i915_gem.c 116 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include <linux/swap.h>
  32. #include <linux/pci.h>
  33. #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
  34. static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
  35. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  36. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  37. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  38. int write);
  39. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  40. uint64_t offset,
  41. uint64_t size);
  42. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  43. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
  44. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  45. unsigned alignment);
  46. static int i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write);
  47. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  48. static int i915_gem_evict_something(struct drm_device *dev);
  49. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  50. struct drm_i915_gem_pwrite *args,
  51. struct drm_file *file_priv);
  52. int i915_gem_do_init(struct drm_device *dev, unsigned long start,
  53. unsigned long end)
  54. {
  55. drm_i915_private_t *dev_priv = dev->dev_private;
  56. if (start >= end ||
  57. (start & (PAGE_SIZE - 1)) != 0 ||
  58. (end & (PAGE_SIZE - 1)) != 0) {
  59. return -EINVAL;
  60. }
  61. drm_mm_init(&dev_priv->mm.gtt_space, start,
  62. end - start);
  63. dev->gtt_total = (uint32_t) (end - start);
  64. return 0;
  65. }
  66. int
  67. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  68. struct drm_file *file_priv)
  69. {
  70. struct drm_i915_gem_init *args = data;
  71. int ret;
  72. mutex_lock(&dev->struct_mutex);
  73. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  74. mutex_unlock(&dev->struct_mutex);
  75. return ret;
  76. }
  77. int
  78. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  79. struct drm_file *file_priv)
  80. {
  81. struct drm_i915_gem_get_aperture *args = data;
  82. if (!(dev->driver->driver_features & DRIVER_GEM))
  83. return -ENODEV;
  84. args->aper_size = dev->gtt_total;
  85. args->aper_available_size = (args->aper_size -
  86. atomic_read(&dev->pin_memory));
  87. return 0;
  88. }
  89. /**
  90. * Creates a new mm object and returns a handle to it.
  91. */
  92. int
  93. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  94. struct drm_file *file_priv)
  95. {
  96. struct drm_i915_gem_create *args = data;
  97. struct drm_gem_object *obj;
  98. int handle, ret;
  99. args->size = roundup(args->size, PAGE_SIZE);
  100. /* Allocate the new object */
  101. obj = drm_gem_object_alloc(dev, args->size);
  102. if (obj == NULL)
  103. return -ENOMEM;
  104. ret = drm_gem_handle_create(file_priv, obj, &handle);
  105. mutex_lock(&dev->struct_mutex);
  106. drm_gem_object_handle_unreference(obj);
  107. mutex_unlock(&dev->struct_mutex);
  108. if (ret)
  109. return ret;
  110. args->handle = handle;
  111. return 0;
  112. }
  113. static inline int
  114. fast_shmem_read(struct page **pages,
  115. loff_t page_base, int page_offset,
  116. char __user *data,
  117. int length)
  118. {
  119. char __iomem *vaddr;
  120. int unwritten;
  121. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  122. if (vaddr == NULL)
  123. return -ENOMEM;
  124. unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  125. kunmap_atomic(vaddr, KM_USER0);
  126. if (unwritten)
  127. return -EFAULT;
  128. return 0;
  129. }
  130. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  131. {
  132. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  133. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  134. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  135. obj_priv->tiling_mode != I915_TILING_NONE;
  136. }
  137. static inline int
  138. slow_shmem_copy(struct page *dst_page,
  139. int dst_offset,
  140. struct page *src_page,
  141. int src_offset,
  142. int length)
  143. {
  144. char *dst_vaddr, *src_vaddr;
  145. dst_vaddr = kmap_atomic(dst_page, KM_USER0);
  146. if (dst_vaddr == NULL)
  147. return -ENOMEM;
  148. src_vaddr = kmap_atomic(src_page, KM_USER1);
  149. if (src_vaddr == NULL) {
  150. kunmap_atomic(dst_vaddr, KM_USER0);
  151. return -ENOMEM;
  152. }
  153. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  154. kunmap_atomic(src_vaddr, KM_USER1);
  155. kunmap_atomic(dst_vaddr, KM_USER0);
  156. return 0;
  157. }
  158. static inline int
  159. slow_shmem_bit17_copy(struct page *gpu_page,
  160. int gpu_offset,
  161. struct page *cpu_page,
  162. int cpu_offset,
  163. int length,
  164. int is_read)
  165. {
  166. char *gpu_vaddr, *cpu_vaddr;
  167. /* Use the unswizzled path if this page isn't affected. */
  168. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  169. if (is_read)
  170. return slow_shmem_copy(cpu_page, cpu_offset,
  171. gpu_page, gpu_offset, length);
  172. else
  173. return slow_shmem_copy(gpu_page, gpu_offset,
  174. cpu_page, cpu_offset, length);
  175. }
  176. gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
  177. if (gpu_vaddr == NULL)
  178. return -ENOMEM;
  179. cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
  180. if (cpu_vaddr == NULL) {
  181. kunmap_atomic(gpu_vaddr, KM_USER0);
  182. return -ENOMEM;
  183. }
  184. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  185. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  186. */
  187. while (length > 0) {
  188. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  189. int this_length = min(cacheline_end - gpu_offset, length);
  190. int swizzled_gpu_offset = gpu_offset ^ 64;
  191. if (is_read) {
  192. memcpy(cpu_vaddr + cpu_offset,
  193. gpu_vaddr + swizzled_gpu_offset,
  194. this_length);
  195. } else {
  196. memcpy(gpu_vaddr + swizzled_gpu_offset,
  197. cpu_vaddr + cpu_offset,
  198. this_length);
  199. }
  200. cpu_offset += this_length;
  201. gpu_offset += this_length;
  202. length -= this_length;
  203. }
  204. kunmap_atomic(cpu_vaddr, KM_USER1);
  205. kunmap_atomic(gpu_vaddr, KM_USER0);
  206. return 0;
  207. }
  208. /**
  209. * This is the fast shmem pread path, which attempts to copy_from_user directly
  210. * from the backing pages of the object to the user's address space. On a
  211. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  212. */
  213. static int
  214. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  215. struct drm_i915_gem_pread *args,
  216. struct drm_file *file_priv)
  217. {
  218. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  219. ssize_t remain;
  220. loff_t offset, page_base;
  221. char __user *user_data;
  222. int page_offset, page_length;
  223. int ret;
  224. user_data = (char __user *) (uintptr_t) args->data_ptr;
  225. remain = args->size;
  226. mutex_lock(&dev->struct_mutex);
  227. ret = i915_gem_object_get_pages(obj);
  228. if (ret != 0)
  229. goto fail_unlock;
  230. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  231. args->size);
  232. if (ret != 0)
  233. goto fail_put_pages;
  234. obj_priv = obj->driver_private;
  235. offset = args->offset;
  236. while (remain > 0) {
  237. /* Operation in this page
  238. *
  239. * page_base = page offset within aperture
  240. * page_offset = offset within page
  241. * page_length = bytes to copy for this page
  242. */
  243. page_base = (offset & ~(PAGE_SIZE-1));
  244. page_offset = offset & (PAGE_SIZE-1);
  245. page_length = remain;
  246. if ((page_offset + remain) > PAGE_SIZE)
  247. page_length = PAGE_SIZE - page_offset;
  248. ret = fast_shmem_read(obj_priv->pages,
  249. page_base, page_offset,
  250. user_data, page_length);
  251. if (ret)
  252. goto fail_put_pages;
  253. remain -= page_length;
  254. user_data += page_length;
  255. offset += page_length;
  256. }
  257. fail_put_pages:
  258. i915_gem_object_put_pages(obj);
  259. fail_unlock:
  260. mutex_unlock(&dev->struct_mutex);
  261. return ret;
  262. }
  263. /**
  264. * This is the fallback shmem pread path, which allocates temporary storage
  265. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  266. * can copy out of the object's backing pages while holding the struct mutex
  267. * and not take page faults.
  268. */
  269. static int
  270. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  271. struct drm_i915_gem_pread *args,
  272. struct drm_file *file_priv)
  273. {
  274. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  275. struct mm_struct *mm = current->mm;
  276. struct page **user_pages;
  277. ssize_t remain;
  278. loff_t offset, pinned_pages, i;
  279. loff_t first_data_page, last_data_page, num_pages;
  280. int shmem_page_index, shmem_page_offset;
  281. int data_page_index, data_page_offset;
  282. int page_length;
  283. int ret;
  284. uint64_t data_ptr = args->data_ptr;
  285. int do_bit17_swizzling;
  286. remain = args->size;
  287. /* Pin the user pages containing the data. We can't fault while
  288. * holding the struct mutex, yet we want to hold it while
  289. * dereferencing the user data.
