slab.c 118 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/kmemtrace.h>
  105. #include <linux/rcupdate.h>
  106. #include <linux/string.h>
  107. #include <linux/uaccess.h>
  108. #include <linux/nodemask.h>
  109. #include <linux/kmemleak.h>
  110. #include <linux/mempolicy.h>
  111. #include <linux/mutex.h>
  112. #include <linux/fault-inject.h>
  113. #include <linux/rtmutex.h>
  114. #include <linux/reciprocal_div.h>
  115. #include <linux/debugobjects.h>
  116. #include <asm/cacheflush.h>
  117. #include <asm/tlbflush.h>
  118. #include <asm/page.h>
  119. /*
  120. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  121. * 0 for faster, smaller code (especially in the critical paths).
  122. *
  123. * STATS - 1 to collect stats for /proc/slabinfo.
  124. * 0 for faster, smaller code (especially in the critical paths).
  125. *
  126. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  127. */
  128. #ifdef CONFIG_DEBUG_SLAB
  129. #define DEBUG 1
  130. #define STATS 1
  131. #define FORCED_DEBUG 1
  132. #else
  133. #define DEBUG 0
  134. #define STATS 0
  135. #define FORCED_DEBUG 0
  136. #endif
  137. /* Shouldn't this be in a header file somewhere? */
  138. #define BYTES_PER_WORD sizeof(void *)
  139. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  140. #ifndef ARCH_KMALLOC_MINALIGN
  141. /*
  142. * Enforce a minimum alignment for the kmalloc caches.
  143. * Usually, the kmalloc caches are cache_line_size() aligned, except when
  144. * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
  145. * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  146. * alignment larger than the alignment of a 64-bit integer.
  147. * ARCH_KMALLOC_MINALIGN allows that.
  148. * Note that increasing this value may disable some debug features.
  149. */
  150. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  151. #endif
  152. #ifndef ARCH_SLAB_MINALIGN
  153. /*
  154. * Enforce a minimum alignment for all caches.
  155. * Intended for archs that get misalignment faults even for BYTES_PER_WORD
  156. * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
  157. * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
  158. * some debug features.
  159. */
  160. #define ARCH_SLAB_MINALIGN 0
  161. #endif
  162. #ifndef ARCH_KMALLOC_FLAGS
  163. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  164. #endif
  165. /* Legal flag mask for kmem_cache_create(). */
  166. #if DEBUG
  167. # define CREATE_MASK (SLAB_RED_ZONE | \
  168. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  169. SLAB_CACHE_DMA | \
  170. SLAB_STORE_USER | \
  171. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  172. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  173. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
  174. #else
  175. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  176. SLAB_CACHE_DMA | \
  177. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  178. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  179. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
  180. #endif
  181. /*
  182. * kmem_bufctl_t:
  183. *
  184. * Bufctl's are used for linking objs within a slab
  185. * linked offsets.
  186. *
  187. * This implementation relies on "struct page" for locating the cache &
  188. * slab an object belongs to.
  189. * This allows the bufctl structure to be small (one int), but limits
  190. * the number of objects a slab (not a cache) can contain when off-slab
  191. * bufctls are used. The limit is the size of the largest general cache
  192. * that does not use off-slab slabs.
  193. * For 32bit archs with 4 kB pages, is this 56.
  194. * This is not serious, as it is only for large objects, when it is unwise
  195. * to have too many per slab.
  196. * Note: This limit can be raised by introducing a general cache whose size
  197. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  198. */
  199. typedef unsigned int kmem_bufctl_t;
  200. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  201. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  202. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  203. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  204. /*
  205. * struct slab
  206. *
  207. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  208. * for a slab, or allocated from an general cache.
  209. * Slabs are chained into three list: fully used, partial, fully free slabs.
  210. */
  211. struct slab {
  212. struct list_head list;
  213. unsigned long colouroff;
  214. void *s_mem; /* including colour offset */
  215. unsigned int inuse; /* num of objs active in slab */
  216. kmem_bufctl_t free;
  217. unsigned short nodeid;
  218. };
  219. /*
  220. * struct slab_rcu
  221. *
  222. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  223. * arrange for kmem_freepages to be called via RCU. This is useful if
  224. * we need to approach a kernel structure obliquely, from its address
  225. * obtained without the usual locking. We can lock the structure to
  226. * stabilize it and check it's still at the given address, only if we
  227. * can be sure that the memory has not been meanwhile reused for some
  228. * other kind of object (which our subsystem's lock might corrupt).
  229. *
  230. * rcu_read_lock before reading the address, then rcu_read_unlock after
  231. * taking the spinlock within the structure expected at that address.
  232. *
  233. * We assume struct slab_rcu can overlay struct slab when destroying.
  234. */
  235. struct slab_rcu {
  236. struct rcu_head head;
  237. struct kmem_cache *cachep;
  238. void *addr;
  239. };
  240. /*
  241. * struct array_cache
  242. *
  243. * Purpose:
  244. * - LIFO ordering, to hand out cache-warm objects from _alloc
  245. * - reduce the number of linked list operations
  246. * - reduce spinlock operations
  247. *
  248. * The limit is stored in the per-cpu structure to reduce the data cache
  249. * footprint.
  250. *
  251. */
  252. struct array_cache {
  253. unsigned int avail;
  254. unsigned int limit;
  255. unsigned int batchcount;
  256. unsigned int touched;
  257. spinlock_t lock;
  258. void *entry[]; /*
  259. * Must have this definition in here for the proper
  260. * alignment of array_cache. Also simplifies accessing
  261. * the entries.
  262. */
  263. };
  264. /*
  265. * bootstrap: The caches do not work without cpuarrays anymore, but the
  266. * cpuarrays are allocated from the generic caches...
  267. */
  268. #define BOOT_CPUCACHE_ENTRIES 1
  269. struct arraycache_init {
  270. struct array_cache cache;
  271. void *entries[BOOT_CPUCACHE_ENTRIES];
  272. };
  273. /*
  274. * The slab lists for all objects.
  275. */
  276. struct kmem_list3 {
  277. struct list_head slabs_partial; /* partial list first, better asm code */
  278. struct list_head slabs_full;
  279. struct list_head slabs_free;
  280. unsigned long free_objects;
  281. unsigned int free_limit;
  282. unsigned int colour_next; /* Per-node cache coloring */
  283. spinlock_t list_lock;
  284. struct array_cache *shared; /* shared per node */
  285. struct array_cache **alien; /* on other nodes */
  286. unsigned long next_reap; /* updated without locking */
  287. int free_touched; /* updated without locking */
  288. };
  289. /*
  290. * The slab allocator is initialized with interrupts disabled. Therefore, make
  291. * sure early boot allocations don't accidentally enable interrupts.
  292. */
  293. static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
  294. /*
  295. * Need this for bootstrapping a per node allocator.
  296. */
  297. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  298. struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  299. #define CACHE_CACHE 0
  300. #define SIZE_AC MAX_NUMNODES
  301. #define SIZE_L3 (2 * MAX_NUMNODES)
  302. static int drain_freelist(struct kmem_cache *cache,
  303. struct kmem_list3 *l3, int tofree);
  304. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  305. int node);
  306. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  307. static void cache_reap(struct work_struct *unused);
  308. /*
  309. * This function must be completely optimized away if a constant is passed to
  310. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  311. */
  312. static __always_inline int index_of(const size_t size)
  313. {
  314. extern void __bad_size(void);
  315. if (__builtin_constant_p(size)) {
  316. int i = 0;
  317. #define CACHE(x) \
  318. if (size <=x) \
  319. return i; \
  320. else \
  321. i++;
  322. #include <linux/kmalloc_sizes.h>
  323. #undef CACHE
  324. __bad_size();
  325. } else
  326. __bad_size();
  327. return 0;
  328. }
  329. static int slab_early_init = 1;
  330. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  331. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  332. static void kmem_list3_init(struct kmem_list3 *parent)
  333. {
  334. INIT_LIST_HEAD(&parent->slabs_full);
  335. INIT_LIST_HEAD(&parent->slabs_partial);
  336. INIT_LIST_HEAD(&parent->slabs_free);
  337. parent->shared = NULL;
  338. parent->alien = NULL;
  339. parent->colour_next = 0;
  340. spin_lock_init(&parent->list_lock);
  341. parent->free_objects = 0;
  342. parent->free_touched = 0;
  343. }
  344. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  345. do { \
  346. INIT_LIST_HEAD(listp); \
  347. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  348. } while (0)
  349. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  350. do { \
  351. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  352. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  353. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  354. } while (0)
  355. /*
  356. * struct kmem_cache
  357. *
  358. * manages a cache.
  359. */
  360. struct kmem_cache {
  361. /* 1) per-cpu data, touched during every alloc/free */
  362. struct array_cache *array[NR_CPUS];
  363. /* 2) Cache tunables. Protected by cache_chain_mutex */
  364. unsigned int batchcount;
  365. unsigned int limit;
  366. unsigned int shared;
  367. unsigned int buffer_size;
  368. u32 reciprocal_buffer_size;
  369. /* 3) touched by every alloc & free from the backend */
  370. unsigned int flags; /* constant flags */
  371. unsigned int num; /* # of objs per slab */
  372. /* 4) cache_grow/shrink */
  373. /* order of pgs per slab (2^n) */
  374. unsigned int gfporder;
  375. /* force GFP flags, e.g. GFP_DMA */
  376. gfp_t gfpflags;
  377. size_t colour; /* cache colouring range */
  378. unsigned int colour_off; /* colour offset */
  379. struct kmem_cache *slabp_cache;
  380. unsigned int slab_size;
  381. unsigned int dflags; /* dynamic flags */
  382. /* constructor func */
  383. void (*ctor)(void *obj);
  384. /* 5) cache creation/removal */
  385. const char *name;
  386. struct list_head next;
  387. /* 6) statistics */
  388. #if STATS
  389. unsigned long num_active;
  390. unsigned long num_allocations;
  391. unsigned long high_mark;
  392. unsigned long grown;
  393. unsigned long reaped;
  394. unsigned long errors;
  395. unsigned long max_freeable;
  396. unsigned long node_allocs;
  397. unsigned long node_frees;
  398. unsigned long node_overflow;
  399. atomic_t allochit;
  400. atomic_t allocmiss;
  401. atomic_t freehit;
  402. atomic_t freemiss;
  403. #endif
  404. #if DEBUG
  405. /*
  406. * If debugging is enabled, then the allocator can add additional
  407. * fields and/or padding to every object. buffer_size contains the total
  408. * object size including these internal fields, the following two
  409. * variables contain the offset to the user object and its size.
  410. */
  411. int obj_offset;
  412. int obj_size;
  413. #endif
  414. /*
  415. * We put nodelists[] at the end of kmem_cache, because we want to size
  416. * this array to nr_node_ids slots instead of MAX_NUMNODES
  417. * (see kmem_cache_init())
  418. * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
  419. * is statically defined, so we reserve the max number of nodes.
  420. */
  421. struct kmem_list3 *nodelists[MAX_NUMNODES];
  422. /*
  423. * Do not add fields after nodelists[]
  424. */
  425. };
  426. #define CFLGS_OFF_SLAB (0x80000000UL)
  427. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  428. #define BATCHREFILL_LIMIT 16
  429. /*
  430. * Optimization question: fewer reaps means less probability for unnessary
  431. * cpucache drain/refill cycles.
  432. *
  433. * OTOH the cpuarrays can contain lots of objects,
  434. * which could lock up otherwise freeable slabs.
  435. */
  436. #define REAPTIMEOUT_CPUC (2*HZ)
  437. #define REAPTIMEOUT_LIST3 (4*HZ)
  438. #if STATS
  439. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  440. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  441. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  442. #define STATS_INC_GROWN(x) ((x)->grown++)
  443. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  444. #define STATS_SET_HIGH(x) \
  445. do { \
  446. if ((x)->num_active > (x)->high_mark) \
  447. (x)->high_mark = (x)->num_active; \
  448. } while (0)
  449. #define STATS_INC_ERR(x) ((x)->errors++)
  450. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  451. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  452. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  453. #define STATS_SET_FREEABLE(x, i) \
  454. do { \
  455. if ((x)->max_freeable < i) \
  456. (x)->max_freeable = i; \
  457. } while (0)
  458. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  459. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  460. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  461. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  462. #else
  463. #define STATS_INC_ACTIVE(x) do { } while (0)
  464. #define STATS_DEC_ACTIVE(x) do { } while (0)
  465. #define STATS_INC_ALLOCED(x) do { } while (0)
  466. #define STATS_INC_GROWN(x) do { } while (0)
  467. #define STATS_ADD_REAPED(x,y) do { } while (0)
  468. #define STATS_SET_HIGH(x) do { } while (0)
  469. #define STATS_INC_ERR(x) do { } while (0)
  470. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  471. #define STATS_INC_NODEFREES(x) do { } while (0)
  472. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  473. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  474. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  475. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  476. #define STATS_INC_FREEHIT(x) do { } while (0)
  477. #define STATS_INC_FREEMISS(x) do { } while (0)
  478. #endif
  479. #if DEBUG
  480. /*
  481. * memory layout of objects:
  482. * 0 : objp
  483. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  484. * the end of an object is aligned with the end of the real
  485. * allocation. Catches writes behind the end of the allocation.
  486. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  487. * redzone word.
  488. * cachep->obj_offset: The real object.
  489. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  490. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  491. * [BYTES_PER_WORD long]
  492. */
  493. static int obj_offset(struct kmem_cache *cachep)
  494. {
  495. return cachep->obj_offset;
  496. }
  497. static int obj_size(struct kmem_cache *cachep)
  498. {
  499. return cachep->obj_size;
  500. }
  501. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  502. {
  503. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  504. return (unsigned long long*) (objp + obj_offset(cachep) -
  505. sizeof(unsigned long long));
  506. }
  507. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  508. {
  509. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  510. if (cachep->flags & SLAB_STORE_USER)
  511. return (unsigned long long *)(objp + cachep->buffer_size -
  512. sizeof(unsigned long long) -
  513. REDZONE_ALIGN);
  514. return (unsigned long long *) (objp + cachep->buffer_size -
  515. sizeof(unsigned long long));
  516. }
  517. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  518. {
  519. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  520. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  521. }
  522. #else
  523. #define obj_offset(x) 0
  524. #define obj_size(cachep) (cachep->buffer_size)
  525. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  526. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  527. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  528. #endif
  529. #ifdef CONFIG_KMEMTRACE
  530. size_t slab_buffer_size(struct kmem_cache *cachep)
  531. {
  532. return cachep->buffer_size;
  533. }
  534. EXPORT_SYMBOL(slab_buffer_size);
  535. #endif
  536. /*
  537. * Do not go above this order unless 0 objects fit into the slab.
  538. */
  539. #define BREAK_GFP_ORDER_HI 1
  540. #define BREAK_GFP_ORDER_LO 0
  541. static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
  542. /*
  543. * Functions for storing/retrieving the cachep and or slab from the page
  544. * allocator. These are used to find the slab an obj belongs to. With kfree(),
  545. * these are used to find the cache which an obj belongs to.
  546. */
  547. static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
  548. {
  549. page->lru.next = (struct list_head *)cache;
  550. }
  551. static inline struct kmem_cache *page_get_cache(struct page *page)
  552. {
  553. page = compound_head(page);
  554. BUG_ON(!PageSlab(page));
  555. return (struct kmem_cache *)page->lru.next;
  556. }
  557. static inline void page_set_slab(struct page *page, struct slab *slab)
  558. {
  559. page->lru.prev = (struct list_head *)slab;
  560. }
  561. static inline struct slab *page_get_slab(struct page *page)
  562. {
  563. BUG_ON(!PageSlab(page));
  564. return (struct slab *)page->lru.prev;
  565. }
  566. static inline struct kmem_cache *virt_to_cache(const void *obj)
  567. {
  568. struct page *page = virt_to_head_page(obj);
  569. return page_get_cache(page);
  570. }
  571. static inline struct slab *virt_to_slab(const void *obj)
  572. {
  573. struct page *page = virt_to_head_page(obj);
  574. return page_get_slab(page);
  575. }
  576. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  577. unsigned int idx)
  578. {
  579. return slab->s_mem + cache->buffer_size * idx;
  580. }
  581. /*
  582. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  583. * Using the fact that buffer_size is a constant for a particular cache,
  584. * we can replace (offset / cache->buffer_size) by
  585. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  586. */
  587. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  588. const struct slab *slab, void *obj)
  589. {
  590. u32 offset = (obj - slab->s_mem);
  591. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  592. }
  593. /*
  594. * These are the default caches for kmalloc. Custom caches can have other sizes.
