disk-io.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/freezer.h>
  28. #include <linux/crc32c.h>
  29. #include "compat.h"
  30. #include "ctree.h"
  31. #include "disk-io.h"
  32. #include "transaction.h"
  33. #include "btrfs_inode.h"
  34. #include "volumes.h"
  35. #include "print-tree.h"
  36. #include "async-thread.h"
  37. #include "locking.h"
  38. #include "tree-log.h"
  39. #include "free-space-cache.h"
  40. static struct extent_io_ops btree_extent_io_ops;
  41. static void end_workqueue_fn(struct btrfs_work *work);
  42. /*
  43. * end_io_wq structs are used to do processing in task context when an IO is
  44. * complete. This is used during reads to verify checksums, and it is used
  45. * by writes to insert metadata for new file extents after IO is complete.
  46. */
  47. struct end_io_wq {
  48. struct bio *bio;
  49. bio_end_io_t *end_io;
  50. void *private;
  51. struct btrfs_fs_info *info;
  52. int error;
  53. int metadata;
  54. struct list_head list;
  55. struct btrfs_work work;
  56. };
  57. /*
  58. * async submit bios are used to offload expensive checksumming
  59. * onto the worker threads. They checksum file and metadata bios
  60. * just before they are sent down the IO stack.
  61. */
  62. struct async_submit_bio {
  63. struct inode *inode;
  64. struct bio *bio;
  65. struct list_head list;
  66. extent_submit_bio_hook_t *submit_bio_start;
  67. extent_submit_bio_hook_t *submit_bio_done;
  68. int rw;
  69. int mirror_num;
  70. unsigned long bio_flags;
  71. struct btrfs_work work;
  72. };
  73. /* These are used to set the lockdep class on the extent buffer locks.
  74. * The class is set by the readpage_end_io_hook after the buffer has
  75. * passed csum validation but before the pages are unlocked.
  76. *
  77. * The lockdep class is also set by btrfs_init_new_buffer on freshly
  78. * allocated blocks.
  79. *
  80. * The class is based on the level in the tree block, which allows lockdep
  81. * to know that lower nodes nest inside the locks of higher nodes.
  82. *
  83. * We also add a check to make sure the highest level of the tree is
  84. * the same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this
  85. * code needs update as well.
  86. */
  87. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  88. # if BTRFS_MAX_LEVEL != 8
  89. # error
  90. # endif
  91. static struct lock_class_key btrfs_eb_class[BTRFS_MAX_LEVEL + 1];
  92. static const char *btrfs_eb_name[BTRFS_MAX_LEVEL + 1] = {
  93. /* leaf */
  94. "btrfs-extent-00",
  95. "btrfs-extent-01",
  96. "btrfs-extent-02",
  97. "btrfs-extent-03",
  98. "btrfs-extent-04",
  99. "btrfs-extent-05",
  100. "btrfs-extent-06",
  101. "btrfs-extent-07",
  102. /* highest possible level */
  103. "btrfs-extent-08",
  104. };
  105. #endif
  106. /*
  107. * extents on the btree inode are pretty simple, there's one extent
  108. * that covers the entire device
  109. */
  110. static struct extent_map *btree_get_extent(struct inode *inode,
  111. struct page *page, size_t page_offset, u64 start, u64 len,
  112. int create)
  113. {
  114. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  115. struct extent_map *em;
  116. int ret;
  117. spin_lock(&em_tree->lock);
  118. em = lookup_extent_mapping(em_tree, start, len);
  119. if (em) {
  120. em->bdev =
  121. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  122. spin_unlock(&em_tree->lock);
  123. goto out;
  124. }
  125. spin_unlock(&em_tree->lock);
  126. em = alloc_extent_map(GFP_NOFS);
  127. if (!em) {
  128. em = ERR_PTR(-ENOMEM);
  129. goto out;
  130. }
  131. em->start = 0;
  132. em->len = (u64)-1;
  133. em->block_len = (u64)-1;
  134. em->block_start = 0;
  135. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  136. spin_lock(&em_tree->lock);
  137. ret = add_extent_mapping(em_tree, em);
  138. if (ret == -EEXIST) {
  139. u64 failed_start = em->start;
  140. u64 failed_len = em->len;
  141. free_extent_map(em);
  142. em = lookup_extent_mapping(em_tree, start, len);
  143. if (em) {
  144. ret = 0;
  145. } else {
  146. em = lookup_extent_mapping(em_tree, failed_start,
  147. failed_len);
  148. ret = -EIO;
  149. }
  150. } else if (ret) {
  151. free_extent_map(em);
  152. em = NULL;
  153. }
  154. spin_unlock(&em_tree->lock);
  155. if (ret)
  156. em = ERR_PTR(ret);
  157. out:
  158. return em;
  159. }
  160. u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
  161. {
  162. return crc32c(seed, data, len);
  163. }
  164. void btrfs_csum_final(u32 crc, char *result)
  165. {
  166. *(__le32 *)result = ~cpu_to_le32(crc);
  167. }
  168. /*
  169. * compute the csum for a btree block, and either verify it or write it
  170. * into the csum field of the block.
  171. */
  172. static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
  173. int verify)
  174. {
  175. u16 csum_size =
  176. btrfs_super_csum_size(&root->fs_info->super_copy);
  177. char *result = NULL;
  178. unsigned long len;
  179. unsigned long cur_len;
  180. unsigned long offset = BTRFS_CSUM_SIZE;
  181. char *map_token = NULL;
  182. char *kaddr;
  183. unsigned long map_start;
  184. unsigned long map_len;
  185. int err;
  186. u32 crc = ~(u32)0;
  187. unsigned long inline_result;
  188. len = buf->len - offset;
  189. while (len > 0) {
  190. err = map_private_extent_buffer(buf, offset, 32,
  191. &map_token, &kaddr,
  192. &map_start, &map_len, KM_USER0);
  193. if (err)
  194. return 1;
  195. cur_len = min(len, map_len - (offset - map_start));
  196. crc = btrfs_csum_data(root, kaddr + offset - map_start,
  197. crc, cur_len);
  198. len -= cur_len;
  199. offset += cur_len;
  200. unmap_extent_buffer(buf, map_token, KM_USER0);
  201. }
  202. if (csum_size > sizeof(inline_result)) {
  203. result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
  204. if (!result)
  205. return 1;
  206. } else {
  207. result = (char *)&inline_result;
  208. }
  209. btrfs_csum_final(crc, result);
  210. if (verify) {
  211. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  212. u32 val;
  213. u32 found = 0;
  214. memcpy(&found, result, csum_size);
  215. read_extent_buffer(buf, &val, 0, csum_size);
  216. if (printk_ratelimit()) {
  217. printk(KERN_INFO "btrfs: %s checksum verify "
  218. "failed on %llu wanted %X found %X "
  219. "level %d\n",
  220. root->fs_info->sb->s_id,
  221. (unsigned long long)buf->start, val, found,
  222. btrfs_header_level(buf));
  223. }
  224. if (result != (char *)&inline_result)
  225. kfree(result);
  226. return 1;
  227. }
  228. } else {
  229. write_extent_buffer(buf, result, 0, csum_size);
  230. }
  231. if (result != (char *)&inline_result)
  232. kfree(result);
  233. return 0;
  234. }
  235. /*
  236. * we can't consider a given block up to date unless the transid of the
  237. * block matches the transid in the parent node's pointer. This is how we
  238. * detect blocks that either didn't get written at all or got written
  239. * in the wrong place.
  240. */
  241. static int verify_parent_transid(struct extent_io_tree *io_tree,
  242. struct extent_buffer *eb, u64 parent_transid)
  243. {
  244. int ret;
  245. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  246. return 0;
  247. lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
  248. if (extent_buffer_uptodate(io_tree, eb) &&
  249. btrfs_header_generation(eb) == parent_transid) {
  250. ret = 0;
  251. goto out;
  252. }
  253. if (printk_ratelimit()) {
  254. printk("parent transid verify failed on %llu wanted %llu "
  255. "found %llu\n",
  256. (unsigned long long)eb->start,
  257. (unsigned long long)parent_transid,
  258. (unsigned long long)btrfs_header_generation(eb));
  259. }
  260. ret = 1;
  261. clear_extent_buffer_uptodate(io_tree, eb);
  262. out:
  263. unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
  264. GFP_NOFS);
  265. return ret;
  266. }
  267. /*
  268. * helper to read a given tree block, doing retries as required when
  269. * the checksums don't match and we have alternate mirrors to try.
