memory.c 91 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/rmap.h>
  44. #include <linux/module.h>
  45. #include <linux/delayacct.h>
  46. #include <linux/init.h>
  47. #include <linux/writeback.h>
  48. #include <linux/memcontrol.h>
  49. #include <linux/mmu_notifier.h>
  50. #include <linux/kallsyms.h>
  51. #include <linux/swapops.h>
  52. #include <linux/elf.h>
  53. #include <asm/pgalloc.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/tlb.h>
  56. #include <asm/tlbflush.h>
  57. #include <asm/pgtable.h>
  58. #include "internal.h"
  59. #ifndef CONFIG_NEED_MULTIPLE_NODES
  60. /* use the per-pgdat data instead for discontigmem - mbligh */
  61. unsigned long max_mapnr;
  62. struct page *mem_map;
  63. EXPORT_SYMBOL(max_mapnr);
  64. EXPORT_SYMBOL(mem_map);
  65. #endif
  66. unsigned long num_physpages;
  67. /*
  68. * A number of key systems in x86 including ioremap() rely on the assumption
  69. * that high_memory defines the upper bound on direct map memory, then end
  70. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  71. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  72. * and ZONE_HIGHMEM.
  73. */
  74. void * high_memory;
  75. EXPORT_SYMBOL(num_physpages);
  76. EXPORT_SYMBOL(high_memory);
  77. /*
  78. * Randomize the address space (stacks, mmaps, brk, etc.).
  79. *
  80. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  81. * as ancient (libc5 based) binaries can segfault. )
  82. */
  83. int randomize_va_space __read_mostly =
  84. #ifdef CONFIG_COMPAT_BRK
  85. 1;
  86. #else
  87. 2;
  88. #endif
  89. static int __init disable_randmaps(char *s)
  90. {
  91. randomize_va_space = 0;
  92. return 1;
  93. }
  94. __setup("norandmaps", disable_randmaps);
  95. /*
  96. * If a p?d_bad entry is found while walking page tables, report
  97. * the error, before resetting entry to p?d_none. Usually (but
  98. * very seldom) called out from the p?d_none_or_clear_bad macros.
  99. */
  100. void pgd_clear_bad(pgd_t *pgd)
  101. {
  102. pgd_ERROR(*pgd);
  103. pgd_clear(pgd);
  104. }
  105. void pud_clear_bad(pud_t *pud)
  106. {
  107. pud_ERROR(*pud);
  108. pud_clear(pud);
  109. }
  110. void pmd_clear_bad(pmd_t *pmd)
  111. {
  112. pmd_ERROR(*pmd);
  113. pmd_clear(pmd);
  114. }
  115. /*
  116. * Note: this doesn't free the actual pages themselves. That
  117. * has been handled earlier when unmapping all the memory regions.
  118. */
  119. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
  120. {
  121. pgtable_t token = pmd_pgtable(*pmd);
  122. pmd_clear(pmd);
  123. pte_free_tlb(tlb, token);
  124. tlb->mm->nr_ptes--;
  125. }
  126. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  127. unsigned long addr, unsigned long end,
  128. unsigned long floor, unsigned long ceiling)
  129. {
  130. pmd_t *pmd;
  131. unsigned long next;
  132. unsigned long start;
  133. start = addr;
  134. pmd = pmd_offset(pud, addr);
  135. do {
  136. next = pmd_addr_end(addr, end);
  137. if (pmd_none_or_clear_bad(pmd))
  138. continue;
  139. free_pte_range(tlb, pmd);
  140. } while (pmd++, addr = next, addr != end);
  141. start &= PUD_MASK;
  142. if (start < floor)
  143. return;
  144. if (ceiling) {
  145. ceiling &= PUD_MASK;
  146. if (!ceiling)
  147. return;
  148. }
  149. if (end - 1 > ceiling - 1)
  150. return;
  151. pmd = pmd_offset(pud, start);
  152. pud_clear(pud);
  153. pmd_free_tlb(tlb, pmd);
  154. }
  155. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  156. unsigned long addr, unsigned long end,
  157. unsigned long floor, unsigned long ceiling)
  158. {
  159. pud_t *pud;
  160. unsigned long next;
  161. unsigned long start;
  162. start = addr;
  163. pud = pud_offset(pgd, addr);
  164. do {
  165. next = pud_addr_end(addr, end);
  166. if (pud_none_or_clear_bad(pud))
  167. continue;
  168. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  169. } while (pud++, addr = next, addr != end);
  170. start &= PGDIR_MASK;
  171. if (start < floor)
  172. return;
  173. if (ceiling) {
  174. ceiling &= PGDIR_MASK;
  175. if (!ceiling)
  176. return;
  177. }
  178. if (end - 1 > ceiling - 1)
  179. return;
  180. pud = pud_offset(pgd, start);
  181. pgd_clear(pgd);
  182. pud_free_tlb(tlb, pud);
  183. }
  184. /*
  185. * This function frees user-level page tables of a process.
  186. *
  187. * Must be called with pagetable lock held.
  188. */
  189. void free_pgd_range(struct mmu_gather *tlb,
  190. unsigned long addr, unsigned long end,
  191. unsigned long floor, unsigned long ceiling)
  192. {
  193. pgd_t *pgd;
  194. unsigned long next;
  195. unsigned long start;
  196. /*
  197. * The next few lines have given us lots of grief...
  198. *
  199. * Why are we testing PMD* at this top level? Because often
  200. * there will be no work to do at all, and we'd prefer not to
  201. * go all the way down to the bottom just to discover that.
  202. *
  203. * Why all these "- 1"s? Because 0 represents both the bottom
  204. * of the address space and the top of it (using -1 for the
  205. * top wouldn't help much: the masks would do the wrong thing).
  206. * The rule is that addr 0 and floor 0 refer to the bottom of
  207. * the address space, but end 0 and ceiling 0 refer to the top
  208. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  209. * that end 0 case should be mythical).
  210. *
  211. * Wherever addr is brought up or ceiling brought down, we must
  212. * be careful to reject "the opposite 0" before it confuses the
  213. * subsequent tests. But what about where end is brought down
  214. * by PMD_SIZE below? no, end can't go down to 0 there.
  215. *
  216. * Whereas we round start (addr) and ceiling down, by different
  217. * masks at different levels, in order to test whether a table
  218. * now has no other vmas using it, so can be freed, we don't
  219. * bother to round floor or end up - the tests don't need that.
  220. */
  221. addr &= PMD_MASK;
  222. if (addr < floor) {
  223. addr += PMD_SIZE;
  224. if (!addr)
  225. return;
  226. }
  227. if (ceiling) {
  228. ceiling &= PMD_MASK;
  229. if (!ceiling)
  230. return;
  231. }
  232. if (end - 1 > ceiling - 1)
  233. end -= PMD_SIZE;
  234. if (addr > end - 1)
  235. return;
  236. start = addr;
  237. pgd = pgd_offset(tlb->mm, addr);
  238. do {
  239. next = pgd_addr_end(addr, end);
  240. if (pgd_none_or_clear_bad(pgd))
  241. continue;
  242. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  243. } while (pgd++, addr = next, addr != end);
  244. }
  245. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  246. unsigned long floor, unsigned long ceiling)
  247. {
  248. while (vma) {
  249. struct vm_area_struct *next = vma->vm_next;
  250. unsigned long addr = vma->vm_start;
  251. /*
  252. * Hide vma from rmap and vmtruncate before freeing pgtables
  253. */
  254. anon_vma_unlink(vma);
  255. unlink_file_vma(vma);
  256. if (is_vm_hugetlb_page(vma)) {
  257. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  258. floor, next? next->vm_start: ceiling);
  259. } else {
  260. /*
  261. * Optimization: gather nearby vmas into one call down
  262. */
  263. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  264. && !is_vm_hugetlb_page(next)) {
  265. vma = next;
  266. next = vma->vm_next;
  267. anon_vma_unlink(vma);
  268. unlink_file_vma(vma);
  269. }
  270. free_pgd_range(tlb, addr, vma->vm_end,
  271. floor, next? next->vm_start: ceiling);
  272. }
  273. vma = next;
  274. }
  275. }
  276. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
  277. {
  278. pgtable_t new = pte_alloc_one(mm, address);
  279. if (!new)
  280. return -ENOMEM;
  281. /*
  282. * Ensure all pte setup (eg. pte page lock and page clearing) are
  283. * visible before the pte is made visible to other CPUs by being
  284. * put into page tables.
  285. *
  286. * The other side of the story is the pointer chasing in the page
  287. * table walking code (when walking the page table without locking;
  288. * ie. most of the time). Fortunately, these data accesses consist
  289. * of a chain of data-dependent loads, meaning most CPUs (alpha
  290. * being the notable exception) will already guarantee loads are
  291. * seen in-order. See the alpha page table accessors for the
  292. * smp_read_barrier_depends() barriers in page table walking code.
  293. */
  294. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  295. spin_lock(&mm->page_table_lock);
  296. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  297. mm->nr_ptes++;
  298. pmd_populate(mm, pmd, new);
  299. new = NULL;
  300. }
  301. spin_unlock(&mm->page_table_lock);
  302. if (new)
  303. pte_free(mm, new);
  304. return 0;
  305. }
  306. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  307. {
  308. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  309. if (!new)
  310. return -ENOMEM;
  311. smp_wmb(); /* See comment in __pte_alloc */
  312. spin_lock(&init_mm.page_table_lock);
  313. if (!pmd_present(*pmd)) { /* Has another populated it ? */
  314. pmd_populate_kernel(&init_mm, pmd, new);
  315. new = NULL;
  316. }
  317. spin_unlock(&init_mm.page_table_lock);
  318. if (new)
  319. pte_free_kernel(&init_mm, new);
  320. return 0;
  321. }
  322. static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
  323. {
  324. if (file_rss)
  325. add_mm_counter(mm, file_rss, file_rss);
  326. if (anon_rss)
  327. add_mm_counter(mm, anon_rss, anon_rss);
  328. }
  329. /*
  330. * This function is called to print an error when a bad pte
  331. * is found. For example, we might have a PFN-mapped pte in
  332. * a region that doesn't allow it.
  333. *
  334. * The calling function must still handle the error.
  335. */
  336. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  337. pte_t pte, struct page *page)
  338. {
  339. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  340. pud_t *pud = pud_offset(pgd, addr);
  341. pmd_t *pmd = pmd_offset(pud, addr);
  342. struct address_space *mapping;
  343. pgoff_t index;
  344. static unsigned long resume;
  345. static unsigned long nr_shown;
  346. static unsigned long nr_unshown;
  347. /*
  348. * Allow a burst of 60 reports, then keep quiet for that minute;
  349. * or allow a steady drip of one report per second.
  350. */
  351. if (nr_shown == 60) {
  352. if (time_before(jiffies, resume)) {
  353. nr_unshown++;
  354. return;
  355. }
  356. if (nr_unshown) {
  357. printk(KERN_ALERT
  358. "BUG: Bad page map: %lu messages suppressed\n",
  359. nr_unshown);
  360. nr_unshown = 0;
  361. }
  362. nr_shown = 0;
  363. }
  364. if (nr_shown++ == 0)
  365. resume = jiffies + 60 * HZ;
  366. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  367. index = linear_page_index(vma, addr);
  368. printk(KERN_ALERT
  369. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  370. current->comm,
  371. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  372. if (page) {
  373. printk(KERN_ALERT
  374. "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
  375. page, (void *)page->flags, page_count(page),
  376. page_mapcount(page), page->mapping, page->index);
  377. }
  378. printk(KERN_ALERT
  379. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  380. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  381. /*
  382. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  383. */
  384. if (vma->vm_ops)
  385. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  386. (unsigned long)vma->vm_ops->fault);
  387. if (vma->vm_file && vma->vm_file->f_op)
  388. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  389. (unsigned long)vma->vm_file->f_op->mmap);
  390. dump_stack();
  391. add_taint(TAINT_BAD_PAGE);
  392. }
  393. static inline int is_cow_mapping(unsigned int flags)
  394. {
  395. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  396. }
  397. /*
  398. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  399. *
  400. * "Special" mappings do not wish to be associated with a "struct page" (either
  401. * it doesn't exist, or it exists but they don't want to touch it). In this
  402. * case, NULL is returned here. "Normal" mappings do have a struct page.
  403. *
  404. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  405. * pte bit, in which case this function is trivial. Secondly, an architecture
  406. * may not have a spare pte bit, which requires a more complicated scheme,
  407. * described below.
  408. *
  409. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  410. * special mapping (even if there are underlying and valid "struct pages").
  411. * COWed pages of a VM_PFNMAP are always normal.
  412. *
  413. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  414. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  415. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  416. * mapping will always honor the rule
  417. *
  418. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  419. *
  420. * And for normal mappings this is false.
  421. *
  422. * This restricts such mappings to be a linear translation from virtual address
  423. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  424. * as the vma is not a COW mapping; in that case, we know that all ptes are
  425. * special (because none can have been COWed).
  426. *
  427. *
  428. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  429. *
  430. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  431. * page" backing, however the difference is that _all_ pages with a struct
  432. * page (that is, those where pfn_valid is true) are refcounted and considered
  433. * normal pages by the VM. The disadvantage is that pages are refcounted
  434. * (which can be slower and simply not an option for some PFNMAP users). The
  435. * advantage is that we don't have to follow the strict linearity rule of
  436. * PFNMAP mappings in order to support COWable mappings.