  290. */
  291. first_data_page = data_ptr / PAGE_SIZE;
  292. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  293. num_pages = last_data_page - first_data_page + 1;
  294. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  295. if (user_pages == NULL)
  296. return -ENOMEM;
  297. down_read(&mm->mmap_sem);
  298. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  299. num_pages, 1, 0, user_pages, NULL);
  300. up_read(&mm->mmap_sem);
  301. if (pinned_pages < num_pages) {
  302. ret = -EFAULT;
  303. goto fail_put_user_pages;
  304. }
  305. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  306. mutex_lock(&dev->struct_mutex);
  307. ret = i915_gem_object_get_pages(obj);
  308. if (ret != 0)
  309. goto fail_unlock;
  310. ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
  311. args->size);
  312. if (ret != 0)
  313. goto fail_put_pages;
  314. obj_priv = obj->driver_private;
  315. offset = args->offset;
  316. while (remain > 0) {
  317. /* Operation in this page
  318. *
  319. * shmem_page_index = page number within shmem file
  320. * shmem_page_offset = offset within page in shmem file
  321. * data_page_index = page number in get_user_pages return
  322. * data_page_offset = offset with data_page_index page.
  323. * page_length = bytes to copy for this page
  324. */
  325. shmem_page_index = offset / PAGE_SIZE;
  326. shmem_page_offset = offset & ~PAGE_MASK;
  327. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  328. data_page_offset = data_ptr & ~PAGE_MASK;
  329. page_length = remain;
  330. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  331. page_length = PAGE_SIZE - shmem_page_offset;
  332. if ((data_page_offset + page_length) > PAGE_SIZE)
  333. page_length = PAGE_SIZE - data_page_offset;
  334. if (do_bit17_swizzling) {
  335. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  336. shmem_page_offset,
  337. user_pages[data_page_index],
  338. data_page_offset,
  339. page_length,
  340. 1);
  341. } else {
  342. ret = slow_shmem_copy(user_pages[data_page_index],
  343. data_page_offset,
  344. obj_priv->pages[shmem_page_index],
  345. shmem_page_offset,
  346. page_length);
  347. }
  348. if (ret)
  349. goto fail_put_pages;
  350. remain -= page_length;
  351. data_ptr += page_length;
  352. offset += page_length;
  353. }
  354. fail_put_pages:
  355. i915_gem_object_put_pages(obj);
  356. fail_unlock:
  357. mutex_unlock(&dev->struct_mutex);
  358. fail_put_user_pages:
  359. for (i = 0; i < pinned_pages; i++) {
  360. SetPageDirty(user_pages[i]);
  361. page_cache_release(user_pages[i]);
  362. }
  363. drm_free_large(user_pages);
  364. return ret;
  365. }
  366. /**
  367. * Reads data from the object referenced by handle.
  368. *
  369. * On error, the contents of *data are undefined.
  370. */
  371. int
  372. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  373. struct drm_file *file_priv)
  374. {
  375. struct drm_i915_gem_pread *args = data;
  376. struct drm_gem_object *obj;
  377. struct drm_i915_gem_object *obj_priv;
  378. int ret;
  379. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  380. if (obj == NULL)
  381. return -EBADF;
  382. obj_priv = obj->driver_private;
  383. /* Bounds check source.
  384. *
  385. * XXX: This could use review for overflow issues...
  386. */
  387. if (args->offset > obj->size || args->size > obj->size ||
  388. args->offset + args->size > obj->size) {
  389. drm_gem_object_unreference(obj);
  390. return -EINVAL;
  391. }
  392. if (i915_gem_object_needs_bit17_swizzle(obj)) {
  393. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  394. } else {
  395. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  396. if (ret != 0)
  397. ret = i915_gem_shmem_pread_slow(dev, obj, args,
  398. file_priv);
  399. }
  400. drm_gem_object_unreference(obj);
  401. return ret;
  402. }
  403. /* This is the fast write path which cannot handle
  404. * page faults in the source data
  405. */
  406. static inline int
  407. fast_user_write(struct io_mapping *mapping,
  408. loff_t page_base, int page_offset,
  409. char __user *user_data,
  410. int length)
  411. {
  412. char *vaddr_atomic;
  413. unsigned long unwritten;
  414. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  415. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  416. user_data, length);
  417. io_mapping_unmap_atomic(vaddr_atomic);
  418. if (unwritten)
  419. return -EFAULT;
  420. return 0;
  421. }
  422. /* Here's the write path which can sleep for
  423. * page faults
  424. */
  425. static inline int
  426. slow_kernel_write(struct io_mapping *mapping,
  427. loff_t gtt_base, int gtt_offset,
  428. struct page *user_page, int user_offset,
  429. int length)
  430. {
  431. char *src_vaddr, *dst_vaddr;
  432. unsigned long unwritten;
  433. dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
  434. src_vaddr = kmap_atomic(user_page, KM_USER1);
  435. unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
  436. src_vaddr + user_offset,
  437. length);
  438. kunmap_atomic(src_vaddr, KM_USER1);
  439. io_mapping_unmap_atomic(dst_vaddr);
  440. if (unwritten)
  441. return -EFAULT;
  442. return 0;
  443. }
  444. static inline int
  445. fast_shmem_write(struct page **pages,
  446. loff_t page_base, int page_offset,
  447. char __user *data,
  448. int length)
  449. {
  450. char __iomem *vaddr;
  451. unsigned long unwritten;
  452. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
  453. if (vaddr == NULL)
  454. return -ENOMEM;
  455. unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  456. kunmap_atomic(vaddr, KM_USER0);
  457. if (unwritten)
  458. return -EFAULT;
  459. return 0;
  460. }
  461. /**
  462. * This is the fast pwrite path, where we copy the data directly from the
  463. * user into the GTT, uncached.
  464. */
  465. static int
  466. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  467. struct drm_i915_gem_pwrite *args,
  468. struct drm_file *file_priv)
  469. {
  470. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  471. drm_i915_private_t *dev_priv = dev->dev_private;
  472. ssize_t remain;
  473. loff_t offset, page_base;
  474. char __user *user_data;
  475. int page_offset, page_length;
  476. int ret;
  477. user_data = (char __user *) (uintptr_t) args->data_ptr;
  478. remain = args->size;
  479. if (!access_ok(VERIFY_READ, user_data, remain))
  480. return -EFAULT;
  481. mutex_lock(&dev->struct_mutex);
  482. ret = i915_gem_object_pin(obj, 0);
  483. if (ret) {
  484. mutex_unlock(&dev->struct_mutex);
  485. return ret;
  486. }
  487. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  488. if (ret)
  489. goto fail;
  490. obj_priv = obj->driver_private;
  491. offset = obj_priv->gtt_offset + args->offset;
  492. while (remain > 0) {
  493. /* Operation in this page
  494. *
  495. * page_base = page offset within aperture
  496. * page_offset = offset within page
  497. * page_length = bytes to copy for this page
  498. */
  499. page_base = (offset & ~(PAGE_SIZE-1));
  500. page_offset = offset & (PAGE_SIZE-1);
  501. page_length = remain;
  502. if ((page_offset + remain) > PAGE_SIZE)
  503. page_length = PAGE_SIZE - page_offset;
  504. ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
  505. page_offset, user_data, page_length);
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (ret)
  511. goto fail;
  512. remain -= page_length;
  513. user_data += page_length;
  514. offset += page_length;
  515. }
  516. fail:
  517. i915_gem_object_unpin(obj);
  518. mutex_unlock(&dev->struct_mutex);
  519. return ret;
  520. }
  521. /**
  522. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  523. * the memory and maps it using kmap_atomic for copying.
  524. *
  525. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  526. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  527. */
  528. static int
  529. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  530. struct drm_i915_gem_pwrite *args,
  531. struct drm_file *file_priv)
  532. {
  533. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  534. drm_i915_private_t *dev_priv = dev->dev_private;
  535. ssize_t remain;
  536. loff_t gtt_page_base, offset;
  537. loff_t first_data_page, last_data_page, num_pages;
  538. loff_t pinned_pages, i;
  539. struct page **user_pages;
  540. struct mm_struct *mm = current->mm;
  541. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  542. int ret;
  543. uint64_t data_ptr = args->data_ptr;
  544. remain = args->size;
  545. /* Pin the user pages containing the data. We can't fault while
  546. * holding the struct mutex, and all of the pwrite implementations
  547. * want to hold it while dereferencing the user data.
  548. */
  549. first_data_page = data_ptr / PAGE_SIZE;
  550. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  551. num_pages = last_data_page - first_data_page + 1;
  552. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  553. if (user_pages == NULL)
  554. return -ENOMEM;
  555. down_read(&mm->mmap_sem);
  556. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  557. num_pages, 0, 0, user_pages, NULL);
  558. up_read(&mm->mmap_sem);
  559. if (pinned_pages < num_pages) {
  560. ret = -EFAULT;
  561. goto out_unpin_pages;
  562. }
  563. mutex_lock(&dev->struct_mutex);
  564. ret = i915_gem_object_pin(obj, 0);
  565. if (ret)
  566. goto out_unlock;
  567. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  568. if (ret)
  569. goto out_unpin_object;
  570. obj_priv = obj->driver_private;
  571. offset = obj_priv->gtt_offset + args->offset;
  572. while (remain > 0) {
  573. /* Operation in this page
  574. *
  575. * gtt_page_base = page offset within aperture
  576. * gtt_page_offset = offset within page in aperture
  577. * data_page_index = page number in get_user_pages return
  578. * data_page_offset = offset with data_page_index page.