  270. */
  271. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  272. struct extent_buffer *eb,
  273. u64 start, u64 parent_transid)
  274. {
  275. struct extent_io_tree *io_tree;
  276. int ret;
  277. int num_copies = 0;
  278. int mirror_num = 0;
  279. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  280. while (1) {
  281. ret = read_extent_buffer_pages(io_tree, eb, start, 1,
  282. btree_get_extent, mirror_num);
  283. if (!ret &&
  284. !verify_parent_transid(io_tree, eb, parent_transid))
  285. return ret;
  286. num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
  287. eb->start, eb->len);
  288. if (num_copies == 1)
  289. return ret;
  290. mirror_num++;
  291. if (mirror_num > num_copies)
  292. return ret;
  293. }
  294. return -EIO;
  295. }
  296. /*
  297. * checksum a dirty tree block before IO. This has extra checks to make sure
  298. * we only fill in the checksum field in the first page of a multi-page block
  299. */
  300. static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
  301. {
  302. struct extent_io_tree *tree;
  303. u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
  304. u64 found_start;
  305. int found_level;
  306. unsigned long len;
  307. struct extent_buffer *eb;
  308. int ret;
  309. tree = &BTRFS_I(page->mapping->host)->io_tree;
  310. if (page->private == EXTENT_PAGE_PRIVATE)
  311. goto out;
  312. if (!page->private)
  313. goto out;
  314. len = page->private >> 2;
  315. WARN_ON(len == 0);
  316. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  317. ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
  318. btrfs_header_generation(eb));
  319. BUG_ON(ret);
  320. found_start = btrfs_header_bytenr(eb);
  321. if (found_start != start) {
  322. WARN_ON(1);
  323. goto err;
  324. }
  325. if (eb->first_page != page) {
  326. WARN_ON(1);
  327. goto err;
  328. }
  329. if (!PageUptodate(page)) {
  330. WARN_ON(1);
  331. goto err;
  332. }
  333. found_level = btrfs_header_level(eb);
  334. csum_tree_block(root, eb, 0);
  335. err:
  336. free_extent_buffer(eb);
  337. out:
  338. return 0;
  339. }
  340. static int check_tree_block_fsid(struct btrfs_root *root,
  341. struct extent_buffer *eb)
  342. {
  343. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  344. u8 fsid[BTRFS_UUID_SIZE];
  345. int ret = 1;
  346. read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
  347. BTRFS_FSID_SIZE);
  348. while (fs_devices) {
  349. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  350. ret = 0;
  351. break;
  352. }
  353. fs_devices = fs_devices->seed;
  354. }
  355. return ret;
  356. }
  357. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  358. void btrfs_set_buffer_lockdep_class(struct extent_buffer *eb, int level)
  359. {
  360. lockdep_set_class_and_name(&eb->lock,
  361. &btrfs_eb_class[level],
  362. btrfs_eb_name[level]);
  363. }
  364. #endif
  365. static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
  366. struct extent_state *state)
  367. {
  368. struct extent_io_tree *tree;
  369. u64 found_start;
  370. int found_level;
  371. unsigned long len;
  372. struct extent_buffer *eb;
  373. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  374. int ret = 0;
  375. tree = &BTRFS_I(page->mapping->host)->io_tree;
  376. if (page->private == EXTENT_PAGE_PRIVATE)
  377. goto out;
  378. if (!page->private)
  379. goto out;
  380. len = page->private >> 2;
  381. WARN_ON(len == 0);
  382. eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
  383. found_start = btrfs_header_bytenr(eb);
  384. if (found_start != start) {
  385. if (printk_ratelimit()) {
  386. printk(KERN_INFO "btrfs bad tree block start "
  387. "%llu %llu\n",
  388. (unsigned long long)found_start,
  389. (unsigned long long)eb->start);
  390. }
  391. ret = -EIO;
  392. goto err;
  393. }
  394. if (eb->first_page != page) {
  395. printk(KERN_INFO "btrfs bad first page %lu %lu\n",
  396. eb->first_page->index, page->index);
  397. WARN_ON(1);
  398. ret = -EIO;
  399. goto err;
  400. }
  401. if (check_tree_block_fsid(root, eb)) {
  402. if (printk_ratelimit()) {
  403. printk(KERN_INFO "btrfs bad fsid on block %llu\n",
  404. (unsigned long long)eb->start);
  405. }
  406. ret = -EIO;
  407. goto err;
  408. }
  409. found_level = btrfs_header_level(eb);
  410. btrfs_set_buffer_lockdep_class(eb, found_level);
  411. ret = csum_tree_block(root, eb, 1);
  412. if (ret)
  413. ret = -EIO;
  414. end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
  415. end = eb->start + end - 1;
  416. err:
  417. free_extent_buffer(eb);
  418. out:
  419. return ret;
  420. }
  421. static void end_workqueue_bio(struct bio *bio, int err)
  422. {
  423. struct end_io_wq *end_io_wq = bio->bi_private;
  424. struct btrfs_fs_info *fs_info;
  425. fs_info = end_io_wq->info;
  426. end_io_wq->error = err;
  427. end_io_wq->work.func = end_workqueue_fn;
  428. end_io_wq->work.flags = 0;
  429. if (bio->bi_rw & (1 << BIO_RW)) {
  430. if (end_io_wq->metadata)
  431. btrfs_queue_worker(&fs_info->endio_meta_write_workers,
  432. &end_io_wq->work);
  433. else
  434. btrfs_queue_worker(&fs_info->endio_write_workers,
  435. &end_io_wq->work);
  436. } else {
  437. if (end_io_wq->metadata)
  438. btrfs_queue_worker(&fs_info->endio_meta_workers,
  439. &end_io_wq->work);
  440. else
  441. btrfs_queue_worker(&fs_info->endio_workers,
  442. &end_io_wq->work);
  443. }
  444. }
  445. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  446. int metadata)
  447. {
  448. struct end_io_wq *end_io_wq;
  449. end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
  450. if (!end_io_wq)
  451. return -ENOMEM;
  452. end_io_wq->private = bio->bi_private;
  453. end_io_wq->end_io = bio->bi_end_io;
  454. end_io_wq->info = info;
  455. end_io_wq->error = 0;
  456. end_io_wq->bio = bio;
  457. end_io_wq->metadata = metadata;
  458. bio->bi_private = end_io_wq;
  459. bio->bi_end_io = end_workqueue_bio;
  460. return 0;
  461. }
  462. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  463. {
  464. unsigned long limit = min_t(unsigned long,
  465. info->workers.max_workers,
  466. info->fs_devices->open_devices);
  467. return 256 * limit;
  468. }
  469. int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
  470. {
  471. return atomic_read(&info->nr_async_bios) >
  472. btrfs_async_submit_limit(info);
  473. }
  474. static void run_one_async_start(struct btrfs_work *work)
  475. {
  476. struct btrfs_fs_info *fs_info;
  477. struct async_submit_bio *async;
  478. async = container_of(work, struct async_submit_bio, work);
  479. fs_info = BTRFS_I(async->inode)->root->fs_info;
  480. async->submit_bio_start(async->inode, async->rw, async->bio,
  481. async->mirror_num, async->bio_flags);
  482. }
  483. static void run_one_async_done(struct btrfs_work *work)
  484. {
  485. struct btrfs_fs_info *fs_info;
  486. struct async_submit_bio *async;
  487. int limit;
  488. async = container_of(work, struct async_submit_bio, work);
  489. fs_info = BTRFS_I(async->inode)->root->fs_info;
  490. limit = btrfs_async_submit_limit(fs_info);
  491. limit = limit * 2 / 3;
  492. atomic_dec(&fs_info->nr_async_submits);
  493. if (atomic_read(&fs_info->nr_async_submits) < limit &&
  494. waitqueue_active(&fs_info->async_submit_wait))
  495. wake_up(&fs_info->async_submit_wait);
  496. async->submit_bio_done(async->inode, async->rw, async->bio,
  497. async->mirror_num, async->bio_flags);
  498. }
  499. static void run_one_async_free(struct btrfs_work *work)
  500. {
  501. struct async_submit_bio *async;
  502. async = container_of(work, struct async_submit_bio, work);
  503. kfree(async);
  504. }
  505. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  506. int rw, struct bio *bio, int mirror_num,
  507. unsigned long bio_flags,
  508. extent_submit_bio_hook_t *submit_bio_start,
  509. extent_submit_bio_hook_t *submit_bio_done)
  510. {
  511. struct async_submit_bio *async;
  512. async = kmalloc(sizeof(*async), GFP_NOFS);
  513. if (!async)
  514. return -ENOMEM;
  515. async->inode = inode;
  516. async->rw = rw;
  517. async->bio = bio;
  518. async->mirror_num = mirror_num;
  519. async->submit_bio_start = submit_bio_start;
  520. async->submit_bio_done = submit_bio_done;
  521. async->work.func = run_one_async_start;
  522. async->work.ordered_func = run_one_async_done;
  523. async->work.ordered_free = run_one_async_free;
  524. async->work.flags = 0;
  525. async->bio_flags = bio_flags;
  526. atomic_inc(&fs_info->nr_async_submits);
  527. if (rw & (1 << BIO_RW_SYNCIO))
  528. btrfs_set_work_high_prio(&async->work);
  529. btrfs_queue_worker(&fs_info->workers, &async->work);
  530. while (atomic_read(&fs_info->async_submit_draining) &&
  531. atomic_read(&fs_info->nr_async_submits)) {
  532. wait_event(fs_info->async_submit_wait,
  533. (atomic_read(&fs_info->nr_async_submits) == 0));
  534. }
  535. return 0;
  536. }
  537. static int btree_csum_one_bio(struct bio *bio)
  538. {
  539. struct bio_vec *bvec = bio->bi_io_vec;
  540. int bio_index = 0;
  541. struct btrfs_root *root;
  542. WARN_ON(bio->bi_vcnt <= 0);
  543. while (bio_index < bio->bi_vcnt) {
  544. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  545. csum_dirty_buffer(root, bvec->bv_page);
  546. bio_index++;
  547. bvec++;
  548. }
  549. return 0;
  550. }
  551. static int __btree_submit_bio_start(struct inode *inode, int rw,
  552. struct bio *bio, int mirror_num,
  553. unsigned long bio_flags)
  554. {
  555. /*
  556. * when we're called for a write, we're already in the async
  557. * submission context. Just jump into btrfs_map_bio
  558. */
  559. btree_csum_one_bio(bio);
  560. return 0;
  561. }
  562. static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
  563. int mirror_num, unsigned long bio_flags)
  564. {
  565. /*
  566. * when we're called for a write, we're already in the async
  567. * submission context. Just jump into btrfs_map_bio
  568. */
  569. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
  570. }
  571. static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
  572. int mirror_num, unsigned long bio_flags)
  573. {
  574. int ret;
  575. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  576. bio, 1);
  577. BUG_ON(ret);
  578. if (!(rw & (1 << BIO_RW))) {
  579. /*
  580. * called for a read, do the setup so that checksum validation
  581. * can happen in the async kernel threads
  582. */
  583. return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
  584. mirror_num, 0);
  585. }
  586. /*
  587. * kthread helpers are used to submit writes so that checksumming
  588. * can happen in parallel across all CPUs
  589. */
  590. return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  591. inode, rw, bio, mirror_num, 0,
  592. __btree_submit_bio_start,
  593. __btree_submit_bio_done);
  594. }
  595. static int btree_writepage(struct page *page, struct writeback_control *wbc)
  596. {
  597. struct extent_io_tree *tree;