  595. */
  596. struct cache_sizes malloc_sizes[] = {
  597. #define CACHE(x) { .cs_size = (x) },
  598. #include <linux/kmalloc_sizes.h>
  599. CACHE(ULONG_MAX)
  600. #undef CACHE
  601. };
  602. EXPORT_SYMBOL(malloc_sizes);
  603. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  604. struct cache_names {
  605. char *name;
  606. char *name_dma;
  607. };
  608. static struct cache_names __initdata cache_names[] = {
  609. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  610. #include <linux/kmalloc_sizes.h>
  611. {NULL,}
  612. #undef CACHE
  613. };
  614. static struct arraycache_init initarray_cache __initdata =
  615. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  616. static struct arraycache_init initarray_generic =
  617. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  618. /* internal cache of cache description objs */
  619. static struct kmem_cache cache_cache = {
  620. .batchcount = 1,
  621. .limit = BOOT_CPUCACHE_ENTRIES,
  622. .shared = 1,
  623. .buffer_size = sizeof(struct kmem_cache),
  624. .name = "kmem_cache",
  625. };
  626. #define BAD_ALIEN_MAGIC 0x01020304ul
  627. #ifdef CONFIG_LOCKDEP
  628. /*
  629. * Slab sometimes uses the kmalloc slabs to store the slab headers
  630. * for other slabs "off slab".
  631. * The locking for this is tricky in that it nests within the locks
  632. * of all other slabs in a few places; to deal with this special
  633. * locking we put on-slab caches into a separate lock-class.
  634. *
  635. * We set lock class for alien array caches which are up during init.
  636. * The lock annotation will be lost if all cpus of a node goes down and
  637. * then comes back up during hotplug
  638. */
  639. static struct lock_class_key on_slab_l3_key;
  640. static struct lock_class_key on_slab_alc_key;
  641. static inline void init_lock_keys(void)
  642. {
  643. int q;
  644. struct cache_sizes *s = malloc_sizes;
  645. while (s->cs_size != ULONG_MAX) {
  646. for_each_node(q) {
  647. struct array_cache **alc;
  648. int r;
  649. struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
  650. if (!l3 || OFF_SLAB(s->cs_cachep))
  651. continue;
  652. lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
  653. alc = l3->alien;
  654. /*
  655. * FIXME: This check for BAD_ALIEN_MAGIC
  656. * should go away when common slab code is taught to
  657. * work even without alien caches.
  658. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  659. * for alloc_alien_cache,
  660. */
  661. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  662. continue;
  663. for_each_node(r) {
  664. if (alc[r])
  665. lockdep_set_class(&alc[r]->lock,
  666. &on_slab_alc_key);
  667. }
  668. }
  669. s++;
  670. }
  671. }
  672. #else
  673. static inline void init_lock_keys(void)
  674. {
  675. }
  676. #endif
  677. /*
  678. * Guard access to the cache-chain.
  679. */
  680. static DEFINE_MUTEX(cache_chain_mutex);
  681. static struct list_head cache_chain;
  682. /*
  683. * chicken and egg problem: delay the per-cpu array allocation
  684. * until the general caches are up.
  685. */
  686. static enum {
  687. NONE,
  688. PARTIAL_AC,
  689. PARTIAL_L3,
  690. EARLY,
  691. FULL
  692. } g_cpucache_up;
  693. /*
  694. * used by boot code to determine if it can use slab based allocator
  695. */
  696. int slab_is_available(void)
  697. {
  698. return g_cpucache_up >= EARLY;
  699. }
  700. static DEFINE_PER_CPU(struct delayed_work, reap_work);
  701. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  702. {
  703. return cachep->array[smp_processor_id()];
  704. }
  705. static inline struct kmem_cache *__find_general_cachep(size_t size,
  706. gfp_t gfpflags)
  707. {
  708. struct cache_sizes *csizep = malloc_sizes;
  709. #if DEBUG
  710. /* This happens if someone tries to call
  711. * kmem_cache_create(), or __kmalloc(), before
  712. * the generic caches are initialized.
  713. */
  714. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  715. #endif
  716. if (!size)
  717. return ZERO_SIZE_PTR;
  718. while (size > csizep->cs_size)
  719. csizep++;
  720. /*
  721. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  722. * has cs_{dma,}cachep==NULL. Thus no special case
  723. * for large kmalloc calls required.
  724. */
  725. #ifdef CONFIG_ZONE_DMA
  726. if (unlikely(gfpflags & GFP_DMA))
  727. return csizep->cs_dmacachep;
  728. #endif
  729. return csizep->cs_cachep;
  730. }
  731. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  732. {
  733. return __find_general_cachep(size, gfpflags);
  734. }
  735. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  736. {
  737. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  738. }
  739. /*
  740. * Calculate the number of objects and left-over bytes for a given buffer size.
  741. */
  742. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  743. size_t align, int flags, size_t *left_over,
  744. unsigned int *num)
  745. {
  746. int nr_objs;
  747. size_t mgmt_size;
  748. size_t slab_size = PAGE_SIZE << gfporder;
  749. /*
  750. * The slab management structure can be either off the slab or
  751. * on it. For the latter case, the memory allocated for a
  752. * slab is used for:
  753. *
  754. * - The struct slab
  755. * - One kmem_bufctl_t for each object
  756. * - Padding to respect alignment of @align
  757. * - @buffer_size bytes for each object
  758. *
  759. * If the slab management structure is off the slab, then the
  760. * alignment will already be calculated into the size. Because
  761. * the slabs are all pages aligned, the objects will be at the
  762. * correct alignment when allocated.
  763. */
  764. if (flags & CFLGS_OFF_SLAB) {
  765. mgmt_size = 0;
  766. nr_objs = slab_size / buffer_size;
  767. if (nr_objs > SLAB_LIMIT)
  768. nr_objs = SLAB_LIMIT;
  769. } else {
  770. /*
  771. * Ignore padding for the initial guess. The padding
  772. * is at most @align-1 bytes, and @buffer_size is at
  773. * least @align. In the worst case, this result will
  774. * be one greater than the number of objects that fit
  775. * into the memory allocation when taking the padding
  776. * into account.
  777. */
  778. nr_objs = (slab_size - sizeof(struct slab)) /
  779. (buffer_size + sizeof(kmem_bufctl_t));
  780. /*
  781. * This calculated number will be either the right
  782. * amount, or one greater than what we want.
  783. */
  784. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  785. > slab_size)
  786. nr_objs--;
  787. if (nr_objs > SLAB_LIMIT)
  788. nr_objs = SLAB_LIMIT;
  789. mgmt_size = slab_mgmt_size(nr_objs, align);
  790. }
  791. *num = nr_objs;
  792. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  793. }
  794. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  795. static void __slab_error(const char *function, struct kmem_cache *cachep,
  796. char *msg)
  797. {
  798. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  799. function, cachep->name, msg);
  800. dump_stack();
  801. }
  802. /*
  803. * By default on NUMA we use alien caches to stage the freeing of
  804. * objects allocated from other nodes. This causes massive memory
  805. * inefficiencies when using fake NUMA setup to split memory into a
  806. * large number of small nodes, so it can be disabled on the command
  807. * line
  808. */
  809. static int use_alien_caches __read_mostly = 1;
  810. static int __init noaliencache_setup(char *s)
  811. {
  812. use_alien_caches = 0;
  813. return 1;
  814. }
  815. __setup("noaliencache", noaliencache_setup);
  816. #ifdef CONFIG_NUMA
  817. /*
  818. * Special reaping functions for NUMA systems called from cache_reap().
  819. * These take care of doing round robin flushing of alien caches (containing
  820. * objects freed on different nodes from which they were allocated) and the
  821. * flushing of remote pcps by calling drain_node_pages.
  822. */
  823. static DEFINE_PER_CPU(unsigned long, reap_node);
  824. static void init_reap_node(int cpu)
  825. {
  826. int node;
  827. node = next_node(cpu_to_node(cpu), node_online_map);
  828. if (node == MAX_NUMNODES)
  829. node = first_node(node_online_map);
  830. per_cpu(reap_node, cpu) = node;
  831. }
  832. static void next_reap_node(void)
  833. {
  834. int node = __get_cpu_var(reap_node);
  835. node = next_node(node, node_online_map);
  836. if (unlikely(node >= MAX_NUMNODES))
  837. node = first_node(node_online_map);
  838. __get_cpu_var(reap_node) = node;
  839. }
  840. #else
  841. #define init_reap_node(cpu) do { } while (0)
  842. #define next_reap_node(void) do { } while (0)
  843. #endif
  844. /*
  845. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  846. * via the workqueue/eventd.
  847. * Add the CPU number into the expiration time to minimize the possibility of
  848. * the CPUs getting into lockstep and contending for the global cache chain
  849. * lock.
  850. */
  851. static void __cpuinit start_cpu_timer(int cpu)
  852. {
  853. struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
  854. /*
  855. * When this gets called from do_initcalls via cpucache_init(),
  856. * init_workqueues() has already run, so keventd will be setup
  857. * at that time.
  858. */
  859. if (keventd_up() && reap_work->work.func == NULL) {
  860. init_reap_node(cpu);
  861. INIT_DELAYED_WORK(reap_work, cache_reap);
  862. schedule_delayed_work_on(cpu, reap_work,
  863. __round_jiffies_relative(HZ, cpu));
  864. }
  865. }
  866. static struct array_cache *alloc_arraycache(int node, int entries,
  867. int batchcount, gfp_t gfp)
  868. {
  869. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  870. struct array_cache *nc = NULL;
  871. nc = kmalloc_node(memsize, gfp, node);
  872. /*
  873. * The array_cache structures contain pointers to free object.
  874. * However, when such objects are allocated or transfered to another
  875. * cache the pointers are not cleared and they could be counted as
  876. * valid references during a kmemleak scan. Therefore, kmemleak must
  877. * not scan such objects.
  878. */
  879. kmemleak_no_scan(nc);
  880. if (nc) {
  881. nc->avail = 0;
  882. nc->limit = entries;
  883. nc->batchcount = batchcount;
  884. nc->touched = 0;
  885. spin_lock_init(&nc->lock);
  886. }
  887. return nc;
  888. }
  889. /*
  890. * Transfer objects in one arraycache to another.
  891. * Locking must be handled by the caller.
  892. *
  893. * Return the number of entries transferred.
  894. */
  895. static int transfer_objects(struct array_cache *to,
  896. struct array_cache *from, unsigned int max)
  897. {
  898. /* Figure out how many entries to transfer */
  899. int nr = min(min(from->avail, max), to->limit - to->avail);
  900. if (!nr)
  901. return 0;
  902. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  903. sizeof(void *) *nr);
  904. from->avail -= nr;
  905. to->avail += nr;
  906. to->touched = 1;
  907. return nr;
  908. }
  909. #ifndef CONFIG_NUMA
  910. #define drain_alien_cache(cachep, alien) do { } while (0)
  911. #define reap_alien(cachep, l3) do { } while (0)
  912. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  913. {
  914. return (struct array_cache **)BAD_ALIEN_MAGIC;
  915. }
  916. static inline void free_alien_cache(struct array_cache **ac_ptr)
  917. {
  918. }
  919. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  920. {
  921. return 0;
  922. }
  923. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  924. gfp_t flags)
  925. {
  926. return NULL;
  927. }
  928. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  929. gfp_t flags, int nodeid)
  930. {
  931. return NULL;
  932. }
  933. #else /* CONFIG_NUMA */
  934. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  935. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  936. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  937. {
  938. struct array_cache **ac_ptr;
  939. int memsize = sizeof(void *) * nr_node_ids;
  940. int i;
  941. if (limit > 1)
  942. limit = 12;
  943. ac_ptr = kmalloc_node(memsize, gfp, node);
  944. if (ac_ptr) {
  945. for_each_node(i) {
  946. if (i == node || !node_online(i)) {
  947. ac_ptr[i] = NULL;
  948. continue;
  949. }
  950. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  951. if (!ac_ptr[i]) {
  952. for (i--; i >= 0; i--)
  953. kfree(ac_ptr[i]);
  954. kfree(ac_ptr);
  955. return NULL;
  956. }
  957. }
  958. }
  959. return ac_ptr;
  960. }
  961. static void free_alien_cache(struct array_cache **ac_ptr)
  962. {
  963. int i;
  964. if (!ac_ptr)
  965. return;
  966. for_each_node(i)
  967. kfree(ac_ptr[i]);
  968. kfree(ac_ptr);
  969. }
  970. static void __drain_alien_cache(struct kmem_cache *cachep,
  971. struct array_cache *ac, int node)
  972. {
  973. struct kmem_list3 *rl3 = cachep->nodelists[node];
  974. if (ac->avail) {
  975. spin_lock(&rl3->list_lock);
  976. /*
  977. * Stuff objects into the remote nodes shared array first.
  978. * That way we could avoid the overhead of putting the objects
  979. * into the free lists and getting them back later.
  980. */
  981. if (rl3->shared)
  982. transfer_objects(rl3->shared, ac, ac->limit);
  983. free_block(cachep, ac->entry, ac->avail, node);
  984. ac->avail = 0;
  985. spin_unlock(&rl3->list_lock);
  986. }
  987. }
  988. /*
  989. * Called from cache_reap() to regularly drain alien caches round robin.
  990. */
  991. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  992. {
  993. int node = __get_cpu_var(reap_node);
  994. if (l3->alien) {
  995. struct array_cache *ac = l3->alien[node];
  996. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  997. __drain_alien_cache(cachep, ac, node);
  998. spin_unlock_irq(&ac->lock);
  999. }
  1000. }
  1001. }
  1002. static void drain_alien_cache(struct kmem_cache *cachep,
  1003. struct array_cache **alien)
  1004. {
  1005. int i = 0;
  1006. struct array_cache *ac;
  1007. unsigned long flags;
  1008. for_each_online_node(i) {
  1009. ac = alien[i];
  1010. if (ac) {
  1011. spin_lock_irqsave(&ac->lock, flags);
  1012. __drain_alien_cache(cachep, ac, i);
  1013. spin_unlock_irqrestore(&ac->lock, flags);
  1014. }
  1015. }
  1016. }
  1017. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  1018. {
  1019. struct slab *slabp = virt_to_slab(objp);
  1020. int nodeid = slabp->nodeid;
  1021. struct kmem_list3 *l3;
  1022. struct array_cache *alien = NULL;
  1023. int node;
  1024. node = numa_node_id();
  1025. /*
  1026. * Make sure we are not freeing a object from another node to the array
  1027. * cache on this cpu.
  1028. */
  1029. if (likely(slabp->nodeid == node))
  1030. return 0;
  1031. l3 = cachep->nodelists[node];
  1032. STATS_INC_NODEFREES(cachep);
  1033. if (l3->alien && l3->alien[nodeid]) {
  1034. alien = l3->alien[nodeid];
  1035. spin_lock(&alien->lock);
  1036. if (unlikely(alien->avail == alien->limit)) {
  1037. STATS_INC_ACOVERFLOW(cachep);
  1038. __drain_alien_cache(cachep, alien, nodeid);
  1039. }
  1040. alien->entry[alien->avail++] = objp;
  1041. spin_unlock(&alien->lock);
  1042. } else {
  1043. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  1044. free_block(cachep, &objp, 1, nodeid);
  1045. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  1046. }
  1047. return 1;
  1048. }
  1049. #endif
  1050. static void __cpuinit cpuup_canceled(long cpu)
  1051. {
  1052. struct kmem_cache *cachep;
  1053. struct kmem_list3 *l3 = NULL;
  1054. int node = cpu_to_node(cpu);
  1055. const struct cpumask *mask = cpumask_of_node(node);
  1056. list_for_each_entry(cachep, &cache_chain, next) {
  1057. struct array_cache *nc;
  1058. struct array_cache *shared;
  1059. struct array_cache **alien;
  1060. /* cpu is dead; no one can alloc from it. */
  1061. nc = cachep->array[cpu];
  1062. cachep->array[cpu] = NULL;
  1063. l3 = cachep->nodelists[node];
  1064. if (!l3)
  1065. goto free_array_cache;
  1066. spin_lock_irq(&l3->list_lock);
  1067. /* Free limit for this kmem_list3 */
  1068. l3->free_limit -= cachep->batchcount;
  1069. if (nc)
  1070. free_block(cachep, nc->entry, nc->avail, node);
  1071. if (!cpus_empty(*mask)) {
  1072. spin_unlock_irq(&l3->list_lock);
  1073. goto free_array_cache;
  1074. }
  1075. shared = l3->shared;
  1076. if (shared) {
  1077. free_block(cachep, shared->entry,
  1078. shared->avail, node);
  1079. l3->shared = NULL;
  1080. }
  1081. alien = l3->alien;
  1082. l3->alien = NULL;
  1083. spin_unlock_irq(&l3->list_lock);
  1084. kfree(shared);
  1085. if (alien) {
  1086. drain_alien_cache(cachep, alien);
  1087. free_alien_cache(alien);
  1088. }
  1089. free_array_cache:
  1090. kfree(nc);
  1091. }
  1092. /*
  1093. * In the previous loop, all the objects were freed to
  1094. * the respective cache's slabs, now we can go ahead and
  1095. * shrink each nodelist to its limit.
  1096. */
  1097. list_for_each_entry(cachep, &cache_chain, next) {
  1098. l3 = cachep->nodelists[node];
  1099. if (!l3)
  1100. continue;
  1101. drain_freelist(cachep, l3, l3->free_objects);
  1102. }
  1103. }
  1104. static int __cpuinit cpuup_prepare(long cpu)
  1105. {
  1106. struct kmem_cache *cachep;
  1107. struct kmem_list3 *l3 = NULL;
  1108. int node = cpu_to_node(cpu);
  1109. const int memsize = sizeof(struct kmem_list3);
  1110. /*
  1111. * We need to do this right in the beginning since
  1112. * alloc_arraycache's are going to use this list.