  437. *
  438. */
  439. #ifdef __HAVE_ARCH_PTE_SPECIAL
  440. # define HAVE_PTE_SPECIAL 1
  441. #else
  442. # define HAVE_PTE_SPECIAL 0
  443. #endif
  444. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  445. pte_t pte)
  446. {
  447. unsigned long pfn = pte_pfn(pte);
  448. if (HAVE_PTE_SPECIAL) {
  449. if (likely(!pte_special(pte)))
  450. goto check_pfn;
  451. if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
  452. print_bad_pte(vma, addr, pte, NULL);
  453. return NULL;
  454. }
  455. /* !HAVE_PTE_SPECIAL case follows: */
  456. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  457. if (vma->vm_flags & VM_MIXEDMAP) {
  458. if (!pfn_valid(pfn))
  459. return NULL;
  460. goto out;
  461. } else {
  462. unsigned long off;
  463. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  464. if (pfn == vma->vm_pgoff + off)
  465. return NULL;
  466. if (!is_cow_mapping(vma->vm_flags))
  467. return NULL;
  468. }
  469. }
  470. check_pfn:
  471. if (unlikely(pfn > highest_memmap_pfn)) {
  472. print_bad_pte(vma, addr, pte, NULL);
  473. return NULL;
  474. }
  475. /*
  476. * NOTE! We still have PageReserved() pages in the page tables.
  477. * eg. VDSO mappings can cause them to exist.
  478. */
  479. out:
  480. return pfn_to_page(pfn);
  481. }
  482. /*
  483. * copy one vm_area from one task to the other. Assumes the page tables
  484. * already present in the new task to be cleared in the whole range
  485. * covered by this vma.
  486. */
  487. static inline void
  488. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  489. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  490. unsigned long addr, int *rss)
  491. {
  492. unsigned long vm_flags = vma->vm_flags;
  493. pte_t pte = *src_pte;
  494. struct page *page;
  495. /* pte contains position in swap or file, so copy. */
  496. if (unlikely(!pte_present(pte))) {
  497. if (!pte_file(pte)) {
  498. swp_entry_t entry = pte_to_swp_entry(pte);
  499. swap_duplicate(entry);
  500. /* make sure dst_mm is on swapoff's mmlist. */
  501. if (unlikely(list_empty(&dst_mm->mmlist))) {
  502. spin_lock(&mmlist_lock);
  503. if (list_empty(&dst_mm->mmlist))
  504. list_add(&dst_mm->mmlist,
  505. &src_mm->mmlist);
  506. spin_unlock(&mmlist_lock);
  507. }
  508. if (is_write_migration_entry(entry) &&
  509. is_cow_mapping(vm_flags)) {
  510. /*
  511. * COW mappings require pages in both parent
  512. * and child to be set to read.
  513. */
  514. make_migration_entry_read(&entry);
  515. pte = swp_entry_to_pte(entry);
  516. set_pte_at(src_mm, addr, src_pte, pte);
  517. }
  518. }
  519. goto out_set_pte;
  520. }
  521. /*
  522. * If it's a COW mapping, write protect it both
  523. * in the parent and the child
  524. */
  525. if (is_cow_mapping(vm_flags)) {
  526. ptep_set_wrprotect(src_mm, addr, src_pte);
  527. pte = pte_wrprotect(pte);
  528. }
  529. /*
  530. * If it's a shared mapping, mark it clean in
  531. * the child
  532. */
  533. if (vm_flags & VM_SHARED)
  534. pte = pte_mkclean(pte);
  535. pte = pte_mkold(pte);
  536. page = vm_normal_page(vma, addr, pte);
  537. if (page) {
  538. get_page(page);
  539. page_dup_rmap(page, vma, addr);
  540. rss[!!PageAnon(page)]++;
  541. }
  542. out_set_pte:
  543. set_pte_at(dst_mm, addr, dst_pte, pte);
  544. }
  545. static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  546. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  547. unsigned long addr, unsigned long end)
  548. {
  549. pte_t *src_pte, *dst_pte;
  550. spinlock_t *src_ptl, *dst_ptl;
  551. int progress = 0;
  552. int rss[2];
  553. again:
  554. rss[1] = rss[0] = 0;
  555. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  556. if (!dst_pte)
  557. return -ENOMEM;
  558. src_pte = pte_offset_map_nested(src_pmd, addr);
  559. src_ptl = pte_lockptr(src_mm, src_pmd);
  560. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  561. arch_enter_lazy_mmu_mode();
  562. do {
  563. /*
  564. * We are holding two locks at this point - either of them
  565. * could generate latencies in another task on another CPU.
  566. */
  567. if (progress >= 32) {
  568. progress = 0;
  569. if (need_resched() ||
  570. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  571. break;
  572. }
  573. if (pte_none(*src_pte)) {
  574. progress++;
  575. continue;
  576. }
  577. copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
  578. progress += 8;
  579. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  580. arch_leave_lazy_mmu_mode();
  581. spin_unlock(src_ptl);
  582. pte_unmap_nested(src_pte - 1);
  583. add_mm_rss(dst_mm, rss[0], rss[1]);
  584. pte_unmap_unlock(dst_pte - 1, dst_ptl);
  585. cond_resched();
  586. if (addr != end)
  587. goto again;
  588. return 0;
  589. }
  590. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  591. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  592. unsigned long addr, unsigned long end)
  593. {
  594. pmd_t *src_pmd, *dst_pmd;
  595. unsigned long next;
  596. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  597. if (!dst_pmd)
  598. return -ENOMEM;
  599. src_pmd = pmd_offset(src_pud, addr);
  600. do {
  601. next = pmd_addr_end(addr, end);
  602. if (pmd_none_or_clear_bad(src_pmd))
  603. continue;
  604. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  605. vma, addr, next))
  606. return -ENOMEM;
  607. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  608. return 0;
  609. }
  610. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  611. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  612. unsigned long addr, unsigned long end)
  613. {
  614. pud_t *src_pud, *dst_pud;
  615. unsigned long next;
  616. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  617. if (!dst_pud)
  618. return -ENOMEM;
  619. src_pud = pud_offset(src_pgd, addr);
  620. do {
  621. next = pud_addr_end(addr, end);
  622. if (pud_none_or_clear_bad(src_pud))
  623. continue;
  624. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  625. vma, addr, next))
  626. return -ENOMEM;
  627. } while (dst_pud++, src_pud++, addr = next, addr != end);
  628. return 0;
  629. }
  630. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  631. struct vm_area_struct *vma)
  632. {
  633. pgd_t *src_pgd, *dst_pgd;
  634. unsigned long next;
  635. unsigned long addr = vma->vm_start;
  636. unsigned long end = vma->vm_end;
  637. int ret;
  638. /*
  639. * Don't copy ptes where a page fault will fill them correctly.
  640. * Fork becomes much lighter when there are big shared or private
  641. * readonly mappings. The tradeoff is that copy_page_range is more
  642. * efficient than faulting.
  643. */
  644. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  645. if (!vma->anon_vma)
  646. return 0;
  647. }
  648. if (is_vm_hugetlb_page(vma))
  649. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  650. if (unlikely(is_pfn_mapping(vma))) {
  651. /*
  652. * We do not free on error cases below as remove_vma
  653. * gets called on error from higher level routine
  654. */
  655. ret = track_pfn_vma_copy(vma);
  656. if (ret)
  657. return ret;
  658. }
  659. /*
  660. * We need to invalidate the secondary MMU mappings only when
  661. * there could be a permission downgrade on the ptes of the
  662. * parent mm. And a permission downgrade will only happen if
  663. * is_cow_mapping() returns true.
  664. */
  665. if (is_cow_mapping(vma->vm_flags))
  666. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  667. ret = 0;
  668. dst_pgd = pgd_offset(dst_mm, addr);
  669. src_pgd = pgd_offset(src_mm, addr);
  670. do {
  671. next = pgd_addr_end(addr, end);
  672. if (pgd_none_or_clear_bad(src_pgd))
  673. continue;
  674. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  675. vma, addr, next))) {
  676. ret = -ENOMEM;
  677. break;
  678. }
  679. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  680. if (is_cow_mapping(vma->vm_flags))
  681. mmu_notifier_invalidate_range_end(src_mm,
  682. vma->vm_start, end);
  683. return ret;
  684. }
  685. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  686. struct vm_area_struct *vma, pmd_t *pmd,
  687. unsigned long addr, unsigned long end,
  688. long *zap_work, struct zap_details *details)
  689. {
  690. struct mm_struct *mm = tlb->mm;
  691. pte_t *pte;
  692. spinlock_t *ptl;
  693. int file_rss = 0;
  694. int anon_rss = 0;
  695. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  696. arch_enter_lazy_mmu_mode();
  697. do {
  698. pte_t ptent = *pte;
  699. if (pte_none(ptent)) {
  700. (*zap_work)--;
  701. continue;
  702. }
  703. (*zap_work) -= PAGE_SIZE;
  704. if (pte_present(ptent)) {
  705. struct page *page;
  706. page = vm_normal_page(vma, addr, ptent);
  707. if (unlikely(details) && page) {
  708. /*
  709. * unmap_shared_mapping_pages() wants to
  710. * invalidate cache without truncating:
  711. * unmap shared but keep private pages.
  712. */
  713. if (details->check_mapping &&
  714. details->check_mapping != page->mapping)
  715. continue;
  716. /*
  717. * Each page->index must be checked when
  718. * invalidating or truncating nonlinear.
  719. */
  720. if (details->nonlinear_vma &&
  721. (page->index < details->first_index ||
  722. page->index > details->last_index))
  723. continue;
  724. }
  725. ptent = ptep_get_and_clear_full(mm, addr, pte,
  726. tlb->fullmm);
  727. tlb_remove_tlb_entry(tlb, pte, addr);
  728. if (unlikely(!page))
  729. continue;
  730. if (unlikely(details) && details->nonlinear_vma
  731. && linear_page_index(details->nonlinear_vma,
  732. addr) != page->index)
  733. set_pte_at(mm, addr, pte,
  734. pgoff_to_pte(page->index));
  735. if (PageAnon(page))
  736. anon_rss--;
  737. else {
  738. if (pte_dirty(ptent))
  739. set_page_dirty(page);
  740. if (pte_young(ptent) &&
  741. likely(!VM_SequentialReadHint(vma)))
  742. mark_page_accessed(page);
  743. file_rss--;
  744. }
  745. page_remove_rmap(page);
  746. if (unlikely(page_mapcount(page) < 0))
  747. print_bad_pte(vma, addr, ptent, page);
  748. tlb_remove_page(tlb, page);
  749. continue;
  750. }
  751. /*
  752. * If details->check_mapping, we leave swap entries;
  753. * if details->nonlinear_vma, we leave file entries.
  754. */
  755. if (unlikely(details))
  756. continue;
  757. if (pte_file(ptent)) {
  758. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  759. print_bad_pte(vma, addr, ptent, NULL);
  760. } else if
  761. (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
  762. print_bad_pte(vma, addr, ptent, NULL);
  763. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  764. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  765. add_mm_rss(mm, file_rss, anon_rss);
  766. arch_leave_lazy_mmu_mode();
  767. pte_unmap_unlock(pte - 1, ptl);
  768. return addr;
  769. }
  770. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  771. struct vm_area_struct *vma, pud_t *pud,
  772. unsigned long addr, unsigned long end,
  773. long *zap_work, struct zap_details *details)
  774. {
  775. pmd_t *pmd;
  776. unsigned long next;
  777. pmd = pmd_offset(pud, addr);
  778. do {
  779. next = pmd_addr_end(addr, end);
  780. if (pmd_none_or_clear_bad(pmd)) {
  781. (*zap_work)--;
  782. continue;
  783. }
  784. next = zap_pte_range(tlb, vma, pmd, addr, next,
  785. zap_work, details);
  786. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  787. return addr;
  788. }
  789. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  790. struct vm_area_struct *vma, pgd_t *pgd,
  791. unsigned long addr, unsigned long end,
  792. long *zap_work, struct zap_details *details)
  793. {
  794. pud_t *pud;
  795. unsigned long next;
  796. pud = pud_offset(pgd, addr);
  797. do {
  798. next = pud_addr_end(addr, end);
  799. if (pud_none_or_clear_bad(pud)) {
  800. (*zap_work)--;
  801. continue;
  802. }
  803. next = zap_pmd_range(tlb, vma, pud, addr, next,
  804. zap_work, details);
  805. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  806. return addr;
  807. }
  808. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  809. struct vm_area_struct *vma,
  810. unsigned long addr, unsigned long end,
  811. long *zap_work, struct zap_details *details)
  812. {
  813. pgd_t *pgd;
  814. unsigned long next;
  815. if (details && !details->check_mapping && !details->nonlinear_vma)
  816. details = NULL;
  817. BUG_ON(addr >= end);
  818. tlb_start_vma(tlb, vma);
  819. pgd = pgd_offset(vma->vm_mm, addr);
  820. do {
  821. next = pgd_addr_end(addr, end);
  822. if (pgd_none_or_clear_bad(pgd)) {
  823. (*zap_work)--;
  824. continue;
  825. }
  826. next = zap_pud_range(tlb, vma, pgd, addr, next,
  827. zap_work, details);
  828. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  829. tlb_end_vma(tlb, vma);
  830. return addr;
  831. }
  832. #ifdef CONFIG_PREEMPT
  833. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  834. #else
  835. /* No preempt: go for improved straight-line efficiency */
  836. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  837. #endif
  838. /**
  839. * unmap_vmas - unmap a range of memory covered by a list of vma's
  840. * @tlbp: address of the caller's struct mmu_gather
  841. * @vma: the starting vma
  842. * @start_addr: virtual address at which to start unmapping
  843. * @end_addr: virtual address at which to end unmapping
  844. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  845. * @details: details of nonlinear truncation or shared cache invalidation
  846. *
  847. * Returns the end address of the unmapping (restart addr if interrupted).