  598. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  599. struct extent_buffer *eb;
  600. int was_dirty;
  601. tree = &BTRFS_I(page->mapping->host)->io_tree;
  602. if (!(current->flags & PF_MEMALLOC)) {
  603. return extent_write_full_page(tree, page,
  604. btree_get_extent, wbc);
  605. }
  606. redirty_page_for_writepage(wbc, page);
  607. eb = btrfs_find_tree_block(root, page_offset(page),
  608. PAGE_CACHE_SIZE);
  609. WARN_ON(!eb);
  610. was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
  611. if (!was_dirty) {
  612. spin_lock(&root->fs_info->delalloc_lock);
  613. root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
  614. spin_unlock(&root->fs_info->delalloc_lock);
  615. }
  616. free_extent_buffer(eb);
  617. unlock_page(page);
  618. return 0;
  619. }
  620. static int btree_writepages(struct address_space *mapping,
  621. struct writeback_control *wbc)
  622. {
  623. struct extent_io_tree *tree;
  624. tree = &BTRFS_I(mapping->host)->io_tree;
  625. if (wbc->sync_mode == WB_SYNC_NONE) {
  626. struct btrfs_root *root = BTRFS_I(mapping->host)->root;
  627. u64 num_dirty;
  628. unsigned long thresh = 32 * 1024 * 1024;
  629. if (wbc->for_kupdate)
  630. return 0;
  631. /* this is a bit racy, but that's ok */
  632. num_dirty = root->fs_info->dirty_metadata_bytes;
  633. if (num_dirty < thresh)
  634. return 0;
  635. }
  636. return extent_writepages(tree, mapping, btree_get_extent, wbc);
  637. }
  638. static int btree_readpage(struct file *file, struct page *page)
  639. {
  640. struct extent_io_tree *tree;
  641. tree = &BTRFS_I(page->mapping->host)->io_tree;
  642. return extent_read_full_page(tree, page, btree_get_extent);
  643. }
  644. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  645. {
  646. struct extent_io_tree *tree;
  647. struct extent_map_tree *map;
  648. int ret;
  649. if (PageWriteback(page) || PageDirty(page))
  650. return 0;
  651. tree = &BTRFS_I(page->mapping->host)->io_tree;
  652. map = &BTRFS_I(page->mapping->host)->extent_tree;
  653. ret = try_release_extent_state(map, tree, page, gfp_flags);
  654. if (!ret)
  655. return 0;
  656. ret = try_release_extent_buffer(tree, page);
  657. if (ret == 1) {
  658. ClearPagePrivate(page);
  659. set_page_private(page, 0);
  660. page_cache_release(page);
  661. }
  662. return ret;
  663. }
  664. static void btree_invalidatepage(struct page *page, unsigned long offset)
  665. {
  666. struct extent_io_tree *tree;
  667. tree = &BTRFS_I(page->mapping->host)->io_tree;
  668. extent_invalidatepage(tree, page, offset);
  669. btree_releasepage(page, GFP_NOFS);
  670. if (PagePrivate(page)) {
  671. printk(KERN_WARNING "btrfs warning page private not zero "
  672. "on page %llu\n", (unsigned long long)page_offset(page));
  673. ClearPagePrivate(page);
  674. set_page_private(page, 0);
  675. page_cache_release(page);
  676. }
  677. }
  678. static struct address_space_operations btree_aops = {
  679. .readpage = btree_readpage,
  680. .writepage = btree_writepage,
  681. .writepages = btree_writepages,
  682. .releasepage = btree_releasepage,
  683. .invalidatepage = btree_invalidatepage,
  684. .sync_page = block_sync_page,
  685. };
  686. int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
  687. u64 parent_transid)
  688. {
  689. struct extent_buffer *buf = NULL;
  690. struct inode *btree_inode = root->fs_info->btree_inode;
  691. int ret = 0;
  692. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  693. if (!buf)
  694. return 0;
  695. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  696. buf, 0, 0, btree_get_extent, 0);
  697. free_extent_buffer(buf);
  698. return ret;
  699. }
  700. struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
  701. u64 bytenr, u32 blocksize)
  702. {
  703. struct inode *btree_inode = root->fs_info->btree_inode;
  704. struct extent_buffer *eb;
  705. eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  706. bytenr, blocksize, GFP_NOFS);
  707. return eb;
  708. }
  709. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  710. u64 bytenr, u32 blocksize)
  711. {
  712. struct inode *btree_inode = root->fs_info->btree_inode;
  713. struct extent_buffer *eb;
  714. eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
  715. bytenr, blocksize, NULL, GFP_NOFS);
  716. return eb;
  717. }
  718. int btrfs_write_tree_block(struct extent_buffer *buf)
  719. {
  720. return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
  721. buf->start + buf->len - 1, WB_SYNC_ALL);
  722. }
  723. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  724. {
  725. return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
  726. buf->start, buf->start + buf->len - 1);
  727. }
  728. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  729. u32 blocksize, u64 parent_transid)
  730. {
  731. struct extent_buffer *buf = NULL;
  732. struct inode *btree_inode = root->fs_info->btree_inode;
  733. struct extent_io_tree *io_tree;
  734. int ret;
  735. io_tree = &BTRFS_I(btree_inode)->io_tree;
  736. buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
  737. if (!buf)
  738. return NULL;
  739. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  740. if (ret == 0)
  741. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  742. return buf;
  743. }
  744. int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  745. struct extent_buffer *buf)
  746. {
  747. struct inode *btree_inode = root->fs_info->btree_inode;
  748. if (btrfs_header_generation(buf) ==
  749. root->fs_info->running_transaction->transid) {
  750. btrfs_assert_tree_locked(buf);
  751. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  752. spin_lock(&root->fs_info->delalloc_lock);
  753. if (root->fs_info->dirty_metadata_bytes >= buf->len)
  754. root->fs_info->dirty_metadata_bytes -= buf->len;
  755. else
  756. WARN_ON(1);
  757. spin_unlock(&root->fs_info->delalloc_lock);
  758. }
  759. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  760. btrfs_set_lock_blocking(buf);
  761. clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  762. buf);
  763. }
  764. return 0;
  765. }
  766. static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
  767. u32 stripesize, struct btrfs_root *root,
  768. struct btrfs_fs_info *fs_info,
  769. u64 objectid)
  770. {
  771. root->node = NULL;
  772. root->commit_root = NULL;
  773. root->sectorsize = sectorsize;
  774. root->nodesize = nodesize;
  775. root->leafsize = leafsize;
  776. root->stripesize = stripesize;
  777. root->ref_cows = 0;
  778. root->track_dirty = 0;
  779. root->fs_info = fs_info;
  780. root->objectid = objectid;
  781. root->last_trans = 0;
  782. root->highest_inode = 0;
  783. root->last_inode_alloc = 0;
  784. root->name = NULL;
  785. root->in_sysfs = 0;
  786. root->inode_tree.rb_node = NULL;
  787. INIT_LIST_HEAD(&root->dirty_list);
  788. INIT_LIST_HEAD(&root->orphan_list);
  789. INIT_LIST_HEAD(&root->root_list);
  790. spin_lock_init(&root->node_lock);
  791. spin_lock_init(&root->list_lock);
  792. spin_lock_init(&root->inode_lock);
  793. mutex_init(&root->objectid_mutex);
  794. mutex_init(&root->log_mutex);
  795. init_waitqueue_head(&root->log_writer_wait);
  796. init_waitqueue_head(&root->log_commit_wait[0]);
  797. init_waitqueue_head(&root->log_commit_wait[1]);
  798. atomic_set(&root->log_commit[0], 0);
  799. atomic_set(&root->log_commit[1], 0);
  800. atomic_set(&root->log_writers, 0);
  801. root->log_batch = 0;
  802. root->log_transid = 0;
  803. extent_io_tree_init(&root->dirty_log_pages,
  804. fs_info->btree_inode->i_mapping, GFP_NOFS);
  805. memset(&root->root_key, 0, sizeof(root->root_key));
  806. memset(&root->root_item, 0, sizeof(root->root_item));
  807. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  808. memset(&root->root_kobj, 0, sizeof(root->root_kobj));
  809. root->defrag_trans_start = fs_info->generation;
  810. init_completion(&root->kobj_unregister);
  811. root->defrag_running = 0;
  812. root->defrag_level = 0;
  813. root->root_key.objectid = objectid;
  814. root->anon_super.s_root = NULL;
  815. root->anon_super.s_dev = 0;
  816. INIT_LIST_HEAD(&root->anon_super.s_list);
  817. INIT_LIST_HEAD(&root->anon_super.s_instances);
  818. init_rwsem(&root->anon_super.s_umount);
  819. return 0;
  820. }
  821. static int find_and_setup_root(struct btrfs_root *tree_root,
  822. struct btrfs_fs_info *fs_info,
  823. u64 objectid,
  824. struct btrfs_root *root)
  825. {
  826. int ret;
  827. u32 blocksize;
  828. u64 generation;
  829. __setup_root(tree_root->nodesize, tree_root->leafsize,
  830. tree_root->sectorsize, tree_root->stripesize,
  831. root, fs_info, objectid);
  832. ret = btrfs_find_last_root(tree_root, objectid,
  833. &root->root_item, &root->root_key);
  834. BUG_ON(ret);
  835. generation = btrfs_root_generation(&root->root_item);
  836. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  837. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  838. blocksize, generation);
  839. root->commit_root = btrfs_root_node(root);
  840. BUG_ON(!root->node);
  841. return 0;
  842. }
  843. int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
  844. struct btrfs_fs_info *fs_info)
  845. {
  846. struct extent_buffer *eb;
  847. struct btrfs_root *log_root_tree = fs_info->log_root_tree;
  848. u64 start = 0;
  849. u64 end = 0;
  850. int ret;
  851. if (!log_root_tree)
  852. return 0;
  853. while (1) {
  854. ret = find_first_extent_bit(&log_root_tree->dirty_log_pages,
  855. 0, &start, &end, EXTENT_DIRTY);
  856. if (ret)
  857. break;
  858. clear_extent_dirty(&log_root_tree->dirty_log_pages,
  859. start, end, GFP_NOFS);
  860. }
  861. eb = fs_info->log_root_tree->node;
  862. WARN_ON(btrfs_header_level(eb) != 0);
  863. WARN_ON(btrfs_header_nritems(eb) != 0);
  864. ret = btrfs_free_reserved_extent(fs_info->tree_root,
  865. eb->start, eb->len);
  866. BUG_ON(ret);
  867. free_extent_buffer(eb);
  868. kfree(fs_info->log_root_tree);
  869. fs_info->log_root_tree = NULL;
  870. return 0;
  871. }
  872. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  873. struct btrfs_fs_info *fs_info)
  874. {
  875. struct btrfs_root *root;
  876. struct btrfs_root *tree_root = fs_info->tree_root;
  877. struct extent_buffer *leaf;
  878. root = kzalloc(sizeof(*root), GFP_NOFS);
  879. if (!root)
  880. return ERR_PTR(-ENOMEM);
  881. __setup_root(tree_root->nodesize, tree_root->leafsize,
  882. tree_root->sectorsize, tree_root->stripesize,
  883. root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  884. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  885. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  886. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  887. /*
  888. * log trees do not get reference counted because they go away
  889. * before a real commit is actually done. They do store pointers
  890. * to file data extents, and those reference counts still get
  891. * updated (along with back refs to the log tree).