  1113. * kmalloc_node allows us to add the slab to the right
  1114. * kmem_list3 and not this cpu's kmem_list3
  1115. */
  1116. list_for_each_entry(cachep, &cache_chain, next) {
  1117. /*
  1118. * Set up the size64 kmemlist for cpu before we can
  1119. * begin anything. Make sure some other cpu on this
  1120. * node has not already allocated this
  1121. */
  1122. if (!cachep->nodelists[node]) {
  1123. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1124. if (!l3)
  1125. goto bad;
  1126. kmem_list3_init(l3);
  1127. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1128. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1129. /*
  1130. * The l3s don't come and go as CPUs come and
  1131. * go. cache_chain_mutex is sufficient
  1132. * protection here.
  1133. */
  1134. cachep->nodelists[node] = l3;
  1135. }
  1136. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1137. cachep->nodelists[node]->free_limit =
  1138. (1 + nr_cpus_node(node)) *
  1139. cachep->batchcount + cachep->num;
  1140. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1141. }
  1142. /*
  1143. * Now we can go ahead with allocating the shared arrays and
  1144. * array caches
  1145. */
  1146. list_for_each_entry(cachep, &cache_chain, next) {
  1147. struct array_cache *nc;
  1148. struct array_cache *shared = NULL;
  1149. struct array_cache **alien = NULL;
  1150. nc = alloc_arraycache(node, cachep->limit,
  1151. cachep->batchcount, GFP_KERNEL);
  1152. if (!nc)
  1153. goto bad;
  1154. if (cachep->shared) {
  1155. shared = alloc_arraycache(node,
  1156. cachep->shared * cachep->batchcount,
  1157. 0xbaadf00d, GFP_KERNEL);
  1158. if (!shared) {
  1159. kfree(nc);
  1160. goto bad;
  1161. }
  1162. }
  1163. if (use_alien_caches) {
  1164. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1165. if (!alien) {
  1166. kfree(shared);
  1167. kfree(nc);
  1168. goto bad;
  1169. }
  1170. }
  1171. cachep->array[cpu] = nc;
  1172. l3 = cachep->nodelists[node];
  1173. BUG_ON(!l3);
  1174. spin_lock_irq(&l3->list_lock);
  1175. if (!l3->shared) {
  1176. /*
  1177. * We are serialised from CPU_DEAD or
  1178. * CPU_UP_CANCELLED by the cpucontrol lock
  1179. */
  1180. l3->shared = shared;
  1181. shared = NULL;
  1182. }
  1183. #ifdef CONFIG_NUMA
  1184. if (!l3->alien) {
  1185. l3->alien = alien;
  1186. alien = NULL;
  1187. }
  1188. #endif
  1189. spin_unlock_irq(&l3->list_lock);
  1190. kfree(shared);
  1191. free_alien_cache(alien);
  1192. }
  1193. return 0;
  1194. bad:
  1195. cpuup_canceled(cpu);
  1196. return -ENOMEM;
  1197. }
  1198. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1199. unsigned long action, void *hcpu)
  1200. {
  1201. long cpu = (long)hcpu;
  1202. int err = 0;
  1203. switch (action) {
  1204. case CPU_UP_PREPARE:
  1205. case CPU_UP_PREPARE_FROZEN:
  1206. mutex_lock(&cache_chain_mutex);
  1207. err = cpuup_prepare(cpu);
  1208. mutex_unlock(&cache_chain_mutex);
  1209. break;
  1210. case CPU_ONLINE:
  1211. case CPU_ONLINE_FROZEN:
  1212. start_cpu_timer(cpu);
  1213. break;
  1214. #ifdef CONFIG_HOTPLUG_CPU
  1215. case CPU_DOWN_PREPARE:
  1216. case CPU_DOWN_PREPARE_FROZEN:
  1217. /*
  1218. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1219. * held so that if cache_reap() is invoked it cannot do
  1220. * anything expensive but will only modify reap_work
  1221. * and reschedule the timer.
  1222. */
  1223. cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
  1224. /* Now the cache_reaper is guaranteed to be not running. */
  1225. per_cpu(reap_work, cpu).work.func = NULL;
  1226. break;
  1227. case CPU_DOWN_FAILED:
  1228. case CPU_DOWN_FAILED_FROZEN:
  1229. start_cpu_timer(cpu);
  1230. break;
  1231. case CPU_DEAD:
  1232. case CPU_DEAD_FROZEN:
  1233. /*
  1234. * Even if all the cpus of a node are down, we don't free the
  1235. * kmem_list3 of any cache. This to avoid a race between
  1236. * cpu_down, and a kmalloc allocation from another cpu for
  1237. * memory from the node of the cpu going down. The list3
  1238. * structure is usually allocated from kmem_cache_create() and
  1239. * gets destroyed at kmem_cache_destroy().
  1240. */
  1241. /* fall through */
  1242. #endif
  1243. case CPU_UP_CANCELED:
  1244. case CPU_UP_CANCELED_FROZEN:
  1245. mutex_lock(&cache_chain_mutex);
  1246. cpuup_canceled(cpu);
  1247. mutex_unlock(&cache_chain_mutex);
  1248. break;
  1249. }
  1250. return err ? NOTIFY_BAD : NOTIFY_OK;
  1251. }
  1252. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1253. &cpuup_callback, NULL, 0
  1254. };
  1255. /*
  1256. * swap the static kmem_list3 with kmalloced memory
  1257. */
  1258. static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1259. int nodeid)
  1260. {
  1261. struct kmem_list3 *ptr;
  1262. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1263. BUG_ON(!ptr);
  1264. memcpy(ptr, list, sizeof(struct kmem_list3));
  1265. /*
  1266. * Do not assume that spinlocks can be initialized via memcpy:
  1267. */
  1268. spin_lock_init(&ptr->list_lock);
  1269. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1270. cachep->nodelists[nodeid] = ptr;
  1271. }
  1272. /*
  1273. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1274. * size of kmem_list3.
  1275. */
  1276. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1277. {
  1278. int node;
  1279. for_each_online_node(node) {
  1280. cachep->nodelists[node] = &initkmem_list3[index + node];
  1281. cachep->nodelists[node]->next_reap = jiffies +
  1282. REAPTIMEOUT_LIST3 +
  1283. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1284. }
  1285. }
  1286. /*
  1287. * Initialisation. Called after the page allocator have been initialised and
  1288. * before smp_init().
  1289. */
  1290. void __init kmem_cache_init(void)
  1291. {
  1292. size_t left_over;
  1293. struct cache_sizes *sizes;
  1294. struct cache_names *names;
  1295. int i;
  1296. int order;
  1297. int node;
  1298. if (num_possible_nodes() == 1)
  1299. use_alien_caches = 0;
  1300. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1301. kmem_list3_init(&initkmem_list3[i]);
  1302. if (i < MAX_NUMNODES)
  1303. cache_cache.nodelists[i] = NULL;
  1304. }
  1305. set_up_list3s(&cache_cache, CACHE_CACHE);
  1306. /*
  1307. * Fragmentation resistance on low memory - only use bigger
  1308. * page orders on machines with more than 32MB of memory.
  1309. */
  1310. if (num_physpages > (32 << 20) >> PAGE_SHIFT)
  1311. slab_break_gfp_order = BREAK_GFP_ORDER_HI;
  1312. /* Bootstrap is tricky, because several objects are allocated
  1313. * from caches that do not exist yet:
  1314. * 1) initialize the cache_cache cache: it contains the struct
  1315. * kmem_cache structures of all caches, except cache_cache itself:
  1316. * cache_cache is statically allocated.
  1317. * Initially an __init data area is used for the head array and the
  1318. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1319. * array at the end of the bootstrap.
  1320. * 2) Create the first kmalloc cache.
  1321. * The struct kmem_cache for the new cache is allocated normally.
  1322. * An __init data area is used for the head array.
  1323. * 3) Create the remaining kmalloc caches, with minimally sized
  1324. * head arrays.
  1325. * 4) Replace the __init data head arrays for cache_cache and the first
  1326. * kmalloc cache with kmalloc allocated arrays.
  1327. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1328. * the other cache's with kmalloc allocated memory.
  1329. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1330. */
  1331. node = numa_node_id();
  1332. /* 1) create the cache_cache */
  1333. INIT_LIST_HEAD(&cache_chain);
  1334. list_add(&cache_cache.next, &cache_chain);
  1335. cache_cache.colour_off = cache_line_size();
  1336. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1337. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1338. /*
  1339. * struct kmem_cache size depends on nr_node_ids, which
  1340. * can be less than MAX_NUMNODES.
  1341. */
  1342. cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
  1343. nr_node_ids * sizeof(struct kmem_list3 *);
  1344. #if DEBUG
  1345. cache_cache.obj_size = cache_cache.buffer_size;
  1346. #endif
  1347. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1348. cache_line_size());
  1349. cache_cache.reciprocal_buffer_size =
  1350. reciprocal_value(cache_cache.buffer_size);
  1351. for (order = 0; order < MAX_ORDER; order++) {
  1352. cache_estimate(order, cache_cache.buffer_size,
  1353. cache_line_size(), 0, &left_over, &cache_cache.num);
  1354. if (cache_cache.num)
  1355. break;
  1356. }
  1357. BUG_ON(!cache_cache.num);
  1358. cache_cache.gfporder = order;
  1359. cache_cache.colour = left_over / cache_cache.colour_off;
  1360. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1361. sizeof(struct slab), cache_line_size());
  1362. /* 2+3) create the kmalloc caches */
  1363. sizes = malloc_sizes;
  1364. names = cache_names;
  1365. /*
  1366. * Initialize the caches that provide memory for the array cache and the
  1367. * kmem_list3 structures first. Without this, further allocations will
  1368. * bug.
  1369. */
  1370. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1371. sizes[INDEX_AC].cs_size,
  1372. ARCH_KMALLOC_MINALIGN,
  1373. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1374. NULL);
  1375. if (INDEX_AC != INDEX_L3) {
  1376. sizes[INDEX_L3].cs_cachep =
  1377. kmem_cache_create(names[INDEX_L3].name,
  1378. sizes[INDEX_L3].cs_size,
  1379. ARCH_KMALLOC_MINALIGN,
  1380. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1381. NULL);
  1382. }
  1383. slab_early_init = 0;
  1384. while (sizes->cs_size != ULONG_MAX) {
  1385. /*
  1386. * For performance, all the general caches are L1 aligned.
  1387. * This should be particularly beneficial on SMP boxes, as it
  1388. * eliminates "false sharing".
  1389. * Note for systems short on memory removing the alignment will
  1390. * allow tighter packing of the smaller caches.
  1391. */
  1392. if (!sizes->cs_cachep) {
  1393. sizes->cs_cachep = kmem_cache_create(names->name,
  1394. sizes->cs_size,
  1395. ARCH_KMALLOC_MINALIGN,
  1396. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1397. NULL);
  1398. }
  1399. #ifdef CONFIG_ZONE_DMA
  1400. sizes->cs_dmacachep = kmem_cache_create(
  1401. names->name_dma,
  1402. sizes->cs_size,
  1403. ARCH_KMALLOC_MINALIGN,
  1404. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1405. SLAB_PANIC,
  1406. NULL);
  1407. #endif
  1408. sizes++;
  1409. names++;
  1410. }
  1411. /* 4) Replace the bootstrap head arrays */
  1412. {
  1413. struct array_cache *ptr;
  1414. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1415. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1416. memcpy(ptr, cpu_cache_get(&cache_cache),
  1417. sizeof(struct arraycache_init));
  1418. /*
  1419. * Do not assume that spinlocks can be initialized via memcpy:
  1420. */
  1421. spin_lock_init(&ptr->lock);
  1422. cache_cache.array[smp_processor_id()] = ptr;
  1423. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1424. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1425. != &initarray_generic.cache);
  1426. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1427. sizeof(struct arraycache_init));
  1428. /*
  1429. * Do not assume that spinlocks can be initialized via memcpy:
  1430. */
  1431. spin_lock_init(&ptr->lock);
  1432. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1433. ptr;
  1434. }
  1435. /* 5) Replace the bootstrap kmem_list3's */
  1436. {
  1437. int nid;
  1438. for_each_online_node(nid) {
  1439. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1440. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1441. &initkmem_list3[SIZE_AC + nid], nid);
  1442. if (INDEX_AC != INDEX_L3) {
  1443. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1444. &initkmem_list3[SIZE_L3 + nid], nid);
  1445. }
  1446. }
  1447. }
  1448. g_cpucache_up = EARLY;
  1449. /* Annotate slab for lockdep -- annotate the malloc caches */
  1450. init_lock_keys();
  1451. }
  1452. void __init kmem_cache_init_late(void)
  1453. {
  1454. struct kmem_cache *cachep;
  1455. /*
  1456. * Interrupts are enabled now so all GFP allocations are safe.
  1457. */
  1458. slab_gfp_mask = __GFP_BITS_MASK;
  1459. /* 6) resize the head arrays to their final sizes */
  1460. mutex_lock(&cache_chain_mutex);
  1461. list_for_each_entry(cachep, &cache_chain, next)
  1462. if (enable_cpucache(cachep, GFP_NOWAIT))
  1463. BUG();
  1464. mutex_unlock(&cache_chain_mutex);
  1465. /* Done! */
  1466. g_cpucache_up = FULL;
  1467. /*
  1468. * Register a cpu startup notifier callback that initializes
  1469. * cpu_cache_get for all new cpus
  1470. */
  1471. register_cpu_notifier(&cpucache_notifier);
  1472. /*
  1473. * The reap timers are started later, with a module init call: That part
  1474. * of the kernel is not yet operational.
  1475. */
  1476. }
  1477. static int __init cpucache_init(void)
  1478. {
  1479. int cpu;
  1480. /*
  1481. * Register the timers that return unneeded pages to the page allocator
  1482. */
  1483. for_each_online_cpu(cpu)
  1484. start_cpu_timer(cpu);
  1485. return 0;
  1486. }
  1487. __initcall(cpucache_init);
  1488. /*
  1489. * Interface to system's page allocator. No need to hold the cache-lock.
  1490. *
  1491. * If we requested dmaable memory, we will get it. Even if we
  1492. * did not request dmaable memory, we might get it, but that
  1493. * would be relatively rare and ignorable.
  1494. */
  1495. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1496. {
  1497. struct page *page;
  1498. int nr_pages;
  1499. int i;
  1500. #ifndef CONFIG_MMU
  1501. /*
  1502. * Nommu uses slab's for process anonymous memory allocations, and thus
  1503. * requires __GFP_COMP to properly refcount higher order allocations
  1504. */
  1505. flags |= __GFP_COMP;
  1506. #endif
  1507. flags |= cachep->gfpflags;
  1508. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1509. flags |= __GFP_RECLAIMABLE;
  1510. page = alloc_pages_exact_node(nodeid, flags, cachep->gfporder);
  1511. if (!page)
  1512. return NULL;
  1513. nr_pages = (1 << cachep->gfporder);
  1514. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1515. add_zone_page_state(page_zone(page),
  1516. NR_SLAB_RECLAIMABLE, nr_pages);
  1517. else
  1518. add_zone_page_state(page_zone(page),
  1519. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1520. for (i = 0; i < nr_pages; i++)
  1521. __SetPageSlab(page + i);
  1522. return page_address(page);
  1523. }
  1524. /*
  1525. * Interface to system's page release.