  848. *
  849. * Unmap all pages in the vma list.
  850. *
  851. * We aim to not hold locks for too long (for scheduling latency reasons).
  852. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  853. * return the ending mmu_gather to the caller.
  854. *
  855. * Only addresses between `start' and `end' will be unmapped.
  856. *
  857. * The VMA list must be sorted in ascending virtual address order.
  858. *
  859. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  860. * range after unmap_vmas() returns. So the only responsibility here is to
  861. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  862. * drops the lock and schedules.
  863. */
  864. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  865. struct vm_area_struct *vma, unsigned long start_addr,
  866. unsigned long end_addr, unsigned long *nr_accounted,
  867. struct zap_details *details)
  868. {
  869. long zap_work = ZAP_BLOCK_SIZE;
  870. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  871. int tlb_start_valid = 0;
  872. unsigned long start = start_addr;
  873. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  874. int fullmm = (*tlbp)->fullmm;
  875. struct mm_struct *mm = vma->vm_mm;
  876. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  877. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  878. unsigned long end;
  879. start = max(vma->vm_start, start_addr);
  880. if (start >= vma->vm_end)
  881. continue;
  882. end = min(vma->vm_end, end_addr);
  883. if (end <= vma->vm_start)
  884. continue;
  885. if (vma->vm_flags & VM_ACCOUNT)
  886. *nr_accounted += (end - start) >> PAGE_SHIFT;
  887. if (unlikely(is_pfn_mapping(vma)))
  888. untrack_pfn_vma(vma, 0, 0);
  889. while (start != end) {
  890. if (!tlb_start_valid) {
  891. tlb_start = start;
  892. tlb_start_valid = 1;
  893. }
  894. if (unlikely(is_vm_hugetlb_page(vma))) {
  895. /*
  896. * It is undesirable to test vma->vm_file as it
  897. * should be non-null for valid hugetlb area.
  898. * However, vm_file will be NULL in the error
  899. * cleanup path of do_mmap_pgoff. When
  900. * hugetlbfs ->mmap method fails,
  901. * do_mmap_pgoff() nullifies vma->vm_file
  902. * before calling this function to clean up.
  903. * Since no pte has actually been setup, it is
  904. * safe to do nothing in this case.
  905. */
  906. if (vma->vm_file) {
  907. unmap_hugepage_range(vma, start, end, NULL);
  908. zap_work -= (end - start) /
  909. pages_per_huge_page(hstate_vma(vma));
  910. }
  911. start = end;
  912. } else
  913. start = unmap_page_range(*tlbp, vma,
  914. start, end, &zap_work, details);
  915. if (zap_work > 0) {
  916. BUG_ON(start != end);
  917. break;
  918. }
  919. tlb_finish_mmu(*tlbp, tlb_start, start);
  920. if (need_resched() ||
  921. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  922. if (i_mmap_lock) {
  923. *tlbp = NULL;
  924. goto out;
  925. }
  926. cond_resched();
  927. }
  928. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  929. tlb_start_valid = 0;
  930. zap_work = ZAP_BLOCK_SIZE;
  931. }
  932. }
  933. out:
  934. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  935. return start; /* which is now the end (or restart) address */
  936. }
  937. /**
  938. * zap_page_range - remove user pages in a given range
  939. * @vma: vm_area_struct holding the applicable pages
  940. * @address: starting address of pages to zap
  941. * @size: number of bytes to zap
  942. * @details: details of nonlinear truncation or shared cache invalidation
  943. */
  944. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  945. unsigned long size, struct zap_details *details)
  946. {
  947. struct mm_struct *mm = vma->vm_mm;
  948. struct mmu_gather *tlb;
  949. unsigned long end = address + size;
  950. unsigned long nr_accounted = 0;
  951. lru_add_drain();
  952. tlb = tlb_gather_mmu(mm, 0);
  953. update_hiwater_rss(mm);
  954. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  955. if (tlb)
  956. tlb_finish_mmu(tlb, address, end);
  957. return end;
  958. }
  959. /**
  960. * zap_vma_ptes - remove ptes mapping the vma
  961. * @vma: vm_area_struct holding ptes to be zapped
  962. * @address: starting address of pages to zap
  963. * @size: number of bytes to zap
  964. *
  965. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  966. *
  967. * The entire address range must be fully contained within the vma.
  968. *
  969. * Returns 0 if successful.
  970. */
  971. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  972. unsigned long size)
  973. {
  974. if (address < vma->vm_start || address + size > vma->vm_end ||
  975. !(vma->vm_flags & VM_PFNMAP))
  976. return -1;
  977. zap_page_range(vma, address, size, NULL);
  978. return 0;
  979. }
  980. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  981. /*
  982. * Do a quick page-table lookup for a single page.
  983. */
  984. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  985. unsigned int flags)
  986. {
  987. pgd_t *pgd;
  988. pud_t *pud;
  989. pmd_t *pmd;
  990. pte_t *ptep, pte;
  991. spinlock_t *ptl;
  992. struct page *page;
  993. struct mm_struct *mm = vma->vm_mm;
  994. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  995. if (!IS_ERR(page)) {
  996. BUG_ON(flags & FOLL_GET);
  997. goto out;
  998. }
  999. page = NULL;
  1000. pgd = pgd_offset(mm, address);
  1001. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1002. goto no_page_table;
  1003. pud = pud_offset(pgd, address);
  1004. if (pud_none(*pud))
  1005. goto no_page_table;
  1006. if (pud_huge(*pud)) {
  1007. BUG_ON(flags & FOLL_GET);
  1008. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1009. goto out;
  1010. }
  1011. if (unlikely(pud_bad(*pud)))
  1012. goto no_page_table;
  1013. pmd = pmd_offset(pud, address);
  1014. if (pmd_none(*pmd))
  1015. goto no_page_table;
  1016. if (pmd_huge(*pmd)) {
  1017. BUG_ON(flags & FOLL_GET);
  1018. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1019. goto out;
  1020. }
  1021. if (unlikely(pmd_bad(*pmd)))
  1022. goto no_page_table;
  1023. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1024. pte = *ptep;
  1025. if (!pte_present(pte))
  1026. goto no_page;
  1027. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1028. goto unlock;
  1029. page = vm_normal_page(vma, address, pte);
  1030. if (unlikely(!page))
  1031. goto bad_page;
  1032. if (flags & FOLL_GET)
  1033. get_page(page);
  1034. if (flags & FOLL_TOUCH) {
  1035. if ((flags & FOLL_WRITE) &&
  1036. !pte_dirty(pte) && !PageDirty(page))
  1037. set_page_dirty(page);
  1038. /*
  1039. * pte_mkyoung() would be more correct here, but atomic care
  1040. * is needed to avoid losing the dirty bit: it is easier to use
  1041. * mark_page_accessed().
  1042. */
  1043. mark_page_accessed(page);
  1044. }
  1045. unlock:
  1046. pte_unmap_unlock(ptep, ptl);
  1047. out:
  1048. return page;
  1049. bad_page:
  1050. pte_unmap_unlock(ptep, ptl);
  1051. return ERR_PTR(-EFAULT);
  1052. no_page:
  1053. pte_unmap_unlock(ptep, ptl);
  1054. if (!pte_none(pte))
  1055. return page;
  1056. /* Fall through to ZERO_PAGE handling */
  1057. no_page_table:
  1058. /*
  1059. * When core dumping an enormous anonymous area that nobody
  1060. * has touched so far, we don't want to allocate page tables.
  1061. */
  1062. if (flags & FOLL_ANON) {
  1063. page = ZERO_PAGE(0);
  1064. if (flags & FOLL_GET)
  1065. get_page(page);
  1066. BUG_ON(flags & FOLL_WRITE);
  1067. }
  1068. return page;
  1069. }
  1070. /* Can we do the FOLL_ANON optimization? */
  1071. static inline int use_zero_page(struct vm_area_struct *vma)
  1072. {
  1073. /*
  1074. * We don't want to optimize FOLL_ANON for make_pages_present()
  1075. * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
  1076. * we want to get the page from the page tables to make sure
  1077. * that we serialize and update with any other user of that
  1078. * mapping.
  1079. */
  1080. if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
  1081. return 0;
  1082. /*
  1083. * And if we have a fault routine, it's not an anonymous region.
  1084. */
  1085. return !vma->vm_ops || !vma->vm_ops->fault;
  1086. }
  1087. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1088. unsigned long start, int len, int flags,
  1089. struct page **pages, struct vm_area_struct **vmas)
  1090. {
  1091. int i;
  1092. unsigned int vm_flags = 0;
  1093. int write = !!(flags & GUP_FLAGS_WRITE);
  1094. int force = !!(flags & GUP_FLAGS_FORCE);
  1095. int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
  1096. int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
  1097. if (len <= 0)
  1098. return 0;
  1099. /*
  1100. * Require read or write permissions.
  1101. * If 'force' is set, we only require the "MAY" flags.
  1102. */
  1103. vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1104. vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1105. i = 0;
  1106. do {
  1107. struct vm_area_struct *vma;
  1108. unsigned int foll_flags;
  1109. vma = find_extend_vma(mm, start);
  1110. if (!vma && in_gate_area(tsk, start)) {
  1111. unsigned long pg = start & PAGE_MASK;
  1112. struct vm_area_struct *gate_vma = get_gate_vma(tsk);
  1113. pgd_t *pgd;
  1114. pud_t *pud;
  1115. pmd_t *pmd;
  1116. pte_t *pte;
  1117. /* user gate pages are read-only */
  1118. if (!ignore && write)
  1119. return i ? : -EFAULT;
  1120. if (pg > TASK_SIZE)
  1121. pgd = pgd_offset_k(pg);
  1122. else
  1123. pgd = pgd_offset_gate(mm, pg);
  1124. BUG_ON(pgd_none(*pgd));
  1125. pud = pud_offset(pgd, pg);
  1126. BUG_ON(pud_none(*pud));
  1127. pmd = pmd_offset(pud, pg);
  1128. if (pmd_none(*pmd))
  1129. return i ? : -EFAULT;
  1130. pte = pte_offset_map(pmd, pg);
  1131. if (pte_none(*pte)) {
  1132. pte_unmap(pte);
  1133. return i ? : -EFAULT;
  1134. }
  1135. if (pages) {
  1136. struct page *page = vm_normal_page(gate_vma, start, *pte);
  1137. pages[i] = page;
  1138. if (page)
  1139. get_page(page);
  1140. }
  1141. pte_unmap(pte);
  1142. if (vmas)
  1143. vmas[i] = gate_vma;
  1144. i++;
  1145. start += PAGE_SIZE;
  1146. len--;
  1147. continue;
  1148. }
  1149. if (!vma ||
  1150. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1151. (!ignore && !(vm_flags & vma->vm_flags)))
  1152. return i ? : -EFAULT;
  1153. if (is_vm_hugetlb_page(vma)) {
  1154. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1155. &start, &len, i, write);
  1156. continue;
  1157. }
  1158. foll_flags = FOLL_TOUCH;
  1159. if (pages)
  1160. foll_flags |= FOLL_GET;
  1161. if (!write && use_zero_page(vma))
  1162. foll_flags |= FOLL_ANON;
  1163. do {
  1164. struct page *page;
  1165. /*
  1166. * If we have a pending SIGKILL, don't keep faulting
  1167. * pages and potentially allocating memory, unless
  1168. * current is handling munlock--e.g., on exit. In
  1169. * that case, we are not allocating memory. Rather,
  1170. * we're only unlocking already resident/mapped pages.
  1171. */
  1172. if (unlikely(!ignore_sigkill &&
  1173. fatal_signal_pending(current)))
  1174. return i ? i : -ERESTARTSYS;
  1175. if (write)
  1176. foll_flags |= FOLL_WRITE;
  1177. cond_resched();
  1178. while (!(page = follow_page(vma, start, foll_flags))) {
  1179. int ret;
  1180. ret = handle_mm_fault(mm, vma, start,
  1181. foll_flags & FOLL_WRITE);
  1182. if (ret & VM_FAULT_ERROR) {
  1183. if (ret & VM_FAULT_OOM)
  1184. return i ? i : -ENOMEM;
  1185. else if (ret & VM_FAULT_SIGBUS)
  1186. return i ? i : -EFAULT;
  1187. BUG();
  1188. }
  1189. if (ret & VM_FAULT_MAJOR)
  1190. tsk->maj_flt++;
  1191. else
  1192. tsk->min_flt++;
  1193. /*
  1194. * The VM_FAULT_WRITE bit tells us that
  1195. * do_wp_page has broken COW when necessary,
  1196. * even if maybe_mkwrite decided not to set
  1197. * pte_write. We can thus safely do subsequent
  1198. * page lookups as if they were reads. But only
  1199. * do so when looping for pte_write is futile:
  1200. * in some cases userspace may also be wanting
  1201. * to write to the gotten user page, which a
  1202. * read fault here might prevent (a readonly
  1203. * page might get reCOWed by userspace write).