  579. * page_length = bytes to copy for this page
  580. */
  581. gtt_page_base = offset & PAGE_MASK;
  582. gtt_page_offset = offset & ~PAGE_MASK;
  583. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  584. data_page_offset = data_ptr & ~PAGE_MASK;
  585. page_length = remain;
  586. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  587. page_length = PAGE_SIZE - gtt_page_offset;
  588. if ((data_page_offset + page_length) > PAGE_SIZE)
  589. page_length = PAGE_SIZE - data_page_offset;
  590. ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
  591. gtt_page_base, gtt_page_offset,
  592. user_pages[data_page_index],
  593. data_page_offset,
  594. page_length);
  595. /* If we get a fault while copying data, then (presumably) our
  596. * source page isn't available. Return the error and we'll
  597. * retry in the slow path.
  598. */
  599. if (ret)
  600. goto out_unpin_object;
  601. remain -= page_length;
  602. offset += page_length;
  603. data_ptr += page_length;
  604. }
  605. out_unpin_object:
  606. i915_gem_object_unpin(obj);
  607. out_unlock:
  608. mutex_unlock(&dev->struct_mutex);
  609. out_unpin_pages:
  610. for (i = 0; i < pinned_pages; i++)
  611. page_cache_release(user_pages[i]);
  612. drm_free_large(user_pages);
  613. return ret;
  614. }
  615. /**
  616. * This is the fast shmem pwrite path, which attempts to directly
  617. * copy_from_user into the kmapped pages backing the object.
  618. */
  619. static int
  620. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  621. struct drm_i915_gem_pwrite *args,
  622. struct drm_file *file_priv)
  623. {
  624. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  625. ssize_t remain;
  626. loff_t offset, page_base;
  627. char __user *user_data;
  628. int page_offset, page_length;
  629. int ret;
  630. user_data = (char __user *) (uintptr_t) args->data_ptr;
  631. remain = args->size;
  632. mutex_lock(&dev->struct_mutex);
  633. ret = i915_gem_object_get_pages(obj);
  634. if (ret != 0)
  635. goto fail_unlock;
  636. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  637. if (ret != 0)
  638. goto fail_put_pages;
  639. obj_priv = obj->driver_private;
  640. offset = args->offset;
  641. obj_priv->dirty = 1;
  642. while (remain > 0) {
  643. /* Operation in this page
  644. *
  645. * page_base = page offset within aperture
  646. * page_offset = offset within page
  647. * page_length = bytes to copy for this page
  648. */
  649. page_base = (offset & ~(PAGE_SIZE-1));
  650. page_offset = offset & (PAGE_SIZE-1);
  651. page_length = remain;
  652. if ((page_offset + remain) > PAGE_SIZE)
  653. page_length = PAGE_SIZE - page_offset;
  654. ret = fast_shmem_write(obj_priv->pages,
  655. page_base, page_offset,
  656. user_data, page_length);
  657. if (ret)
  658. goto fail_put_pages;
  659. remain -= page_length;
  660. user_data += page_length;
  661. offset += page_length;
  662. }
  663. fail_put_pages:
  664. i915_gem_object_put_pages(obj);
  665. fail_unlock:
  666. mutex_unlock(&dev->struct_mutex);
  667. return ret;
  668. }
  669. /**
  670. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  671. * the memory and maps it using kmap_atomic for copying.
  672. *
  673. * This avoids taking mmap_sem for faulting on the user's address while the
  674. * struct_mutex is held.
  675. */
  676. static int
  677. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  678. struct drm_i915_gem_pwrite *args,
  679. struct drm_file *file_priv)
  680. {
  681. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  682. struct mm_struct *mm = current->mm;
  683. struct page **user_pages;
  684. ssize_t remain;
  685. loff_t offset, pinned_pages, i;
  686. loff_t first_data_page, last_data_page, num_pages;
  687. int shmem_page_index, shmem_page_offset;
  688. int data_page_index, data_page_offset;
  689. int page_length;
  690. int ret;
  691. uint64_t data_ptr = args->data_ptr;
  692. int do_bit17_swizzling;
  693. remain = args->size;
  694. /* Pin the user pages containing the data. We can't fault while
  695. * holding the struct mutex, and all of the pwrite implementations
  696. * want to hold it while dereferencing the user data.
  697. */
  698. first_data_page = data_ptr / PAGE_SIZE;
  699. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  700. num_pages = last_data_page - first_data_page + 1;
  701. user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
  702. if (user_pages == NULL)
  703. return -ENOMEM;
  704. down_read(&mm->mmap_sem);
  705. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  706. num_pages, 0, 0, user_pages, NULL);
  707. up_read(&mm->mmap_sem);
  708. if (pinned_pages < num_pages) {
  709. ret = -EFAULT;
  710. goto fail_put_user_pages;
  711. }
  712. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  713. mutex_lock(&dev->struct_mutex);
  714. ret = i915_gem_object_get_pages(obj);
  715. if (ret != 0)
  716. goto fail_unlock;
  717. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  718. if (ret != 0)
  719. goto fail_put_pages;
  720. obj_priv = obj->driver_private;
  721. offset = args->offset;
  722. obj_priv->dirty = 1;
  723. while (remain > 0) {
  724. /* Operation in this page
  725. *
  726. * shmem_page_index = page number within shmem file
  727. * shmem_page_offset = offset within page in shmem file
  728. * data_page_index = page number in get_user_pages return
  729. * data_page_offset = offset with data_page_index page.
  730. * page_length = bytes to copy for this page
  731. */
  732. shmem_page_index = offset / PAGE_SIZE;
  733. shmem_page_offset = offset & ~PAGE_MASK;
  734. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  735. data_page_offset = data_ptr & ~PAGE_MASK;
  736. page_length = remain;
  737. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  738. page_length = PAGE_SIZE - shmem_page_offset;
  739. if ((data_page_offset + page_length) > PAGE_SIZE)
  740. page_length = PAGE_SIZE - data_page_offset;
  741. if (do_bit17_swizzling) {
  742. ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  743. shmem_page_offset,
  744. user_pages[data_page_index],
  745. data_page_offset,
  746. page_length,
  747. 0);
  748. } else {
  749. ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
  750. shmem_page_offset,
  751. user_pages[data_page_index],
  752. data_page_offset,
  753. page_length);
  754. }
  755. if (ret)
  756. goto fail_put_pages;
  757. remain -= page_length;
  758. data_ptr += page_length;
  759. offset += page_length;
  760. }
  761. fail_put_pages:
  762. i915_gem_object_put_pages(obj);
  763. fail_unlock:
  764. mutex_unlock(&dev->struct_mutex);
  765. fail_put_user_pages:
  766. for (i = 0; i < pinned_pages; i++)
  767. page_cache_release(user_pages[i]);
  768. drm_free_large(user_pages);
  769. return ret;
  770. }
  771. /**
  772. * Writes data to the object referenced by handle.
  773. *
  774. * On error, the contents of the buffer that were to be modified are undefined.
  775. */
  776. int
  777. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  778. struct drm_file *file_priv)
  779. {
  780. struct drm_i915_gem_pwrite *args = data;
  781. struct drm_gem_object *obj;
  782. struct drm_i915_gem_object *obj_priv;
  783. int ret = 0;
  784. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  785. if (obj == NULL)
  786. return -EBADF;
  787. obj_priv = obj->driver_private;
  788. /* Bounds check destination.
  789. *
  790. * XXX: This could use review for overflow issues...
  791. */
  792. if (args->offset > obj->size || args->size > obj->size ||
  793. args->offset + args->size > obj->size) {
  794. drm_gem_object_unreference(obj);
  795. return -EINVAL;
  796. }
  797. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  798. * it would end up going through the fenced access, and we'll get
  799. * different detiling behavior between reading and writing.
  800. * pread/pwrite currently are reading and writing from the CPU
  801. * perspective, requiring manual detiling by the client.
  802. */
  803. if (obj_priv->phys_obj)
  804. ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
  805. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  806. dev->gtt_total != 0) {
  807. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
  808. if (ret == -EFAULT) {
  809. ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
  810. file_priv);
  811. }
  812. } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
  813. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
  814. } else {
  815. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
  816. if (ret == -EFAULT) {
  817. ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
  818. file_priv);
  819. }
  820. }
  821. #if WATCH_PWRITE
  822. if (ret)
  823. DRM_INFO("pwrite failed %d\n", ret);
  824. #endif
  825. drm_gem_object_unreference(obj);
  826. return ret;
  827. }
  828. /**
  829. * Called when user space prepares to use an object with the CPU, either
  830. * through the mmap ioctl's mapping or a GTT mapping.