  892. */
  893. root->ref_cows = 0;
  894. leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  895. BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
  896. if (IS_ERR(leaf)) {
  897. kfree(root);
  898. return ERR_CAST(leaf);
  899. }
  900. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  901. btrfs_set_header_bytenr(leaf, leaf->start);
  902. btrfs_set_header_generation(leaf, trans->transid);
  903. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  904. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  905. root->node = leaf;
  906. write_extent_buffer(root->node, root->fs_info->fsid,
  907. (unsigned long)btrfs_header_fsid(root->node),
  908. BTRFS_FSID_SIZE);
  909. btrfs_mark_buffer_dirty(root->node);
  910. btrfs_tree_unlock(root->node);
  911. return root;
  912. }
  913. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  914. struct btrfs_fs_info *fs_info)
  915. {
  916. struct btrfs_root *log_root;
  917. log_root = alloc_log_tree(trans, fs_info);
  918. if (IS_ERR(log_root))
  919. return PTR_ERR(log_root);
  920. WARN_ON(fs_info->log_root_tree);
  921. fs_info->log_root_tree = log_root;
  922. return 0;
  923. }
  924. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  925. struct btrfs_root *root)
  926. {
  927. struct btrfs_root *log_root;
  928. struct btrfs_inode_item *inode_item;
  929. log_root = alloc_log_tree(trans, root->fs_info);
  930. if (IS_ERR(log_root))
  931. return PTR_ERR(log_root);
  932. log_root->last_trans = trans->transid;
  933. log_root->root_key.offset = root->root_key.objectid;
  934. inode_item = &log_root->root_item.inode;
  935. inode_item->generation = cpu_to_le64(1);
  936. inode_item->size = cpu_to_le64(3);
  937. inode_item->nlink = cpu_to_le32(1);
  938. inode_item->nbytes = cpu_to_le64(root->leafsize);
  939. inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
  940. btrfs_set_root_node(&log_root->root_item, log_root->node);
  941. WARN_ON(root->log_root);
  942. root->log_root = log_root;
  943. root->log_transid = 0;
  944. return 0;
  945. }
  946. struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
  947. struct btrfs_key *location)
  948. {
  949. struct btrfs_root *root;
  950. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  951. struct btrfs_path *path;
  952. struct extent_buffer *l;
  953. u64 highest_inode;
  954. u64 generation;
  955. u32 blocksize;
  956. int ret = 0;
  957. root = kzalloc(sizeof(*root), GFP_NOFS);
  958. if (!root)
  959. return ERR_PTR(-ENOMEM);
  960. if (location->offset == (u64)-1) {
  961. ret = find_and_setup_root(tree_root, fs_info,
  962. location->objectid, root);
  963. if (ret) {
  964. kfree(root);
  965. return ERR_PTR(ret);
  966. }
  967. goto insert;
  968. }
  969. __setup_root(tree_root->nodesize, tree_root->leafsize,
  970. tree_root->sectorsize, tree_root->stripesize,
  971. root, fs_info, location->objectid);
  972. path = btrfs_alloc_path();
  973. BUG_ON(!path);
  974. ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
  975. if (ret != 0) {
  976. if (ret > 0)
  977. ret = -ENOENT;
  978. goto out;
  979. }
  980. l = path->nodes[0];
  981. read_extent_buffer(l, &root->root_item,
  982. btrfs_item_ptr_offset(l, path->slots[0]),
  983. sizeof(root->root_item));
  984. memcpy(&root->root_key, location, sizeof(*location));
  985. ret = 0;
  986. out:
  987. btrfs_release_path(root, path);
  988. btrfs_free_path(path);
  989. if (ret) {
  990. kfree(root);
  991. return ERR_PTR(ret);
  992. }
  993. generation = btrfs_root_generation(&root->root_item);
  994. blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
  995. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  996. blocksize, generation);
  997. root->commit_root = btrfs_root_node(root);
  998. BUG_ON(!root->node);
  999. insert:
  1000. if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
  1001. root->ref_cows = 1;
  1002. ret = btrfs_find_highest_inode(root, &highest_inode);
  1003. if (ret == 0) {
  1004. root->highest_inode = highest_inode;
  1005. root->last_inode_alloc = highest_inode;
  1006. }
  1007. }
  1008. return root;
  1009. }
  1010. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1011. u64 root_objectid)
  1012. {
  1013. struct btrfs_root *root;
  1014. if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
  1015. return fs_info->tree_root;
  1016. if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1017. return fs_info->extent_root;
  1018. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1019. (unsigned long)root_objectid);
  1020. return root;
  1021. }
  1022. struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
  1023. struct btrfs_key *location)
  1024. {
  1025. struct btrfs_root *root;
  1026. int ret;
  1027. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1028. return fs_info->tree_root;
  1029. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1030. return fs_info->extent_root;
  1031. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1032. return fs_info->chunk_root;
  1033. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1034. return fs_info->dev_root;
  1035. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1036. return fs_info->csum_root;
  1037. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1038. (unsigned long)location->objectid);
  1039. if (root)
  1040. return root;
  1041. root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
  1042. if (IS_ERR(root))
  1043. return root;
  1044. set_anon_super(&root->anon_super, NULL);
  1045. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1046. (unsigned long)root->root_key.objectid,
  1047. root);
  1048. if (ret) {
  1049. free_extent_buffer(root->node);
  1050. kfree(root);
  1051. return ERR_PTR(ret);
  1052. }
  1053. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1054. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1055. root->root_key.objectid);
  1056. BUG_ON(ret);
  1057. btrfs_orphan_cleanup(root);
  1058. }
  1059. return root;
  1060. }
  1061. struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
  1062. struct btrfs_key *location,
  1063. const char *name, int namelen)
  1064. {
  1065. struct btrfs_root *root;
  1066. int ret;
  1067. root = btrfs_read_fs_root_no_name(fs_info, location);
  1068. if (!root)
  1069. return NULL;
  1070. if (root->in_sysfs)
  1071. return root;
  1072. ret = btrfs_set_root_name(root, name, namelen);
  1073. if (ret) {
  1074. free_extent_buffer(root->node);
  1075. kfree(root);
  1076. return ERR_PTR(ret);
  1077. }
  1078. #if 0
  1079. ret = btrfs_sysfs_add_root(root);
  1080. if (ret) {
  1081. free_extent_buffer(root->node);
  1082. kfree(root->name);
  1083. kfree(root);
  1084. return ERR_PTR(ret);
  1085. }
  1086. #endif
  1087. root->in_sysfs = 1;
  1088. return root;
  1089. }
  1090. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1091. {
  1092. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1093. int ret = 0;
  1094. struct btrfs_device *device;
  1095. struct backing_dev_info *bdi;
  1096. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1097. if (!device->bdev)
  1098. continue;
  1099. bdi = blk_get_backing_dev_info(device->bdev);
  1100. if (bdi && bdi_congested(bdi, bdi_bits)) {
  1101. ret = 1;
  1102. break;
  1103. }
  1104. }
  1105. return ret;
  1106. }
  1107. /*
  1108. * this unplugs every device on the box, and it is only used when page
  1109. * is null
  1110. */
  1111. static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1112. {
  1113. struct btrfs_device *device;
  1114. struct btrfs_fs_info *info;
  1115. info = (struct btrfs_fs_info *)bdi->unplug_io_data;
  1116. list_for_each_entry(device, &info->fs_devices->devices, dev_list) {
  1117. if (!device->bdev)
  1118. continue;
  1119. bdi = blk_get_backing_dev_info(device->bdev);
  1120. if (bdi->unplug_io_fn)
  1121. bdi->unplug_io_fn(bdi, page);
  1122. }
  1123. }
  1124. static void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
  1125. {
  1126. struct inode *inode;
  1127. struct extent_map_tree *em_tree;
  1128. struct extent_map *em;
  1129. struct address_space *mapping;
  1130. u64 offset;
  1131. /* the generic O_DIRECT read code does this */
  1132. if (1 || !page) {
  1133. __unplug_io_fn(bdi, page);
  1134. return;
  1135. }
  1136. /*
  1137. * page->mapping may change at any time. Get a consistent copy
  1138. * and use that for everything below
  1139. */
  1140. smp_mb();
  1141. mapping = page->mapping;
  1142. if (!mapping)
  1143. return;
  1144. inode = mapping->host;
  1145. /*
  1146. * don't do the expensive searching for a small number of
  1147. * devices