  1204. */
  1205. if ((ret & VM_FAULT_WRITE) &&
  1206. !(vma->vm_flags & VM_WRITE))
  1207. foll_flags &= ~FOLL_WRITE;
  1208. cond_resched();
  1209. }
  1210. if (IS_ERR(page))
  1211. return i ? i : PTR_ERR(page);
  1212. if (pages) {
  1213. pages[i] = page;
  1214. flush_anon_page(vma, page, start);
  1215. flush_dcache_page(page);
  1216. }
  1217. if (vmas)
  1218. vmas[i] = vma;
  1219. i++;
  1220. start += PAGE_SIZE;
  1221. len--;
  1222. } while (len && start < vma->vm_end);
  1223. } while (len);
  1224. return i;
  1225. }
  1226. /**
  1227. * get_user_pages() - pin user pages in memory
  1228. * @tsk: task_struct of target task
  1229. * @mm: mm_struct of target mm
  1230. * @start: starting user address
  1231. * @len: number of pages from start to pin
  1232. * @write: whether pages will be written to by the caller
  1233. * @force: whether to force write access even if user mapping is
  1234. * readonly. This will result in the page being COWed even
  1235. * in MAP_SHARED mappings. You do not want this.
  1236. * @pages: array that receives pointers to the pages pinned.
  1237. * Should be at least nr_pages long. Or NULL, if caller
  1238. * only intends to ensure the pages are faulted in.
  1239. * @vmas: array of pointers to vmas corresponding to each page.
  1240. * Or NULL if the caller does not require them.
  1241. *
  1242. * Returns number of pages pinned. This may be fewer than the number
  1243. * requested. If len is 0 or negative, returns 0. If no pages
  1244. * were pinned, returns -errno. Each page returned must be released
  1245. * with a put_page() call when it is finished with. vmas will only
  1246. * remain valid while mmap_sem is held.
  1247. *
  1248. * Must be called with mmap_sem held for read or write.
  1249. *
  1250. * get_user_pages walks a process's page tables and takes a reference to
  1251. * each struct page that each user address corresponds to at a given
  1252. * instant. That is, it takes the page that would be accessed if a user
  1253. * thread accesses the given user virtual address at that instant.
  1254. *
  1255. * This does not guarantee that the page exists in the user mappings when
  1256. * get_user_pages returns, and there may even be a completely different
  1257. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1258. * and subsequently re faulted). However it does guarantee that the page
  1259. * won't be freed completely. And mostly callers simply care that the page
  1260. * contains data that was valid *at some point in time*. Typically, an IO
  1261. * or similar operation cannot guarantee anything stronger anyway because
  1262. * locks can't be held over the syscall boundary.
  1263. *
  1264. * If write=0, the page must not be written to. If the page is written to,
  1265. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1266. * after the page is finished with, and before put_page is called.
  1267. *
  1268. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1269. * handle on the memory by some means other than accesses via the user virtual
  1270. * addresses. The pages may be submitted for DMA to devices or accessed via
  1271. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1272. * use the correct cache flushing APIs.
  1273. *
  1274. * See also get_user_pages_fast, for performance critical applications.
  1275. */
  1276. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1277. unsigned long start, int len, int write, int force,
  1278. struct page **pages, struct vm_area_struct **vmas)
  1279. {
  1280. int flags = 0;
  1281. if (write)
  1282. flags |= GUP_FLAGS_WRITE;
  1283. if (force)
  1284. flags |= GUP_FLAGS_FORCE;
  1285. return __get_user_pages(tsk, mm,
  1286. start, len, flags,
  1287. pages, vmas);
  1288. }
  1289. EXPORT_SYMBOL(get_user_pages);
  1290. pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1291. spinlock_t **ptl)
  1292. {
  1293. pgd_t * pgd = pgd_offset(mm, addr);
  1294. pud_t * pud = pud_alloc(mm, pgd, addr);
  1295. if (pud) {
  1296. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1297. if (pmd)
  1298. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1299. }
  1300. return NULL;
  1301. }
  1302. /*
  1303. * This is the old fallback for page remapping.
  1304. *
  1305. * For historical reasons, it only allows reserved pages. Only
  1306. * old drivers should use this, and they needed to mark their
  1307. * pages reserved for the old functions anyway.
  1308. */
  1309. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1310. struct page *page, pgprot_t prot)
  1311. {
  1312. struct mm_struct *mm = vma->vm_mm;
  1313. int retval;
  1314. pte_t *pte;
  1315. spinlock_t *ptl;
  1316. retval = -EINVAL;
  1317. if (PageAnon(page))
  1318. goto out;
  1319. retval = -ENOMEM;
  1320. flush_dcache_page(page);
  1321. pte = get_locked_pte(mm, addr, &ptl);
  1322. if (!pte)
  1323. goto out;
  1324. retval = -EBUSY;
  1325. if (!pte_none(*pte))
  1326. goto out_unlock;
  1327. /* Ok, finally just insert the thing.. */
  1328. get_page(page);
  1329. inc_mm_counter(mm, file_rss);
  1330. page_add_file_rmap(page);
  1331. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1332. retval = 0;
  1333. pte_unmap_unlock(pte, ptl);
  1334. return retval;
  1335. out_unlock:
  1336. pte_unmap_unlock(pte, ptl);
  1337. out:
  1338. return retval;
  1339. }
  1340. /**
  1341. * vm_insert_page - insert single page into user vma
  1342. * @vma: user vma to map to
  1343. * @addr: target user address of this page
  1344. * @page: source kernel page
  1345. *
  1346. * This allows drivers to insert individual pages they've allocated
  1347. * into a user vma.
  1348. *
  1349. * The page has to be a nice clean _individual_ kernel allocation.
  1350. * If you allocate a compound page, you need to have marked it as
  1351. * such (__GFP_COMP), or manually just split the page up yourself
  1352. * (see split_page()).
  1353. *
  1354. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1355. * took an arbitrary page protection parameter. This doesn't allow
  1356. * that. Your vma protection will have to be set up correctly, which
  1357. * means that if you want a shared writable mapping, you'd better
  1358. * ask for a shared writable mapping!
  1359. *
  1360. * The page does not need to be reserved.
  1361. */
  1362. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1363. struct page *page)
  1364. {
  1365. if (addr < vma->vm_start || addr >= vma->vm_end)
  1366. return -EFAULT;
  1367. if (!page_count(page))
  1368. return -EINVAL;
  1369. vma->vm_flags |= VM_INSERTPAGE;
  1370. return insert_page(vma, addr, page, vma->vm_page_prot);
  1371. }
  1372. EXPORT_SYMBOL(vm_insert_page);
  1373. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1374. unsigned long pfn, pgprot_t prot)
  1375. {
  1376. struct mm_struct *mm = vma->vm_mm;
  1377. int retval;
  1378. pte_t *pte, entry;
  1379. spinlock_t *ptl;
  1380. retval = -ENOMEM;
  1381. pte = get_locked_pte(mm, addr, &ptl);
  1382. if (!pte)
  1383. goto out;
  1384. retval = -EBUSY;
  1385. if (!pte_none(*pte))
  1386. goto out_unlock;
  1387. /* Ok, finally just insert the thing.. */
  1388. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1389. set_pte_at(mm, addr, pte, entry);
  1390. update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
  1391. retval = 0;
  1392. out_unlock:
  1393. pte_unmap_unlock(pte, ptl);
  1394. out:
  1395. return retval;
  1396. }
  1397. /**
  1398. * vm_insert_pfn - insert single pfn into user vma
  1399. * @vma: user vma to map to
  1400. * @addr: target user address of this page
  1401. * @pfn: source kernel pfn
  1402. *
  1403. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1404. * they've allocated into a user vma. Same comments apply.
  1405. *
  1406. * This function should only be called from a vm_ops->fault handler, and
  1407. * in that case the handler should return NULL.
  1408. *
  1409. * vma cannot be a COW mapping.
  1410. *
  1411. * As this is called only for pages that do not currently exist, we
  1412. * do not need to flush old virtual caches or the TLB.
  1413. */
  1414. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1415. unsigned long pfn)
  1416. {
  1417. int ret;
  1418. pgprot_t pgprot = vma->vm_page_prot;
  1419. /*
  1420. * Technically, architectures with pte_special can avoid all these
  1421. * restrictions (same for remap_pfn_range). However we would like
  1422. * consistency in testing and feature parity among all, so we should
  1423. * try to keep these invariants in place for everybody.
  1424. */
  1425. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1426. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1427. (VM_PFNMAP|VM_MIXEDMAP));
  1428. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1429. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1430. if (addr < vma->vm_start || addr >= vma->vm_end)
  1431. return -EFAULT;
  1432. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1433. return -EINVAL;
  1434. ret = insert_pfn(vma, addr, pfn, pgprot);
  1435. if (ret)
  1436. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1437. return ret;
  1438. }
  1439. EXPORT_SYMBOL(vm_insert_pfn);
  1440. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1441. unsigned long pfn)
  1442. {
  1443. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1444. if (addr < vma->vm_start || addr >= vma->vm_end)
  1445. return -EFAULT;
  1446. /*
  1447. * If we don't have pte special, then we have to use the pfn_valid()
  1448. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1449. * refcount the page if pfn_valid is true (hence insert_page rather
  1450. * than insert_pfn).
  1451. */
  1452. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1453. struct page *page;
  1454. page = pfn_to_page(pfn);
  1455. return insert_page(vma, addr, page, vma->vm_page_prot);
  1456. }
  1457. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1458. }
  1459. EXPORT_SYMBOL(vm_insert_mixed);
  1460. /*
  1461. * maps a range of physical memory into the requested pages. the old
  1462. * mappings are removed. any references to nonexistent pages results
  1463. * in null mappings (currently treated as "copy-on-access")
  1464. */
  1465. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1466. unsigned long addr, unsigned long end,
  1467. unsigned long pfn, pgprot_t prot)
  1468. {
  1469. pte_t *pte;
  1470. spinlock_t *ptl;
  1471. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1472. if (!pte)
  1473. return -ENOMEM;
  1474. arch_enter_lazy_mmu_mode();
  1475. do {
  1476. BUG_ON(!pte_none(*pte));
  1477. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1478. pfn++;
  1479. } while (pte++, addr += PAGE_SIZE, addr != end);
  1480. arch_leave_lazy_mmu_mode();
  1481. pte_unmap_unlock(pte - 1, ptl);
  1482. return 0;
  1483. }
  1484. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1485. unsigned long addr, unsigned long end,
  1486. unsigned long pfn, pgprot_t prot)
  1487. {
  1488. pmd_t *pmd;
  1489. unsigned long next;
  1490. pfn -= addr >> PAGE_SHIFT;
  1491. pmd = pmd_alloc(mm, pud, addr);
  1492. if (!pmd)
  1493. return -ENOMEM;
  1494. do {
  1495. next = pmd_addr_end(addr, end);
  1496. if (remap_pte_range(mm, pmd, addr, next,
  1497. pfn + (addr >> PAGE_SHIFT), prot))
  1498. return -ENOMEM;
  1499. } while (pmd++, addr = next, addr != end);
  1500. return 0;
  1501. }
  1502. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1503. unsigned long addr, unsigned long end,
  1504. unsigned long pfn, pgprot_t prot)
  1505. {
  1506. pud_t *pud;
  1507. unsigned long next;
  1508. pfn -= addr >> PAGE_SHIFT;
  1509. pud = pud_alloc(mm, pgd, addr);
  1510. if (!pud)
  1511. return -ENOMEM;
  1512. do {
  1513. next = pud_addr_end(addr, end);
  1514. if (remap_pmd_range(mm, pud, addr, next,
  1515. pfn + (addr >> PAGE_SHIFT), prot))
  1516. return -ENOMEM;
  1517. } while (pud++, addr = next, addr != end);
  1518. return 0;
  1519. }
  1520. /**
  1521. * remap_pfn_range - remap kernel memory to userspace
  1522. * @vma: user vma to map to
  1523. * @addr: target user address to start at
  1524. * @pfn: physical address of kernel memory
  1525. * @size: size of map area
  1526. * @prot: page protection flags for this mapping
  1527. *
  1528. * Note: this is only safe if the mm semaphore is held when called.
  1529. */
  1530. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1531. unsigned long pfn, unsigned long size, pgprot_t prot)
  1532. {
  1533. pgd_t *pgd;
  1534. unsigned long next;
  1535. unsigned long end = addr + PAGE_ALIGN(size);
  1536. struct mm_struct *mm = vma->vm_mm;
  1537. int err;
  1538. /*
  1539. * Physically remapped pages are special. Tell the
  1540. * rest of the world about it:
  1541. * VM_IO tells people not to look at these pages
  1542. * (accesses can have side effects).
  1543. * VM_RESERVED is specified all over the place, because
  1544. * in 2.4 it kept swapout's vma scan off this vma; but
  1545. * in 2.6 the LRU scan won't even find its pages, so this
  1546. * flag means no more than count its pages in reserved_vm,
  1547. * and omit it from core dump, even when VM_IO turned off.