  831. */
  832. int
  833. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  834. struct drm_file *file_priv)
  835. {
  836. struct drm_i915_gem_set_domain *args = data;
  837. struct drm_gem_object *obj;
  838. uint32_t read_domains = args->read_domains;
  839. uint32_t write_domain = args->write_domain;
  840. int ret;
  841. if (!(dev->driver->driver_features & DRIVER_GEM))
  842. return -ENODEV;
  843. /* Only handle setting domains to types used by the CPU. */
  844. if (write_domain & I915_GEM_GPU_DOMAINS)
  845. return -EINVAL;
  846. if (read_domains & I915_GEM_GPU_DOMAINS)
  847. return -EINVAL;
  848. /* Having something in the write domain implies it's in the read
  849. * domain, and only that read domain. Enforce that in the request.
  850. */
  851. if (write_domain != 0 && read_domains != write_domain)
  852. return -EINVAL;
  853. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  854. if (obj == NULL)
  855. return -EBADF;
  856. mutex_lock(&dev->struct_mutex);
  857. #if WATCH_BUF
  858. DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
  859. obj, obj->size, read_domains, write_domain);
  860. #endif
  861. if (read_domains & I915_GEM_DOMAIN_GTT) {
  862. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  863. /* Silently promote "you're not bound, there was nothing to do"
  864. * to success, since the client was just asking us to
  865. * make sure everything was done.
  866. */
  867. if (ret == -EINVAL)
  868. ret = 0;
  869. } else {
  870. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  871. }
  872. drm_gem_object_unreference(obj);
  873. mutex_unlock(&dev->struct_mutex);
  874. return ret;
  875. }
  876. /**
  877. * Called when user space has done writes to this buffer
  878. */
  879. int
  880. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  881. struct drm_file *file_priv)
  882. {
  883. struct drm_i915_gem_sw_finish *args = data;
  884. struct drm_gem_object *obj;
  885. struct drm_i915_gem_object *obj_priv;
  886. int ret = 0;
  887. if (!(dev->driver->driver_features & DRIVER_GEM))
  888. return -ENODEV;
  889. mutex_lock(&dev->struct_mutex);
  890. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  891. if (obj == NULL) {
  892. mutex_unlock(&dev->struct_mutex);
  893. return -EBADF;
  894. }
  895. #if WATCH_BUF
  896. DRM_INFO("%s: sw_finish %d (%p %d)\n",
  897. __func__, args->handle, obj, obj->size);
  898. #endif
  899. obj_priv = obj->driver_private;
  900. /* Pinned buffers may be scanout, so flush the cache */
  901. if (obj_priv->pin_count)
  902. i915_gem_object_flush_cpu_write_domain(obj);
  903. drm_gem_object_unreference(obj);
  904. mutex_unlock(&dev->struct_mutex);
  905. return ret;
  906. }
  907. /**
  908. * Maps the contents of an object, returning the address it is mapped
  909. * into.
  910. *
  911. * While the mapping holds a reference on the contents of the object, it doesn't
  912. * imply a ref on the object itself.
  913. */
  914. int
  915. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  916. struct drm_file *file_priv)
  917. {
  918. struct drm_i915_gem_mmap *args = data;
  919. struct drm_gem_object *obj;
  920. loff_t offset;
  921. unsigned long addr;
  922. if (!(dev->driver->driver_features & DRIVER_GEM))
  923. return -ENODEV;
  924. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  925. if (obj == NULL)
  926. return -EBADF;
  927. offset = args->offset;
  928. down_write(&current->mm->mmap_sem);
  929. addr = do_mmap(obj->filp, 0, args->size,
  930. PROT_READ | PROT_WRITE, MAP_SHARED,
  931. args->offset);
  932. up_write(&current->mm->mmap_sem);
  933. mutex_lock(&dev->struct_mutex);
  934. drm_gem_object_unreference(obj);
  935. mutex_unlock(&dev->struct_mutex);
  936. if (IS_ERR((void *)addr))
  937. return addr;
  938. args->addr_ptr = (uint64_t) addr;
  939. return 0;
  940. }
  941. /**
  942. * i915_gem_fault - fault a page into the GTT
  943. * vma: VMA in question
  944. * vmf: fault info
  945. *
  946. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  947. * from userspace. The fault handler takes care of binding the object to
  948. * the GTT (if needed), allocating and programming a fence register (again,
  949. * only if needed based on whether the old reg is still valid or the object
  950. * is tiled) and inserting a new PTE into the faulting process.
  951. *
  952. * Note that the faulting process may involve evicting existing objects
  953. * from the GTT and/or fence registers to make room. So performance may
  954. * suffer if the GTT working set is large or there are few fence registers
  955. * left.
  956. */
  957. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  958. {
  959. struct drm_gem_object *obj = vma->vm_private_data;
  960. struct drm_device *dev = obj->dev;
  961. struct drm_i915_private *dev_priv = dev->dev_private;
  962. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  963. pgoff_t page_offset;
  964. unsigned long pfn;
  965. int ret = 0;
  966. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  967. /* We don't use vmf->pgoff since that has the fake offset */
  968. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  969. PAGE_SHIFT;
  970. /* Now bind it into the GTT if needed */
  971. mutex_lock(&dev->struct_mutex);
  972. if (!obj_priv->gtt_space) {
  973. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  974. if (ret) {
  975. mutex_unlock(&dev->struct_mutex);
  976. return VM_FAULT_SIGBUS;
  977. }
  978. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  979. if (ret) {
  980. mutex_unlock(&dev->struct_mutex);
  981. return VM_FAULT_SIGBUS;
  982. }
  983. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  984. }
  985. /* Need a new fence register? */
  986. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  987. obj_priv->tiling_mode != I915_TILING_NONE) {
  988. ret = i915_gem_object_get_fence_reg(obj, write);
  989. if (ret) {
  990. mutex_unlock(&dev->struct_mutex);
  991. return VM_FAULT_SIGBUS;
  992. }
  993. }
  994. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  995. page_offset;
  996. /* Finally, remap it using the new GTT offset */
  997. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  998. mutex_unlock(&dev->struct_mutex);
  999. switch (ret) {
  1000. case -ENOMEM:
  1001. case -EAGAIN:
  1002. return VM_FAULT_OOM;
  1003. case -EFAULT:
  1004. case -EINVAL:
  1005. return VM_FAULT_SIGBUS;
  1006. default:
  1007. return VM_FAULT_NOPAGE;
  1008. }
  1009. }
  1010. /**
  1011. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1012. * @obj: obj in question
  1013. *
  1014. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1015. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1016. * up the object based on the offset and sets up the various memory mapping
  1017. * structures.
  1018. *
  1019. * This routine allocates and attaches a fake offset for @obj.
  1020. */
  1021. static int
  1022. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1023. {
  1024. struct drm_device *dev = obj->dev;
  1025. struct drm_gem_mm *mm = dev->mm_private;
  1026. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1027. struct drm_map_list *list;
  1028. struct drm_local_map *map;
  1029. int ret = 0;
  1030. /* Set the object up for mmap'ing */
  1031. list = &obj->map_list;
  1032. list->map = drm_calloc(1, sizeof(struct drm_map_list),
  1033. DRM_MEM_DRIVER);
  1034. if (!list->map)
  1035. return -ENOMEM;
  1036. map = list->map;
  1037. map->type = _DRM_GEM;
  1038. map->size = obj->size;
  1039. map->handle = obj;
  1040. /* Get a DRM GEM mmap offset allocated... */
  1041. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1042. obj->size / PAGE_SIZE, 0, 0);
  1043. if (!list->file_offset_node) {
  1044. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1045. ret = -ENOMEM;
  1046. goto out_free_list;
  1047. }
  1048. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1049. obj->size / PAGE_SIZE, 0);
  1050. if (!list->file_offset_node) {
  1051. ret = -ENOMEM;
  1052. goto out_free_list;
  1053. }
  1054. list->hash.key = list->file_offset_node->start;
  1055. if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
  1056. DRM_ERROR("failed to add to map hash\n");
  1057. goto out_free_mm;
  1058. }
  1059. /* By now we should be all set, any drm_mmap request on the offset
  1060. * below will get to our mmap & fault handler */
  1061. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1062. return 0;
  1063. out_free_mm:
  1064. drm_mm_put_block(list->file_offset_node);
  1065. out_free_list:
  1066. drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
  1067. return ret;
  1068. }
  1069. static void
  1070. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1071. {
  1072. struct drm_device *dev = obj->dev;
  1073. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1074. struct drm_gem_mm *mm = dev->mm_private;
  1075. struct drm_map_list *list;
  1076. list = &obj->map_list;
  1077. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1078. if (list->file_offset_node) {
  1079. drm_mm_put_block(list->file_offset_node);
  1080. list->file_offset_node = NULL;
  1081. }
  1082. if (list->map) {
  1083. drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
  1084. list->map = NULL;
  1085. }
  1086. obj_priv->mmap_offset = 0;
  1087. }
  1088. /**
  1089. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1090. * @obj: object to check
  1091. *
  1092. * Return the required GTT alignment for an object, taking into account
  1093. * potential fence register mapping if needed.
  1094. */
  1095. static uint32_t
  1096. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1097. {
  1098. struct drm_device *dev = obj->dev;
  1099. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1100. int start, i;
  1101. /*
  1102. * Minimum alignment is 4k (GTT page size), but might be greater
  1103. * if a fence register is needed for the object.