  1148. */
  1149. if (BTRFS_I(inode)->root->fs_info->fs_devices->open_devices <= 2) {
  1150. __unplug_io_fn(bdi, page);
  1151. return;
  1152. }
  1153. offset = page_offset(page);
  1154. em_tree = &BTRFS_I(inode)->extent_tree;
  1155. spin_lock(&em_tree->lock);
  1156. em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
  1157. spin_unlock(&em_tree->lock);
  1158. if (!em) {
  1159. __unplug_io_fn(bdi, page);
  1160. return;
  1161. }
  1162. if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
  1163. free_extent_map(em);
  1164. __unplug_io_fn(bdi, page);
  1165. return;
  1166. }
  1167. offset = offset - em->start;
  1168. btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
  1169. em->block_start + offset, page);
  1170. free_extent_map(em);
  1171. }
  1172. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1173. {
  1174. bdi_init(bdi);
  1175. bdi->ra_pages = default_backing_dev_info.ra_pages;
  1176. bdi->state = 0;
  1177. bdi->capabilities = default_backing_dev_info.capabilities;
  1178. bdi->unplug_io_fn = btrfs_unplug_io_fn;
  1179. bdi->unplug_io_data = info;
  1180. bdi->congested_fn = btrfs_congested_fn;
  1181. bdi->congested_data = info;
  1182. return 0;
  1183. }
  1184. static int bio_ready_for_csum(struct bio *bio)
  1185. {
  1186. u64 length = 0;
  1187. u64 buf_len = 0;
  1188. u64 start = 0;
  1189. struct page *page;
  1190. struct extent_io_tree *io_tree = NULL;
  1191. struct btrfs_fs_info *info = NULL;
  1192. struct bio_vec *bvec;
  1193. int i;
  1194. int ret;
  1195. bio_for_each_segment(bvec, bio, i) {
  1196. page = bvec->bv_page;
  1197. if (page->private == EXTENT_PAGE_PRIVATE) {
  1198. length += bvec->bv_len;
  1199. continue;
  1200. }
  1201. if (!page->private) {
  1202. length += bvec->bv_len;
  1203. continue;
  1204. }
  1205. length = bvec->bv_len;
  1206. buf_len = page->private >> 2;
  1207. start = page_offset(page) + bvec->bv_offset;
  1208. io_tree = &BTRFS_I(page->mapping->host)->io_tree;
  1209. info = BTRFS_I(page->mapping->host)->root->fs_info;
  1210. }
  1211. /* are we fully contained in this bio? */
  1212. if (buf_len <= length)
  1213. return 1;
  1214. ret = extent_range_uptodate(io_tree, start + length,
  1215. start + buf_len - 1);
  1216. return ret;
  1217. }
  1218. /*
  1219. * called by the kthread helper functions to finally call the bio end_io
  1220. * functions. This is where read checksum verification actually happens
  1221. */
  1222. static void end_workqueue_fn(struct btrfs_work *work)
  1223. {
  1224. struct bio *bio;
  1225. struct end_io_wq *end_io_wq;
  1226. struct btrfs_fs_info *fs_info;
  1227. int error;
  1228. end_io_wq = container_of(work, struct end_io_wq, work);
  1229. bio = end_io_wq->bio;
  1230. fs_info = end_io_wq->info;
  1231. /* metadata bio reads are special because the whole tree block must
  1232. * be checksummed at once. This makes sure the entire block is in
  1233. * ram and up to date before trying to verify things. For
  1234. * blocksize <= pagesize, it is basically a noop
  1235. */
  1236. if (!(bio->bi_rw & (1 << BIO_RW)) && end_io_wq->metadata &&
  1237. !bio_ready_for_csum(bio)) {
  1238. btrfs_queue_worker(&fs_info->endio_meta_workers,
  1239. &end_io_wq->work);
  1240. return;
  1241. }
  1242. error = end_io_wq->error;
  1243. bio->bi_private = end_io_wq->private;
  1244. bio->bi_end_io = end_io_wq->end_io;
  1245. kfree(end_io_wq);
  1246. bio_endio(bio, error);
  1247. }
  1248. static int cleaner_kthread(void *arg)
  1249. {
  1250. struct btrfs_root *root = arg;
  1251. do {
  1252. smp_mb();
  1253. if (root->fs_info->closing)
  1254. break;
  1255. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1256. mutex_lock(&root->fs_info->cleaner_mutex);
  1257. btrfs_clean_old_snapshots(root);
  1258. mutex_unlock(&root->fs_info->cleaner_mutex);
  1259. if (freezing(current)) {
  1260. refrigerator();
  1261. } else {
  1262. smp_mb();
  1263. if (root->fs_info->closing)
  1264. break;
  1265. set_current_state(TASK_INTERRUPTIBLE);
  1266. schedule();
  1267. __set_current_state(TASK_RUNNING);
  1268. }
  1269. } while (!kthread_should_stop());
  1270. return 0;
  1271. }
  1272. static int transaction_kthread(void *arg)
  1273. {
  1274. struct btrfs_root *root = arg;
  1275. struct btrfs_trans_handle *trans;
  1276. struct btrfs_transaction *cur;
  1277. unsigned long now;
  1278. unsigned long delay;
  1279. int ret;
  1280. do {
  1281. smp_mb();
  1282. if (root->fs_info->closing)
  1283. break;
  1284. delay = HZ * 30;
  1285. vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
  1286. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1287. mutex_lock(&root->fs_info->trans_mutex);
  1288. cur = root->fs_info->running_transaction;
  1289. if (!cur) {
  1290. mutex_unlock(&root->fs_info->trans_mutex);
  1291. goto sleep;
  1292. }
  1293. now = get_seconds();
  1294. if (now < cur->start_time || now - cur->start_time < 30) {
  1295. mutex_unlock(&root->fs_info->trans_mutex);
  1296. delay = HZ * 5;
  1297. goto sleep;
  1298. }
  1299. mutex_unlock(&root->fs_info->trans_mutex);
  1300. trans = btrfs_start_transaction(root, 1);
  1301. ret = btrfs_commit_transaction(trans, root);
  1302. sleep:
  1303. wake_up_process(root->fs_info->cleaner_kthread);
  1304. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1305. if (freezing(current)) {
  1306. refrigerator();
  1307. } else {
  1308. if (root->fs_info->closing)
  1309. break;
  1310. set_current_state(TASK_INTERRUPTIBLE);
  1311. schedule_timeout(delay);
  1312. __set_current_state(TASK_RUNNING);
  1313. }
  1314. } while (!kthread_should_stop());
  1315. return 0;
  1316. }
  1317. struct btrfs_root *open_ctree(struct super_block *sb,
  1318. struct btrfs_fs_devices *fs_devices,
  1319. char *options)
  1320. {
  1321. u32 sectorsize;
  1322. u32 nodesize;
  1323. u32 leafsize;
  1324. u32 blocksize;
  1325. u32 stripesize;
  1326. u64 generation;
  1327. u64 features;
  1328. struct btrfs_key location;
  1329. struct buffer_head *bh;
  1330. struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
  1331. GFP_NOFS);
  1332. struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
  1333. GFP_NOFS);
  1334. struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
  1335. GFP_NOFS);
  1336. struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
  1337. GFP_NOFS);
  1338. struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
  1339. GFP_NOFS);
  1340. struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
  1341. GFP_NOFS);
  1342. struct btrfs_root *log_tree_root;
  1343. int ret;
  1344. int err = -EINVAL;
  1345. struct btrfs_super_block *disk_super;
  1346. if (!extent_root || !tree_root || !fs_info ||
  1347. !chunk_root || !dev_root || !csum_root) {
  1348. err = -ENOMEM;
  1349. goto fail;
  1350. }
  1351. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
  1352. INIT_LIST_HEAD(&fs_info->trans_list);
  1353. INIT_LIST_HEAD(&fs_info->dead_roots);
  1354. INIT_LIST_HEAD(&fs_info->hashers);
  1355. INIT_LIST_HEAD(&fs_info->delalloc_inodes);
  1356. INIT_LIST_HEAD(&fs_info->ordered_operations);
  1357. spin_lock_init(&fs_info->delalloc_lock);
  1358. spin_lock_init(&fs_info->new_trans_lock);
  1359. spin_lock_init(&fs_info->ref_cache_lock);
  1360. init_completion(&fs_info->kobj_unregister);
  1361. fs_info->tree_root = tree_root;
  1362. fs_info->extent_root = extent_root;
  1363. fs_info->csum_root = csum_root;
  1364. fs_info->chunk_root = chunk_root;
  1365. fs_info->dev_root = dev_root;
  1366. fs_info->fs_devices = fs_devices;
  1367. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  1368. INIT_LIST_HEAD(&fs_info->space_info);
  1369. btrfs_mapping_init(&fs_info->mapping_tree);
  1370. atomic_set(&fs_info->nr_async_submits, 0);
  1371. atomic_set(&fs_info->async_delalloc_pages, 0);
  1372. atomic_set(&fs_info->async_submit_draining, 0);
  1373. atomic_set(&fs_info->nr_async_bios, 0);
  1374. fs_info->sb = sb;
  1375. fs_info->max_extent = (u64)-1;
  1376. fs_info->max_inline = 8192 * 1024;
  1377. setup_bdi(fs_info, &fs_info->bdi);
  1378. fs_info->btree_inode = new_inode(sb);
  1379. fs_info->btree_inode->i_ino = 1;
  1380. fs_info->btree_inode->i_nlink = 1;
  1381. fs_info->metadata_ratio = 8;
  1382. fs_info->thread_pool_size = min_t(unsigned long,
  1383. num_online_cpus() + 2, 8);
  1384. INIT_LIST_HEAD(&fs_info->ordered_extents);
  1385. spin_lock_init(&fs_info->ordered_extent_lock);
  1386. sb->s_blocksize = 4096;
  1387. sb->s_blocksize_bits = blksize_bits(4096);
  1388. /*
  1389. * we set the i_size on the btree inode to the max possible int.