  1548. * VM_PFNMAP tells the core MM that the base pages are just
  1549. * raw PFN mappings, and do not have a "struct page" associated
  1550. * with them.
  1551. *
  1552. * There's a horrible special case to handle copy-on-write
  1553. * behaviour that some programs depend on. We mark the "original"
  1554. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1555. */
  1556. if (addr == vma->vm_start && end == vma->vm_end) {
  1557. vma->vm_pgoff = pfn;
  1558. vma->vm_flags |= VM_PFN_AT_MMAP;
  1559. } else if (is_cow_mapping(vma->vm_flags))
  1560. return -EINVAL;
  1561. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1562. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1563. if (err) {
  1564. /*
  1565. * To indicate that track_pfn related cleanup is not
  1566. * needed from higher level routine calling unmap_vmas
  1567. */
  1568. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1569. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1570. return -EINVAL;
  1571. }
  1572. BUG_ON(addr >= end);
  1573. pfn -= addr >> PAGE_SHIFT;
  1574. pgd = pgd_offset(mm, addr);
  1575. flush_cache_range(vma, addr, end);
  1576. do {
  1577. next = pgd_addr_end(addr, end);
  1578. err = remap_pud_range(mm, pgd, addr, next,
  1579. pfn + (addr >> PAGE_SHIFT), prot);
  1580. if (err)
  1581. break;
  1582. } while (pgd++, addr = next, addr != end);
  1583. if (err)
  1584. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1585. return err;
  1586. }
  1587. EXPORT_SYMBOL(remap_pfn_range);
  1588. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1589. unsigned long addr, unsigned long end,
  1590. pte_fn_t fn, void *data)
  1591. {
  1592. pte_t *pte;
  1593. int err;
  1594. pgtable_t token;
  1595. spinlock_t *uninitialized_var(ptl);
  1596. pte = (mm == &init_mm) ?
  1597. pte_alloc_kernel(pmd, addr) :
  1598. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1599. if (!pte)
  1600. return -ENOMEM;
  1601. BUG_ON(pmd_huge(*pmd));
  1602. arch_enter_lazy_mmu_mode();
  1603. token = pmd_pgtable(*pmd);
  1604. do {
  1605. err = fn(pte, token, addr, data);
  1606. if (err)
  1607. break;
  1608. } while (pte++, addr += PAGE_SIZE, addr != end);
  1609. arch_leave_lazy_mmu_mode();
  1610. if (mm != &init_mm)
  1611. pte_unmap_unlock(pte-1, ptl);
  1612. return err;
  1613. }
  1614. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1615. unsigned long addr, unsigned long end,
  1616. pte_fn_t fn, void *data)
  1617. {
  1618. pmd_t *pmd;
  1619. unsigned long next;
  1620. int err;
  1621. BUG_ON(pud_huge(*pud));
  1622. pmd = pmd_alloc(mm, pud, addr);
  1623. if (!pmd)
  1624. return -ENOMEM;
  1625. do {
  1626. next = pmd_addr_end(addr, end);
  1627. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1628. if (err)
  1629. break;
  1630. } while (pmd++, addr = next, addr != end);
  1631. return err;
  1632. }
  1633. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1634. unsigned long addr, unsigned long end,
  1635. pte_fn_t fn, void *data)
  1636. {
  1637. pud_t *pud;
  1638. unsigned long next;
  1639. int err;
  1640. pud = pud_alloc(mm, pgd, addr);
  1641. if (!pud)
  1642. return -ENOMEM;
  1643. do {
  1644. next = pud_addr_end(addr, end);
  1645. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1646. if (err)
  1647. break;
  1648. } while (pud++, addr = next, addr != end);
  1649. return err;
  1650. }
  1651. /*
  1652. * Scan a region of virtual memory, filling in page tables as necessary
  1653. * and calling a provided function on each leaf page table.
  1654. */
  1655. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1656. unsigned long size, pte_fn_t fn, void *data)
  1657. {
  1658. pgd_t *pgd;
  1659. unsigned long next;
  1660. unsigned long start = addr, end = addr + size;
  1661. int err;
  1662. BUG_ON(addr >= end);
  1663. mmu_notifier_invalidate_range_start(mm, start, end);
  1664. pgd = pgd_offset(mm, addr);
  1665. do {
  1666. next = pgd_addr_end(addr, end);
  1667. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1668. if (err)
  1669. break;
  1670. } while (pgd++, addr = next, addr != end);
  1671. mmu_notifier_invalidate_range_end(mm, start, end);
  1672. return err;
  1673. }
  1674. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1675. /*
  1676. * handle_pte_fault chooses page fault handler according to an entry
  1677. * which was read non-atomically. Before making any commitment, on
  1678. * those architectures or configurations (e.g. i386 with PAE) which
  1679. * might give a mix of unmatched parts, do_swap_page and do_file_page
  1680. * must check under lock before unmapping the pte and proceeding
  1681. * (but do_wp_page is only called after already making such a check;
  1682. * and do_anonymous_page and do_no_page can safely check later on).
  1683. */
  1684. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1685. pte_t *page_table, pte_t orig_pte)
  1686. {
  1687. int same = 1;
  1688. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1689. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1690. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1691. spin_lock(ptl);
  1692. same = pte_same(*page_table, orig_pte);
  1693. spin_unlock(ptl);
  1694. }
  1695. #endif
  1696. pte_unmap(page_table);
  1697. return same;
  1698. }
  1699. /*
  1700. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  1701. * servicing faults for write access. In the normal case, do always want
  1702. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  1703. * that do not have writing enabled, when used by access_process_vm.
  1704. */
  1705. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  1706. {
  1707. if (likely(vma->vm_flags & VM_WRITE))
  1708. pte = pte_mkwrite(pte);
  1709. return pte;
  1710. }
  1711. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1712. {
  1713. /*
  1714. * If the source page was a PFN mapping, we don't have
  1715. * a "struct page" for it. We do a best-effort copy by
  1716. * just copying from the original user address. If that
  1717. * fails, we just zero-fill it. Live with it.
  1718. */
  1719. if (unlikely(!src)) {
  1720. void *kaddr = kmap_atomic(dst, KM_USER0);
  1721. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1722. /*
  1723. * This really shouldn't fail, because the page is there
  1724. * in the page tables. But it might just be unreadable,
  1725. * in which case we just give up and fill the result with
  1726. * zeroes.
  1727. */
  1728. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  1729. memset(kaddr, 0, PAGE_SIZE);
  1730. kunmap_atomic(kaddr, KM_USER0);
  1731. flush_dcache_page(dst);
  1732. } else
  1733. copy_user_highpage(dst, src, va, vma);
  1734. }
  1735. /*
  1736. * This routine handles present pages, when users try to write
  1737. * to a shared page. It is done by copying the page to a new address
  1738. * and decrementing the shared-page counter for the old page.
  1739. *
  1740. * Note that this routine assumes that the protection checks have been
  1741. * done by the caller (the low-level page fault routine in most cases).
  1742. * Thus we can safely just mark it writable once we've done any necessary
  1743. * COW.
  1744. *
  1745. * We also mark the page dirty at this point even though the page will
  1746. * change only once the write actually happens. This avoids a few races,
  1747. * and potentially makes it more efficient.
  1748. *
  1749. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  1750. * but allow concurrent faults), with pte both mapped and locked.
  1751. * We return with mmap_sem still held, but pte unmapped and unlocked.
  1752. */
  1753. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1754. unsigned long address, pte_t *page_table, pmd_t *pmd,
  1755. spinlock_t *ptl, pte_t orig_pte)
  1756. {
  1757. struct page *old_page, *new_page;
  1758. pte_t entry;
  1759. int reuse = 0, ret = 0;
  1760. int page_mkwrite = 0;
  1761. struct page *dirty_page = NULL;
  1762. old_page = vm_normal_page(vma, address, orig_pte);
  1763. if (!old_page) {
  1764. /*
  1765. * VM_MIXEDMAP !pfn_valid() case
  1766. *
  1767. * We should not cow pages in a shared writeable mapping.
  1768. * Just mark the pages writable as we can't do any dirty
  1769. * accounting on raw pfn maps.
  1770. */
  1771. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1772. (VM_WRITE|VM_SHARED))
  1773. goto reuse;
  1774. goto gotten;
  1775. }
  1776. /*
  1777. * Take out anonymous pages first, anonymous shared vmas are
  1778. * not dirty accountable.
  1779. */
  1780. if (PageAnon(old_page)) {
  1781. if (!trylock_page(old_page)) {
  1782. page_cache_get(old_page);
  1783. pte_unmap_unlock(page_table, ptl);
  1784. lock_page(old_page);
  1785. page_table = pte_offset_map_lock(mm, pmd, address,
  1786. &ptl);
  1787. if (!pte_same(*page_table, orig_pte)) {
  1788. unlock_page(old_page);
  1789. page_cache_release(old_page);
  1790. goto unlock;
  1791. }
  1792. page_cache_release(old_page);
  1793. }
  1794. reuse = reuse_swap_page(old_page);
  1795. unlock_page(old_page);
  1796. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  1797. (VM_WRITE|VM_SHARED))) {
  1798. /*
  1799. * Only catch write-faults on shared writable pages,
  1800. * read-only shared pages can get COWed by
  1801. * get_user_pages(.write=1, .force=1).
  1802. */
  1803. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  1804. struct vm_fault vmf;
  1805. int tmp;
  1806. vmf.virtual_address = (void __user *)(address &
  1807. PAGE_MASK);
  1808. vmf.pgoff = old_page->index;
  1809. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  1810. vmf.page = old_page;
  1811. /*
  1812. * Notify the address space that the page is about to
  1813. * become writable so that it can prohibit this or wait
  1814. * for the page to get into an appropriate state.
  1815. *
  1816. * We do this without the lock held, so that it can
  1817. * sleep if it needs to.
  1818. */
  1819. page_cache_get(old_page);
  1820. pte_unmap_unlock(page_table, ptl);
  1821. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  1822. if (unlikely(tmp &
  1823. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  1824. ret = tmp;
  1825. goto unwritable_page;
  1826. }
  1827. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  1828. lock_page(old_page);
  1829. if (!old_page->mapping) {
  1830. ret = 0; /* retry the fault */
  1831. unlock_page(old_page);
  1832. goto unwritable_page;
  1833. }
  1834. } else
  1835. VM_BUG_ON(!PageLocked(old_page));
  1836. /*
  1837. * Since we dropped the lock we need to revalidate
  1838. * the PTE as someone else may have changed it. If
  1839. * they did, we just return, as we can count on the
  1840. * MMU to tell us if they didn't also make it writable.
  1841. */
  1842. page_table = pte_offset_map_lock(mm, pmd, address,
  1843. &ptl);
  1844. if (!pte_same(*page_table, orig_pte)) {
  1845. unlock_page(old_page);
  1846. page_cache_release(old_page);
  1847. goto unlock;
  1848. }
  1849. page_mkwrite = 1;
  1850. }
  1851. dirty_page = old_page;
  1852. get_page(dirty_page);
  1853. reuse = 1;
  1854. }
  1855. if (reuse) {
  1856. reuse:
  1857. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1858. entry = pte_mkyoung(orig_pte);
  1859. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1860. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  1861. update_mmu_cache(vma, address, entry);
  1862. ret |= VM_FAULT_WRITE;
  1863. goto unlock;
  1864. }
  1865. /*
  1866. * Ok, we need to copy. Oh, well..
  1867. */
  1868. page_cache_get(old_page);
  1869. gotten:
  1870. pte_unmap_unlock(page_table, ptl);
  1871. if (unlikely(anon_vma_prepare(vma)))
  1872. goto oom;
  1873. VM_BUG_ON(old_page == ZERO_PAGE(0));
  1874. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  1875. if (!new_page)
  1876. goto oom;
  1877. /*
  1878. * Don't let another task, with possibly unlocked vma,
  1879. * keep the mlocked page.
  1880. */
  1881. if ((vma->vm_flags & VM_LOCKED) && old_page) {
  1882. lock_page(old_page); /* for LRU manipulation */
  1883. clear_page_mlock(old_page);
  1884. unlock_page(old_page);
  1885. }
  1886. cow_user_page(new_page, old_page, address, vma);
  1887. __SetPageUptodate(new_page);
  1888. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  1889. goto oom_free_new;
  1890. /*
  1891. * Re-check the pte - we dropped the lock
  1892. */
  1893. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  1894. if (likely(pte_same(*page_table, orig_pte))) {
  1895. if (old_page) {
  1896. if (!PageAnon(old_page)) {
  1897. dec_mm_counter(mm, file_rss);
  1898. inc_mm_counter(mm, anon_rss);
  1899. }
  1900. } else
  1901. inc_mm_counter(mm, anon_rss);
  1902. flush_cache_page(vma, address, pte_pfn(orig_pte));
  1903. entry = mk_pte(new_page, vma->vm_page_prot);
  1904. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1905. /*
  1906. * Clear the pte entry and flush it first, before updating the
  1907. * pte with the new entry. This will avoid a race condition
  1908. * seen in the presence of one thread doing SMC and another
  1909. * thread doing COW.