  1526. */
  1527. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1528. {
  1529. unsigned long i = (1 << cachep->gfporder);
  1530. struct page *page = virt_to_page(addr);
  1531. const unsigned long nr_freed = i;
  1532. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1533. sub_zone_page_state(page_zone(page),
  1534. NR_SLAB_RECLAIMABLE, nr_freed);
  1535. else
  1536. sub_zone_page_state(page_zone(page),
  1537. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1538. while (i--) {
  1539. BUG_ON(!PageSlab(page));
  1540. __ClearPageSlab(page);
  1541. page++;
  1542. }
  1543. if (current->reclaim_state)
  1544. current->reclaim_state->reclaimed_slab += nr_freed;
  1545. free_pages((unsigned long)addr, cachep->gfporder);
  1546. }
  1547. static void kmem_rcu_free(struct rcu_head *head)
  1548. {
  1549. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1550. struct kmem_cache *cachep = slab_rcu->cachep;
  1551. kmem_freepages(cachep, slab_rcu->addr);
  1552. if (OFF_SLAB(cachep))
  1553. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1554. }
  1555. #if DEBUG
  1556. #ifdef CONFIG_DEBUG_PAGEALLOC
  1557. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1558. unsigned long caller)
  1559. {
  1560. int size = obj_size(cachep);
  1561. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1562. if (size < 5 * sizeof(unsigned long))
  1563. return;
  1564. *addr++ = 0x12345678;
  1565. *addr++ = caller;
  1566. *addr++ = smp_processor_id();
  1567. size -= 3 * sizeof(unsigned long);
  1568. {
  1569. unsigned long *sptr = &caller;
  1570. unsigned long svalue;
  1571. while (!kstack_end(sptr)) {
  1572. svalue = *sptr++;
  1573. if (kernel_text_address(svalue)) {
  1574. *addr++ = svalue;
  1575. size -= sizeof(unsigned long);
  1576. if (size <= sizeof(unsigned long))
  1577. break;
  1578. }
  1579. }
  1580. }
  1581. *addr++ = 0x87654321;
  1582. }
  1583. #endif
  1584. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1585. {
  1586. int size = obj_size(cachep);
  1587. addr = &((char *)addr)[obj_offset(cachep)];
  1588. memset(addr, val, size);
  1589. *(unsigned char *)(addr + size - 1) = POISON_END;
  1590. }
  1591. static void dump_line(char *data, int offset, int limit)
  1592. {
  1593. int i;
  1594. unsigned char error = 0;
  1595. int bad_count = 0;
  1596. printk(KERN_ERR "%03x:", offset);
  1597. for (i = 0; i < limit; i++) {
  1598. if (data[offset + i] != POISON_FREE) {
  1599. error = data[offset + i];
  1600. bad_count++;
  1601. }
  1602. printk(" %02x", (unsigned char)data[offset + i]);
  1603. }
  1604. printk("\n");
  1605. if (bad_count == 1) {
  1606. error ^= POISON_FREE;
  1607. if (!(error & (error - 1))) {
  1608. printk(KERN_ERR "Single bit error detected. Probably "
  1609. "bad RAM.\n");
  1610. #ifdef CONFIG_X86
  1611. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1612. "test tool.\n");
  1613. #else
  1614. printk(KERN_ERR "Run a memory test tool.\n");
  1615. #endif
  1616. }
  1617. }
  1618. }
  1619. #endif
  1620. #if DEBUG
  1621. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1622. {
  1623. int i, size;
  1624. char *realobj;
  1625. if (cachep->flags & SLAB_RED_ZONE) {
  1626. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1627. *dbg_redzone1(cachep, objp),
  1628. *dbg_redzone2(cachep, objp));
  1629. }
  1630. if (cachep->flags & SLAB_STORE_USER) {
  1631. printk(KERN_ERR "Last user: [<%p>]",
  1632. *dbg_userword(cachep, objp));
  1633. print_symbol("(%s)",
  1634. (unsigned long)*dbg_userword(cachep, objp));
  1635. printk("\n");
  1636. }
  1637. realobj = (char *)objp + obj_offset(cachep);
  1638. size = obj_size(cachep);
  1639. for (i = 0; i < size && lines; i += 16, lines--) {
  1640. int limit;
  1641. limit = 16;
  1642. if (i + limit > size)
  1643. limit = size - i;
  1644. dump_line(realobj, i, limit);
  1645. }
  1646. }
  1647. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1648. {
  1649. char *realobj;
  1650. int size, i;
  1651. int lines = 0;
  1652. realobj = (char *)objp + obj_offset(cachep);
  1653. size = obj_size(cachep);
  1654. for (i = 0; i < size; i++) {
  1655. char exp = POISON_FREE;
  1656. if (i == size - 1)
  1657. exp = POISON_END;
  1658. if (realobj[i] != exp) {
  1659. int limit;
  1660. /* Mismatch ! */
  1661. /* Print header */
  1662. if (lines == 0) {
  1663. printk(KERN_ERR
  1664. "Slab corruption: %s start=%p, len=%d\n",
  1665. cachep->name, realobj, size);
  1666. print_objinfo(cachep, objp, 0);
  1667. }
  1668. /* Hexdump the affected line */
  1669. i = (i / 16) * 16;
  1670. limit = 16;
  1671. if (i + limit > size)
  1672. limit = size - i;
  1673. dump_line(realobj, i, limit);
  1674. i += 16;
  1675. lines++;
  1676. /* Limit to 5 lines */
  1677. if (lines > 5)
  1678. break;
  1679. }
  1680. }
  1681. if (lines != 0) {
  1682. /* Print some data about the neighboring objects, if they
  1683. * exist:
  1684. */
  1685. struct slab *slabp = virt_to_slab(objp);
  1686. unsigned int objnr;
  1687. objnr = obj_to_index(cachep, slabp, objp);
  1688. if (objnr) {
  1689. objp = index_to_obj(cachep, slabp, objnr - 1);
  1690. realobj = (char *)objp + obj_offset(cachep);
  1691. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1692. realobj, size);
  1693. print_objinfo(cachep, objp, 2);
  1694. }
  1695. if (objnr + 1 < cachep->num) {
  1696. objp = index_to_obj(cachep, slabp, objnr + 1);
  1697. realobj = (char *)objp + obj_offset(cachep);
  1698. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1699. realobj, size);
  1700. print_objinfo(cachep, objp, 2);
  1701. }
  1702. }
  1703. }
  1704. #endif
  1705. #if DEBUG
  1706. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1707. {
  1708. int i;
  1709. for (i = 0; i < cachep->num; i++) {
  1710. void *objp = index_to_obj(cachep, slabp, i);
  1711. if (cachep->flags & SLAB_POISON) {
  1712. #ifdef CONFIG_DEBUG_PAGEALLOC
  1713. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1714. OFF_SLAB(cachep))
  1715. kernel_map_pages(virt_to_page(objp),
  1716. cachep->buffer_size / PAGE_SIZE, 1);
  1717. else
  1718. check_poison_obj(cachep, objp);
  1719. #else
  1720. check_poison_obj(cachep, objp);
  1721. #endif
  1722. }
  1723. if (cachep->flags & SLAB_RED_ZONE) {
  1724. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1725. slab_error(cachep, "start of a freed object "
  1726. "was overwritten");
  1727. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1728. slab_error(cachep, "end of a freed object "
  1729. "was overwritten");
  1730. }
  1731. }
  1732. }
  1733. #else
  1734. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1735. {
  1736. }
  1737. #endif
  1738. /**
  1739. * slab_destroy - destroy and release all objects in a slab
  1740. * @cachep: cache pointer being destroyed
  1741. * @slabp: slab pointer being destroyed
  1742. *
  1743. * Destroy all the objs in a slab, and release the mem back to the system.
  1744. * Before calling the slab must have been unlinked from the cache. The
  1745. * cache-lock is not held/needed.
  1746. */
  1747. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1748. {
  1749. void *addr = slabp->s_mem - slabp->colouroff;
  1750. slab_destroy_debugcheck(cachep, slabp);
  1751. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1752. struct slab_rcu *slab_rcu;
  1753. slab_rcu = (struct slab_rcu *)slabp;
  1754. slab_rcu->cachep = cachep;
  1755. slab_rcu->addr = addr;
  1756. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1757. } else {
  1758. kmem_freepages(cachep, addr);
  1759. if (OFF_SLAB(cachep))
  1760. kmem_cache_free(cachep->slabp_cache, slabp);
  1761. }
  1762. }
  1763. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1764. {
  1765. int i;
  1766. struct kmem_list3 *l3;
  1767. for_each_online_cpu(i)
  1768. kfree(cachep->array[i]);
  1769. /* NUMA: free the list3 structures */
  1770. for_each_online_node(i) {
  1771. l3 = cachep->nodelists[i];
  1772. if (l3) {
  1773. kfree(l3->shared);
  1774. free_alien_cache(l3->alien);
  1775. kfree(l3);
  1776. }
  1777. }
  1778. kmem_cache_free(&cache_cache, cachep);
  1779. }
  1780. /**
  1781. * calculate_slab_order - calculate size (page order) of slabs
  1782. * @cachep: pointer to the cache that is being created
  1783. * @size: size of objects to be created in this cache.
  1784. * @align: required alignment for the objects.
  1785. * @flags: slab allocation flags
  1786. *
  1787. * Also calculates the number of objects per slab.
  1788. *
  1789. * This could be made much more intelligent. For now, try to avoid using
  1790. * high order pages for slabs. When the gfp() functions are more friendly
  1791. * towards high-order requests, this should be changed.
  1792. */
  1793. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1794. size_t size, size_t align, unsigned long flags)
  1795. {
  1796. unsigned long offslab_limit;
  1797. size_t left_over = 0;
  1798. int gfporder;
  1799. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1800. unsigned int num;
  1801. size_t remainder;
  1802. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1803. if (!num)
  1804. continue;
  1805. if (flags & CFLGS_OFF_SLAB) {
  1806. /*
  1807. * Max number of objs-per-slab for caches which
  1808. * use off-slab slabs. Needed to avoid a possible
  1809. * looping condition in cache_grow().
  1810. */
  1811. offslab_limit = size - sizeof(struct slab);
  1812. offslab_limit /= sizeof(kmem_bufctl_t);
  1813. if (num > offslab_limit)
  1814. break;
  1815. }
  1816. /* Found something acceptable - save it away */
  1817. cachep->num = num;
  1818. cachep->gfporder = gfporder;
  1819. left_over = remainder;
  1820. /*
  1821. * A VFS-reclaimable slab tends to have most allocations
  1822. * as GFP_NOFS and we really don't want to have to be allocating
  1823. * higher-order pages when we are unable to shrink dcache.
  1824. */
  1825. if (flags & SLAB_RECLAIM_ACCOUNT)
  1826. break;
  1827. /*
  1828. * Large number of objects is good, but very large slabs are
  1829. * currently bad for the gfp()s.
  1830. */
  1831. if (gfporder >= slab_break_gfp_order)
  1832. break;
  1833. /*
  1834. * Acceptable internal fragmentation?
  1835. */
  1836. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1837. break;
  1838. }
  1839. return left_over;
  1840. }
  1841. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1842. {
  1843. if (g_cpucache_up == FULL)
  1844. return enable_cpucache(cachep, gfp);
  1845. if (g_cpucache_up == NONE) {
  1846. /*
  1847. * Note: the first kmem_cache_create must create the cache
  1848. * that's used by kmalloc(24), otherwise the creation of
  1849. * further caches will BUG().
  1850. */
  1851. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1852. /*
  1853. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1854. * the first cache, then we need to set up all its list3s,
  1855. * otherwise the creation of further caches will BUG().
  1856. */
  1857. set_up_list3s(cachep, SIZE_AC);
  1858. if (INDEX_AC == INDEX_L3)
  1859. g_cpucache_up = PARTIAL_L3;
  1860. else
  1861. g_cpucache_up = PARTIAL_AC;
  1862. } else {
  1863. cachep->array[smp_processor_id()] =
  1864. kmalloc(sizeof(struct arraycache_init), gfp);
  1865. if (g_cpucache_up == PARTIAL_AC) {
  1866. set_up_list3s(cachep, SIZE_L3);
  1867. g_cpucache_up = PARTIAL_L3;
  1868. } else {
  1869. int node;
  1870. for_each_online_node(node) {
  1871. cachep->nodelists[node] =
  1872. kmalloc_node(sizeof(struct kmem_list3),
  1873. gfp, node);
  1874. BUG_ON(!cachep->nodelists[node]);
  1875. kmem_list3_init(cachep->nodelists[node]);
  1876. }
  1877. }
  1878. }
  1879. cachep->nodelists[numa_node_id()]->next_reap =
  1880. jiffies + REAPTIMEOUT_LIST3 +
  1881. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1882. cpu_cache_get(cachep)->avail = 0;
  1883. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1884. cpu_cache_get(cachep)->batchcount = 1;
  1885. cpu_cache_get(cachep)->touched = 0;
  1886. cachep->batchcount = 1;
  1887. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1888. return 0;
  1889. }
  1890. /**
  1891. * kmem_cache_create - Create a cache.
  1892. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1893. * @size: The size of objects to be created in this cache.
  1894. * @align: The required alignment for the objects.
  1895. * @flags: SLAB flags
  1896. * @ctor: A constructor for the objects.
  1897. *
  1898. * Returns a ptr to the cache on success, NULL on failure.
  1899. * Cannot be called within a int, but can be interrupted.
  1900. * The @ctor is run when new pages are allocated by the cache.
  1901. *
  1902. * @name must be valid until the cache is destroyed. This implies that
  1903. * the module calling this has to destroy the cache before getting unloaded.
  1904. * Note that kmem_cache_name() is not guaranteed to return the same pointer,
  1905. * therefore applications must manage it themselves.
  1906. *
  1907. * The flags are
  1908. *
  1909. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1910. * to catch references to uninitialised memory.
  1911. *
  1912. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1913. * for buffer overruns.
  1914. *
  1915. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1916. * cacheline. This can be beneficial if you're counting cycles as closely
  1917. * as davem.
  1918. */
  1919. struct kmem_cache *
  1920. kmem_cache_create (const char *name, size_t size, size_t align,
  1921. unsigned long flags, void (*ctor)(void *))
  1922. {
  1923. size_t left_over, slab_size, ralign;
  1924. struct kmem_cache *cachep = NULL, *pc;
  1925. gfp_t gfp;
  1926. /*
  1927. * Sanity checks... these are all serious usage bugs.
  1928. */
  1929. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1930. size > KMALLOC_MAX_SIZE) {
  1931. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  1932. name);
  1933. BUG();
  1934. }
  1935. /*
  1936. * We use cache_chain_mutex to ensure a consistent view of
  1937. * cpu_online_mask as well. Please see cpuup_callback
  1938. */
  1939. if (slab_is_available()) {
  1940. get_online_cpus();
  1941. mutex_lock(&cache_chain_mutex);
  1942. }
  1943. list_for_each_entry(pc, &cache_chain, next) {
  1944. char tmp;
  1945. int res;
  1946. /*
  1947. * This happens when the module gets unloaded and doesn't
  1948. * destroy its slab cache and no-one else reuses the vmalloc
  1949. * area of the module. Print a warning.
  1950. */
  1951. res = probe_kernel_address(pc->name, tmp);
  1952. if (res) {
  1953. printk(KERN_ERR
  1954. "SLAB: cache with size %d has lost its name\n",
  1955. pc->buffer_size);
  1956. continue;
  1957. }
  1958. if (!strcmp(pc->name, name)) {
  1959. printk(KERN_ERR
  1960. "kmem_cache_create: duplicate cache %s\n", name);
  1961. dump_stack();
  1962. goto oops;
  1963. }
  1964. }
  1965. #if DEBUG
  1966. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  1967. #if FORCED_DEBUG
  1968. /*
  1969. * Enable redzoning and last user accounting, except for caches with
  1970. * large objects, if the increased size would increase the object size
  1971. * above the next power of two: caches with object sizes just above a
  1972. * power of two have a significant amount of internal fragmentation.
  1973. */
  1974. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  1975. 2 * sizeof(unsigned long long)))
  1976. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  1977. if (!(flags & SLAB_DESTROY_BY_RCU))
  1978. flags |= SLAB_POISON;
  1979. #endif
  1980. if (flags & SLAB_DESTROY_BY_RCU)
  1981. BUG_ON(flags & SLAB_POISON);
  1982. #endif
  1983. /*
  1984. * Always checks flags, a caller might be expecting debug support which
  1985. * isn't available.
  1986. */
  1987. BUG_ON(flags & ~CREATE_MASK);
  1988. /*
  1989. * Check that size is in terms of words. This is needed to avoid
  1990. * unaligned accesses for some archs when redzoning is used, and makes
  1991. * sure any on-slab bufctl's are also correctly aligned.
  1992. */
  1993. if (size & (BYTES_PER_WORD - 1)) {
  1994. size += (BYTES_PER_WORD - 1);
  1995. size &= ~(BYTES_PER_WORD - 1);
  1996. }
  1997. /* calculate the final buffer alignment: */
  1998. /* 1) arch recommendation: can be overridden for debug */
  1999. if (flags & SLAB_HWCACHE_ALIGN) {
  2000. /*
  2001. * Default alignment: as specified by the arch code. Except if
  2002. * an object is really small, then squeeze multiple objects into
  2003. * one cacheline.
  2004. */
  2005. ralign = cache_line_size();
  2006. while (size <= ralign / 2)
  2007. ralign /= 2;
  2008. } else {
  2009. ralign = BYTES_PER_WORD;
  2010. }
  2011. /*
  2012. * Redzoning and user store require word alignment or possibly larger.
  2013. * Note this will be overridden by architecture or caller mandated
  2014. * alignment if either is greater than BYTES_PER_WORD.
  2015. */
  2016. if (flags & SLAB_STORE_USER)
  2017. ralign = BYTES_PER_WORD;
  2018. if (flags & SLAB_RED_ZONE) {
  2019. ralign = REDZONE_ALIGN;
  2020. /* If redzoning, ensure that the second redzone is suitably
  2021. * aligned, by adjusting the object size accordingly. */
  2022. size += REDZONE_ALIGN - 1;
  2023. size &= ~(REDZONE_ALIGN - 1);
  2024. }
  2025. /* 2) arch mandated alignment */
  2026. if (ralign < ARCH_SLAB_MINALIGN) {
  2027. ralign = ARCH_SLAB_MINALIGN;
  2028. }
  2029. /* 3) caller mandated alignment */
  2030. if (ralign < align) {
  2031. ralign = align;
  2032. }
  2033. /* disable debug if necessary */
  2034. if (ralign > __alignof__(unsigned long long))
  2035. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2036. /*
  2037. * 4) Store it.
  2038. */
  2039. align = ralign;
  2040. if (slab_is_available())
  2041. gfp = GFP_KERNEL;
  2042. else
  2043. gfp = GFP_NOWAIT;
  2044. /* Get cache's description obj. */
  2045. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  2046. if (!cachep)
  2047. goto oops;
  2048. #if DEBUG
  2049. cachep->obj_size = size;
  2050. /*
  2051. * Both debugging options require word-alignment which is calculated
  2052. * into align above.
