inode.c 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*
  2. * linux/fs/sysv/inode.c
  3. *
  4. * minix/inode.c
  5. * Copyright (C) 1991, 1992 Linus Torvalds
  6. *
  7. * xenix/inode.c
  8. * Copyright (C) 1992 Doug Evans
  9. *
  10. * coh/inode.c
  11. * Copyright (C) 1993 Pascal Haible, Bruno Haible
  12. *
  13. * sysv/inode.c
  14. * Copyright (C) 1993 Paul B. Monday
  15. *
  16. * sysv/inode.c
  17. * Copyright (C) 1993 Bruno Haible
  18. * Copyright (C) 1997, 1998 Krzysztof G. Baranowski
  19. *
  20. * This file contains code for allocating/freeing inodes and for read/writing
  21. * the superblock.
  22. */
  23. #include <linux/smp_lock.h>
  24. #include <linux/highuid.h>
  25. #include <linux/slab.h>
  26. #include <linux/init.h>
  27. #include <linux/buffer_head.h>
  28. #include <linux/vfs.h>
  29. #include <linux/namei.h>
  30. #include <asm/byteorder.h>
  31. #include "sysv.h"
  32. static int sysv_sync_fs(struct super_block *sb, int wait)
  33. {
  34. struct sysv_sb_info *sbi = SYSV_SB(sb);
  35. unsigned long time = get_seconds(), old_time;
  36. lock_super(sb);
  37. lock_kernel();
  38. /*
  39. * If we are going to write out the super block,
  40. * then attach current time stamp.
  41. * But if the filesystem was marked clean, keep it clean.
  42. */
  43. old_time = fs32_to_cpu(sbi, *sbi->s_sb_time);
  44. if (sbi->s_type == FSTYPE_SYSV4) {
  45. if (*sbi->s_sb_state == cpu_to_fs32(sbi, 0x7c269d38 - old_time))
  46. *sbi->s_sb_state = cpu_to_fs32(sbi, 0x7c269d38 - time);
  47. *sbi->s_sb_time = cpu_to_fs32(sbi, time);
  48. mark_buffer_dirty(sbi->s_bh2);
  49. }
  50. unlock_kernel();
  51. unlock_super(sb);
  52. return 0;
  53. }
  54. static void sysv_write_super(struct super_block *sb)
  55. {
  56. if (!(sb->s_flags & MS_RDONLY))
  57. sysv_sync_fs(sb, 1);
  58. else
  59. sb->s_dirt = 0;
  60. }
  61. static int sysv_remount(struct super_block *sb, int *flags, char *data)
  62. {
  63. struct sysv_sb_info *sbi = SYSV_SB(sb);
  64. lock_super(sb);
  65. if (sbi->s_forced_ro)
  66. *flags |= MS_RDONLY;
  67. if (!(*flags & MS_RDONLY))
  68. sb->s_dirt = 1;
  69. unlock_super(sb);
  70. return 0;
  71. }
  72. static void sysv_put_super(struct super_block *sb)
  73. {
  74. struct sysv_sb_info *sbi = SYSV_SB(sb);
  75. lock_kernel();
  76. if (sb->s_dirt)
  77. sysv_write_super(sb);
  78. if (!(sb->s_flags & MS_RDONLY)) {
  79. /* XXX ext2 also updates the state here */
  80. mark_buffer_dirty(sbi->s_bh1);
  81. if (sbi->s_bh1 != sbi->s_bh2)
  82. mark_buffer_dirty(sbi->s_bh2);
  83. }
  84. brelse(sbi->s_bh1);
  85. if (sbi->s_bh1 != sbi->s_bh2)
  86. brelse(sbi->s_bh2);
  87. kfree(sbi);
  88. unlock_kernel();
  89. }
  90. static int sysv_statfs(struct dentry *dentry, struct kstatfs *buf)
  91. {
  92. struct super_block *sb = dentry->d_sb;
  93. struct sysv_sb_info *sbi = SYSV_SB(sb);
  94. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  95. buf->f_type = sb->s_magic;
  96. buf->f_bsize = sb->s_blocksize;
  97. buf->f_blocks = sbi->s_ndatazones;
  98. buf->f_bavail = buf->f_bfree = sysv_count_free_blocks(sb);
  99. buf->f_files = sbi->s_ninodes;
  100. buf->f_ffree = sysv_count_free_inodes(sb);
  101. buf->f_namelen = SYSV_NAMELEN;
  102. buf->f_fsid.val[0] = (u32)id;
  103. buf->f_fsid.val[1] = (u32)(id >> 32);
  104. return 0;
  105. }
  106. /*
  107. * NXI <-> N0XI for PDP, XIN <-> XIN0 for le32, NIX <-> 0NIX for be32
  108. */
  109. static inline void read3byte(struct sysv_sb_info *sbi,
  110. unsigned char * from, unsigned char * to)
  111. {
  112. if (sbi->s_bytesex == BYTESEX_PDP) {
  113. to[0] = from[0];
  114. to[1] = 0;
  115. to[2] = from[1];
  116. to[3] = from[2];
  117. } else if (sbi->s_bytesex == BYTESEX_LE) {