  1910. */
  1911. ptep_clear_flush_notify(vma, address, page_table);
  1912. page_add_new_anon_rmap(new_page, vma, address);
  1913. set_pte_at(mm, address, page_table, entry);
  1914. update_mmu_cache(vma, address, entry);
  1915. if (old_page) {
  1916. /*
  1917. * Only after switching the pte to the new page may
  1918. * we remove the mapcount here. Otherwise another
  1919. * process may come and find the rmap count decremented
  1920. * before the pte is switched to the new page, and
  1921. * "reuse" the old page writing into it while our pte
  1922. * here still points into it and can be read by other
  1923. * threads.
  1924. *
  1925. * The critical issue is to order this
  1926. * page_remove_rmap with the ptp_clear_flush above.
  1927. * Those stores are ordered by (if nothing else,)
  1928. * the barrier present in the atomic_add_negative
  1929. * in page_remove_rmap.
  1930. *
  1931. * Then the TLB flush in ptep_clear_flush ensures that
  1932. * no process can access the old page before the
  1933. * decremented mapcount is visible. And the old page
  1934. * cannot be reused until after the decremented
  1935. * mapcount is visible. So transitively, TLBs to
  1936. * old page will be flushed before it can be reused.
  1937. */
  1938. page_remove_rmap(old_page);
  1939. }
  1940. /* Free the old page.. */
  1941. new_page = old_page;
  1942. ret |= VM_FAULT_WRITE;
  1943. } else
  1944. mem_cgroup_uncharge_page(new_page);
  1945. if (new_page)
  1946. page_cache_release(new_page);
  1947. if (old_page)
  1948. page_cache_release(old_page);
  1949. unlock:
  1950. pte_unmap_unlock(page_table, ptl);
  1951. if (dirty_page) {
  1952. /*
  1953. * Yes, Virginia, this is actually required to prevent a race
  1954. * with clear_page_dirty_for_io() from clearing the page dirty
  1955. * bit after it clear all dirty ptes, but before a racing
  1956. * do_wp_page installs a dirty pte.
  1957. *
  1958. * do_no_page is protected similarly.
  1959. */
  1960. if (!page_mkwrite) {
  1961. wait_on_page_locked(dirty_page);
  1962. set_page_dirty_balance(dirty_page, page_mkwrite);
  1963. }
  1964. put_page(dirty_page);
  1965. if (page_mkwrite) {
  1966. struct address_space *mapping = dirty_page->mapping;
  1967. set_page_dirty(dirty_page);
  1968. unlock_page(dirty_page);
  1969. page_cache_release(dirty_page);
  1970. if (mapping) {
  1971. /*
  1972. * Some device drivers do not set page.mapping
  1973. * but still dirty their pages
  1974. */
  1975. balance_dirty_pages_ratelimited(mapping);
  1976. }
  1977. }
  1978. /* file_update_time outside page_lock */
  1979. if (vma->vm_file)
  1980. file_update_time(vma->vm_file);
  1981. }
  1982. return ret;
  1983. oom_free_new:
  1984. page_cache_release(new_page);
  1985. oom:
  1986. if (old_page) {
  1987. if (page_mkwrite) {
  1988. unlock_page(old_page);
  1989. page_cache_release(old_page);
  1990. }
  1991. page_cache_release(old_page);
  1992. }
  1993. return VM_FAULT_OOM;
  1994. unwritable_page:
  1995. page_cache_release(old_page);
  1996. return ret;
  1997. }
  1998. /*
  1999. * Helper functions for unmap_mapping_range().
  2000. *
  2001. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2002. *
  2003. * We have to restart searching the prio_tree whenever we drop the lock,
  2004. * since the iterator is only valid while the lock is held, and anyway
  2005. * a later vma might be split and reinserted earlier while lock dropped.
  2006. *
  2007. * The list of nonlinear vmas could be handled more efficiently, using
  2008. * a placeholder, but handle it in the same way until a need is shown.
  2009. * It is important to search the prio_tree before nonlinear list: a vma
  2010. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2011. * while the lock is dropped; but never shifted from list to prio_tree.
  2012. *
  2013. * In order to make forward progress despite restarting the search,
  2014. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2015. * quickly skip it next time around. Since the prio_tree search only
  2016. * shows us those vmas affected by unmapping the range in question, we
  2017. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2018. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2019. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2020. * i_mmap_lock.
  2021. *
  2022. * In order to make forward progress despite repeatedly restarting some
  2023. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2024. * and restart from that address when we reach that vma again. It might
  2025. * have been split or merged, shrunk or extended, but never shifted: so
  2026. * restart_addr remains valid so long as it remains in the vma's range.
  2027. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2028. * values so we can save vma's restart_addr in its truncate_count field.
  2029. */
  2030. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2031. static void reset_vma_truncate_counts(struct address_space *mapping)
  2032. {
  2033. struct vm_area_struct *vma;
  2034. struct prio_tree_iter iter;
  2035. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2036. vma->vm_truncate_count = 0;
  2037. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2038. vma->vm_truncate_count = 0;
  2039. }
  2040. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2041. unsigned long start_addr, unsigned long end_addr,
  2042. struct zap_details *details)
  2043. {
  2044. unsigned long restart_addr;
  2045. int need_break;
  2046. /*
  2047. * files that support invalidating or truncating portions of the
  2048. * file from under mmaped areas must have their ->fault function
  2049. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2050. * This provides synchronisation against concurrent unmapping here.
  2051. */
  2052. again:
  2053. restart_addr = vma->vm_truncate_count;
  2054. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2055. start_addr = restart_addr;
  2056. if (start_addr >= end_addr) {
  2057. /* Top of vma has been split off since last time */
  2058. vma->vm_truncate_count = details->truncate_count;
  2059. return 0;
  2060. }
  2061. }
  2062. restart_addr = zap_page_range(vma, start_addr,
  2063. end_addr - start_addr, details);
  2064. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2065. if (restart_addr >= end_addr) {
  2066. /* We have now completed this vma: mark it so */
  2067. vma->vm_truncate_count = details->truncate_count;
  2068. if (!need_break)
  2069. return 0;
  2070. } else {
  2071. /* Note restart_addr in vma's truncate_count field */
  2072. vma->vm_truncate_count = restart_addr;
  2073. if (!need_break)
  2074. goto again;
  2075. }
  2076. spin_unlock(details->i_mmap_lock);
  2077. cond_resched();
  2078. spin_lock(details->i_mmap_lock);
  2079. return -EINTR;
  2080. }
  2081. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2082. struct zap_details *details)
  2083. {
  2084. struct vm_area_struct *vma;
  2085. struct prio_tree_iter iter;
  2086. pgoff_t vba, vea, zba, zea;
  2087. restart:
  2088. vma_prio_tree_foreach(vma, &iter, root,
  2089. details->first_index, details->last_index) {
  2090. /* Skip quickly over those we have already dealt with */
  2091. if (vma->vm_truncate_count == details->truncate_count)
  2092. continue;
  2093. vba = vma->vm_pgoff;
  2094. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2095. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2096. zba = details->first_index;
  2097. if (zba < vba)
  2098. zba = vba;
  2099. zea = details->last_index;
  2100. if (zea > vea)
  2101. zea = vea;
  2102. if (unmap_mapping_range_vma(vma,
  2103. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2104. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2105. details) < 0)
  2106. goto restart;
  2107. }
  2108. }
  2109. static inline void unmap_mapping_range_list(struct list_head *head,
  2110. struct zap_details *details)
  2111. {
  2112. struct vm_area_struct *vma;
  2113. /*
  2114. * In nonlinear VMAs there is no correspondence between virtual address
  2115. * offset and file offset. So we must perform an exhaustive search
  2116. * across *all* the pages in each nonlinear VMA, not just the pages
  2117. * whose virtual address lies outside the file truncation point.
  2118. */
  2119. restart:
  2120. list_for_each_entry(vma, head, shared.vm_set.list) {
  2121. /* Skip quickly over those we have already dealt with */
  2122. if (vma->vm_truncate_count == details->truncate_count)
  2123. continue;
  2124. details->nonlinear_vma = vma;
  2125. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2126. vma->vm_end, details) < 0)
  2127. goto restart;
  2128. }
  2129. }
  2130. /**
  2131. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2132. * @mapping: the address space containing mmaps to be unmapped.
  2133. * @holebegin: byte in first page to unmap, relative to the start of
  2134. * the underlying file. This will be rounded down to a PAGE_SIZE
  2135. * boundary. Note that this is different from vmtruncate(), which
  2136. * must keep the partial page. In contrast, we must get rid of
  2137. * partial pages.
  2138. * @holelen: size of prospective hole in bytes. This will be rounded
  2139. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2140. * end of the file.
  2141. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2142. * but 0 when invalidating pagecache, don't throw away private data.
  2143. */
  2144. void unmap_mapping_range(struct address_space *mapping,
  2145. loff_t const holebegin, loff_t const holelen, int even_cows)
  2146. {
  2147. struct zap_details details;
  2148. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2149. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2150. /* Check for overflow. */
  2151. if (sizeof(holelen) > sizeof(hlen)) {
  2152. long long holeend =
  2153. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2154. if (holeend & ~(long long)ULONG_MAX)
  2155. hlen = ULONG_MAX - hba + 1;
  2156. }
  2157. details.check_mapping = even_cows? NULL: mapping;
  2158. details.nonlinear_vma = NULL;
  2159. details.first_index = hba;
  2160. details.last_index = hba + hlen - 1;
  2161. if (details.last_index < details.first_index)
  2162. details.last_index = ULONG_MAX;
  2163. details.i_mmap_lock = &mapping->i_mmap_lock;
  2164. spin_lock(&mapping->i_mmap_lock);
  2165. /* Protect against endless unmapping loops */
  2166. mapping->truncate_count++;
  2167. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2168. if (mapping->truncate_count == 0)
  2169. reset_vma_truncate_counts(mapping);
  2170. mapping->truncate_count++;
  2171. }
  2172. details.truncate_count = mapping->truncate_count;
  2173. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2174. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2175. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2176. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2177. spin_unlock(&mapping->i_mmap_lock);
  2178. }
  2179. EXPORT_SYMBOL(unmap_mapping_range);
  2180. /**
  2181. * vmtruncate - unmap mappings "freed" by truncate() syscall
  2182. * @inode: inode of the file used
  2183. * @offset: file offset to start truncating
  2184. *
  2185. * NOTE! We have to be ready to update the memory sharing
  2186. * between the file and the memory map for a potential last
  2187. * incomplete page. Ugly, but necessary.
  2188. */
  2189. int vmtruncate(struct inode * inode, loff_t offset)
  2190. {
  2191. if (inode->i_size < offset) {
  2192. unsigned long limit;
  2193. limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
  2194. if (limit != RLIM_INFINITY && offset > limit)
  2195. goto out_sig;
  2196. if (offset > inode->i_sb->s_maxbytes)
  2197. goto out_big;
  2198. i_size_write(inode, offset);
  2199. } else {
  2200. struct address_space *mapping = inode->i_mapping;
  2201. /*
  2202. * truncation of in-use swapfiles is disallowed - it would
  2203. * cause subsequent swapout to scribble on the now-freed
  2204. * blocks.
  2205. */
  2206. if (IS_SWAPFILE(inode))
  2207. return -ETXTBSY;
  2208. i_size_write(inode, offset);
  2209. /*
  2210. * unmap_mapping_range is called twice, first simply for
  2211. * efficiency so that truncate_inode_pages does fewer
  2212. * single-page unmaps. However after this first call, and
  2213. * before truncate_inode_pages finishes, it is possible for
  2214. * private pages to be COWed, which remain after
  2215. * truncate_inode_pages finishes, hence the second
  2216. * unmap_mapping_range call must be made for correctness.
  2217. */
  2218. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2219. truncate_inode_pages(mapping, offset);
  2220. unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
  2221. }
  2222. if (inode->i_op->truncate)
  2223. inode->i_op->truncate(inode);
  2224. return 0;
  2225. out_sig:
  2226. send_sig(SIGXFSZ, current, 0);
  2227. out_big:
  2228. return -EFBIG;
  2229. }
  2230. EXPORT_SYMBOL(vmtruncate);
  2231. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2232. {
  2233. struct address_space *mapping = inode->i_mapping;
  2234. /*
  2235. * If the underlying filesystem is not going to provide
  2236. * a way to truncate a range of blocks (punch a hole) -
  2237. * we should return failure right now.
  2238. */
  2239. if (!inode->i_op->truncate_range)
  2240. return -ENOSYS;
  2241. mutex_lock(&inode->i_mutex);
  2242. down_write(&inode->i_alloc_sem);
  2243. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2244. truncate_inode_pages_range(mapping, offset, end);
  2245. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2246. inode->i_op->truncate_range(inode, offset, end);
  2247. up_write(&inode->i_alloc_sem);
  2248. mutex_unlock(&inode->i_mutex);
  2249. return 0;
  2250. }
  2251. /*
  2252. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2253. * but allow concurrent faults), and pte mapped but not yet locked.