  1104. */
  1105. if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
  1106. return 4096;
  1107. /*
  1108. * Previous chips need to be aligned to the size of the smallest
  1109. * fence register that can contain the object.
  1110. */
  1111. if (IS_I9XX(dev))
  1112. start = 1024*1024;
  1113. else
  1114. start = 512*1024;
  1115. for (i = start; i < obj->size; i <<= 1)
  1116. ;
  1117. return i;
  1118. }
  1119. /**
  1120. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1121. * @dev: DRM device
  1122. * @data: GTT mapping ioctl data
  1123. * @file_priv: GEM object info
  1124. *
  1125. * Simply returns the fake offset to userspace so it can mmap it.
  1126. * The mmap call will end up in drm_gem_mmap(), which will set things
  1127. * up so we can get faults in the handler above.
  1128. *
  1129. * The fault handler will take care of binding the object into the GTT
  1130. * (since it may have been evicted to make room for something), allocating
  1131. * a fence register, and mapping the appropriate aperture address into
  1132. * userspace.
  1133. */
  1134. int
  1135. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1136. struct drm_file *file_priv)
  1137. {
  1138. struct drm_i915_gem_mmap_gtt *args = data;
  1139. struct drm_i915_private *dev_priv = dev->dev_private;
  1140. struct drm_gem_object *obj;
  1141. struct drm_i915_gem_object *obj_priv;
  1142. int ret;
  1143. if (!(dev->driver->driver_features & DRIVER_GEM))
  1144. return -ENODEV;
  1145. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1146. if (obj == NULL)
  1147. return -EBADF;
  1148. mutex_lock(&dev->struct_mutex);
  1149. obj_priv = obj->driver_private;
  1150. if (!obj_priv->mmap_offset) {
  1151. ret = i915_gem_create_mmap_offset(obj);
  1152. if (ret) {
  1153. drm_gem_object_unreference(obj);
  1154. mutex_unlock(&dev->struct_mutex);
  1155. return ret;
  1156. }
  1157. }
  1158. args->offset = obj_priv->mmap_offset;
  1159. obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
  1160. /* Make sure the alignment is correct for fence regs etc */
  1161. if (obj_priv->agp_mem &&
  1162. (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
  1163. drm_gem_object_unreference(obj);
  1164. mutex_unlock(&dev->struct_mutex);
  1165. return -EINVAL;
  1166. }
  1167. /*
  1168. * Pull it into the GTT so that we have a page list (makes the
  1169. * initial fault faster and any subsequent flushing possible).
  1170. */
  1171. if (!obj_priv->agp_mem) {
  1172. ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
  1173. if (ret) {
  1174. drm_gem_object_unreference(obj);
  1175. mutex_unlock(&dev->struct_mutex);
  1176. return ret;
  1177. }
  1178. list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1179. }
  1180. drm_gem_object_unreference(obj);
  1181. mutex_unlock(&dev->struct_mutex);
  1182. return 0;
  1183. }
  1184. void
  1185. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1186. {
  1187. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1188. int page_count = obj->size / PAGE_SIZE;
  1189. int i;
  1190. BUG_ON(obj_priv->pages_refcount == 0);
  1191. if (--obj_priv->pages_refcount != 0)
  1192. return;
  1193. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1194. i915_gem_object_save_bit_17_swizzle(obj);
  1195. for (i = 0; i < page_count; i++)
  1196. if (obj_priv->pages[i] != NULL) {
  1197. if (obj_priv->dirty)
  1198. set_page_dirty(obj_priv->pages[i]);
  1199. mark_page_accessed(obj_priv->pages[i]);
  1200. page_cache_release(obj_priv->pages[i]);
  1201. }
  1202. obj_priv->dirty = 0;
  1203. drm_free_large(obj_priv->pages);
  1204. obj_priv->pages = NULL;
  1205. }
  1206. static void
  1207. i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
  1208. {
  1209. struct drm_device *dev = obj->dev;
  1210. drm_i915_private_t *dev_priv = dev->dev_private;
  1211. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1212. /* Add a reference if we're newly entering the active list. */
  1213. if (!obj_priv->active) {
  1214. drm_gem_object_reference(obj);
  1215. obj_priv->active = 1;
  1216. }
  1217. /* Move from whatever list we were on to the tail of execution. */
  1218. spin_lock(&dev_priv->mm.active_list_lock);
  1219. list_move_tail(&obj_priv->list,
  1220. &dev_priv->mm.active_list);
  1221. spin_unlock(&dev_priv->mm.active_list_lock);
  1222. obj_priv->last_rendering_seqno = seqno;
  1223. }
  1224. static void
  1225. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1226. {
  1227. struct drm_device *dev = obj->dev;
  1228. drm_i915_private_t *dev_priv = dev->dev_private;
  1229. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1230. BUG_ON(!obj_priv->active);
  1231. list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
  1232. obj_priv->last_rendering_seqno = 0;
  1233. }
  1234. static void
  1235. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1236. {
  1237. struct drm_device *dev = obj->dev;
  1238. drm_i915_private_t *dev_priv = dev->dev_private;
  1239. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1240. i915_verify_inactive(dev, __FILE__, __LINE__);
  1241. if (obj_priv->pin_count != 0)
  1242. list_del_init(&obj_priv->list);
  1243. else
  1244. list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
  1245. obj_priv->last_rendering_seqno = 0;
  1246. if (obj_priv->active) {
  1247. obj_priv->active = 0;
  1248. drm_gem_object_unreference(obj);
  1249. }
  1250. i915_verify_inactive(dev, __FILE__, __LINE__);
  1251. }
  1252. /**
  1253. * Creates a new sequence number, emitting a write of it to the status page
  1254. * plus an interrupt, which will trigger i915_user_interrupt_handler.
  1255. *
  1256. * Must be called with struct_lock held.
  1257. *
  1258. * Returned sequence numbers are nonzero on success.
  1259. */
  1260. static uint32_t
  1261. i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
  1262. uint32_t flush_domains)
  1263. {
  1264. drm_i915_private_t *dev_priv = dev->dev_private;
  1265. struct drm_i915_file_private *i915_file_priv = NULL;
  1266. struct drm_i915_gem_request *request;
  1267. uint32_t seqno;
  1268. int was_empty;
  1269. RING_LOCALS;
  1270. if (file_priv != NULL)
  1271. i915_file_priv = file_priv->driver_priv;
  1272. request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
  1273. if (request == NULL)
  1274. return 0;
  1275. /* Grab the seqno we're going to make this request be, and bump the
  1276. * next (skipping 0 so it can be the reserved no-seqno value).
  1277. */
  1278. seqno = dev_priv->mm.next_gem_seqno;
  1279. dev_priv->mm.next_gem_seqno++;
  1280. if (dev_priv->mm.next_gem_seqno == 0)
  1281. dev_priv->mm.next_gem_seqno++;
  1282. BEGIN_LP_RING(4);
  1283. OUT_RING(MI_STORE_DWORD_INDEX);
  1284. OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1285. OUT_RING(seqno);
  1286. OUT_RING(MI_USER_INTERRUPT);
  1287. ADVANCE_LP_RING();
  1288. DRM_DEBUG("%d\n", seqno);
  1289. request->seqno = seqno;
  1290. request->emitted_jiffies = jiffies;
  1291. was_empty = list_empty(&dev_priv->mm.request_list);
  1292. list_add_tail(&request->list, &dev_priv->mm.request_list);
  1293. if (i915_file_priv) {
  1294. list_add_tail(&request->client_list,
  1295. &i915_file_priv->mm.request_list);
  1296. } else {
  1297. INIT_LIST_HEAD(&request->client_list);
  1298. }
  1299. /* Associate any objects on the flushing list matching the write
  1300. * domain we're flushing with our flush.
  1301. */
  1302. if (flush_domains != 0) {
  1303. struct drm_i915_gem_object *obj_priv, *next;
  1304. list_for_each_entry_safe(obj_priv, next,
  1305. &dev_priv->mm.flushing_list, list) {
  1306. struct drm_gem_object *obj = obj_priv->obj;
  1307. if ((obj->write_domain & flush_domains) ==
  1308. obj->write_domain) {
  1309. obj->write_domain = 0;
  1310. i915_gem_object_move_to_active(obj, seqno);
  1311. }
  1312. }
  1313. }
  1314. if (was_empty && !dev_priv->mm.suspended)
  1315. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1316. return seqno;
  1317. }
  1318. /**
  1319. * Command execution barrier
  1320. *
  1321. * Ensures that all commands in the ring are finished
  1322. * before signalling the CPU
  1323. */
  1324. static uint32_t
  1325. i915_retire_commands(struct drm_device *dev)
  1326. {
  1327. drm_i915_private_t *dev_priv = dev->dev_private;
  1328. uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1329. uint32_t flush_domains = 0;
  1330. RING_LOCALS;
  1331. /* The sampler always gets flushed on i965 (sigh) */
  1332. if (IS_I965G(dev))
  1333. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1334. BEGIN_LP_RING(2);
  1335. OUT_RING(cmd);
  1336. OUT_RING(0); /* noop */
  1337. ADVANCE_LP_RING();
  1338. return flush_domains;
  1339. }
  1340. /**
  1341. * Moves buffers associated only with the given active seqno from the active
  1342. * to inactive list, potentially freeing them.