  118. to[0] = from[0];
  119. to[1] = from[1];
  120. to[2] = from[2];
  121. to[3] = 0;
  122. } else {
  123. to[0] = 0;
  124. to[1] = from[0];
  125. to[2] = from[1];
  126. to[3] = from[2];
  127. }
  128. }
  129. static inline void write3byte(struct sysv_sb_info *sbi,
  130. unsigned char * from, unsigned char * to)
  131. {
  132. if (sbi->s_bytesex == BYTESEX_PDP) {
  133. to[0] = from[0];
  134. to[1] = from[2];
  135. to[2] = from[3];
  136. } else if (sbi->s_bytesex == BYTESEX_LE) {
  137. to[0] = from[0];
  138. to[1] = from[1];
  139. to[2] = from[2];
  140. } else {
  141. to[0] = from[1];
  142. to[1] = from[2];
  143. to[2] = from[3];
  144. }
  145. }
  146. static const struct inode_operations sysv_symlink_inode_operations = {
  147. .readlink = generic_readlink,
  148. .follow_link = page_follow_link_light,
  149. .put_link = page_put_link,
  150. .getattr = sysv_getattr,
  151. };
  152. void sysv_set_inode(struct inode *inode, dev_t rdev)
  153. {
  154. if (S_ISREG(inode->i_mode)) {
  155. inode->i_op = &sysv_file_inode_operations;
  156. inode->i_fop = &sysv_file_operations;
  157. inode->i_mapping->a_ops = &sysv_aops;
  158. } else if (S_ISDIR(inode->i_mode)) {
  159. inode->i_op = &sysv_dir_inode_operations;
  160. inode->i_fop = &sysv_dir_operations;
  161. inode->i_mapping->a_ops = &sysv_aops;
  162. } else if (S_ISLNK(inode->i_mode)) {
  163. if (inode->i_blocks) {
  164. inode->i_op = &sysv_symlink_inode_operations;
  165. inode->i_mapping->a_ops = &sysv_aops;
  166. } else {
  167. inode->i_op = &sysv_fast_symlink_inode_operations;
  168. nd_terminate_link(SYSV_I(inode)->i_data, inode->i_size,
  169. sizeof(SYSV_I(inode)->i_data) - 1);
  170. }
  171. } else
  172. init_special_inode(inode, inode->i_mode, rdev);
  173. }
  174. struct inode *sysv_iget(struct super_block *sb, unsigned int ino)
  175. {
  176. struct sysv_sb_info * sbi = SYSV_SB(sb);
  177. struct buffer_head * bh;
  178. struct sysv_inode * raw_inode;
  179. struct sysv_inode_info * si;
  180. struct inode *inode;
  181. unsigned int block;
  182. if (!ino || ino > sbi->s_ninodes) {
  183. printk("Bad inode number on dev %s: %d is out of range\n",
  184. sb->s_id, ino);
  185. return ERR_PTR(-EIO);
  186. }
  187. inode = iget_locked(sb, ino);
  188. if (!inode)
  189. return ERR_PTR(-ENOMEM);
  190. if (!(inode->i_state & I_NEW))
  191. return inode;
  192. raw_inode = sysv_raw_inode(sb, ino, &bh);
  193. if (!raw_inode) {
  194. printk("Major problem: unable to read inode from dev %s\n",
  195. inode->i_sb->s_id);
  196. goto bad_inode;
  197. }
  198. /* SystemV FS: kludge permissions if ino==SYSV_ROOT_INO ?? */
  199. inode->i_mode = fs16_to_cpu(sbi, raw_inode->i_mode);
  200. inode->i_uid = (uid_t)fs16_to_cpu(sbi, raw_inode->i_uid);
  201. inode->i_gid = (gid_t)fs16_to_cpu(sbi, raw_inode->i_gid);
  202. inode->i_nlink = fs16_to_cpu(sbi, raw_inode->i_nlink);
  203. inode->i_size = fs32_to_cpu(sbi, raw_inode->i_size);
  204. inode->i_atime.tv_sec = fs32_to_cpu(sbi, raw_inode->i_atime);
  205. inode->i_mtime.tv_sec = fs32_to_cpu(sbi, raw_inode->i_mtime);
  206. inode->i_ctime.tv_sec = fs32_to_cpu(sbi, raw_inode->i_ctime);
  207. inode->i_ctime.tv_nsec = 0;
  208. inode->i_atime.tv_nsec = 0;
  209. inode->i_mtime.tv_nsec = 0;
  210. inode->i_blocks = 0;
  211. si = SYSV_I(inode);
  212. for (block = 0; block < 10+1+1+1; block++)
  213. read3byte(sbi, &raw_inode->i_data[3*block],
  214. (u8 *)&si->i_data[block]);
  215. brelse(bh);
  216. si->i_dir_start_lookup = 0;
  217. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
  218. sysv_set_inode(inode,
  219. old_decode_dev(fs32_to_cpu(sbi, si->i_data[0])));
  220. else
  221. sysv_set_inode(inode, 0);
  222. unlock_new_inode(inode);