  1390. * the real end of the address space is determined by all of
  1391. * the devices in the system
  1392. */
  1393. fs_info->btree_inode->i_size = OFFSET_MAX;
  1394. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1395. fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
  1396. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1397. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1398. fs_info->btree_inode->i_mapping,
  1399. GFP_NOFS);
  1400. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
  1401. GFP_NOFS);
  1402. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  1403. spin_lock_init(&fs_info->block_group_cache_lock);
  1404. fs_info->block_group_cache_tree.rb_node = NULL;
  1405. extent_io_tree_init(&fs_info->pinned_extents,
  1406. fs_info->btree_inode->i_mapping, GFP_NOFS);
  1407. fs_info->do_barriers = 1;
  1408. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  1409. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  1410. sizeof(struct btrfs_key));
  1411. insert_inode_hash(fs_info->btree_inode);
  1412. mutex_init(&fs_info->trans_mutex);
  1413. mutex_init(&fs_info->ordered_operations_mutex);
  1414. mutex_init(&fs_info->tree_log_mutex);
  1415. mutex_init(&fs_info->drop_mutex);
  1416. mutex_init(&fs_info->chunk_mutex);
  1417. mutex_init(&fs_info->transaction_kthread_mutex);
  1418. mutex_init(&fs_info->cleaner_mutex);
  1419. mutex_init(&fs_info->volume_mutex);
  1420. mutex_init(&fs_info->tree_reloc_mutex);
  1421. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  1422. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  1423. init_waitqueue_head(&fs_info->transaction_throttle);
  1424. init_waitqueue_head(&fs_info->transaction_wait);
  1425. init_waitqueue_head(&fs_info->async_submit_wait);
  1426. __setup_root(4096, 4096, 4096, 4096, tree_root,
  1427. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1428. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  1429. if (!bh)
  1430. goto fail_iput;
  1431. memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
  1432. memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
  1433. sizeof(fs_info->super_for_commit));
  1434. brelse(bh);
  1435. memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
  1436. disk_super = &fs_info->super_copy;
  1437. if (!btrfs_super_root(disk_super))
  1438. goto fail_iput;
  1439. ret = btrfs_parse_options(tree_root, options);
  1440. if (ret) {
  1441. err = ret;
  1442. goto fail_iput;
  1443. }
  1444. features = btrfs_super_incompat_flags(disk_super) &
  1445. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  1446. if (features) {
  1447. printk(KERN_ERR "BTRFS: couldn't mount because of "
  1448. "unsupported optional features (%Lx).\n",
  1449. (unsigned long long)features);
  1450. err = -EINVAL;
  1451. goto fail_iput;
  1452. }
  1453. features = btrfs_super_incompat_flags(disk_super);
  1454. if (!(features & BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF)) {
  1455. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  1456. btrfs_set_super_incompat_flags(disk_super, features);
  1457. }
  1458. features = btrfs_super_compat_ro_flags(disk_super) &
  1459. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  1460. if (!(sb->s_flags & MS_RDONLY) && features) {
  1461. printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
  1462. "unsupported option features (%Lx).\n",
  1463. (unsigned long long)features);
  1464. err = -EINVAL;
  1465. goto fail_iput;
  1466. }
  1467. /*
  1468. * we need to start all the end_io workers up front because the
  1469. * queue work function gets called at interrupt time, and so it
  1470. * cannot dynamically grow.
  1471. */
  1472. btrfs_init_workers(&fs_info->workers, "worker",
  1473. fs_info->thread_pool_size);
  1474. btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
  1475. fs_info->thread_pool_size);
  1476. btrfs_init_workers(&fs_info->submit_workers, "submit",
  1477. min_t(u64, fs_devices->num_devices,
  1478. fs_info->thread_pool_size));
  1479. /* a higher idle thresh on the submit workers makes it much more
  1480. * likely that bios will be send down in a sane order to the
  1481. * devices
  1482. */
  1483. fs_info->submit_workers.idle_thresh = 64;
  1484. fs_info->workers.idle_thresh = 16;
  1485. fs_info->workers.ordered = 1;
  1486. fs_info->delalloc_workers.idle_thresh = 2;
  1487. fs_info->delalloc_workers.ordered = 1;
  1488. btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
  1489. btrfs_init_workers(&fs_info->endio_workers, "endio",
  1490. fs_info->thread_pool_size);
  1491. btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
  1492. fs_info->thread_pool_size);
  1493. btrfs_init_workers(&fs_info->endio_meta_write_workers,
  1494. "endio-meta-write", fs_info->thread_pool_size);
  1495. btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
  1496. fs_info->thread_pool_size);
  1497. /*
  1498. * endios are largely parallel and should have a very
  1499. * low idle thresh
  1500. */
  1501. fs_info->endio_workers.idle_thresh = 4;
  1502. fs_info->endio_meta_workers.idle_thresh = 4;
  1503. fs_info->endio_write_workers.idle_thresh = 64;
  1504. fs_info->endio_meta_write_workers.idle_thresh = 64;
  1505. btrfs_start_workers(&fs_info->workers, 1);
  1506. btrfs_start_workers(&fs_info->submit_workers, 1);
  1507. btrfs_start_workers(&fs_info->delalloc_workers, 1);
  1508. btrfs_start_workers(&fs_info->fixup_workers, 1);
  1509. btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
  1510. btrfs_start_workers(&fs_info->endio_meta_workers,
  1511. fs_info->thread_pool_size);
  1512. btrfs_start_workers(&fs_info->endio_meta_write_workers,
  1513. fs_info->thread_pool_size);
  1514. btrfs_start_workers(&fs_info->endio_write_workers,
  1515. fs_info->thread_pool_size);
  1516. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  1517. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  1518. 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
  1519. nodesize = btrfs_super_nodesize(disk_super);
  1520. leafsize = btrfs_super_leafsize(disk_super);
  1521. sectorsize = btrfs_super_sectorsize(disk_super);
  1522. stripesize = btrfs_super_stripesize(disk_super);
  1523. tree_root->nodesize = nodesize;
  1524. tree_root->leafsize = leafsize;
  1525. tree_root->sectorsize = sectorsize;
  1526. tree_root->stripesize = stripesize;
  1527. sb->s_blocksize = sectorsize;
  1528. sb->s_blocksize_bits = blksize_bits(sectorsize);
  1529. if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
  1530. sizeof(disk_super->magic))) {
  1531. printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
  1532. goto fail_sb_buffer;
  1533. }
  1534. mutex_lock(&fs_info->chunk_mutex);
  1535. ret = btrfs_read_sys_array(tree_root);
  1536. mutex_unlock(&fs_info->chunk_mutex);
  1537. if (ret) {
  1538. printk(KERN_WARNING "btrfs: failed to read the system "
  1539. "array on %s\n", sb->s_id);
  1540. goto fail_sb_buffer;
  1541. }
  1542. blocksize = btrfs_level_size(tree_root,
  1543. btrfs_super_chunk_root_level(disk_super));
  1544. generation = btrfs_super_chunk_root_generation(disk_super);
  1545. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1546. chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  1547. chunk_root->node = read_tree_block(chunk_root,
  1548. btrfs_super_chunk_root(disk_super),
  1549. blocksize, generation);
  1550. BUG_ON(!chunk_root->node);
  1551. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  1552. chunk_root->commit_root = btrfs_root_node(chunk_root);
  1553. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  1554. (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
  1555. BTRFS_UUID_SIZE);
  1556. mutex_lock(&fs_info->chunk_mutex);
  1557. ret = btrfs_read_chunk_tree(chunk_root);
  1558. mutex_unlock(&fs_info->chunk_mutex);
  1559. if (ret) {
  1560. printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
  1561. sb->s_id);
  1562. goto fail_chunk_root;
  1563. }
  1564. btrfs_close_extra_devices(fs_devices);
  1565. blocksize = btrfs_level_size(tree_root,
  1566. btrfs_super_root_level(disk_super));
  1567. generation = btrfs_super_generation(disk_super);
  1568. tree_root->node = read_tree_block(tree_root,
  1569. btrfs_super_root(disk_super),
  1570. blocksize, generation);
  1571. if (!tree_root->node)
  1572. goto fail_chunk_root;
  1573. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  1574. tree_root->commit_root = btrfs_root_node(tree_root);
  1575. ret = find_and_setup_root(tree_root, fs_info,
  1576. BTRFS_EXTENT_TREE_OBJECTID, extent_root);
  1577. if (ret)
  1578. goto fail_tree_root;
  1579. extent_root->track_dirty = 1;
  1580. ret = find_and_setup_root(tree_root, fs_info,
  1581. BTRFS_DEV_TREE_OBJECTID, dev_root);
  1582. if (ret)
  1583. goto fail_extent_root;
  1584. dev_root->track_dirty = 1;
  1585. ret = find_and_setup_root(tree_root, fs_info,
  1586. BTRFS_CSUM_TREE_OBJECTID, csum_root);
  1587. if (ret)
  1588. goto fail_dev_root;
  1589. csum_root->track_dirty = 1;
  1590. btrfs_read_block_groups(extent_root);
  1591. fs_info->generation = generation;
  1592. fs_info->last_trans_committed = generation;
  1593. fs_info->data_alloc_profile = (u64)-1;
  1594. fs_info->metadata_alloc_profile = (u64)-1;
  1595. fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
  1596. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  1597. "btrfs-cleaner");
  1598. if (IS_ERR(fs_info->cleaner_kthread))
  1599. goto fail_csum_root;
  1600. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  1601. tree_root,
  1602. "btrfs-transaction");
  1603. if (IS_ERR(fs_info->transaction_kthread))
  1604. goto fail_cleaner;
  1605. if (!btrfs_test_opt(tree_root, SSD) &&