  2053. */
  2054. if (flags & SLAB_RED_ZONE) {
  2055. /* add space for red zone words */
  2056. cachep->obj_offset += sizeof(unsigned long long);
  2057. size += 2 * sizeof(unsigned long long);
  2058. }
  2059. if (flags & SLAB_STORE_USER) {
  2060. /* user store requires one word storage behind the end of
  2061. * the real object. But if the second red zone needs to be
  2062. * aligned to 64 bits, we must allow that much space.
  2063. */
  2064. if (flags & SLAB_RED_ZONE)
  2065. size += REDZONE_ALIGN;
  2066. else
  2067. size += BYTES_PER_WORD;
  2068. }
  2069. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2070. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2071. && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
  2072. cachep->obj_offset += PAGE_SIZE - size;
  2073. size = PAGE_SIZE;
  2074. }
  2075. #endif
  2076. #endif
  2077. /*
  2078. * Determine if the slab management is 'on' or 'off' slab.
  2079. * (bootstrapping cannot cope with offslab caches so don't do
  2080. * it too early on.)
  2081. */
  2082. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
  2083. /*
  2084. * Size is large, assume best to place the slab management obj
  2085. * off-slab (should allow better packing of objs).
  2086. */
  2087. flags |= CFLGS_OFF_SLAB;
  2088. size = ALIGN(size, align);
  2089. left_over = calculate_slab_order(cachep, size, align, flags);
  2090. if (!cachep->num) {
  2091. printk(KERN_ERR
  2092. "kmem_cache_create: couldn't create cache %s.\n", name);
  2093. kmem_cache_free(&cache_cache, cachep);
  2094. cachep = NULL;
  2095. goto oops;
  2096. }
  2097. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2098. + sizeof(struct slab), align);
  2099. /*
  2100. * If the slab has been placed off-slab, and we have enough space then
  2101. * move it on-slab. This is at the expense of any extra colouring.
  2102. */
  2103. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2104. flags &= ~CFLGS_OFF_SLAB;
  2105. left_over -= slab_size;
  2106. }
  2107. if (flags & CFLGS_OFF_SLAB) {
  2108. /* really off slab. No need for manual alignment */
  2109. slab_size =
  2110. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2111. }
  2112. cachep->colour_off = cache_line_size();
  2113. /* Offset must be a multiple of the alignment. */
  2114. if (cachep->colour_off < align)
  2115. cachep->colour_off = align;
  2116. cachep->colour = left_over / cachep->colour_off;
  2117. cachep->slab_size = slab_size;
  2118. cachep->flags = flags;
  2119. cachep->gfpflags = 0;
  2120. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2121. cachep->gfpflags |= GFP_DMA;
  2122. cachep->buffer_size = size;
  2123. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2124. if (flags & CFLGS_OFF_SLAB) {
  2125. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2126. /*
  2127. * This is a possibility for one of the malloc_sizes caches.
  2128. * But since we go off slab only for object size greater than
  2129. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2130. * this should not happen at all.
  2131. * But leave a BUG_ON for some lucky dude.
  2132. */
  2133. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2134. }
  2135. cachep->ctor = ctor;
  2136. cachep->name = name;
  2137. if (setup_cpu_cache(cachep, gfp)) {
  2138. __kmem_cache_destroy(cachep);
  2139. cachep = NULL;
  2140. goto oops;
  2141. }
  2142. /* cache setup completed, link it into the list */
  2143. list_add(&cachep->next, &cache_chain);
  2144. oops:
  2145. if (!cachep && (flags & SLAB_PANIC))
  2146. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2147. name);
  2148. if (slab_is_available()) {
  2149. mutex_unlock(&cache_chain_mutex);
  2150. put_online_cpus();
  2151. }
  2152. return cachep;
  2153. }
  2154. EXPORT_SYMBOL(kmem_cache_create);
  2155. #if DEBUG
  2156. static void check_irq_off(void)
  2157. {
  2158. BUG_ON(!irqs_disabled());
  2159. }
  2160. static void check_irq_on(void)
  2161. {
  2162. BUG_ON(irqs_disabled());
  2163. }
  2164. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2165. {
  2166. #ifdef CONFIG_SMP
  2167. check_irq_off();
  2168. assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
  2169. #endif
  2170. }
  2171. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2172. {
  2173. #ifdef CONFIG_SMP
  2174. check_irq_off();
  2175. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2176. #endif
  2177. }
  2178. #else
  2179. #define check_irq_off() do { } while(0)
  2180. #define check_irq_on() do { } while(0)
  2181. #define check_spinlock_acquired(x) do { } while(0)
  2182. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2183. #endif
  2184. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2185. struct array_cache *ac,
  2186. int force, int node);
  2187. static void do_drain(void *arg)
  2188. {
  2189. struct kmem_cache *cachep = arg;
  2190. struct array_cache *ac;
  2191. int node = numa_node_id();
  2192. check_irq_off();
  2193. ac = cpu_cache_get(cachep);
  2194. spin_lock(&cachep->nodelists[node]->list_lock);
  2195. free_block(cachep, ac->entry, ac->avail, node);
  2196. spin_unlock(&cachep->nodelists[node]->list_lock);
  2197. ac->avail = 0;
  2198. }
  2199. static void drain_cpu_caches(struct kmem_cache *cachep)
  2200. {
  2201. struct kmem_list3 *l3;
  2202. int node;
  2203. on_each_cpu(do_drain, cachep, 1);
  2204. check_irq_on();
  2205. for_each_online_node(node) {
  2206. l3 = cachep->nodelists[node];
  2207. if (l3 && l3->alien)
  2208. drain_alien_cache(cachep, l3->alien);
  2209. }
  2210. for_each_online_node(node) {
  2211. l3 = cachep->nodelists[node];
  2212. if (l3)
  2213. drain_array(cachep, l3, l3->shared, 1, node);
  2214. }
  2215. }
  2216. /*
  2217. * Remove slabs from the list of free slabs.
  2218. * Specify the number of slabs to drain in tofree.
  2219. *
  2220. * Returns the actual number of slabs released.
  2221. */
  2222. static int drain_freelist(struct kmem_cache *cache,
  2223. struct kmem_list3 *l3, int tofree)
  2224. {
  2225. struct list_head *p;
  2226. int nr_freed;
  2227. struct slab *slabp;
  2228. nr_freed = 0;
  2229. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2230. spin_lock_irq(&l3->list_lock);
  2231. p = l3->slabs_free.prev;
  2232. if (p == &l3->slabs_free) {
  2233. spin_unlock_irq(&l3->list_lock);
  2234. goto out;
  2235. }
  2236. slabp = list_entry(p, struct slab, list);
  2237. #if DEBUG
  2238. BUG_ON(slabp->inuse);
  2239. #endif
  2240. list_del(&slabp->list);
  2241. /*
  2242. * Safe to drop the lock. The slab is no longer linked
  2243. * to the cache.
  2244. */
  2245. l3->free_objects -= cache->num;
  2246. spin_unlock_irq(&l3->list_lock);
  2247. slab_destroy(cache, slabp);
  2248. nr_freed++;
  2249. }
  2250. out:
  2251. return nr_freed;
  2252. }
  2253. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2254. static int __cache_shrink(struct kmem_cache *cachep)
  2255. {
  2256. int ret = 0, i = 0;
  2257. struct kmem_list3 *l3;
  2258. drain_cpu_caches(cachep);
  2259. check_irq_on();
  2260. for_each_online_node(i) {
  2261. l3 = cachep->nodelists[i];
  2262. if (!l3)
  2263. continue;
  2264. drain_freelist(cachep, l3, l3->free_objects);
  2265. ret += !list_empty(&l3->slabs_full) ||
  2266. !list_empty(&l3->slabs_partial);
  2267. }
  2268. return (ret ? 1 : 0);
  2269. }
  2270. /**
  2271. * kmem_cache_shrink - Shrink a cache.
  2272. * @cachep: The cache to shrink.
  2273. *
  2274. * Releases as many slabs as possible for a cache.
  2275. * To help debugging, a zero exit status indicates all slabs were released.
  2276. */
  2277. int kmem_cache_shrink(struct kmem_cache *cachep)
  2278. {
  2279. int ret;
  2280. BUG_ON(!cachep || in_interrupt());
  2281. get_online_cpus();
  2282. mutex_lock(&cache_chain_mutex);
  2283. ret = __cache_shrink(cachep);
  2284. mutex_unlock(&cache_chain_mutex);
  2285. put_online_cpus();
  2286. return ret;
  2287. }
  2288. EXPORT_SYMBOL(kmem_cache_shrink);
  2289. /**
  2290. * kmem_cache_destroy - delete a cache
  2291. * @cachep: the cache to destroy
  2292. *
  2293. * Remove a &struct kmem_cache object from the slab cache.
  2294. *
  2295. * It is expected this function will be called by a module when it is
  2296. * unloaded. This will remove the cache completely, and avoid a duplicate
  2297. * cache being allocated each time a module is loaded and unloaded, if the
  2298. * module doesn't have persistent in-kernel storage across loads and unloads.
  2299. *
  2300. * The cache must be empty before calling this function.
  2301. *
  2302. * The caller must guarantee that noone will allocate memory from the cache
  2303. * during the kmem_cache_destroy().
  2304. */
  2305. void kmem_cache_destroy(struct kmem_cache *cachep)
  2306. {
  2307. BUG_ON(!cachep || in_interrupt());
  2308. /* Find the cache in the chain of caches. */
  2309. get_online_cpus();
  2310. mutex_lock(&cache_chain_mutex);
  2311. /*
  2312. * the chain is never empty, cache_cache is never destroyed
  2313. */
  2314. list_del(&cachep->next);
  2315. if (__cache_shrink(cachep)) {
  2316. slab_error(cachep, "Can't free all objects");
  2317. list_add(&cachep->next, &cache_chain);
  2318. mutex_unlock(&cache_chain_mutex);
  2319. put_online_cpus();
  2320. return;
  2321. }
  2322. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2323. synchronize_rcu();
  2324. __kmem_cache_destroy(cachep);
  2325. mutex_unlock(&cache_chain_mutex);
  2326. put_online_cpus();
  2327. }
  2328. EXPORT_SYMBOL(kmem_cache_destroy);
  2329. /*
  2330. * Get the memory for a slab management obj.
  2331. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2332. * always come from malloc_sizes caches. The slab descriptor cannot
  2333. * come from the same cache which is getting created because,
  2334. * when we are searching for an appropriate cache for these
  2335. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2336. * If we are creating a malloc_sizes cache here it would not be visible to
  2337. * kmem_find_general_cachep till the initialization is complete.
  2338. * Hence we cannot have slabp_cache same as the original cache.
  2339. */
  2340. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2341. int colour_off, gfp_t local_flags,
  2342. int nodeid)
  2343. {
  2344. struct slab *slabp;
  2345. if (OFF_SLAB(cachep)) {
  2346. /* Slab management obj is off-slab. */
  2347. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2348. local_flags, nodeid);
  2349. /*
  2350. * If the first object in the slab is leaked (it's allocated
  2351. * but no one has a reference to it), we want to make sure
  2352. * kmemleak does not treat the ->s_mem pointer as a reference
  2353. * to the object. Otherwise we will not report the leak.
  2354. */
  2355. kmemleak_scan_area(slabp, offsetof(struct slab, list),
  2356. sizeof(struct list_head), local_flags);
  2357. if (!slabp)
  2358. return NULL;
  2359. } else {
  2360. slabp = objp + colour_off;
  2361. colour_off += cachep->slab_size;
  2362. }
  2363. slabp->inuse = 0;
  2364. slabp->colouroff = colour_off;
  2365. slabp->s_mem = objp + colour_off;
  2366. slabp->nodeid = nodeid;
  2367. slabp->free = 0;
  2368. return slabp;
  2369. }
  2370. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2371. {
  2372. return (kmem_bufctl_t *) (slabp + 1);
  2373. }
  2374. static void cache_init_objs(struct kmem_cache *cachep,
  2375. struct slab *slabp)
  2376. {
  2377. int i;
  2378. for (i = 0; i < cachep->num; i++) {
  2379. void *objp = index_to_obj(cachep, slabp, i);
  2380. #if DEBUG
  2381. /* need to poison the objs? */
  2382. if (cachep->flags & SLAB_POISON)
  2383. poison_obj(cachep, objp, POISON_FREE);
  2384. if (cachep->flags & SLAB_STORE_USER)
  2385. *dbg_userword(cachep, objp) = NULL;
  2386. if (cachep->flags & SLAB_RED_ZONE) {
  2387. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2388. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2389. }
  2390. /*
  2391. * Constructors are not allowed to allocate memory from the same
  2392. * cache which they are a constructor for. Otherwise, deadlock.
  2393. * They must also be threaded.
  2394. */
  2395. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2396. cachep->ctor(objp + obj_offset(cachep));
  2397. if (cachep->flags & SLAB_RED_ZONE) {
  2398. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2399. slab_error(cachep, "constructor overwrote the"
  2400. " end of an object");
  2401. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2402. slab_error(cachep, "constructor overwrote the"
  2403. " start of an object");
  2404. }
  2405. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2406. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2407. kernel_map_pages(virt_to_page(objp),
  2408. cachep->buffer_size / PAGE_SIZE, 0);
  2409. #else
  2410. if (cachep->ctor)
  2411. cachep->ctor(objp);
  2412. #endif
  2413. slab_bufctl(slabp)[i] = i + 1;
  2414. }
  2415. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2416. }
  2417. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2418. {
  2419. if (CONFIG_ZONE_DMA_FLAG) {
  2420. if (flags & GFP_DMA)
  2421. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2422. else
  2423. BUG_ON(cachep->gfpflags & GFP_DMA);
  2424. }
  2425. }
  2426. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2427. int nodeid)
  2428. {
  2429. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2430. kmem_bufctl_t next;
  2431. slabp->inuse++;
  2432. next = slab_bufctl(slabp)[slabp->free];
  2433. #if DEBUG
  2434. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2435. WARN_ON(slabp->nodeid != nodeid);
  2436. #endif
  2437. slabp->free = next;
  2438. return objp;
  2439. }
  2440. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2441. void *objp, int nodeid)
  2442. {
  2443. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2444. #if DEBUG
  2445. /* Verify that the slab belongs to the intended node */
  2446. WARN_ON(slabp->nodeid != nodeid);
  2447. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2448. printk(KERN_ERR "slab: double free detected in cache "
  2449. "'%s', objp %p\n", cachep->name, objp);
  2450. BUG();
  2451. }
  2452. #endif
  2453. slab_bufctl(slabp)[objnr] = slabp->free;
  2454. slabp->free = objnr;
  2455. slabp->inuse--;
  2456. }
  2457. /*
  2458. * Map pages beginning at addr to the given cache and slab. This is required
  2459. * for the slab allocator to be able to lookup the cache and slab of a
  2460. * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
  2461. */
  2462. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2463. void *addr)
  2464. {
  2465. int nr_pages;
  2466. struct page *page;
  2467. page = virt_to_page(addr);
  2468. nr_pages = 1;
  2469. if (likely(!PageCompound(page)))
  2470. nr_pages <<= cache->gfporder;
  2471. do {
  2472. page_set_cache(page, cache);
  2473. page_set_slab(page, slab);
  2474. page++;
  2475. } while (--nr_pages);
  2476. }
  2477. /*
  2478. * Grow (by 1) the number of slabs within a cache. This is called by
  2479. * kmem_cache_alloc() when there are no active objs left in a cache.
  2480. */
  2481. static int cache_grow(struct kmem_cache *cachep,
  2482. gfp_t flags, int nodeid, void *objp)
  2483. {
  2484. struct slab *slabp;
  2485. size_t offset;
  2486. gfp_t local_flags;
  2487. struct kmem_list3 *l3;
  2488. /*
  2489. * Be lazy and only check for valid flags here, keeping it out of the
  2490. * critical path in kmem_cache_alloc().
  2491. */
  2492. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2493. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2494. /* Take the l3 list lock to change the colour_next on this node */
  2495. check_irq_off();
  2496. l3 = cachep->nodelists[nodeid];
  2497. spin_lock(&l3->list_lock);
  2498. /* Get colour for the slab, and cal the next value. */
  2499. offset = l3->colour_next;
  2500. l3->colour_next++;
  2501. if (l3->colour_next >= cachep->colour)
  2502. l3->colour_next = 0;
  2503. spin_unlock(&l3->list_lock);
  2504. offset *= cachep->colour_off;
  2505. if (local_flags & __GFP_WAIT)
  2506. local_irq_enable();
  2507. /*
  2508. * The test for missing atomic flag is performed here, rather than
  2509. * the more obvious place, simply to reduce the critical path length
  2510. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2511. * will eventually be caught here (where it matters).
  2512. */
  2513. kmem_flagcheck(cachep, flags);
  2514. /*
  2515. * Get mem for the objs. Attempt to allocate a physical page from
  2516. * 'nodeid'.