  223. return inode;
  224. bad_inode:
  225. iget_failed(inode);
  226. return ERR_PTR(-EIO);
  227. }
  228. int sysv_write_inode(struct inode *inode, int wait)
  229. {
  230. struct super_block * sb = inode->i_sb;
  231. struct sysv_sb_info * sbi = SYSV_SB(sb);
  232. struct buffer_head * bh;
  233. struct sysv_inode * raw_inode;
  234. struct sysv_inode_info * si;
  235. unsigned int ino, block;
  236. int err = 0;
  237. ino = inode->i_ino;
  238. if (!ino || ino > sbi->s_ninodes) {
  239. printk("Bad inode number on dev %s: %d is out of range\n",
  240. inode->i_sb->s_id, ino);
  241. return -EIO;
  242. }
  243. raw_inode = sysv_raw_inode(sb, ino, &bh);
  244. if (!raw_inode) {
  245. printk("unable to read i-node block\n");
  246. return -EIO;
  247. }
  248. lock_kernel();
  249. raw_inode->i_mode = cpu_to_fs16(sbi, inode->i_mode);
  250. raw_inode->i_uid = cpu_to_fs16(sbi, fs_high2lowuid(inode->i_uid));
  251. raw_inode->i_gid = cpu_to_fs16(sbi, fs_high2lowgid(inode->i_gid));
  252. raw_inode->i_nlink = cpu_to_fs16(sbi, inode->i_nlink);
  253. raw_inode->i_size = cpu_to_fs32(sbi, inode->i_size);
  254. raw_inode->i_atime = cpu_to_fs32(sbi, inode->i_atime.tv_sec);
  255. raw_inode->i_mtime = cpu_to_fs32(sbi, inode->i_mtime.tv_sec);
  256. raw_inode->i_ctime = cpu_to_fs32(sbi, inode->i_ctime.tv_sec);
  257. si = SYSV_I(inode);
  258. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode))
  259. si->i_data[0] = cpu_to_fs32(sbi, old_encode_dev(inode->i_rdev));
  260. for (block = 0; block < 10+1+1+1; block++)
  261. write3byte(sbi, (u8 *)&si->i_data[block],
  262. &raw_inode->i_data[3*block]);
  263. unlock_kernel();
  264. mark_buffer_dirty(bh);
  265. if (wait) {
  266. sync_dirty_buffer(bh);
  267. if (buffer_req(bh) && !buffer_uptodate(bh)) {
  268. printk ("IO error syncing sysv inode [%s:%08x]\n",
  269. sb->s_id, ino);
  270. err = -EIO;
  271. }
  272. }
  273. brelse(bh);
  274. return 0;
  275. }
  276. int sysv_sync_inode(struct inode *inode)
  277. {
  278. return sysv_write_inode(inode, 1);
  279. }
  280. static void sysv_delete_inode(struct inode *inode)
  281. {
  282. truncate_inode_pages(&inode->i_data, 0);
  283. inode->i_size = 0;
  284. sysv_truncate(inode);
  285. lock_kernel();
  286. sysv_free_inode(inode);
  287. unlock_kernel();
  288. }
  289. static struct kmem_cache *sysv_inode_cachep;
  290. static struct inode *sysv_alloc_inode(struct super_block *sb)
  291. {
  292. struct sysv_inode_info *si;
  293. si = kmem_cache_alloc(sysv_inode_cachep, GFP_KERNEL);
  294. if (!si)
  295. return NULL;
  296. return &si->vfs_inode;
  297. }
  298. static void sysv_destroy_inode(struct inode *inode)
  299. {
  300. kmem_cache_free(sysv_inode_cachep, SYSV_I(inode));
  301. }
  302. static void init_once(void *p)
  303. {
  304. struct sysv_inode_info *si = (struct sysv_inode_info *)p;
  305. inode_init_once(&si->vfs_inode);
  306. }
  307. const struct super_operations sysv_sops = {
  308. .alloc_inode = sysv_alloc_inode,
  309. .destroy_inode = sysv_destroy_inode,
  310. .write_inode = sysv_write_inode,
  311. .delete_inode = sysv_delete_inode,
  312. .put_super = sysv_put_super,
  313. .write_super = sysv_write_super,
  314. .sync_fs = sysv_sync_fs,
  315. .remount_fs = sysv_remount,
  316. .statfs = sysv_statfs,
  317. };
  318. int __init sysv_init_icache(void)
  319. {
  320. sysv_inode_cachep = kmem_cache_create("sysv_inode_cache",
  321. sizeof(struct sysv_inode_info), 0,
  322. SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD,
  323. init_once);
  324. if (!sysv_inode_cachep)
  325. return -ENOMEM;
  326. return 0;
  327. }
  328. void sysv_destroy_icache(void)
  329. {
  330. kmem_cache_destroy(sysv_inode_cachep);
  331. }