  1343. */
  1344. static void
  1345. i915_gem_retire_request(struct drm_device *dev,
  1346. struct drm_i915_gem_request *request)
  1347. {
  1348. drm_i915_private_t *dev_priv = dev->dev_private;
  1349. /* Move any buffers on the active list that are no longer referenced
  1350. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1351. */
  1352. spin_lock(&dev_priv->mm.active_list_lock);
  1353. while (!list_empty(&dev_priv->mm.active_list)) {
  1354. struct drm_gem_object *obj;
  1355. struct drm_i915_gem_object *obj_priv;
  1356. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  1357. struct drm_i915_gem_object,
  1358. list);
  1359. obj = obj_priv->obj;
  1360. /* If the seqno being retired doesn't match the oldest in the
  1361. * list, then the oldest in the list must still be newer than
  1362. * this seqno.
  1363. */
  1364. if (obj_priv->last_rendering_seqno != request->seqno)
  1365. goto out;
  1366. #if WATCH_LRU
  1367. DRM_INFO("%s: retire %d moves to inactive list %p\n",
  1368. __func__, request->seqno, obj);
  1369. #endif
  1370. if (obj->write_domain != 0)
  1371. i915_gem_object_move_to_flushing(obj);
  1372. else {
  1373. /* Take a reference on the object so it won't be
  1374. * freed while the spinlock is held. The list
  1375. * protection for this spinlock is safe when breaking
  1376. * the lock like this since the next thing we do
  1377. * is just get the head of the list again.
  1378. */
  1379. drm_gem_object_reference(obj);
  1380. i915_gem_object_move_to_inactive(obj);
  1381. spin_unlock(&dev_priv->mm.active_list_lock);
  1382. drm_gem_object_unreference(obj);
  1383. spin_lock(&dev_priv->mm.active_list_lock);
  1384. }
  1385. }
  1386. out:
  1387. spin_unlock(&dev_priv->mm.active_list_lock);
  1388. }
  1389. /**
  1390. * Returns true if seq1 is later than seq2.
  1391. */
  1392. static int
  1393. i915_seqno_passed(uint32_t seq1, uint32_t seq2)
  1394. {
  1395. return (int32_t)(seq1 - seq2) >= 0;
  1396. }
  1397. uint32_t
  1398. i915_get_gem_seqno(struct drm_device *dev)
  1399. {
  1400. drm_i915_private_t *dev_priv = dev->dev_private;
  1401. return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
  1402. }
  1403. /**
  1404. * This function clears the request list as sequence numbers are passed.
  1405. */
  1406. void
  1407. i915_gem_retire_requests(struct drm_device *dev)
  1408. {
  1409. drm_i915_private_t *dev_priv = dev->dev_private;
  1410. uint32_t seqno;
  1411. if (!dev_priv->hw_status_page)
  1412. return;
  1413. seqno = i915_get_gem_seqno(dev);
  1414. while (!list_empty(&dev_priv->mm.request_list)) {
  1415. struct drm_i915_gem_request *request;
  1416. uint32_t retiring_seqno;
  1417. request = list_first_entry(&dev_priv->mm.request_list,
  1418. struct drm_i915_gem_request,
  1419. list);
  1420. retiring_seqno = request->seqno;
  1421. if (i915_seqno_passed(seqno, retiring_seqno) ||
  1422. dev_priv->mm.wedged) {
  1423. i915_gem_retire_request(dev, request);
  1424. list_del(&request->list);
  1425. list_del(&request->client_list);
  1426. drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
  1427. } else
  1428. break;
  1429. }
  1430. }
  1431. void
  1432. i915_gem_retire_work_handler(struct work_struct *work)
  1433. {
  1434. drm_i915_private_t *dev_priv;
  1435. struct drm_device *dev;
  1436. dev_priv = container_of(work, drm_i915_private_t,
  1437. mm.retire_work.work);
  1438. dev = dev_priv->dev;
  1439. mutex_lock(&dev->struct_mutex);
  1440. i915_gem_retire_requests(dev);
  1441. if (!dev_priv->mm.suspended &&
  1442. !list_empty(&dev_priv->mm.request_list))
  1443. schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
  1444. mutex_unlock(&dev->struct_mutex);
  1445. }
  1446. /**
  1447. * Waits for a sequence number to be signaled, and cleans up the
  1448. * request and object lists appropriately for that event.
  1449. */
  1450. static int
  1451. i915_wait_request(struct drm_device *dev, uint32_t seqno)
  1452. {
  1453. drm_i915_private_t *dev_priv = dev->dev_private;
  1454. u32 ier;
  1455. int ret = 0;
  1456. BUG_ON(seqno == 0);
  1457. if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
  1458. if (IS_IGDNG(dev))
  1459. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1460. else
  1461. ier = I915_READ(IER);
  1462. if (!ier) {
  1463. DRM_ERROR("something (likely vbetool) disabled "
  1464. "interrupts, re-enabling\n");
  1465. i915_driver_irq_preinstall(dev);
  1466. i915_driver_irq_postinstall(dev);
  1467. }
  1468. dev_priv->mm.waiting_gem_seqno = seqno;
  1469. i915_user_irq_get(dev);
  1470. ret = wait_event_interruptible(dev_priv->irq_queue,
  1471. i915_seqno_passed(i915_get_gem_seqno(dev),
  1472. seqno) ||
  1473. dev_priv->mm.wedged);
  1474. i915_user_irq_put(dev);
  1475. dev_priv->mm.waiting_gem_seqno = 0;
  1476. }
  1477. if (dev_priv->mm.wedged)
  1478. ret = -EIO;
  1479. if (ret && ret != -ERESTARTSYS)
  1480. DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
  1481. __func__, ret, seqno, i915_get_gem_seqno(dev));
  1482. /* Directly dispatch request retiring. While we have the work queue
  1483. * to handle this, the waiter on a request often wants an associated
  1484. * buffer to have made it to the inactive list, and we would need
  1485. * a separate wait queue to handle that.
  1486. */
  1487. if (ret == 0)
  1488. i915_gem_retire_requests(dev);
  1489. return ret;
  1490. }
  1491. static void
  1492. i915_gem_flush(struct drm_device *dev,
  1493. uint32_t invalidate_domains,
  1494. uint32_t flush_domains)
  1495. {
  1496. drm_i915_private_t *dev_priv = dev->dev_private;
  1497. uint32_t cmd;
  1498. RING_LOCALS;
  1499. #if WATCH_EXEC
  1500. DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
  1501. invalidate_domains, flush_domains);
  1502. #endif
  1503. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1504. drm_agp_chipset_flush(dev);
  1505. if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
  1506. /*
  1507. * read/write caches:
  1508. *
  1509. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  1510. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  1511. * also flushed at 2d versus 3d pipeline switches.
  1512. *
  1513. * read-only caches:
  1514. *
  1515. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  1516. * MI_READ_FLUSH is set, and is always flushed on 965.
  1517. *
  1518. * I915_GEM_DOMAIN_COMMAND may not exist?
  1519. *
  1520. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  1521. * invalidated when MI_EXE_FLUSH is set.
  1522. *
  1523. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  1524. * invalidated with every MI_FLUSH.
  1525. *
  1526. * TLBs:
  1527. *
  1528. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  1529. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  1530. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  1531. * are flushed at any MI_FLUSH.
  1532. */
  1533. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  1534. if ((invalidate_domains|flush_domains) &
  1535. I915_GEM_DOMAIN_RENDER)
  1536. cmd &= ~MI_NO_WRITE_FLUSH;
  1537. if (!IS_I965G(dev)) {
  1538. /*
  1539. * On the 965, the sampler cache always gets flushed
  1540. * and this bit is reserved.
  1541. */
  1542. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  1543. cmd |= MI_READ_FLUSH;
  1544. }
  1545. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  1546. cmd |= MI_EXE_FLUSH;
  1547. #if WATCH_EXEC
  1548. DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
  1549. #endif
  1550. BEGIN_LP_RING(2);
  1551. OUT_RING(cmd);
  1552. OUT_RING(0); /* noop */
  1553. ADVANCE_LP_RING();
  1554. }
  1555. }
  1556. /**
  1557. * Ensures that all rendering to the object has completed and the object is
  1558. * safe to unbind from the GTT or access from the CPU.
  1559. */
  1560. static int
  1561. i915_gem_object_wait_rendering(struct drm_gem_object *obj)
  1562. {
  1563. struct drm_device *dev = obj->dev;
  1564. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1565. int ret;
  1566. /* This function only exists to support waiting for existing rendering,
  1567. * not for emitting required flushes.
  1568. */
  1569. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1570. /* If there is rendering queued on the buffer being evicted, wait for
  1571. * it.