  1606. !btrfs_test_opt(tree_root, NOSSD) &&
  1607. !fs_info->fs_devices->rotating) {
  1608. printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
  1609. "mode\n");
  1610. btrfs_set_opt(fs_info->mount_opt, SSD);
  1611. }
  1612. if (btrfs_super_log_root(disk_super) != 0) {
  1613. u64 bytenr = btrfs_super_log_root(disk_super);
  1614. if (fs_devices->rw_devices == 0) {
  1615. printk(KERN_WARNING "Btrfs log replay required "
  1616. "on RO media\n");
  1617. err = -EIO;
  1618. goto fail_trans_kthread;
  1619. }
  1620. blocksize =
  1621. btrfs_level_size(tree_root,
  1622. btrfs_super_log_root_level(disk_super));
  1623. log_tree_root = kzalloc(sizeof(struct btrfs_root),
  1624. GFP_NOFS);
  1625. __setup_root(nodesize, leafsize, sectorsize, stripesize,
  1626. log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1627. log_tree_root->node = read_tree_block(tree_root, bytenr,
  1628. blocksize,
  1629. generation + 1);
  1630. ret = btrfs_recover_log_trees(log_tree_root);
  1631. BUG_ON(ret);
  1632. if (sb->s_flags & MS_RDONLY) {
  1633. ret = btrfs_commit_super(tree_root);
  1634. BUG_ON(ret);
  1635. }
  1636. }
  1637. if (!(sb->s_flags & MS_RDONLY)) {
  1638. ret = btrfs_recover_relocation(tree_root);
  1639. BUG_ON(ret);
  1640. }
  1641. location.objectid = BTRFS_FS_TREE_OBJECTID;
  1642. location.type = BTRFS_ROOT_ITEM_KEY;
  1643. location.offset = (u64)-1;
  1644. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  1645. if (!fs_info->fs_root)
  1646. goto fail_trans_kthread;
  1647. return tree_root;
  1648. fail_trans_kthread:
  1649. kthread_stop(fs_info->transaction_kthread);
  1650. fail_cleaner:
  1651. kthread_stop(fs_info->cleaner_kthread);
  1652. /*
  1653. * make sure we're done with the btree inode before we stop our
  1654. * kthreads
  1655. */
  1656. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  1657. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1658. fail_csum_root:
  1659. free_extent_buffer(csum_root->node);
  1660. free_extent_buffer(csum_root->commit_root);
  1661. fail_dev_root:
  1662. free_extent_buffer(dev_root->node);
  1663. free_extent_buffer(dev_root->commit_root);
  1664. fail_extent_root:
  1665. free_extent_buffer(extent_root->node);
  1666. free_extent_buffer(extent_root->commit_root);
  1667. fail_tree_root:
  1668. free_extent_buffer(tree_root->node);
  1669. free_extent_buffer(tree_root->commit_root);
  1670. fail_chunk_root:
  1671. free_extent_buffer(chunk_root->node);
  1672. free_extent_buffer(chunk_root->commit_root);
  1673. fail_sb_buffer:
  1674. btrfs_stop_workers(&fs_info->fixup_workers);
  1675. btrfs_stop_workers(&fs_info->delalloc_workers);
  1676. btrfs_stop_workers(&fs_info->workers);
  1677. btrfs_stop_workers(&fs_info->endio_workers);
  1678. btrfs_stop_workers(&fs_info->endio_meta_workers);
  1679. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  1680. btrfs_stop_workers(&fs_info->endio_write_workers);
  1681. btrfs_stop_workers(&fs_info->submit_workers);
  1682. fail_iput:
  1683. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  1684. iput(fs_info->btree_inode);
  1685. btrfs_close_devices(fs_info->fs_devices);
  1686. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  1687. bdi_destroy(&fs_info->bdi);
  1688. fail:
  1689. kfree(extent_root);
  1690. kfree(tree_root);
  1691. kfree(fs_info);
  1692. kfree(chunk_root);
  1693. kfree(dev_root);
  1694. kfree(csum_root);
  1695. return ERR_PTR(err);
  1696. }
  1697. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  1698. {
  1699. char b[BDEVNAME_SIZE];
  1700. if (uptodate) {
  1701. set_buffer_uptodate(bh);
  1702. } else {
  1703. if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
  1704. printk(KERN_WARNING "lost page write due to "
  1705. "I/O error on %s\n",
  1706. bdevname(bh->b_bdev, b));
  1707. }
  1708. /* note, we dont' set_buffer_write_io_error because we have
  1709. * our own ways of dealing with the IO errors
  1710. */
  1711. clear_buffer_uptodate(bh);
  1712. }
  1713. unlock_buffer(bh);
  1714. put_bh(bh);
  1715. }
  1716. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  1717. {
  1718. struct buffer_head *bh;
  1719. struct buffer_head *latest = NULL;
  1720. struct btrfs_super_block *super;
  1721. int i;
  1722. u64 transid = 0;
  1723. u64 bytenr;
  1724. /* we would like to check all the supers, but that would make
  1725. * a btrfs mount succeed after a mkfs from a different FS.
  1726. * So, we need to add a special mount option to scan for
  1727. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  1728. */
  1729. for (i = 0; i < 1; i++) {
  1730. bytenr = btrfs_sb_offset(i);
  1731. if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
  1732. break;
  1733. bh = __bread(bdev, bytenr / 4096, 4096);
  1734. if (!bh)
  1735. continue;
  1736. super = (struct btrfs_super_block *)bh->b_data;
  1737. if (btrfs_super_bytenr(super) != bytenr ||
  1738. strncmp((char *)(&super->magic), BTRFS_MAGIC,
  1739. sizeof(super->magic))) {
  1740. brelse(bh);
  1741. continue;
  1742. }
  1743. if (!latest || btrfs_super_generation(super) > transid) {
  1744. brelse(latest);
  1745. latest = bh;
  1746. transid = btrfs_super_generation(super);
  1747. } else {
  1748. brelse(bh);
  1749. }
  1750. }
  1751. return latest;
  1752. }
  1753. /*
  1754. * this should be called twice, once with wait == 0 and
  1755. * once with wait == 1. When wait == 0 is done, all the buffer heads
  1756. * we write are pinned.
  1757. *
  1758. * They are released when wait == 1 is done.
  1759. * max_mirrors must be the same for both runs, and it indicates how
  1760. * many supers on this one device should be written.
  1761. *
  1762. * max_mirrors == 0 means to write them all.
  1763. */
  1764. static int write_dev_supers(struct btrfs_device *device,
  1765. struct btrfs_super_block *sb,
  1766. int do_barriers, int wait, int max_mirrors)
  1767. {
  1768. struct buffer_head *bh;
  1769. int i;
  1770. int ret;
  1771. int errors = 0;
  1772. u32 crc;
  1773. u64 bytenr;
  1774. int last_barrier = 0;
  1775. if (max_mirrors == 0)
  1776. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  1777. /* make sure only the last submit_bh does a barrier */
  1778. if (do_barriers) {
  1779. for (i = 0; i < max_mirrors; i++) {
  1780. bytenr = btrfs_sb_offset(i);
  1781. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  1782. device->total_bytes)
  1783. break;
  1784. last_barrier = i;
  1785. }
  1786. }
  1787. for (i = 0; i < max_mirrors; i++) {
  1788. bytenr = btrfs_sb_offset(i);
  1789. if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
  1790. break;
  1791. if (wait) {
  1792. bh = __find_get_block(device->bdev, bytenr / 4096,
  1793. BTRFS_SUPER_INFO_SIZE);
  1794. BUG_ON(!bh);
  1795. wait_on_buffer(bh);
  1796. if (!buffer_uptodate(bh))
  1797. errors++;
  1798. /* drop our reference */
  1799. brelse(bh);
  1800. /* drop the reference from the wait == 0 run */
  1801. brelse(bh);
  1802. continue;
  1803. } else {
  1804. btrfs_set_super_bytenr(sb, bytenr);
  1805. crc = ~(u32)0;
  1806. crc = btrfs_csum_data(NULL, (char *)sb +
  1807. BTRFS_CSUM_SIZE, crc,
  1808. BTRFS_SUPER_INFO_SIZE -
  1809. BTRFS_CSUM_SIZE);
  1810. btrfs_csum_final(crc, sb->csum);
  1811. /*
  1812. * one reference for us, and we leave it for the
  1813. * caller
  1814. */
  1815. bh = __getblk(device->bdev, bytenr / 4096,
  1816. BTRFS_SUPER_INFO_SIZE);
  1817. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  1818. /* one reference for submit_bh */
  1819. get_bh(bh);
  1820. set_buffer_uptodate(bh);
  1821. lock_buffer(bh);
  1822. bh->b_end_io = btrfs_end_buffer_write_sync;
  1823. }
  1824. if (i == last_barrier && do_barriers && device->barriers) {
  1825. ret = submit_bh(WRITE_BARRIER, bh);
  1826. if (ret == -EOPNOTSUPP) {
  1827. printk("btrfs: disabling barriers on dev %s\n",
  1828. device->name);
  1829. set_buffer_uptodate(bh);
  1830. device->barriers = 0;
  1831. /* one reference for submit_bh */
  1832. get_bh(bh);
  1833. lock_buffer(bh);
  1834. ret = submit_bh(WRITE_SYNC, bh);
  1835. }
  1836. } else {
  1837. ret = submit_bh(WRITE_SYNC, bh);
  1838. }
  1839. if (ret)
  1840. errors++;
  1841. }
  1842. return errors < i ? 0 : -1;
  1843. }
  1844. int write_all_supers(struct btrfs_root *root, int max_mirrors)
  1845. {
  1846. struct list_head *head;
  1847. struct btrfs_device *dev;
  1848. struct btrfs_super_block *sb;
  1849. struct btrfs_dev_item *dev_item;
  1850. int ret;
  1851. int do_barriers;
  1852. int max_errors;
  1853. int total_errors = 0;
  1854. u64 flags;
  1855. max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
  1856. do_barriers = !btrfs_test_opt(root, NOBARRIER);
  1857. sb = &root->fs_info->super_for_commit;
  1858. dev_item = &sb->dev_item;
  1859. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  1860. head = &root->fs_info->fs_devices->devices;
  1861. list_for_each_entry(dev, head, dev_list) {
  1862. if (!dev->bdev) {
  1863. total_errors++;
  1864. continue;
  1865. }
  1866. if (!dev->in_fs_metadata || !dev->writeable)
  1867. continue;
  1868. btrfs_set_stack_device_generation(dev_item, 0);
  1869. btrfs_set_stack_device_type(dev_item, dev->type);
  1870. btrfs_set_stack_device_id(dev_item, dev->devid);
  1871. btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
  1872. btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
  1873. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  1874. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  1875. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  1876. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  1877. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  1878. flags = btrfs_super_flags(sb);