  2517. */
  2518. if (!objp)
  2519. objp = kmem_getpages(cachep, local_flags, nodeid);
  2520. if (!objp)
  2521. goto failed;
  2522. /* Get slab management. */
  2523. slabp = alloc_slabmgmt(cachep, objp, offset,
  2524. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2525. if (!slabp)
  2526. goto opps1;
  2527. slab_map_pages(cachep, slabp, objp);
  2528. cache_init_objs(cachep, slabp);
  2529. if (local_flags & __GFP_WAIT)
  2530. local_irq_disable();
  2531. check_irq_off();
  2532. spin_lock(&l3->list_lock);
  2533. /* Make slab active. */
  2534. list_add_tail(&slabp->list, &(l3->slabs_free));
  2535. STATS_INC_GROWN(cachep);
  2536. l3->free_objects += cachep->num;
  2537. spin_unlock(&l3->list_lock);
  2538. return 1;
  2539. opps1:
  2540. kmem_freepages(cachep, objp);
  2541. failed:
  2542. if (local_flags & __GFP_WAIT)
  2543. local_irq_disable();
  2544. return 0;
  2545. }
  2546. #if DEBUG
  2547. /*
  2548. * Perform extra freeing checks:
  2549. * - detect bad pointers.
  2550. * - POISON/RED_ZONE checking
  2551. */
  2552. static void kfree_debugcheck(const void *objp)
  2553. {
  2554. if (!virt_addr_valid(objp)) {
  2555. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2556. (unsigned long)objp);
  2557. BUG();
  2558. }
  2559. }
  2560. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2561. {
  2562. unsigned long long redzone1, redzone2;
  2563. redzone1 = *dbg_redzone1(cache, obj);
  2564. redzone2 = *dbg_redzone2(cache, obj);
  2565. /*
  2566. * Redzone is ok.
  2567. */
  2568. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2569. return;
  2570. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2571. slab_error(cache, "double free detected");
  2572. else
  2573. slab_error(cache, "memory outside object was overwritten");
  2574. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2575. obj, redzone1, redzone2);
  2576. }
  2577. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2578. void *caller)
  2579. {
  2580. struct page *page;
  2581. unsigned int objnr;
  2582. struct slab *slabp;
  2583. BUG_ON(virt_to_cache(objp) != cachep);
  2584. objp -= obj_offset(cachep);
  2585. kfree_debugcheck(objp);
  2586. page = virt_to_head_page(objp);
  2587. slabp = page_get_slab(page);
  2588. if (cachep->flags & SLAB_RED_ZONE) {
  2589. verify_redzone_free(cachep, objp);
  2590. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2591. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2592. }
  2593. if (cachep->flags & SLAB_STORE_USER)
  2594. *dbg_userword(cachep, objp) = caller;
  2595. objnr = obj_to_index(cachep, slabp, objp);
  2596. BUG_ON(objnr >= cachep->num);
  2597. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2598. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2599. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2600. #endif
  2601. if (cachep->flags & SLAB_POISON) {
  2602. #ifdef CONFIG_DEBUG_PAGEALLOC
  2603. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2604. store_stackinfo(cachep, objp, (unsigned long)caller);
  2605. kernel_map_pages(virt_to_page(objp),
  2606. cachep->buffer_size / PAGE_SIZE, 0);
  2607. } else {
  2608. poison_obj(cachep, objp, POISON_FREE);
  2609. }
  2610. #else
  2611. poison_obj(cachep, objp, POISON_FREE);
  2612. #endif
  2613. }
  2614. return objp;
  2615. }
  2616. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2617. {
  2618. kmem_bufctl_t i;
  2619. int entries = 0;
  2620. /* Check slab's freelist to see if this obj is there. */
  2621. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2622. entries++;
  2623. if (entries > cachep->num || i >= cachep->num)
  2624. goto bad;
  2625. }
  2626. if (entries != cachep->num - slabp->inuse) {
  2627. bad:
  2628. printk(KERN_ERR "slab: Internal list corruption detected in "
  2629. "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
  2630. cachep->name, cachep->num, slabp, slabp->inuse);
  2631. for (i = 0;
  2632. i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
  2633. i++) {
  2634. if (i % 16 == 0)
  2635. printk("\n%03x:", i);
  2636. printk(" %02x", ((unsigned char *)slabp)[i]);
  2637. }
  2638. printk("\n");
  2639. BUG();
  2640. }
  2641. }
  2642. #else
  2643. #define kfree_debugcheck(x) do { } while(0)
  2644. #define cache_free_debugcheck(x,objp,z) (objp)
  2645. #define check_slabp(x,y) do { } while(0)
  2646. #endif
  2647. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2648. {
  2649. int batchcount;
  2650. struct kmem_list3 *l3;
  2651. struct array_cache *ac;
  2652. int node;
  2653. retry:
  2654. check_irq_off();
  2655. node = numa_node_id();
  2656. ac = cpu_cache_get(cachep);
  2657. batchcount = ac->batchcount;
  2658. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2659. /*
  2660. * If there was little recent activity on this cache, then
  2661. * perform only a partial refill. Otherwise we could generate
  2662. * refill bouncing.
  2663. */
  2664. batchcount = BATCHREFILL_LIMIT;
  2665. }
  2666. l3 = cachep->nodelists[node];
  2667. BUG_ON(ac->avail > 0 || !l3);
  2668. spin_lock(&l3->list_lock);
  2669. /* See if we can refill from the shared array */
  2670. if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
  2671. goto alloc_done;
  2672. while (batchcount > 0) {
  2673. struct list_head *entry;
  2674. struct slab *slabp;
  2675. /* Get slab alloc is to come from. */
  2676. entry = l3->slabs_partial.next;
  2677. if (entry == &l3->slabs_partial) {
  2678. l3->free_touched = 1;
  2679. entry = l3->slabs_free.next;
  2680. if (entry == &l3->slabs_free)
  2681. goto must_grow;
  2682. }
  2683. slabp = list_entry(entry, struct slab, list);
  2684. check_slabp(cachep, slabp);
  2685. check_spinlock_acquired(cachep);
  2686. /*
  2687. * The slab was either on partial or free list so
  2688. * there must be at least one object available for
  2689. * allocation.
  2690. */
  2691. BUG_ON(slabp->inuse >= cachep->num);
  2692. while (slabp->inuse < cachep->num && batchcount--) {
  2693. STATS_INC_ALLOCED(cachep);
  2694. STATS_INC_ACTIVE(cachep);
  2695. STATS_SET_HIGH(cachep);
  2696. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2697. node);
  2698. }
  2699. check_slabp(cachep, slabp);
  2700. /* move slabp to correct slabp list: */
  2701. list_del(&slabp->list);
  2702. if (slabp->free == BUFCTL_END)
  2703. list_add(&slabp->list, &l3->slabs_full);
  2704. else
  2705. list_add(&slabp->list, &l3->slabs_partial);
  2706. }
  2707. must_grow:
  2708. l3->free_objects -= ac->avail;
  2709. alloc_done:
  2710. spin_unlock(&l3->list_lock);
  2711. if (unlikely(!ac->avail)) {
  2712. int x;
  2713. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2714. /* cache_grow can reenable interrupts, then ac could change. */
  2715. ac = cpu_cache_get(cachep);
  2716. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2717. return NULL;
  2718. if (!ac->avail) /* objects refilled by interrupt? */
  2719. goto retry;
  2720. }
  2721. ac->touched = 1;
  2722. return ac->entry[--ac->avail];
  2723. }
  2724. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2725. gfp_t flags)
  2726. {
  2727. might_sleep_if(flags & __GFP_WAIT);
  2728. #if DEBUG
  2729. kmem_flagcheck(cachep, flags);
  2730. #endif
  2731. }
  2732. #if DEBUG
  2733. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2734. gfp_t flags, void *objp, void *caller)
  2735. {
  2736. if (!objp)
  2737. return objp;
  2738. if (cachep->flags & SLAB_POISON) {
  2739. #ifdef CONFIG_DEBUG_PAGEALLOC
  2740. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2741. kernel_map_pages(virt_to_page(objp),
  2742. cachep->buffer_size / PAGE_SIZE, 1);
  2743. else
  2744. check_poison_obj(cachep, objp);
  2745. #else
  2746. check_poison_obj(cachep, objp);
  2747. #endif
  2748. poison_obj(cachep, objp, POISON_INUSE);
  2749. }
  2750. if (cachep->flags & SLAB_STORE_USER)
  2751. *dbg_userword(cachep, objp) = caller;
  2752. if (cachep->flags & SLAB_RED_ZONE) {
  2753. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2754. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2755. slab_error(cachep, "double free, or memory outside"
  2756. " object was overwritten");
  2757. printk(KERN_ERR
  2758. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2759. objp, *dbg_redzone1(cachep, objp),
  2760. *dbg_redzone2(cachep, objp));
  2761. }
  2762. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2763. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2764. }
  2765. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2766. {
  2767. struct slab *slabp;
  2768. unsigned objnr;
  2769. slabp = page_get_slab(virt_to_head_page(objp));
  2770. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2771. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2772. }
  2773. #endif
  2774. objp += obj_offset(cachep);
  2775. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2776. cachep->ctor(objp);
  2777. #if ARCH_SLAB_MINALIGN
  2778. if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
  2779. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2780. objp, ARCH_SLAB_MINALIGN);
  2781. }
  2782. #endif
  2783. return objp;
  2784. }
  2785. #else
  2786. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2787. #endif
  2788. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2789. {
  2790. if (cachep == &cache_cache)
  2791. return false;
  2792. return should_failslab(obj_size(cachep), flags);
  2793. }
  2794. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2795. {
  2796. void *objp;
  2797. struct array_cache *ac;
  2798. check_irq_off();
  2799. ac = cpu_cache_get(cachep);
  2800. if (likely(ac->avail)) {
  2801. STATS_INC_ALLOCHIT(cachep);
  2802. ac->touched = 1;
  2803. objp = ac->entry[--ac->avail];
  2804. } else {
  2805. STATS_INC_ALLOCMISS(cachep);
  2806. objp = cache_alloc_refill(cachep, flags);
  2807. }
  2808. /*
  2809. * To avoid a false negative, if an object that is in one of the
  2810. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2811. * treat the array pointers as a reference to the object.
  2812. */
  2813. kmemleak_erase(&ac->entry[ac->avail]);
  2814. return objp;
  2815. }
  2816. #ifdef CONFIG_NUMA
  2817. /*
  2818. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2819. *
  2820. * If we are in_interrupt, then process context, including cpusets and
  2821. * mempolicy, may not apply and should not be used for allocation policy.
  2822. */
  2823. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2824. {
  2825. int nid_alloc, nid_here;
  2826. if (in_interrupt() || (flags & __GFP_THISNODE))
  2827. return NULL;
  2828. nid_alloc = nid_here = numa_node_id();
  2829. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2830. nid_alloc = cpuset_mem_spread_node();
  2831. else if (current->mempolicy)
  2832. nid_alloc = slab_node(current->mempolicy);
  2833. if (nid_alloc != nid_here)
  2834. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2835. return NULL;
  2836. }
  2837. /*
  2838. * Fallback function if there was no memory available and no objects on a
  2839. * certain node and fall back is permitted. First we scan all the
  2840. * available nodelists for available objects. If that fails then we
  2841. * perform an allocation without specifying a node. This allows the page
  2842. * allocator to do its reclaim / fallback magic. We then insert the
  2843. * slab into the proper nodelist and then allocate from it.
  2844. */
  2845. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2846. {
  2847. struct zonelist *zonelist;
  2848. gfp_t local_flags;
  2849. struct zoneref *z;
  2850. struct zone *zone;
  2851. enum zone_type high_zoneidx = gfp_zone(flags);
  2852. void *obj = NULL;
  2853. int nid;
  2854. if (flags & __GFP_THISNODE)
  2855. return NULL;
  2856. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2857. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2858. retry:
  2859. /*
  2860. * Look through allowed nodes for objects available
  2861. * from existing per node queues.
  2862. */
  2863. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2864. nid = zone_to_nid(zone);
  2865. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2866. cache->nodelists[nid] &&
  2867. cache->nodelists[nid]->free_objects) {
  2868. obj = ____cache_alloc_node(cache,
  2869. flags | GFP_THISNODE, nid);
  2870. if (obj)
  2871. break;
  2872. }
  2873. }
  2874. if (!obj) {
  2875. /*
  2876. * This allocation will be performed within the constraints
  2877. * of the current cpuset / memory policy requirements.
  2878. * We may trigger various forms of reclaim on the allowed
  2879. * set and go into memory reserves if necessary.
  2880. */
  2881. if (local_flags & __GFP_WAIT)
  2882. local_irq_enable();
  2883. kmem_flagcheck(cache, flags);
  2884. obj = kmem_getpages(cache, local_flags, numa_node_id());
  2885. if (local_flags & __GFP_WAIT)
  2886. local_irq_disable();
  2887. if (obj) {
  2888. /*
  2889. * Insert into the appropriate per node queues
  2890. */
  2891. nid = page_to_nid(virt_to_page(obj));
  2892. if (cache_grow(cache, flags, nid, obj)) {
  2893. obj = ____cache_alloc_node(cache,
  2894. flags | GFP_THISNODE, nid);
  2895. if (!obj)
  2896. /*
  2897. * Another processor may allocate the
  2898. * objects in the slab since we are
  2899. * not holding any locks.
  2900. */
  2901. goto retry;
  2902. } else {
  2903. /* cache_grow already freed obj */
  2904. obj = NULL;
  2905. }
  2906. }
  2907. }
  2908. return obj;
  2909. }
  2910. /*
  2911. * A interface to enable slab creation on nodeid
  2912. */
  2913. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  2914. int nodeid)
  2915. {
  2916. struct list_head *entry;
  2917. struct slab *slabp;
  2918. struct kmem_list3 *l3;
  2919. void *obj;
  2920. int x;
  2921. l3 = cachep->nodelists[nodeid];
  2922. BUG_ON(!l3);
  2923. retry:
  2924. check_irq_off();
  2925. spin_lock(&l3->list_lock);
  2926. entry = l3->slabs_partial.next;
  2927. if (entry == &l3->slabs_partial) {
  2928. l3->free_touched = 1;
  2929. entry = l3->slabs_free.next;
  2930. if (entry == &l3->slabs_free)
  2931. goto must_grow;
  2932. }
  2933. slabp = list_entry(entry, struct slab, list);
  2934. check_spinlock_acquired_node(cachep, nodeid);
  2935. check_slabp(cachep, slabp);
  2936. STATS_INC_NODEALLOCS(cachep);
  2937. STATS_INC_ACTIVE(cachep);
  2938. STATS_SET_HIGH(cachep);
  2939. BUG_ON(slabp->inuse == cachep->num);
  2940. obj = slab_get_obj(cachep, slabp, nodeid);
  2941. check_slabp(cachep, slabp);
  2942. l3->free_objects--;
  2943. /* move slabp to correct slabp list: */
  2944. list_del(&slabp->list);
  2945. if (slabp->free == BUFCTL_END)
  2946. list_add(&slabp->list, &l3->slabs_full);
  2947. else
  2948. list_add(&slabp->list, &l3->slabs_partial);
  2949. spin_unlock(&l3->list_lock);
  2950. goto done;
  2951. must_grow:
  2952. spin_unlock(&l3->list_lock);
  2953. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  2954. if (x)
  2955. goto retry;
  2956. return fallback_alloc(cachep, flags);
  2957. done:
  2958. return obj;
  2959. }
  2960. /**
  2961. * kmem_cache_alloc_node - Allocate an object on the specified node
  2962. * @cachep: The cache to allocate from.
  2963. * @flags: See kmalloc().
  2964. * @nodeid: node number of the target node.
  2965. * @caller: return address of caller, used for debug information
  2966. *
  2967. * Identical to kmem_cache_alloc but it will allocate memory on the given
  2968. * node, which can improve the performance for cpu bound structures.
  2969. *
  2970. * Fallback to other node is possible if __GFP_THISNODE is not set.
  2971. */
  2972. static __always_inline void *
  2973. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  2974. void *caller)
  2975. {
  2976. unsigned long save_flags;
  2977. void *ptr;
  2978. flags &= slab_gfp_mask;
  2979. lockdep_trace_alloc(flags);
  2980. if (slab_should_failslab(cachep, flags))
  2981. return NULL;
  2982. cache_alloc_debugcheck_before(cachep, flags);
  2983. local_irq_save(save_flags);
  2984. if (unlikely(nodeid == -1))
  2985. nodeid = numa_node_id();
  2986. if (unlikely(!cachep->nodelists[nodeid])) {
  2987. /* Node not bootstrapped yet */
  2988. ptr = fallback_alloc(cachep, flags);
  2989. goto out;
  2990. }
  2991. if (nodeid == numa_node_id()) {
  2992. /*
  2993. * Use the locally cached objects if possible.
  2994. * However ____cache_alloc does not allow fallback
  2995. * to other nodes. It may fail while we still have
  2996. * objects on other nodes available.
  2997. */
  2998. ptr = ____cache_alloc(cachep, flags);
  2999. if (ptr)
  3000. goto out;
  3001. }
  3002. /* ___cache_alloc_node can fall back to other nodes */
  3003. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3004. out:
  3005. local_irq_restore(save_flags);
  3006. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3007. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  3008. flags);
  3009. if (unlikely((flags & __GFP_ZERO) && ptr))
  3010. memset(ptr, 0, obj_size(cachep));
  3011. return ptr;
  3012. }
  3013. static __always_inline void *
  3014. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3015. {
  3016. void *objp;
  3017. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3018. objp = alternate_node_alloc(cache, flags);
  3019. if (objp)
  3020. goto out;
  3021. }
  3022. objp = ____cache_alloc(cache, flags);
  3023. /*
  3024. * We may just have run out of memory on the local node.