  1572. */
  1573. if (obj_priv->active) {
  1574. #if WATCH_BUF
  1575. DRM_INFO("%s: object %p wait for seqno %08x\n",
  1576. __func__, obj, obj_priv->last_rendering_seqno);
  1577. #endif
  1578. ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
  1579. if (ret != 0)
  1580. return ret;
  1581. }
  1582. return 0;
  1583. }
  1584. /**
  1585. * Unbinds an object from the GTT aperture.
  1586. */
  1587. int
  1588. i915_gem_object_unbind(struct drm_gem_object *obj)
  1589. {
  1590. struct drm_device *dev = obj->dev;
  1591. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1592. loff_t offset;
  1593. int ret = 0;
  1594. #if WATCH_BUF
  1595. DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
  1596. DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
  1597. #endif
  1598. if (obj_priv->gtt_space == NULL)
  1599. return 0;
  1600. if (obj_priv->pin_count != 0) {
  1601. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1602. return -EINVAL;
  1603. }
  1604. /* Move the object to the CPU domain to ensure that
  1605. * any possible CPU writes while it's not in the GTT
  1606. * are flushed when we go to remap it. This will
  1607. * also ensure that all pending GPU writes are finished
  1608. * before we unbind.
  1609. */
  1610. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1611. if (ret) {
  1612. if (ret != -ERESTARTSYS)
  1613. DRM_ERROR("set_domain failed: %d\n", ret);
  1614. return ret;
  1615. }
  1616. if (obj_priv->agp_mem != NULL) {
  1617. drm_unbind_agp(obj_priv->agp_mem);
  1618. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1619. obj_priv->agp_mem = NULL;
  1620. }
  1621. BUG_ON(obj_priv->active);
  1622. /* blow away mappings if mapped through GTT */
  1623. offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
  1624. if (dev->dev_mapping)
  1625. unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
  1626. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1627. i915_gem_clear_fence_reg(obj);
  1628. i915_gem_object_put_pages(obj);
  1629. if (obj_priv->gtt_space) {
  1630. atomic_dec(&dev->gtt_count);
  1631. atomic_sub(obj->size, &dev->gtt_memory);
  1632. drm_mm_put_block(obj_priv->gtt_space);
  1633. obj_priv->gtt_space = NULL;
  1634. }
  1635. /* Remove ourselves from the LRU list if present. */
  1636. if (!list_empty(&obj_priv->list))
  1637. list_del_init(&obj_priv->list);
  1638. return 0;
  1639. }
  1640. static int
  1641. i915_gem_evict_something(struct drm_device *dev)
  1642. {
  1643. drm_i915_private_t *dev_priv = dev->dev_private;
  1644. struct drm_gem_object *obj;
  1645. struct drm_i915_gem_object *obj_priv;
  1646. int ret = 0;
  1647. for (;;) {
  1648. /* If there's an inactive buffer available now, grab it
  1649. * and be done.
  1650. */
  1651. if (!list_empty(&dev_priv->mm.inactive_list)) {
  1652. obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
  1653. struct drm_i915_gem_object,
  1654. list);
  1655. obj = obj_priv->obj;
  1656. BUG_ON(obj_priv->pin_count != 0);
  1657. #if WATCH_LRU
  1658. DRM_INFO("%s: evicting %p\n", __func__, obj);
  1659. #endif
  1660. BUG_ON(obj_priv->active);
  1661. /* Wait on the rendering and unbind the buffer. */
  1662. ret = i915_gem_object_unbind(obj);
  1663. break;
  1664. }
  1665. /* If we didn't get anything, but the ring is still processing
  1666. * things, wait for one of those things to finish and hopefully
  1667. * leave us a buffer to evict.
  1668. */
  1669. if (!list_empty(&dev_priv->mm.request_list)) {
  1670. struct drm_i915_gem_request *request;
  1671. request = list_first_entry(&dev_priv->mm.request_list,
  1672. struct drm_i915_gem_request,
  1673. list);
  1674. ret = i915_wait_request(dev, request->seqno);
  1675. if (ret)
  1676. break;
  1677. /* if waiting caused an object to become inactive,
  1678. * then loop around and wait for it. Otherwise, we
  1679. * assume that waiting freed and unbound something,
  1680. * so there should now be some space in the GTT
  1681. */
  1682. if (!list_empty(&dev_priv->mm.inactive_list))
  1683. continue;
  1684. break;
  1685. }
  1686. /* If we didn't have anything on the request list but there
  1687. * are buffers awaiting a flush, emit one and try again.
  1688. * When we wait on it, those buffers waiting for that flush
  1689. * will get moved to inactive.
  1690. */
  1691. if (!list_empty(&dev_priv->mm.flushing_list)) {
  1692. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1693. struct drm_i915_gem_object,
  1694. list);
  1695. obj = obj_priv->obj;
  1696. i915_gem_flush(dev,
  1697. obj->write_domain,
  1698. obj->write_domain);
  1699. i915_add_request(dev, NULL, obj->write_domain);
  1700. obj = NULL;
  1701. continue;
  1702. }
  1703. DRM_ERROR("inactive empty %d request empty %d "
  1704. "flushing empty %d\n",
  1705. list_empty(&dev_priv->mm.inactive_list),
  1706. list_empty(&dev_priv->mm.request_list),
  1707. list_empty(&dev_priv->mm.flushing_list));
  1708. /* If we didn't do any of the above, there's nothing to be done
  1709. * and we just can't fit it in.
  1710. */
  1711. return -ENOSPC;
  1712. }
  1713. return ret;
  1714. }
  1715. static int
  1716. i915_gem_evict_everything(struct drm_device *dev)
  1717. {
  1718. int ret;
  1719. for (;;) {
  1720. ret = i915_gem_evict_something(dev);
  1721. if (ret != 0)
  1722. break;
  1723. }
  1724. if (ret == -ENOSPC)
  1725. return 0;
  1726. return ret;
  1727. }
  1728. int
  1729. i915_gem_object_get_pages(struct drm_gem_object *obj)
  1730. {
  1731. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1732. int page_count, i;
  1733. struct address_space *mapping;
  1734. struct inode *inode;
  1735. struct page *page;
  1736. int ret;
  1737. if (obj_priv->pages_refcount++ != 0)
  1738. return 0;
  1739. /* Get the list of pages out of our struct file. They'll be pinned
  1740. * at this point until we release them.
  1741. */
  1742. page_count = obj->size / PAGE_SIZE;
  1743. BUG_ON(obj_priv->pages != NULL);
  1744. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1745. if (obj_priv->pages == NULL) {
  1746. DRM_ERROR("Faled to allocate page list\n");
  1747. obj_priv->pages_refcount--;
  1748. return -ENOMEM;
  1749. }
  1750. inode = obj->filp->f_path.dentry->d_inode;
  1751. mapping = inode->i_mapping;
  1752. for (i = 0; i < page_count; i++) {
  1753. page = read_mapping_page(mapping, i, NULL);
  1754. if (IS_ERR(page)) {
  1755. ret = PTR_ERR(page);
  1756. DRM_ERROR("read_mapping_page failed: %d\n", ret);
  1757. i915_gem_object_put_pages(obj);
  1758. return ret;
  1759. }
  1760. obj_priv->pages[i] = page;
  1761. }
  1762. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1763. i915_gem_object_do_bit_17_swizzle(obj);
  1764. return 0;
  1765. }
  1766. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1767. {
  1768. struct drm_gem_object *obj = reg->obj;
  1769. struct drm_device *dev = obj->dev;
  1770. drm_i915_private_t *dev_priv = dev->dev_private;
  1771. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1772. int regnum = obj_priv->fence_reg;
  1773. uint64_t val;
  1774. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1775. 0xfffff000) << 32;
  1776. val |= obj_priv->gtt_offset & 0xfffff000;
  1777. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1778. if (obj_priv->tiling_mode == I915_TILING_Y)
  1779. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1780. val |= I965_FENCE_REG_VALID;
  1781. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1782. }
  1783. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1784. {
  1785. struct drm_gem_object *obj = reg->obj;
  1786. struct drm_device *dev = obj->dev;
  1787. drm_i915_private_t *dev_priv = dev->dev_private;
  1788. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1789. int regnum = obj_priv->fence_reg;
  1790. int tile_width;
  1791. uint32_t fence_reg, val;
  1792. uint32_t pitch_val;
  1793. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1794. (obj_priv->gtt_offset & (obj->size - 1))) {
  1795. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1796. __func__, obj_priv->gtt_offset, obj->size);
  1797. return;
  1798. }
  1799. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1800. HAS_128_BYTE_Y_TILING(dev))
  1801. tile_width = 128;
  1802. else
  1803. tile_width = 512;
  1804. /* Note: pitch better be a power of two tile widths */
  1805. pitch_val = obj_priv->stride / tile_width;
  1806. pitch_val = ffs(pitch_val) - 1;
  1807. val = obj_priv->gtt_offset;
  1808. if (obj_priv->tiling_mode == I915_TILING_Y)
  1809. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1810. val |= I915_FENCE_SIZE_BITS(obj->size);
  1811. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1812. val |= I830_FENCE_REG_VALID;
  1813. if (regnum < 8)
  1814. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1815. else
  1816. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1817. I915_WRITE(fence_reg, val);
  1818. }
  1819. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1820. {
  1821. struct drm_gem_object *obj = reg->obj;
  1822. struct drm_device *dev = obj->dev;
  1823. drm_i915_private_t *dev_priv = dev->dev_private;
  1824. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1825. int regnum = obj_priv->fence_reg;
  1826. uint32_t val;
  1827. uint32_t pitch_val;
  1828. uint32_t fence_size_bits;
  1829. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1830. (obj_priv->gtt_offset & (obj->size - 1))) {
  1831. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1832. __func__, obj_priv->gtt_offset);
  1833. return;
  1834. }
  1835. pitch_val = obj_priv->stride / 128;
  1836. pitch_val = ffs(pitch_val) - 1;
  1837. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1838. val = obj_priv->gtt_offset;
  1839. if (obj_priv->tiling_mode == I915_TILING_Y)
  1840. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1841. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  1842. WARN_ON(fence_size_bits & ~0x00000f00);
  1843. val |= fence_size_bits;
  1844. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1845. val |= I830_FENCE_REG_VALID;
  1846. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  1847. }
  1848. /**
  1849. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  1850. * @obj: object to map through a fence reg
  1851. * @write: object is about to be written
  1852. *
  1853. * When mapping objects through the GTT, userspace wants to be able to write
  1854. * to them without having to worry about swizzling if the object is tiled.