  1879. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  1880. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  1881. if (ret)
  1882. total_errors++;
  1883. }
  1884. if (total_errors > max_errors) {
  1885. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1886. total_errors);
  1887. BUG();
  1888. }
  1889. total_errors = 0;
  1890. list_for_each_entry(dev, head, dev_list) {
  1891. if (!dev->bdev)
  1892. continue;
  1893. if (!dev->in_fs_metadata || !dev->writeable)
  1894. continue;
  1895. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  1896. if (ret)
  1897. total_errors++;
  1898. }
  1899. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  1900. if (total_errors > max_errors) {
  1901. printk(KERN_ERR "btrfs: %d errors while writing supers\n",
  1902. total_errors);
  1903. BUG();
  1904. }
  1905. return 0;
  1906. }
  1907. int write_ctree_super(struct btrfs_trans_handle *trans,
  1908. struct btrfs_root *root, int max_mirrors)
  1909. {
  1910. int ret;
  1911. ret = write_all_supers(root, max_mirrors);
  1912. return ret;
  1913. }
  1914. int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
  1915. {
  1916. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  1917. radix_tree_delete(&fs_info->fs_roots_radix,
  1918. (unsigned long)root->root_key.objectid);
  1919. if (root->anon_super.s_dev) {
  1920. down_write(&root->anon_super.s_umount);
  1921. kill_anon_super(&root->anon_super);
  1922. }
  1923. if (root->node)
  1924. free_extent_buffer(root->node);
  1925. if (root->commit_root)
  1926. free_extent_buffer(root->commit_root);
  1927. kfree(root->name);
  1928. kfree(root);
  1929. return 0;
  1930. }
  1931. static int del_fs_roots(struct btrfs_fs_info *fs_info)
  1932. {
  1933. int ret;
  1934. struct btrfs_root *gang[8];
  1935. int i;
  1936. while (1) {
  1937. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1938. (void **)gang, 0,
  1939. ARRAY_SIZE(gang));
  1940. if (!ret)
  1941. break;
  1942. for (i = 0; i < ret; i++)
  1943. btrfs_free_fs_root(fs_info, gang[i]);
  1944. }
  1945. return 0;
  1946. }
  1947. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  1948. {
  1949. u64 root_objectid = 0;
  1950. struct btrfs_root *gang[8];
  1951. int i;
  1952. int ret;
  1953. while (1) {
  1954. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1955. (void **)gang, root_objectid,
  1956. ARRAY_SIZE(gang));
  1957. if (!ret)
  1958. break;
  1959. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  1960. for (i = 0; i < ret; i++) {
  1961. root_objectid = gang[i]->root_key.objectid;
  1962. ret = btrfs_find_dead_roots(fs_info->tree_root,
  1963. root_objectid);
  1964. BUG_ON(ret);
  1965. btrfs_orphan_cleanup(gang[i]);
  1966. }
  1967. root_objectid++;
  1968. }
  1969. return 0;
  1970. }
  1971. int btrfs_commit_super(struct btrfs_root *root)
  1972. {
  1973. struct btrfs_trans_handle *trans;
  1974. int ret;
  1975. mutex_lock(&root->fs_info->cleaner_mutex);
  1976. btrfs_clean_old_snapshots(root);
  1977. mutex_unlock(&root->fs_info->cleaner_mutex);
  1978. trans = btrfs_start_transaction(root, 1);
  1979. ret = btrfs_commit_transaction(trans, root);
  1980. BUG_ON(ret);
  1981. /* run commit again to drop the original snapshot */
  1982. trans = btrfs_start_transaction(root, 1);
  1983. btrfs_commit_transaction(trans, root);
  1984. ret = btrfs_write_and_wait_transaction(NULL, root);
  1985. BUG_ON(ret);
  1986. ret = write_ctree_super(NULL, root, 0);
  1987. return ret;
  1988. }
  1989. int close_ctree(struct btrfs_root *root)
  1990. {
  1991. struct btrfs_fs_info *fs_info = root->fs_info;
  1992. int ret;
  1993. fs_info->closing = 1;
  1994. smp_mb();
  1995. kthread_stop(root->fs_info->transaction_kthread);
  1996. kthread_stop(root->fs_info->cleaner_kthread);
  1997. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  1998. ret = btrfs_commit_super(root);
  1999. if (ret)
  2000. printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
  2001. }
  2002. if (fs_info->delalloc_bytes) {
  2003. printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
  2004. (unsigned long long)fs_info->delalloc_bytes);
  2005. }
  2006. if (fs_info->total_ref_cache_size) {
  2007. printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
  2008. (unsigned long long)fs_info->total_ref_cache_size);
  2009. }
  2010. free_extent_buffer(fs_info->extent_root->node);
  2011. free_extent_buffer(fs_info->extent_root->commit_root);
  2012. free_extent_buffer(fs_info->tree_root->node);
  2013. free_extent_buffer(fs_info->tree_root->commit_root);
  2014. free_extent_buffer(root->fs_info->chunk_root->node);
  2015. free_extent_buffer(root->fs_info->chunk_root->commit_root);
  2016. free_extent_buffer(root->fs_info->dev_root->node);
  2017. free_extent_buffer(root->fs_info->dev_root->commit_root);
  2018. free_extent_buffer(root->fs_info->csum_root->node);
  2019. free_extent_buffer(root->fs_info->csum_root->commit_root);
  2020. btrfs_free_block_groups(root->fs_info);
  2021. del_fs_roots(fs_info);
  2022. iput(fs_info->btree_inode);
  2023. btrfs_stop_workers(&fs_info->fixup_workers);
  2024. btrfs_stop_workers(&fs_info->delalloc_workers);
  2025. btrfs_stop_workers(&fs_info->workers);
  2026. btrfs_stop_workers(&fs_info->endio_workers);
  2027. btrfs_stop_workers(&fs_info->endio_meta_workers);
  2028. btrfs_stop_workers(&fs_info->endio_meta_write_workers);
  2029. btrfs_stop_workers(&fs_info->endio_write_workers);
  2030. btrfs_stop_workers(&fs_info->submit_workers);
  2031. btrfs_close_devices(fs_info->fs_devices);
  2032. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2033. bdi_destroy(&fs_info->bdi);
  2034. kfree(fs_info->extent_root);
  2035. kfree(fs_info->tree_root);
  2036. kfree(fs_info->chunk_root);
  2037. kfree(fs_info->dev_root);
  2038. kfree(fs_info->csum_root);
  2039. return 0;
  2040. }
  2041. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
  2042. {
  2043. int ret;
  2044. struct inode *btree_inode = buf->first_page->mapping->host;
  2045. ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
  2046. if (!ret)
  2047. return ret;
  2048. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  2049. parent_transid);
  2050. return !ret;
  2051. }
  2052. int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
  2053. {
  2054. struct inode *btree_inode = buf->first_page->mapping->host;
  2055. return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
  2056. buf);
  2057. }
  2058. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  2059. {
  2060. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2061. u64 transid = btrfs_header_generation(buf);
  2062. struct inode *btree_inode = root->fs_info->btree_inode;
  2063. int was_dirty;
  2064. btrfs_assert_tree_locked(buf);
  2065. if (transid != root->fs_info->generation) {
  2066. printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
  2067. "found %llu running %llu\n",
  2068. (unsigned long long)buf->start,
  2069. (unsigned long long)transid,
  2070. (unsigned long long)root->fs_info->generation);
  2071. WARN_ON(1);
  2072. }
  2073. was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
  2074. buf);
  2075. if (!was_dirty) {
  2076. spin_lock(&root->fs_info->delalloc_lock);
  2077. root->fs_info->dirty_metadata_bytes += buf->len;
  2078. spin_unlock(&root->fs_info->delalloc_lock);
  2079. }
  2080. }
  2081. void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
  2082. {
  2083. /*
  2084. * looks as though older kernels can get into trouble with
  2085. * this code, they end up stuck in balance_dirty_pages forever
  2086. */
  2087. u64 num_dirty;
  2088. unsigned long thresh = 32 * 1024 * 1024;
  2089. if (current->flags & PF_MEMALLOC)
  2090. return;
  2091. num_dirty = root->fs_info->dirty_metadata_bytes;
  2092. if (num_dirty > thresh) {
  2093. balance_dirty_pages_ratelimited_nr(
  2094. root->fs_info->btree_inode->i_mapping, 1);
  2095. }
  2096. return;
  2097. }
  2098. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  2099. {
  2100. struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
  2101. int ret;
  2102. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  2103. if (ret == 0)
  2104. set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
  2105. return ret;
  2106. }
  2107. int btree_lock_page_hook(struct page *page)
  2108. {
  2109. struct inode *inode = page->mapping->host;
  2110. struct btrfs_root *root = BTRFS_I(inode)->root;
  2111. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  2112. struct extent_buffer *eb;
  2113. unsigned long len;
  2114. u64 bytenr = page_offset(page);
  2115. if (page->private == EXTENT_PAGE_PRIVATE)
  2116. goto out;
  2117. len = page->private >> 2;
  2118. eb = find_extent_buffer(io_tree, bytenr, len, GFP_NOFS);
  2119. if (!eb)
  2120. goto out;
  2121. btrfs_tree_lock(eb);
  2122. btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
  2123. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
  2124. spin_lock(&root->fs_info->delalloc_lock);
  2125. if (root->fs_info->dirty_metadata_bytes >= eb->len)
  2126. root->fs_info->dirty_metadata_bytes -= eb->len;
  2127. else
  2128. WARN_ON(1);
  2129. spin_unlock(&root->fs_info->delalloc_lock);
  2130. }
  2131. btrfs_tree_unlock(eb);
  2132. free_extent_buffer(eb);
  2133. out:
  2134. lock_page(page);
  2135. return 0;
  2136. }
  2137. static struct extent_io_ops btree_extent_io_ops = {
  2138. .write_cache_pages_lock_hook = btree_lock_page_hook,
  2139. .readpage_end_io_hook = btree_readpage_end_io_hook,
  2140. .submit_bio_hook = btree_submit_bio_hook,
  2141. /* note we're sharing with inode.c for the merge bio hook */
  2142. .merge_bio_hook = btrfs_merge_bio_hook,
  2143. };