  2254. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2255. */
  2256. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2257. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2258. int write_access, pte_t orig_pte)
  2259. {
  2260. spinlock_t *ptl;
  2261. struct page *page;
  2262. swp_entry_t entry;
  2263. pte_t pte;
  2264. struct mem_cgroup *ptr = NULL;
  2265. int ret = 0;
  2266. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2267. goto out;
  2268. entry = pte_to_swp_entry(orig_pte);
  2269. if (is_migration_entry(entry)) {
  2270. migration_entry_wait(mm, pmd, address);
  2271. goto out;
  2272. }
  2273. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2274. page = lookup_swap_cache(entry);
  2275. if (!page) {
  2276. grab_swap_token(); /* Contend for token _before_ read-in */
  2277. page = swapin_readahead(entry,
  2278. GFP_HIGHUSER_MOVABLE, vma, address);
  2279. if (!page) {
  2280. /*
  2281. * Back out if somebody else faulted in this pte
  2282. * while we released the pte lock.
  2283. */
  2284. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2285. if (likely(pte_same(*page_table, orig_pte)))
  2286. ret = VM_FAULT_OOM;
  2287. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2288. goto unlock;
  2289. }
  2290. /* Had to read the page from swap area: Major fault */
  2291. ret = VM_FAULT_MAJOR;
  2292. count_vm_event(PGMAJFAULT);
  2293. }
  2294. lock_page(page);
  2295. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2296. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2297. ret = VM_FAULT_OOM;
  2298. goto out_page;
  2299. }
  2300. /*
  2301. * Back out if somebody else already faulted in this pte.
  2302. */
  2303. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2304. if (unlikely(!pte_same(*page_table, orig_pte)))
  2305. goto out_nomap;
  2306. if (unlikely(!PageUptodate(page))) {
  2307. ret = VM_FAULT_SIGBUS;
  2308. goto out_nomap;
  2309. }
  2310. /*
  2311. * The page isn't present yet, go ahead with the fault.
  2312. *
  2313. * Be careful about the sequence of operations here.
  2314. * To get its accounting right, reuse_swap_page() must be called
  2315. * while the page is counted on swap but not yet in mapcount i.e.
  2316. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2317. * must be called after the swap_free(), or it will never succeed.
  2318. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2319. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2320. * in page->private. In this case, a record in swap_cgroup is silently
  2321. * discarded at swap_free().
  2322. */
  2323. inc_mm_counter(mm, anon_rss);
  2324. pte = mk_pte(page, vma->vm_page_prot);
  2325. if (write_access && reuse_swap_page(page)) {
  2326. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2327. write_access = 0;
  2328. }
  2329. flush_icache_page(vma, page);
  2330. set_pte_at(mm, address, page_table, pte);
  2331. page_add_anon_rmap(page, vma, address);
  2332. /* It's better to call commit-charge after rmap is established */
  2333. mem_cgroup_commit_charge_swapin(page, ptr);
  2334. swap_free(entry);
  2335. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2336. try_to_free_swap(page);
  2337. unlock_page(page);
  2338. if (write_access) {
  2339. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2340. if (ret & VM_FAULT_ERROR)
  2341. ret &= VM_FAULT_ERROR;
  2342. goto out;
  2343. }
  2344. /* No need to invalidate - it was non-present before */
  2345. update_mmu_cache(vma, address, pte);
  2346. unlock:
  2347. pte_unmap_unlock(page_table, ptl);
  2348. out:
  2349. return ret;
  2350. out_nomap:
  2351. mem_cgroup_cancel_charge_swapin(ptr);
  2352. pte_unmap_unlock(page_table, ptl);
  2353. out_page:
  2354. unlock_page(page);
  2355. page_cache_release(page);
  2356. return ret;
  2357. }
  2358. /*
  2359. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2360. * but allow concurrent faults), and pte mapped but not yet locked.
  2361. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2362. */
  2363. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2364. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2365. int write_access)
  2366. {
  2367. struct page *page;
  2368. spinlock_t *ptl;
  2369. pte_t entry;
  2370. /* Allocate our own private page. */
  2371. pte_unmap(page_table);
  2372. if (unlikely(anon_vma_prepare(vma)))
  2373. goto oom;
  2374. page = alloc_zeroed_user_highpage_movable(vma, address);
  2375. if (!page)
  2376. goto oom;
  2377. __SetPageUptodate(page);
  2378. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2379. goto oom_free_page;
  2380. entry = mk_pte(page, vma->vm_page_prot);
  2381. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2382. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2383. if (!pte_none(*page_table))
  2384. goto release;
  2385. inc_mm_counter(mm, anon_rss);
  2386. page_add_new_anon_rmap(page, vma, address);
  2387. set_pte_at(mm, address, page_table, entry);
  2388. /* No need to invalidate - it was non-present before */
  2389. update_mmu_cache(vma, address, entry);
  2390. unlock:
  2391. pte_unmap_unlock(page_table, ptl);
  2392. return 0;
  2393. release:
  2394. mem_cgroup_uncharge_page(page);
  2395. page_cache_release(page);
  2396. goto unlock;
  2397. oom_free_page:
  2398. page_cache_release(page);
  2399. oom:
  2400. return VM_FAULT_OOM;
  2401. }
  2402. /*
  2403. * __do_fault() tries to create a new page mapping. It aggressively
  2404. * tries to share with existing pages, but makes a separate copy if
  2405. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2406. * the next page fault.
  2407. *
  2408. * As this is called only for pages that do not currently exist, we
  2409. * do not need to flush old virtual caches or the TLB.
  2410. *
  2411. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2412. * but allow concurrent faults), and pte neither mapped nor locked.
  2413. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2414. */
  2415. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2416. unsigned long address, pmd_t *pmd,
  2417. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2418. {
  2419. pte_t *page_table;
  2420. spinlock_t *ptl;
  2421. struct page *page;
  2422. pte_t entry;
  2423. int anon = 0;
  2424. int charged = 0;
  2425. struct page *dirty_page = NULL;
  2426. struct vm_fault vmf;
  2427. int ret;
  2428. int page_mkwrite = 0;
  2429. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2430. vmf.pgoff = pgoff;
  2431. vmf.flags = flags;
  2432. vmf.page = NULL;
  2433. ret = vma->vm_ops->fault(vma, &vmf);
  2434. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
  2435. return ret;
  2436. /*
  2437. * For consistency in subsequent calls, make the faulted page always
  2438. * locked.
  2439. */
  2440. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2441. lock_page(vmf.page);
  2442. else
  2443. VM_BUG_ON(!PageLocked(vmf.page));
  2444. /*
  2445. * Should we do an early C-O-W break?
  2446. */
  2447. page = vmf.page;
  2448. if (flags & FAULT_FLAG_WRITE) {
  2449. if (!(vma->vm_flags & VM_SHARED)) {
  2450. anon = 1;
  2451. if (unlikely(anon_vma_prepare(vma))) {
  2452. ret = VM_FAULT_OOM;
  2453. goto out;
  2454. }
  2455. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2456. vma, address);
  2457. if (!page) {
  2458. ret = VM_FAULT_OOM;
  2459. goto out;
  2460. }
  2461. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2462. ret = VM_FAULT_OOM;
  2463. page_cache_release(page);
  2464. goto out;
  2465. }
  2466. charged = 1;
  2467. /*
  2468. * Don't let another task, with possibly unlocked vma,
  2469. * keep the mlocked page.
  2470. */
  2471. if (vma->vm_flags & VM_LOCKED)
  2472. clear_page_mlock(vmf.page);
  2473. copy_user_highpage(page, vmf.page, address, vma);
  2474. __SetPageUptodate(page);
  2475. } else {
  2476. /*
  2477. * If the page will be shareable, see if the backing
  2478. * address space wants to know that the page is about
  2479. * to become writable
  2480. */
  2481. if (vma->vm_ops->page_mkwrite) {
  2482. int tmp;
  2483. unlock_page(page);
  2484. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2485. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2486. if (unlikely(tmp &
  2487. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2488. ret = tmp;
  2489. goto unwritable_page;
  2490. }
  2491. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2492. lock_page(page);
  2493. if (!page->mapping) {
  2494. ret = 0; /* retry the fault */
  2495. unlock_page(page);
  2496. goto unwritable_page;
  2497. }
  2498. } else
  2499. VM_BUG_ON(!PageLocked(page));
  2500. page_mkwrite = 1;
  2501. }
  2502. }
  2503. }
  2504. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2505. /*
  2506. * This silly early PAGE_DIRTY setting removes a race
  2507. * due to the bad i386 page protection. But it's valid
  2508. * for other architectures too.
  2509. *
  2510. * Note that if write_access is true, we either now have
  2511. * an exclusive copy of the page, or this is a shared mapping,
  2512. * so we can make it writable and dirty to avoid having to
  2513. * handle that later.
  2514. */
  2515. /* Only go through if we didn't race with anybody else... */
  2516. if (likely(pte_same(*page_table, orig_pte))) {
  2517. flush_icache_page(vma, page);
  2518. entry = mk_pte(page, vma->vm_page_prot);
  2519. if (flags & FAULT_FLAG_WRITE)
  2520. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2521. if (anon) {
  2522. inc_mm_counter(mm, anon_rss);
  2523. page_add_new_anon_rmap(page, vma, address);
  2524. } else {
  2525. inc_mm_counter(mm, file_rss);
  2526. page_add_file_rmap(page);
  2527. if (flags & FAULT_FLAG_WRITE) {
  2528. dirty_page = page;
  2529. get_page(dirty_page);
  2530. }
  2531. }
  2532. set_pte_at(mm, address, page_table, entry);
  2533. /* no need to invalidate: a not-present page won't be cached */
  2534. update_mmu_cache(vma, address, entry);
  2535. } else {
  2536. if (charged)
  2537. mem_cgroup_uncharge_page(page);
  2538. if (anon)
  2539. page_cache_release(page);
  2540. else
  2541. anon = 1; /* no anon but release faulted_page */
  2542. }
  2543. pte_unmap_unlock(page_table, ptl);
  2544. out:
  2545. if (dirty_page) {
  2546. struct address_space *mapping = page->mapping;
  2547. if (set_page_dirty(dirty_page))
  2548. page_mkwrite = 1;
  2549. unlock_page(dirty_page);
  2550. put_page(dirty_page);
  2551. if (page_mkwrite && mapping) {
  2552. /*
  2553. * Some device drivers do not set page.mapping but still
  2554. * dirty their pages
  2555. */
  2556. balance_dirty_pages_ratelimited(mapping);
  2557. }
  2558. /* file_update_time outside page_lock */
  2559. if (vma->vm_file)
  2560. file_update_time(vma->vm_file);
  2561. } else {
  2562. unlock_page(vmf.page);
  2563. if (anon)
  2564. page_cache_release(vmf.page);
  2565. }
  2566. return ret;
  2567. unwritable_page:
  2568. page_cache_release(page);
  2569. return ret;
  2570. }
  2571. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2572. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2573. int write_access, pte_t orig_pte)
  2574. {
  2575. pgoff_t pgoff = (((address & PAGE_MASK)
  2576. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2577. unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
  2578. pte_unmap(page_table);
  2579. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2580. }
  2581. /*
  2582. * Fault of a previously existing named mapping. Repopulate the pte
  2583. * from the encoded file_pte if possible. This enables swappable
  2584. * nonlinear vmas.
  2585. *
  2586. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2587. * but allow concurrent faults), and pte mapped but not yet locked.
  2588. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2589. */
  2590. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2591. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2592. int write_access, pte_t orig_pte)
  2593. {
  2594. unsigned int flags = FAULT_FLAG_NONLINEAR |
  2595. (write_access ? FAULT_FLAG_WRITE : 0);
  2596. pgoff_t pgoff;
  2597. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2598. return 0;
  2599. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2600. /*
  2601. * Page table corrupted: show pte and kill process.
  2602. */
  2603. print_bad_pte(vma, address, orig_pte, NULL);
  2604. return VM_FAULT_OOM;
  2605. }
  2606. pgoff = pte_to_pgoff(orig_pte);
  2607. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2608. }
  2609. /*
  2610. * These routines also need to handle stuff like marking pages dirty
  2611. * and/or accessed for architectures that don't do it in hardware (most
  2612. * RISC architectures). The early dirtying is also good on the i386.
  2613. *
  2614. * There is also a hook called "update_mmu_cache()" that architectures
  2615. * with external mmu caches can use to update those (ie the Sparc or
  2616. * PowerPC hashed page tables that act as extended TLBs).
  2617. *
  2618. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2619. * but allow concurrent faults), and pte mapped but not yet locked.
  2620. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2621. */
  2622. static inline int handle_pte_fault(struct mm_struct *mm,
  2623. struct vm_area_struct *vma, unsigned long address,
  2624. pte_t *pte, pmd_t *pmd, int write_access)
  2625. {
  2626. pte_t entry;
  2627. spinlock_t *ptl;
  2628. entry = *pte;
  2629. if (!pte_present(entry)) {
  2630. if (pte_none(entry)) {
  2631. if (vma->vm_ops) {
  2632. if (likely(vma->vm_ops->fault))
  2633. return do_linear_fault(mm, vma, address,
  2634. pte, pmd, write_access, entry);
  2635. }
  2636. return do_anonymous_page(mm, vma, address,
  2637. pte, pmd, write_access);
  2638. }
  2639. if (pte_file(entry))
  2640. return do_nonlinear_fault(mm, vma, address,
  2641. pte, pmd, write_access, entry);
  2642. return do_swap_page(mm, vma, address,
  2643. pte, pmd, write_access, entry);
  2644. }
  2645. ptl = pte_lockptr(mm, pmd);
  2646. spin_lock(ptl);
  2647. if (unlikely(!pte_same(*pte, entry)))
  2648. goto unlock;
  2649. if (write_access) {
  2650. if (!pte_write(entry))
  2651. return do_wp_page(mm, vma, address,
  2652. pte, pmd, ptl, entry);
  2653. entry = pte_mkdirty(entry);
  2654. }
  2655. entry = pte_mkyoung(entry);
  2656. if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
  2657. update_mmu_cache(vma, address, entry);
  2658. } else {
  2659. /*
  2660. * This is needed only for protection faults but the arch code
  2661. * is not yet telling us if this is a protection fault or not.
