (slot >= INET_TWDR_RECYCLE_SLOTS) {
  282. /* Schedule to slow timer */
  283. if (timeo >= timewait_len) {
  284. slot = INET_TWDR_TWKILL_SLOTS - 1;
  285. } else {
  286. slot = DIV_ROUND_UP(timeo, twdr->period);
  287. if (slot >= INET_TWDR_TWKILL_SLOTS)
  288. slot = INET_TWDR_TWKILL_SLOTS - 1;
  289. }
  290. tw->tw_ttd = jiffies + timeo;
  291. slot = (twdr->slot + slot) & (INET_TWDR_TWKILL_SLOTS - 1);
  292. list = &twdr->cells[slot];
  293. } else {
  294. tw->tw_ttd = jiffies + (slot << INET_TWDR_RECYCLE_TICK);
  295. if (twdr->twcal_hand < 0) {
  296. twdr->twcal_hand = 0;
  297. twdr->twcal_jiffie = jiffies;
  298. twdr->twcal_timer.expires = twdr->twcal_jiffie +
  299. (slot << INET_TWDR_RECYCLE_TICK);
  300. add_timer(&twdr->twcal_timer);
  301. } else {
  302. if (time_after(twdr->twcal_timer.expires,
  303. jiffies + (slot << INET_TWDR_RECYCLE_TICK)))
  304. mod_timer(&twdr->twcal_timer,
  305. jiffies + (slot << INET_TWDR_RECYCLE_TICK));
  306. slot = (twdr->twcal_hand + slot) & (INET_TWDR_RECYCLE_SLOTS - 1);
  307. }
  308. list = &twdr->twcal_row[slot];
  309. }
  310. hlist_add_head(&tw->tw_death_node, list);
  311. if (twdr->tw_count++ == 0)
  312. mod_timer(&twdr->tw_timer, jiffies + twdr->period);
  313. spin_unlock(&twdr->death_lock);
  314. }
  315. EXPORT_SYMBOL_GPL(inet_twsk_schedule);
  316. void inet_twdr_twcal_tick(unsigned long data)
  317. {
  318. struct inet_timewait_death_row *twdr;
  319. int n, slot;
  320. unsigned long j;
  321. unsigned long now = jiffies;
  322. int killed = 0;
  323. int adv = 0;
  324. twdr = (struct inet_timewait_death_row *)data;
  325. spin_lock(&twdr->death_lock);
  326. if (twdr->twcal_hand < 0)
  327. goto out;
  328. slot = twdr->twcal_hand;
  329. j = twdr->twcal_jiffie;
  330. for (n = 0; n < INET_TWDR_RECYCLE_SLOTS; n++) {
  331. if (time_before_eq(j, now)) {
  332. struct hlist_node *node, *safe;
  333. struct inet_timewait_sock *tw;
  334. inet_twsk_for_each_inmate_safe(tw, node, safe,
  335. &twdr->twcal_row[slot]) {
  336. __inet_twsk_del_dead_node(tw);
  337. __inet_twsk_kill(tw, twdr->hashinfo);
  338. #ifdef CONFIG_NET_NS
  339. NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_TIMEWAITKILLED);
  340. #endif
  341. inet_twsk_put(tw);
  342. killed++;
  343. }
  344. } else {
  345. if (!adv) {
  346. adv = 1;
  347. twdr->twcal_jiffie = j;
  348. twdr->twcal_hand = slot;
  349. }
  350. if (!hlist_empty(&twdr->twcal_row[slot])) {
  351. mod_timer(&twdr->twcal_timer, j);
  352. goto out;
  353. }
  354. }
  355. j += 1 << INET_TWDR_RECYCLE_TICK;
  356. slot = (slot + 1) & (INET_TWDR_RECYCLE_SLOTS - 1);
  357. }
  358. twdr->twcal_hand = -1;
  359. out:
  360. if ((twdr->tw_count -= killed) == 0)
  361. del_timer(&twdr->tw_timer);
  362. #ifndef CONFIG_NET_NS
  363. NET_ADD_STATS_BH(&init_net, LINUX_MIB_TIMEWAITKILLED, killed);
  364. #endif
  365. spin_unlock(&twdr->death_lock);
  366. }
  367. EXPORT_SYMBOL_GPL(inet_twdr_twcal_tick);
  368. void inet_twsk_purge(struct net *net, struct inet_hashinfo *hashinfo,
  369. struct inet_timewait_death_row *twdr, int family)
  370. {
  371. struct inet_timewait_sock *tw;
  372. struct sock *sk;
  373. struct hlist_nulls_node *node;
  374. int h;
  375. local_bh_disable();
  376. for (h = 0; h < (hashinfo->ehash_size); h++) {
  377. struct inet_ehash_bucket *head =
  378. inet_ehash_bucket(hashinfo, h);
  379. spinlock_t *lock = inet_ehash_lockp(hashinfo, h);
  380. restart:
  381. spin_lock(lock);
  382. sk_nulls_for_each(sk, node, &head->twchain) {
  383. tw = inet_twsk(sk);
  384. if (!net_eq(twsk_net(tw), net) ||
  385. tw->tw_family != family)
  386. continue;
  387. atomic_inc(&tw->tw_refcnt);
  388. spin_unlock(lock);
  389. inet_twsk_deschedule(tw, twdr);
  390. inet_twsk_put(tw);
  391. goto restart;
  392. }
  393. spin_unlock(lock);
  394. }
  395. local_bh_enable();
  396. }
  397. EXPORT_SYMBOL_GPL(inet_twsk_purge);