  3025. * ____cache_alloc_node() knows how to locate memory on other nodes
  3026. */
  3027. if (!objp)
  3028. objp = ____cache_alloc_node(cache, flags, numa_node_id());
  3029. out:
  3030. return objp;
  3031. }
  3032. #else
  3033. static __always_inline void *
  3034. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3035. {
  3036. return ____cache_alloc(cachep, flags);
  3037. }
  3038. #endif /* CONFIG_NUMA */
  3039. static __always_inline void *
  3040. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3041. {
  3042. unsigned long save_flags;
  3043. void *objp;
  3044. flags &= slab_gfp_mask;
  3045. lockdep_trace_alloc(flags);
  3046. if (slab_should_failslab(cachep, flags))
  3047. return NULL;
  3048. cache_alloc_debugcheck_before(cachep, flags);
  3049. local_irq_save(save_flags);
  3050. objp = __do_cache_alloc(cachep, flags);
  3051. local_irq_restore(save_flags);
  3052. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3053. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3054. flags);
  3055. prefetchw(objp);
  3056. if (unlikely((flags & __GFP_ZERO) && objp))
  3057. memset(objp, 0, obj_size(cachep));
  3058. return objp;
  3059. }
  3060. /*
  3061. * Caller needs to acquire correct kmem_list's list_lock
  3062. */
  3063. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3064. int node)
  3065. {
  3066. int i;
  3067. struct kmem_list3 *l3;
  3068. for (i = 0; i < nr_objects; i++) {
  3069. void *objp = objpp[i];
  3070. struct slab *slabp;
  3071. slabp = virt_to_slab(objp);
  3072. l3 = cachep->nodelists[node];
  3073. list_del(&slabp->list);
  3074. check_spinlock_acquired_node(cachep, node);
  3075. check_slabp(cachep, slabp);
  3076. slab_put_obj(cachep, slabp, objp, node);
  3077. STATS_DEC_ACTIVE(cachep);
  3078. l3->free_objects++;
  3079. check_slabp(cachep, slabp);
  3080. /* fixup slab chains */
  3081. if (slabp->inuse == 0) {
  3082. if (l3->free_objects > l3->free_limit) {
  3083. l3->free_objects -= cachep->num;
  3084. /* No need to drop any previously held
  3085. * lock here, even if we have a off-slab slab
  3086. * descriptor it is guaranteed to come from
  3087. * a different cache, refer to comments before
  3088. * alloc_slabmgmt.
  3089. */
  3090. slab_destroy(cachep, slabp);
  3091. } else {
  3092. list_add(&slabp->list, &l3->slabs_free);
  3093. }
  3094. } else {
  3095. /* Unconditionally move a slab to the end of the
  3096. * partial list on free - maximum time for the
  3097. * other objects to be freed, too.
  3098. */
  3099. list_add_tail(&slabp->list, &l3->slabs_partial);
  3100. }
  3101. }
  3102. }
  3103. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3104. {
  3105. int batchcount;
  3106. struct kmem_list3 *l3;
  3107. int node = numa_node_id();
  3108. batchcount = ac->batchcount;
  3109. #if DEBUG
  3110. BUG_ON(!batchcount || batchcount > ac->avail);
  3111. #endif
  3112. check_irq_off();
  3113. l3 = cachep->nodelists[node];
  3114. spin_lock(&l3->list_lock);
  3115. if (l3->shared) {
  3116. struct array_cache *shared_array = l3->shared;
  3117. int max = shared_array->limit - shared_array->avail;
  3118. if (max) {
  3119. if (batchcount > max)
  3120. batchcount = max;
  3121. memcpy(&(shared_array->entry[shared_array->avail]),
  3122. ac->entry, sizeof(void *) * batchcount);
  3123. shared_array->avail += batchcount;
  3124. goto free_done;
  3125. }
  3126. }
  3127. free_block(cachep, ac->entry, batchcount, node);
  3128. free_done:
  3129. #if STATS
  3130. {
  3131. int i = 0;
  3132. struct list_head *p;
  3133. p = l3->slabs_free.next;
  3134. while (p != &(l3->slabs_free)) {
  3135. struct slab *slabp;
  3136. slabp = list_entry(p, struct slab, list);
  3137. BUG_ON(slabp->inuse);
  3138. i++;
  3139. p = p->next;
  3140. }
  3141. STATS_SET_FREEABLE(cachep, i);
  3142. }
  3143. #endif
  3144. spin_unlock(&l3->list_lock);
  3145. ac->avail -= batchcount;
  3146. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3147. }
  3148. /*
  3149. * Release an obj back to its cache. If the obj has a constructed state, it must
  3150. * be in this state _before_ it is released. Called with disabled ints.
  3151. */
  3152. static inline void __cache_free(struct kmem_cache *cachep, void *objp)
  3153. {
  3154. struct array_cache *ac = cpu_cache_get(cachep);
  3155. check_irq_off();
  3156. kmemleak_free_recursive(objp, cachep->flags);
  3157. objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
  3158. /*
  3159. * Skip calling cache_free_alien() when the platform is not numa.
  3160. * This will avoid cache misses that happen while accessing slabp (which
  3161. * is per page memory reference) to get nodeid. Instead use a global
  3162. * variable to skip the call, which is mostly likely to be present in
  3163. * the cache.
  3164. */
  3165. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3166. return;
  3167. if (likely(ac->avail < ac->limit)) {
  3168. STATS_INC_FREEHIT(cachep);
  3169. ac->entry[ac->avail++] = objp;
  3170. return;
  3171. } else {
  3172. STATS_INC_FREEMISS(cachep);
  3173. cache_flusharray(cachep, ac);
  3174. ac->entry[ac->avail++] = objp;
  3175. }
  3176. }
  3177. /**
  3178. * kmem_cache_alloc - Allocate an object
  3179. * @cachep: The cache to allocate from.
  3180. * @flags: See kmalloc().
  3181. *
  3182. * Allocate an object from this cache. The flags are only relevant
  3183. * if the cache has no available objects.
  3184. */
  3185. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3186. {
  3187. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3188. trace_kmem_cache_alloc(_RET_IP_, ret,
  3189. obj_size(cachep), cachep->buffer_size, flags);
  3190. return ret;
  3191. }
  3192. EXPORT_SYMBOL(kmem_cache_alloc);
  3193. #ifdef CONFIG_KMEMTRACE
  3194. void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
  3195. {
  3196. return __cache_alloc(cachep, flags, __builtin_return_address(0));
  3197. }
  3198. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  3199. #endif
  3200. /**
  3201. * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
  3202. * @cachep: the cache we're checking against
  3203. * @ptr: pointer to validate
  3204. *
  3205. * This verifies that the untrusted pointer looks sane;
  3206. * it is _not_ a guarantee that the pointer is actually
  3207. * part of the slab cache in question, but it at least
  3208. * validates that the pointer can be dereferenced and
  3209. * looks half-way sane.
  3210. *
  3211. * Currently only used for dentry validation.
  3212. */
  3213. int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
  3214. {
  3215. unsigned long addr = (unsigned long)ptr;
  3216. unsigned long min_addr = PAGE_OFFSET;
  3217. unsigned long align_mask = BYTES_PER_WORD - 1;
  3218. unsigned long size = cachep->buffer_size;
  3219. struct page *page;
  3220. if (unlikely(addr < min_addr))
  3221. goto out;
  3222. if (unlikely(addr > (unsigned long)high_memory - size))
  3223. goto out;
  3224. if (unlikely(addr & align_mask))
  3225. goto out;
  3226. if (unlikely(!kern_addr_valid(addr)))
  3227. goto out;
  3228. if (unlikely(!kern_addr_valid(addr + size - 1)))
  3229. goto out;
  3230. page = virt_to_page(ptr);
  3231. if (unlikely(!PageSlab(page)))
  3232. goto out;
  3233. if (unlikely(page_get_cache(page) != cachep))
  3234. goto out;
  3235. return 1;
  3236. out:
  3237. return 0;
  3238. }
  3239. #ifdef CONFIG_NUMA
  3240. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3241. {
  3242. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3243. __builtin_return_address(0));
  3244. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3245. obj_size(cachep), cachep->buffer_size,
  3246. flags, nodeid);
  3247. return ret;
  3248. }
  3249. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3250. #ifdef CONFIG_KMEMTRACE
  3251. void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
  3252. gfp_t flags,
  3253. int nodeid)
  3254. {
  3255. return __cache_alloc_node(cachep, flags, nodeid,
  3256. __builtin_return_address(0));
  3257. }
  3258. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  3259. #endif
  3260. static __always_inline void *
  3261. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3262. {
  3263. struct kmem_cache *cachep;
  3264. void *ret;
  3265. cachep = kmem_find_general_cachep(size, flags);
  3266. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3267. return cachep;
  3268. ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
  3269. trace_kmalloc_node((unsigned long) caller, ret,
  3270. size, cachep->buffer_size, flags, node);
  3271. return ret;
  3272. }
  3273. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3274. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3275. {
  3276. return __do_kmalloc_node(size, flags, node,
  3277. __builtin_return_address(0));
  3278. }
  3279. EXPORT_SYMBOL(__kmalloc_node);
  3280. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3281. int node, unsigned long caller)
  3282. {
  3283. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3284. }
  3285. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3286. #else
  3287. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3288. {
  3289. return __do_kmalloc_node(size, flags, node, NULL);
  3290. }
  3291. EXPORT_SYMBOL(__kmalloc_node);
  3292. #endif /* CONFIG_DEBUG_SLAB */
  3293. #endif /* CONFIG_NUMA */
  3294. /**
  3295. * __do_kmalloc - allocate memory
  3296. * @size: how many bytes of memory are required.
  3297. * @flags: the type of memory to allocate (see kmalloc).
  3298. * @caller: function caller for debug tracking of the caller
  3299. */
  3300. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3301. void *caller)
  3302. {
  3303. struct kmem_cache *cachep;
  3304. void *ret;
  3305. /* If you want to save a few bytes .text space: replace
  3306. * __ with kmem_.
  3307. * Then kmalloc uses the uninlined functions instead of the inline
  3308. * functions.
  3309. */
  3310. cachep = __find_general_cachep(size, flags);
  3311. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3312. return cachep;
  3313. ret = __cache_alloc(cachep, flags, caller);
  3314. trace_kmalloc((unsigned long) caller, ret,
  3315. size, cachep->buffer_size, flags);
  3316. return ret;
  3317. }
  3318. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
  3319. void *__kmalloc(size_t size, gfp_t flags)
  3320. {
  3321. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3322. }
  3323. EXPORT_SYMBOL(__kmalloc);
  3324. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3325. {
  3326. return __do_kmalloc(size, flags, (void *)caller);
  3327. }
  3328. EXPORT_SYMBOL(__kmalloc_track_caller);
  3329. #else
  3330. void *__kmalloc(size_t size, gfp_t flags)
  3331. {
  3332. return __do_kmalloc(size, flags, NULL);
  3333. }
  3334. EXPORT_SYMBOL(__kmalloc);
  3335. #endif
  3336. /**
  3337. * kmem_cache_free - Deallocate an object
  3338. * @cachep: The cache the allocation was from.
  3339. * @objp: The previously allocated object.
  3340. *
  3341. * Free an object which was previously allocated from this
  3342. * cache.
  3343. */
  3344. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3345. {
  3346. unsigned long flags;
  3347. local_irq_save(flags);
  3348. debug_check_no_locks_freed(objp, obj_size(cachep));
  3349. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3350. debug_check_no_obj_freed(objp, obj_size(cachep));
  3351. __cache_free(cachep, objp);
  3352. local_irq_restore(flags);
  3353. trace_kmem_cache_free(_RET_IP_, objp);
  3354. }
  3355. EXPORT_SYMBOL(kmem_cache_free);
  3356. /**
  3357. * kfree - free previously allocated memory
  3358. * @objp: pointer returned by kmalloc.
  3359. *
  3360. * If @objp is NULL, no operation is performed.
  3361. *
  3362. * Don't free memory not originally allocated by kmalloc()
  3363. * or you will run into trouble.
  3364. */
  3365. void kfree(const void *objp)
  3366. {
  3367. struct kmem_cache *c;
  3368. unsigned long flags;
  3369. trace_kfree(_RET_IP_, objp);
  3370. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3371. return;
  3372. local_irq_save(flags);
  3373. kfree_debugcheck(objp);
  3374. c = virt_to_cache(objp);
  3375. debug_check_no_locks_freed(objp, obj_size(c));
  3376. debug_check_no_obj_freed(objp, obj_size(c));
  3377. __cache_free(c, (void *)objp);
  3378. local_irq_restore(flags);
  3379. }
  3380. EXPORT_SYMBOL(kfree);
  3381. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3382. {
  3383. return obj_size(cachep);
  3384. }
  3385. EXPORT_SYMBOL(kmem_cache_size);
  3386. const char *kmem_cache_name(struct kmem_cache *cachep)
  3387. {
  3388. return cachep->name;
  3389. }
  3390. EXPORT_SYMBOL_GPL(kmem_cache_name);
  3391. /*
  3392. * This initializes kmem_list3 or resizes various caches for all nodes.
  3393. */
  3394. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3395. {
  3396. int node;
  3397. struct kmem_list3 *l3;
  3398. struct array_cache *new_shared;
  3399. struct array_cache **new_alien = NULL;
  3400. for_each_online_node(node) {
  3401. if (use_alien_caches) {
  3402. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3403. if (!new_alien)
  3404. goto fail;
  3405. }
  3406. new_shared = NULL;
  3407. if (cachep->shared) {
  3408. new_shared = alloc_arraycache(node,
  3409. cachep->shared*cachep->batchcount,
  3410. 0xbaadf00d, gfp);
  3411. if (!new_shared) {
  3412. free_alien_cache(new_alien);
  3413. goto fail;
  3414. }
  3415. }
  3416. l3 = cachep->nodelists[node];
  3417. if (l3) {
  3418. struct array_cache *shared = l3->shared;
  3419. spin_lock_irq(&l3->list_lock);
  3420. if (shared)
  3421. free_block(cachep, shared->entry,
  3422. shared->avail, node);
  3423. l3->shared = new_shared;
  3424. if (!l3->alien) {
  3425. l3->alien = new_alien;
  3426. new_alien = NULL;
  3427. }
  3428. l3->free_limit = (1 + nr_cpus_node(node)) *
  3429. cachep->batchcount + cachep->num;
  3430. spin_unlock_irq(&l3->list_lock);
  3431. kfree(shared);
  3432. free_alien_cache(new_alien);
  3433. continue;
  3434. }
  3435. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3436. if (!l3) {
  3437. free_alien_cache(new_alien);
  3438. kfree(new_shared);
  3439. goto fail;
  3440. }
  3441. kmem_list3_init(l3);
  3442. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3443. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3444. l3->shared = new_shared;
  3445. l3->alien = new_alien;
  3446. l3->free_limit = (1 + nr_cpus_node(node)) *
  3447. cachep->batchcount + cachep->num;
  3448. cachep->nodelists[node] = l3;
  3449. }
  3450. return 0;
  3451. fail:
  3452. if (!cachep->next.next) {
  3453. /* Cache is not active yet. Roll back what we did */
  3454. node--;
  3455. while (node >= 0) {
  3456. if (cachep->nodelists[node]) {
  3457. l3 = cachep->nodelists[node];
  3458. kfree(l3->shared);
  3459. free_alien_cache(l3->alien);
  3460. kfree(l3);
  3461. cachep->nodelists[node] = NULL;
  3462. }
  3463. node--;
  3464. }
  3465. }
  3466. return -ENOMEM;
  3467. }
  3468. struct ccupdate_struct {
  3469. struct kmem_cache *cachep;
  3470. struct array_cache *new[NR_CPUS];
  3471. };
  3472. static void do_ccupdate_local(void *info)
  3473. {
  3474. struct ccupdate_struct *new = info;
  3475. struct array_cache *old;
  3476. check_irq_off();
  3477. old = cpu_cache_get(new->cachep);
  3478. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3479. new->new[smp_processor_id()] = old;
  3480. }
  3481. /* Always called with the cache_chain_mutex held */
  3482. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3483. int batchcount, int shared, gfp_t gfp)
  3484. {
  3485. struct ccupdate_struct *new;
  3486. int i;
  3487. new = kzalloc(sizeof(*new), gfp);
  3488. if (!new)
  3489. return -ENOMEM;
  3490. for_each_online_cpu(i) {
  3491. new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
  3492. batchcount, gfp);
  3493. if (!new->new[i]) {
  3494. for (i--; i >= 0; i--)
  3495. kfree(new->new[i]);
  3496. kfree(new);
  3497. return -ENOMEM;
  3498. }
  3499. }
  3500. new->cachep = cachep;
  3501. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3502. check_irq_on();
  3503. cachep->batchcount = batchcount;
  3504. cachep->limit = limit;
  3505. cachep->shared = shared;
  3506. for_each_online_cpu(i) {
  3507. struct array_cache *ccold = new->new[i];
  3508. if (!ccold)
  3509. continue;
  3510. spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3511. free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
  3512. spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
  3513. kfree(ccold);
  3514. }
  3515. kfree(new);
  3516. return alloc_kmemlist(cachep, gfp);
  3517. }
  3518. /* Called with cache_chain_mutex held always */
  3519. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3520. {
  3521. int err;
  3522. int limit, shared;
  3523. /*
  3524. * The head array serves three purposes:
  3525. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3526. * - reduce the number of spinlock operations.