  2662. * This still avoids useless tlb flushes for .text page faults
  2663. * with threads.
  2664. */
  2665. if (write_access)
  2666. flush_tlb_page(vma, address);
  2667. }
  2668. unlock:
  2669. pte_unmap_unlock(pte, ptl);
  2670. return 0;
  2671. }
  2672. /*
  2673. * By the time we get here, we already hold the mm semaphore
  2674. */
  2675. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2676. unsigned long address, int write_access)
  2677. {
  2678. pgd_t *pgd;
  2679. pud_t *pud;
  2680. pmd_t *pmd;
  2681. pte_t *pte;
  2682. __set_current_state(TASK_RUNNING);
  2683. count_vm_event(PGFAULT);
  2684. if (unlikely(is_vm_hugetlb_page(vma)))
  2685. return hugetlb_fault(mm, vma, address, write_access);
  2686. pgd = pgd_offset(mm, address);
  2687. pud = pud_alloc(mm, pgd, address);
  2688. if (!pud)
  2689. return VM_FAULT_OOM;
  2690. pmd = pmd_alloc(mm, pud, address);
  2691. if (!pmd)
  2692. return VM_FAULT_OOM;
  2693. pte = pte_alloc_map(mm, pmd, address);
  2694. if (!pte)
  2695. return VM_FAULT_OOM;
  2696. return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
  2697. }
  2698. #ifndef __PAGETABLE_PUD_FOLDED
  2699. /*
  2700. * Allocate page upper directory.
  2701. * We've already handled the fast-path in-line.
  2702. */
  2703. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  2704. {
  2705. pud_t *new = pud_alloc_one(mm, address);
  2706. if (!new)
  2707. return -ENOMEM;
  2708. smp_wmb(); /* See comment in __pte_alloc */
  2709. spin_lock(&mm->page_table_lock);
  2710. if (pgd_present(*pgd)) /* Another has populated it */
  2711. pud_free(mm, new);
  2712. else
  2713. pgd_populate(mm, pgd, new);
  2714. spin_unlock(&mm->page_table_lock);
  2715. return 0;
  2716. }
  2717. #endif /* __PAGETABLE_PUD_FOLDED */
  2718. #ifndef __PAGETABLE_PMD_FOLDED
  2719. /*
  2720. * Allocate page middle directory.
  2721. * We've already handled the fast-path in-line.
  2722. */
  2723. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  2724. {
  2725. pmd_t *new = pmd_alloc_one(mm, address);
  2726. if (!new)
  2727. return -ENOMEM;
  2728. smp_wmb(); /* See comment in __pte_alloc */
  2729. spin_lock(&mm->page_table_lock);
  2730. #ifndef __ARCH_HAS_4LEVEL_HACK
  2731. if (pud_present(*pud)) /* Another has populated it */
  2732. pmd_free(mm, new);
  2733. else
  2734. pud_populate(mm, pud, new);
  2735. #else
  2736. if (pgd_present(*pud)) /* Another has populated it */
  2737. pmd_free(mm, new);
  2738. else
  2739. pgd_populate(mm, pud, new);
  2740. #endif /* __ARCH_HAS_4LEVEL_HACK */
  2741. spin_unlock(&mm->page_table_lock);
  2742. return 0;
  2743. }
  2744. #endif /* __PAGETABLE_PMD_FOLDED */
  2745. int make_pages_present(unsigned long addr, unsigned long end)
  2746. {
  2747. int ret, len, write;
  2748. struct vm_area_struct * vma;
  2749. vma = find_vma(current->mm, addr);
  2750. if (!vma)
  2751. return -ENOMEM;
  2752. write = (vma->vm_flags & VM_WRITE) != 0;
  2753. BUG_ON(addr >= end);
  2754. BUG_ON(end > vma->vm_end);
  2755. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  2756. ret = get_user_pages(current, current->mm, addr,
  2757. len, write, 0, NULL, NULL);
  2758. if (ret < 0)
  2759. return ret;
  2760. return ret == len ? 0 : -EFAULT;
  2761. }
  2762. #if !defined(__HAVE_ARCH_GATE_AREA)
  2763. #if defined(AT_SYSINFO_EHDR)
  2764. static struct vm_area_struct gate_vma;
  2765. static int __init gate_vma_init(void)
  2766. {
  2767. gate_vma.vm_mm = NULL;
  2768. gate_vma.vm_start = FIXADDR_USER_START;
  2769. gate_vma.vm_end = FIXADDR_USER_END;
  2770. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  2771. gate_vma.vm_page_prot = __P101;
  2772. /*
  2773. * Make sure the vDSO gets into every core dump.
  2774. * Dumping its contents makes post-mortem fully interpretable later
  2775. * without matching up the same kernel and hardware config to see
  2776. * what PC values meant.
  2777. */
  2778. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  2779. return 0;
  2780. }
  2781. __initcall(gate_vma_init);
  2782. #endif
  2783. struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
  2784. {
  2785. #ifdef AT_SYSINFO_EHDR
  2786. return &gate_vma;
  2787. #else
  2788. return NULL;
  2789. #endif
  2790. }
  2791. int in_gate_area_no_task(unsigned long addr)
  2792. {
  2793. #ifdef AT_SYSINFO_EHDR
  2794. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  2795. return 1;
  2796. #endif
  2797. return 0;
  2798. }
  2799. #endif /* __HAVE_ARCH_GATE_AREA */
  2800. static int follow_pte(struct mm_struct *mm, unsigned long address,
  2801. pte_t **ptepp, spinlock_t **ptlp)
  2802. {
  2803. pgd_t *pgd;
  2804. pud_t *pud;
  2805. pmd_t *pmd;
  2806. pte_t *ptep;
  2807. pgd = pgd_offset(mm, address);
  2808. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  2809. goto out;
  2810. pud = pud_offset(pgd, address);
  2811. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  2812. goto out;
  2813. pmd = pmd_offset(pud, address);
  2814. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  2815. goto out;
  2816. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  2817. if (pmd_huge(*pmd))
  2818. goto out;
  2819. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  2820. if (!ptep)
  2821. goto out;
  2822. if (!pte_present(*ptep))
  2823. goto unlock;
  2824. *ptepp = ptep;
  2825. return 0;
  2826. unlock:
  2827. pte_unmap_unlock(ptep, *ptlp);
  2828. out:
  2829. return -EINVAL;
  2830. }
  2831. /**
  2832. * follow_pfn - look up PFN at a user virtual address
  2833. * @vma: memory mapping
  2834. * @address: user virtual address
  2835. * @pfn: location to store found PFN
  2836. *
  2837. * Only IO mappings and raw PFN mappings are allowed.
  2838. *
  2839. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  2840. */
  2841. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  2842. unsigned long *pfn)
  2843. {
  2844. int ret = -EINVAL;
  2845. spinlock_t *ptl;
  2846. pte_t *ptep;
  2847. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2848. return ret;
  2849. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  2850. if (ret)
  2851. return ret;
  2852. *pfn = pte_pfn(*ptep);
  2853. pte_unmap_unlock(ptep, ptl);
  2854. return 0;
  2855. }
  2856. EXPORT_SYMBOL(follow_pfn);
  2857. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2858. int follow_phys(struct vm_area_struct *vma,
  2859. unsigned long address, unsigned int flags,
  2860. unsigned long *prot, resource_size_t *phys)
  2861. {
  2862. int ret = -EINVAL;
  2863. pte_t *ptep, pte;
  2864. spinlock_t *ptl;
  2865. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  2866. goto out;
  2867. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  2868. goto out;
  2869. pte = *ptep;
  2870. if ((flags & FOLL_WRITE) && !pte_write(pte))
  2871. goto unlock;
  2872. *prot = pgprot_val(pte_pgprot(pte));
  2873. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  2874. ret = 0;
  2875. unlock:
  2876. pte_unmap_unlock(ptep, ptl);
  2877. out:
  2878. return ret;
  2879. }
  2880. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  2881. void *buf, int len, int write)
  2882. {
  2883. resource_size_t phys_addr;
  2884. unsigned long prot = 0;
  2885. void __iomem *maddr;
  2886. int offset = addr & (PAGE_SIZE-1);
  2887. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  2888. return -EINVAL;
  2889. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  2890. if (write)
  2891. memcpy_toio(maddr + offset, buf, len);
  2892. else
  2893. memcpy_fromio(buf, maddr + offset, len);
  2894. iounmap(maddr);
  2895. return len;
  2896. }
  2897. #endif
  2898. /*
  2899. * Access another process' address space.
  2900. * Source/target buffer must be kernel space,
  2901. * Do not walk the page table directly, use get_user_pages
  2902. */
  2903. int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
  2904. {
  2905. struct mm_struct *mm;
  2906. struct vm_area_struct *vma;
  2907. void *old_buf = buf;
  2908. mm = get_task_mm(tsk);
  2909. if (!mm)
  2910. return 0;
  2911. down_read(&mm->mmap_sem);
  2912. /* ignore errors, just check how much was successfully transferred */
  2913. while (len) {
  2914. int bytes, ret, offset;
  2915. void *maddr;
  2916. struct page *page = NULL;
  2917. ret = get_user_pages(tsk, mm, addr, 1,
  2918. write, 1, &page, &vma);
  2919. if (ret <= 0) {
  2920. /*
  2921. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  2922. * we can access using slightly different code.
  2923. */
  2924. #ifdef CONFIG_HAVE_IOREMAP_PROT
  2925. vma = find_vma(mm, addr);
  2926. if (!vma)
  2927. break;
  2928. if (vma->vm_ops && vma->vm_ops->access)
  2929. ret = vma->vm_ops->access(vma, addr, buf,
  2930. len, write);
  2931. if (ret <= 0)
  2932. #endif
  2933. break;
  2934. bytes = ret;
  2935. } else {
  2936. bytes = len;
  2937. offset = addr & (PAGE_SIZE-1);
  2938. if (bytes > PAGE_SIZE-offset)
  2939. bytes = PAGE_SIZE-offset;
  2940. maddr = kmap(page);
  2941. if (write) {
  2942. copy_to_user_page(vma, page, addr,
  2943. maddr + offset, buf, bytes);
  2944. set_page_dirty_lock(page);
  2945. } else {
  2946. copy_from_user_page(vma, page, addr,
  2947. buf, maddr + offset, bytes);
  2948. }
  2949. kunmap(page);
  2950. page_cache_release(page);
  2951. }
  2952. len -= bytes;
  2953. buf += bytes;
  2954. addr += bytes;
  2955. }
  2956. up_read(&mm->mmap_sem);
  2957. mmput(mm);
  2958. return buf - old_buf;
  2959. }
  2960. /*
  2961. * Print the name of a VMA.
  2962. */
  2963. void print_vma_addr(char *prefix, unsigned long ip)
  2964. {
  2965. struct mm_struct *mm = current->mm;
  2966. struct vm_area_struct *vma;
  2967. /*
  2968. * Do not print if we are in atomic
  2969. * contexts (in exception stacks, etc.):
  2970. */
  2971. if (preempt_count())
  2972. return;
  2973. down_read(&mm->mmap_sem);
  2974. vma = find_vma(mm, ip);
  2975. if (vma && vma->vm_file) {
  2976. struct file *f = vma->vm_file;
  2977. char *buf = (char *)__get_free_page(GFP_KERNEL);
  2978. if (buf) {
  2979. char *p, *s;
  2980. p = d_path(&f->f_path, buf, PAGE_SIZE);
  2981. if (IS_ERR(p))
  2982. p = "?";
  2983. s = strrchr(p, '/');
  2984. if (s)
  2985. p = s+1;
  2986. printk("%s%s[%lx+%lx]", prefix, p,
  2987. vma->vm_start,
  2988. vma->vm_end - vma->vm_start);
  2989. free_page((unsigned long)buf);
  2990. }
  2991. }
  2992. up_read(&current->mm->mmap_sem);
  2993. }
  2994. #ifdef CONFIG_PROVE_LOCKING
  2995. void might_fault(void)
  2996. {
  2997. /*
  2998. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  2999. * holding the mmap_sem, this is safe because kernel memory doesn't
  3000. * get paged out, therefore we'll never actually fault, and the
  3001. * below annotations will generate false positives.
  3002. */
  3003. if (segment_eq(get_fs(), KERNEL_DS))
  3004. return;
  3005. might_sleep();
  3006. /*
  3007. * it would be nicer only to annotate paths which are not under
  3008. * pagefault_disable, however that requires a larger audit and
  3009. * providing helpers like get_user_atomic.
  3010. */
  3011. if (!in_atomic() && current->mm)
  3012. might_lock_read(&current->mm->mmap_sem);
  3013. }
  3014. EXPORT_SYMBOL(might_fault);
  3015. #endif