  3527. * - reduce the number of linked list operations on the slab and
  3528. * bufctl chains: array operations are cheaper.
  3529. * The numbers are guessed, we should auto-tune as described by
  3530. * Bonwick.
  3531. */
  3532. if (cachep->buffer_size > 131072)
  3533. limit = 1;
  3534. else if (cachep->buffer_size > PAGE_SIZE)
  3535. limit = 8;
  3536. else if (cachep->buffer_size > 1024)
  3537. limit = 24;
  3538. else if (cachep->buffer_size > 256)
  3539. limit = 54;
  3540. else
  3541. limit = 120;
  3542. /*
  3543. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3544. * allocation behaviour: Most allocs on one cpu, most free operations
  3545. * on another cpu. For these cases, an efficient object passing between
  3546. * cpus is necessary. This is provided by a shared array. The array
  3547. * replaces Bonwick's magazine layer.
  3548. * On uniprocessor, it's functionally equivalent (but less efficient)
  3549. * to a larger limit. Thus disabled by default.
  3550. */
  3551. shared = 0;
  3552. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3553. shared = 8;
  3554. #if DEBUG
  3555. /*
  3556. * With debugging enabled, large batchcount lead to excessively long
  3557. * periods with disabled local interrupts. Limit the batchcount
  3558. */
  3559. if (limit > 32)
  3560. limit = 32;
  3561. #endif
  3562. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3563. if (err)
  3564. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3565. cachep->name, -err);
  3566. return err;
  3567. }
  3568. /*
  3569. * Drain an array if it contains any elements taking the l3 lock only if
  3570. * necessary. Note that the l3 listlock also protects the array_cache
  3571. * if drain_array() is used on the shared array.
  3572. */
  3573. void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3574. struct array_cache *ac, int force, int node)
  3575. {
  3576. int tofree;
  3577. if (!ac || !ac->avail)
  3578. return;
  3579. if (ac->touched && !force) {
  3580. ac->touched = 0;
  3581. } else {
  3582. spin_lock_irq(&l3->list_lock);
  3583. if (ac->avail) {
  3584. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3585. if (tofree > ac->avail)
  3586. tofree = (ac->avail + 1) / 2;
  3587. free_block(cachep, ac->entry, tofree, node);
  3588. ac->avail -= tofree;
  3589. memmove(ac->entry, &(ac->entry[tofree]),
  3590. sizeof(void *) * ac->avail);
  3591. }
  3592. spin_unlock_irq(&l3->list_lock);
  3593. }
  3594. }
  3595. /**
  3596. * cache_reap - Reclaim memory from caches.
  3597. * @w: work descriptor
  3598. *
  3599. * Called from workqueue/eventd every few seconds.
  3600. * Purpose:
  3601. * - clear the per-cpu caches for this CPU.
  3602. * - return freeable pages to the main free memory pool.
  3603. *
  3604. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3605. * again on the next iteration.
  3606. */
  3607. static void cache_reap(struct work_struct *w)
  3608. {
  3609. struct kmem_cache *searchp;
  3610. struct kmem_list3 *l3;
  3611. int node = numa_node_id();
  3612. struct delayed_work *work = to_delayed_work(w);
  3613. if (!mutex_trylock(&cache_chain_mutex))
  3614. /* Give up. Setup the next iteration. */
  3615. goto out;
  3616. list_for_each_entry(searchp, &cache_chain, next) {
  3617. check_irq_on();
  3618. /*
  3619. * We only take the l3 lock if absolutely necessary and we
  3620. * have established with reasonable certainty that
  3621. * we can do some work if the lock was obtained.
  3622. */
  3623. l3 = searchp->nodelists[node];
  3624. reap_alien(searchp, l3);
  3625. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3626. /*
  3627. * These are racy checks but it does not matter
  3628. * if we skip one check or scan twice.
  3629. */
  3630. if (time_after(l3->next_reap, jiffies))
  3631. goto next;
  3632. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3633. drain_array(searchp, l3, l3->shared, 0, node);
  3634. if (l3->free_touched)
  3635. l3->free_touched = 0;
  3636. else {
  3637. int freed;
  3638. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3639. 5 * searchp->num - 1) / (5 * searchp->num));
  3640. STATS_ADD_REAPED(searchp, freed);
  3641. }
  3642. next:
  3643. cond_resched();
  3644. }
  3645. check_irq_on();
  3646. mutex_unlock(&cache_chain_mutex);
  3647. next_reap_node();
  3648. out:
  3649. /* Set up the next iteration */
  3650. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3651. }
  3652. #ifdef CONFIG_SLABINFO
  3653. static void print_slabinfo_header(struct seq_file *m)
  3654. {
  3655. /*
  3656. * Output format version, so at least we can change it
  3657. * without _too_ many complaints.
  3658. */
  3659. #if STATS
  3660. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3661. #else
  3662. seq_puts(m, "slabinfo - version: 2.1\n");
  3663. #endif
  3664. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3665. "<objperslab> <pagesperslab>");
  3666. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3667. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3668. #if STATS
  3669. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3670. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3671. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3672. #endif
  3673. seq_putc(m, '\n');
  3674. }
  3675. static void *s_start(struct seq_file *m, loff_t *pos)
  3676. {
  3677. loff_t n = *pos;
  3678. mutex_lock(&cache_chain_mutex);
  3679. if (!n)
  3680. print_slabinfo_header(m);
  3681. return seq_list_start(&cache_chain, *pos);
  3682. }
  3683. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3684. {
  3685. return seq_list_next(p, &cache_chain, pos);
  3686. }
  3687. static void s_stop(struct seq_file *m, void *p)
  3688. {
  3689. mutex_unlock(&cache_chain_mutex);
  3690. }
  3691. static int s_show(struct seq_file *m, void *p)
  3692. {
  3693. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3694. struct slab *slabp;
  3695. unsigned long active_objs;
  3696. unsigned long num_objs;
  3697. unsigned long active_slabs = 0;
  3698. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3699. const char *name;
  3700. char *error = NULL;
  3701. int node;
  3702. struct kmem_list3 *l3;
  3703. active_objs = 0;
  3704. num_slabs = 0;
  3705. for_each_online_node(node) {
  3706. l3 = cachep->nodelists[node];
  3707. if (!l3)
  3708. continue;
  3709. check_irq_on();
  3710. spin_lock_irq(&l3->list_lock);
  3711. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3712. if (slabp->inuse != cachep->num && !error)
  3713. error = "slabs_full accounting error";
  3714. active_objs += cachep->num;
  3715. active_slabs++;
  3716. }
  3717. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3718. if (slabp->inuse == cachep->num && !error)
  3719. error = "slabs_partial inuse accounting error";
  3720. if (!slabp->inuse && !error)
  3721. error = "slabs_partial/inuse accounting error";
  3722. active_objs += slabp->inuse;
  3723. active_slabs++;
  3724. }
  3725. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3726. if (slabp->inuse && !error)
  3727. error = "slabs_free/inuse accounting error";
  3728. num_slabs++;
  3729. }
  3730. free_objects += l3->free_objects;
  3731. if (l3->shared)
  3732. shared_avail += l3->shared->avail;
  3733. spin_unlock_irq(&l3->list_lock);
  3734. }
  3735. num_slabs += active_slabs;
  3736. num_objs = num_slabs * cachep->num;
  3737. if (num_objs - active_objs != free_objects && !error)
  3738. error = "free_objects accounting error";
  3739. name = cachep->name;
  3740. if (error)
  3741. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3742. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3743. name, active_objs, num_objs, cachep->buffer_size,
  3744. cachep->num, (1 << cachep->gfporder));
  3745. seq_printf(m, " : tunables %4u %4u %4u",
  3746. cachep->limit, cachep->batchcount, cachep->shared);
  3747. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3748. active_slabs, num_slabs, shared_avail);
  3749. #if STATS
  3750. { /* list3 stats */
  3751. unsigned long high = cachep->high_mark;
  3752. unsigned long allocs = cachep->num_allocations;
  3753. unsigned long grown = cachep->grown;
  3754. unsigned long reaped = cachep->reaped;
  3755. unsigned long errors = cachep->errors;
  3756. unsigned long max_freeable = cachep->max_freeable;
  3757. unsigned long node_allocs = cachep->node_allocs;
  3758. unsigned long node_frees = cachep->node_frees;
  3759. unsigned long overflows = cachep->node_overflow;
  3760. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
  3761. %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
  3762. reaped, errors, max_freeable, node_allocs,
  3763. node_frees, overflows);
  3764. }
  3765. /* cpu stats */
  3766. {
  3767. unsigned long allochit = atomic_read(&cachep->allochit);
  3768. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3769. unsigned long freehit = atomic_read(&cachep->freehit);
  3770. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3771. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3772. allochit, allocmiss, freehit, freemiss);
  3773. }
  3774. #endif
  3775. seq_putc(m, '\n');
  3776. return 0;
  3777. }
  3778. /*
  3779. * slabinfo_op - iterator that generates /proc/slabinfo
  3780. *
  3781. * Output layout:
  3782. * cache-name
  3783. * num-active-objs
  3784. * total-objs
  3785. * object size
  3786. * num-active-slabs
  3787. * total-slabs
  3788. * num-pages-per-slab
  3789. * + further values on SMP and with statistics enabled
  3790. */
  3791. static const struct seq_operations slabinfo_op = {
  3792. .start = s_start,
  3793. .next = s_next,
  3794. .stop = s_stop,
  3795. .show = s_show,
  3796. };
  3797. #define MAX_SLABINFO_WRITE 128
  3798. /**
  3799. * slabinfo_write - Tuning for the slab allocator
  3800. * @file: unused
  3801. * @buffer: user buffer
  3802. * @count: data length
  3803. * @ppos: unused
  3804. */
  3805. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3806. size_t count, loff_t *ppos)
  3807. {
  3808. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3809. int limit, batchcount, shared, res;
  3810. struct kmem_cache *cachep;
  3811. if (count > MAX_SLABINFO_WRITE)
  3812. return -EINVAL;
  3813. if (copy_from_user(&kbuf, buffer, count))
  3814. return -EFAULT;
  3815. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3816. tmp = strchr(kbuf, ' ');
  3817. if (!tmp)
  3818. return -EINVAL;
  3819. *tmp = '\0';
  3820. tmp++;
  3821. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3822. return -EINVAL;
  3823. /* Find the cache in the chain of caches. */
  3824. mutex_lock(&cache_chain_mutex);
  3825. res = -EINVAL;
  3826. list_for_each_entry(cachep, &cache_chain, next) {
  3827. if (!strcmp(cachep->name, kbuf)) {
  3828. if (limit < 1 || batchcount < 1 ||
  3829. batchcount > limit || shared < 0) {
  3830. res = 0;
  3831. } else {
  3832. res = do_tune_cpucache(cachep, limit,
  3833. batchcount, shared,
  3834. GFP_KERNEL);
  3835. }
  3836. break;
  3837. }
  3838. }
  3839. mutex_unlock(&cache_chain_mutex);
  3840. if (res >= 0)
  3841. res = count;
  3842. return res;
  3843. }
  3844. static int slabinfo_open(struct inode *inode, struct file *file)
  3845. {
  3846. return seq_open(file, &slabinfo_op);
  3847. }
  3848. static const struct file_operations proc_slabinfo_operations = {
  3849. .open = slabinfo_open,
  3850. .read = seq_read,
  3851. .write = slabinfo_write,
  3852. .llseek = seq_lseek,
  3853. .release = seq_release,
  3854. };
  3855. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3856. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3857. {
  3858. mutex_lock(&cache_chain_mutex);
  3859. return seq_list_start(&cache_chain, *pos);
  3860. }
  3861. static inline int add_caller(unsigned long *n, unsigned long v)
  3862. {
  3863. unsigned long *p;
  3864. int l;
  3865. if (!v)
  3866. return 1;
  3867. l = n[1];
  3868. p = n + 2;
  3869. while (l) {
  3870. int i = l/2;
  3871. unsigned long *q = p + 2 * i;
  3872. if (*q == v) {
  3873. q[1]++;
  3874. return 1;
  3875. }
  3876. if (*q > v) {
  3877. l = i;
  3878. } else {
  3879. p = q + 2;
  3880. l -= i + 1;
  3881. }
  3882. }
  3883. if (++n[1] == n[0])
  3884. return 0;
  3885. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3886. p[0] = v;
  3887. p[1] = 1;
  3888. return 1;
  3889. }
  3890. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3891. {
  3892. void *p;
  3893. int i;
  3894. if (n[0] == n[1])
  3895. return;
  3896. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3897. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3898. continue;
  3899. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3900. return;
  3901. }
  3902. }
  3903. static void show_symbol(struct seq_file *m, unsigned long address)
  3904. {
  3905. #ifdef CONFIG_KALLSYMS
  3906. unsigned long offset, size;
  3907. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3908. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3909. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3910. if (modname[0])
  3911. seq_printf(m, " [%s]", modname);
  3912. return;
  3913. }
  3914. #endif
  3915. seq_printf(m, "%p", (void *)address);
  3916. }
  3917. static int leaks_show(struct seq_file *m, void *p)
  3918. {
  3919. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3920. struct slab *slabp;
  3921. struct kmem_list3 *l3;
  3922. const char *name;
  3923. unsigned long *n = m->private;
  3924. int node;
  3925. int i;
  3926. if (!(cachep->flags & SLAB_STORE_USER))
  3927. return 0;
  3928. if (!(cachep->flags & SLAB_RED_ZONE))
  3929. return 0;
  3930. /* OK, we can do it */
  3931. n[1] = 0;
  3932. for_each_online_node(node) {
  3933. l3 = cachep->nodelists[node];
  3934. if (!l3)
  3935. continue;
  3936. check_irq_on();
  3937. spin_lock_irq(&l3->list_lock);
  3938. list_for_each_entry(slabp, &l3->slabs_full, list)
  3939. handle_slab(n, cachep, slabp);
  3940. list_for_each_entry(slabp, &l3->slabs_partial, list)
  3941. handle_slab(n, cachep, slabp);
  3942. spin_unlock_irq(&l3->list_lock);
  3943. }
  3944. name = cachep->name;
  3945. if (n[0] == n[1]) {
  3946. /* Increase the buffer size */
  3947. mutex_unlock(&cache_chain_mutex);
  3948. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  3949. if (!m->private) {
  3950. /* Too bad, we are really out */
  3951. m->private = n;
  3952. mutex_lock(&cache_chain_mutex);
  3953. return -ENOMEM;
  3954. }
  3955. *(unsigned long *)m->private = n[0] * 2;
  3956. kfree(n);
  3957. mutex_lock(&cache_chain_mutex);
  3958. /* Now make sure this entry will be retried */
  3959. m->count = m->size;
  3960. return 0;
  3961. }
  3962. for (i = 0; i < n[1]; i++) {
  3963. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  3964. show_symbol(m, n[2*i+2]);
  3965. seq_putc(m, '\n');
  3966. }
  3967. return 0;
  3968. }
  3969. static const struct seq_operations slabstats_op = {
  3970. .start = leaks_start,
  3971. .next = s_next,
  3972. .stop = s_stop,
  3973. .show = leaks_show,
  3974. };
  3975. static int slabstats_open(struct inode *inode, struct file *file)
  3976. {
  3977. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  3978. int ret = -ENOMEM;
  3979. if (n) {
  3980. ret = seq_open(file, &slabstats_op);
  3981. if (!ret) {
  3982. struct seq_file *m = file->private_data;
  3983. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  3984. m->private = n;
  3985. n = NULL;
  3986. }
  3987. kfree(n);
  3988. }
  3989. return ret;
  3990. }
  3991. static const struct file_operations proc_slabstats_operations = {
  3992. .open = slabstats_open,
  3993. .read = seq_read,
  3994. .llseek = seq_lseek,
  3995. .release = seq_release_private,
  3996. };
  3997. #endif
  3998. static int __init slab_proc_init(void)
  3999. {
  4000. proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
  4001. #ifdef CONFIG_DEBUG_SLAB_LEAK
  4002. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  4003. #endif
  4004. return 0;
  4005. }
  4006. module_init(slab_proc_init);
  4007. #endif
  4008. /**
  4009. * ksize - get the actual amount of memory allocated for a given object
  4010. * @objp: Pointer to the object
  4011. *
  4012. * kmalloc may internally round up allocations and return more memory
  4013. * than requested. ksize() can be used to determine the actual amount of
  4014. * memory allocated. The caller may use this additional memory, even though
  4015. * a smaller amount of memory was initially specified with the kmalloc call.
  4016. * The caller must guarantee that objp points to a valid object previously
  4017. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4018. * must not be freed during the duration of the call.
  4019. */
  4020. size_t ksize(const void *objp)
  4021. {
  4022. BUG_ON(!objp);
  4023. if (unlikely(objp == ZERO_SIZE_PTR))
  4024. return 0;
  4025. return obj_size(virt_to_cache(objp));
  4026. }
  4027. EXPORT_SYMBOL(ksize);