  1855. *
  1856. * This function walks the fence regs looking for a free one for @obj,
  1857. * stealing one if it can't find any.
  1858. *
  1859. * It then sets up the reg based on the object's properties: address, pitch
  1860. * and tiling format.
  1861. */
  1862. static int
  1863. i915_gem_object_get_fence_reg(struct drm_gem_object *obj, bool write)
  1864. {
  1865. struct drm_device *dev = obj->dev;
  1866. struct drm_i915_private *dev_priv = dev->dev_private;
  1867. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1868. struct drm_i915_fence_reg *reg = NULL;
  1869. struct drm_i915_gem_object *old_obj_priv = NULL;
  1870. int i, ret, avail;
  1871. switch (obj_priv->tiling_mode) {
  1872. case I915_TILING_NONE:
  1873. WARN(1, "allocating a fence for non-tiled object?\n");
  1874. break;
  1875. case I915_TILING_X:
  1876. if (!obj_priv->stride)
  1877. return -EINVAL;
  1878. WARN((obj_priv->stride & (512 - 1)),
  1879. "object 0x%08x is X tiled but has non-512B pitch\n",
  1880. obj_priv->gtt_offset);
  1881. break;
  1882. case I915_TILING_Y:
  1883. if (!obj_priv->stride)
  1884. return -EINVAL;
  1885. WARN((obj_priv->stride & (128 - 1)),
  1886. "object 0x%08x is Y tiled but has non-128B pitch\n",
  1887. obj_priv->gtt_offset);
  1888. break;
  1889. }
  1890. /* First try to find a free reg */
  1891. try_again:
  1892. avail = 0;
  1893. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  1894. reg = &dev_priv->fence_regs[i];
  1895. if (!reg->obj)
  1896. break;
  1897. old_obj_priv = reg->obj->driver_private;
  1898. if (!old_obj_priv->pin_count)
  1899. avail++;
  1900. }
  1901. /* None available, try to steal one or wait for a user to finish */
  1902. if (i == dev_priv->num_fence_regs) {
  1903. uint32_t seqno = dev_priv->mm.next_gem_seqno;
  1904. loff_t offset;
  1905. if (avail == 0)
  1906. return -ENOSPC;
  1907. for (i = dev_priv->fence_reg_start;
  1908. i < dev_priv->num_fence_regs; i++) {
  1909. uint32_t this_seqno;
  1910. reg = &dev_priv->fence_regs[i];
  1911. old_obj_priv = reg->obj->driver_private;
  1912. if (old_obj_priv->pin_count)
  1913. continue;
  1914. /* i915 uses fences for GPU access to tiled buffers */
  1915. if (IS_I965G(dev) || !old_obj_priv->active)
  1916. break;
  1917. /* find the seqno of the first available fence */
  1918. this_seqno = old_obj_priv->last_rendering_seqno;
  1919. if (this_seqno != 0 &&
  1920. reg->obj->write_domain == 0 &&
  1921. i915_seqno_passed(seqno, this_seqno))
  1922. seqno = this_seqno;
  1923. }
  1924. /*
  1925. * Now things get ugly... we have to wait for one of the
  1926. * objects to finish before trying again.
  1927. */
  1928. if (i == dev_priv->num_fence_regs) {
  1929. if (seqno == dev_priv->mm.next_gem_seqno) {
  1930. i915_gem_flush(dev,
  1931. I915_GEM_GPU_DOMAINS,
  1932. I915_GEM_GPU_DOMAINS);
  1933. seqno = i915_add_request(dev, NULL,
  1934. I915_GEM_GPU_DOMAINS);
  1935. if (seqno == 0)
  1936. return -ENOMEM;
  1937. }
  1938. ret = i915_wait_request(dev, seqno);
  1939. if (ret)
  1940. return ret;
  1941. goto try_again;
  1942. }
  1943. /*
  1944. * Zap this virtual mapping so we can set up a fence again
  1945. * for this object next time we need it.
  1946. */
  1947. offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
  1948. if (dev->dev_mapping)
  1949. unmap_mapping_range(dev->dev_mapping, offset,
  1950. reg->obj->size, 1);
  1951. old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1952. }
  1953. obj_priv->fence_reg = i;
  1954. reg->obj = obj;
  1955. if (IS_I965G(dev))
  1956. i965_write_fence_reg(reg);
  1957. else if (IS_I9XX(dev))
  1958. i915_write_fence_reg(reg);
  1959. else
  1960. i830_write_fence_reg(reg);
  1961. return 0;
  1962. }
  1963. /**
  1964. * i915_gem_clear_fence_reg - clear out fence register info
  1965. * @obj: object to clear
  1966. *
  1967. * Zeroes out the fence register itself and clears out the associated
  1968. * data structures in dev_priv and obj_priv.
  1969. */
  1970. static void
  1971. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  1972. {
  1973. struct drm_device *dev = obj->dev;
  1974. drm_i915_private_t *dev_priv = dev->dev_private;
  1975. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1976. if (IS_I965G(dev))
  1977. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  1978. else {
  1979. uint32_t fence_reg;
  1980. if (obj_priv->fence_reg < 8)
  1981. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  1982. else
  1983. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
  1984. 8) * 4;
  1985. I915_WRITE(fence_reg, 0);
  1986. }
  1987. dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
  1988. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  1989. }
  1990. /**
  1991. * Finds free space in the GTT aperture and binds the object there.
  1992. */
  1993. static int
  1994. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  1995. {
  1996. struct drm_device *dev = obj->dev;
  1997. drm_i915_private_t *dev_priv = dev->dev_private;
  1998. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  1999. struct drm_mm_node *free_space;
  2000. int page_count, ret;
  2001. if (dev_priv->mm.suspended)
  2002. return -EBUSY;
  2003. if (alignment == 0)
  2004. alignment = i915_gem_get_gtt_alignment(obj);
  2005. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2006. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2007. return -EINVAL;
  2008. }
  2009. search_free:
  2010. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2011. obj->size, alignment, 0);
  2012. if (free_space != NULL) {
  2013. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2014. alignment);
  2015. if (obj_priv->gtt_space != NULL) {
  2016. obj_priv->gtt_space->private = obj;
  2017. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2018. }
  2019. }
  2020. if (obj_priv->gtt_space == NULL) {
  2021. bool lists_empty;
  2022. /* If the gtt is empty and we're still having trouble
  2023. * fitting our object in, we're out of memory.
  2024. */
  2025. #if WATCH_LRU
  2026. DRM_INFO("%s: GTT full, evicting something\n", __func__);
  2027. #endif
  2028. spin_lock(&dev_priv->mm.active_list_lock);
  2029. lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
  2030. list_empty(&dev_priv->mm.flushing_list) &&
  2031. list_empty(&dev_priv->mm.active_list));
  2032. spin_unlock(&dev_priv->mm.active_list_lock);
  2033. if (lists_empty) {
  2034. DRM_ERROR("GTT full, but LRU list empty\n");
  2035. return -ENOSPC;
  2036. }
  2037. ret = i915_gem_evict_something(dev);
  2038. if (ret != 0) {
  2039. if (ret != -ERESTARTSYS)
  2040. DRM_ERROR("Failed to evict a buffer %d\n", ret);
  2041. return ret;
  2042. }
  2043. goto search_free;
  2044. }
  2045. #if WATCH_BUF
  2046. DRM_INFO("Binding object of size %d at 0x%08x\n",
  2047. obj->size, obj_priv->gtt_offset);
  2048. #endif
  2049. ret = i915_gem_object_get_pages(obj);
  2050. if (ret) {
  2051. drm_mm_put_block(obj_priv->gtt_space);
  2052. obj_priv->gtt_space = NULL;
  2053. return ret;
  2054. }
  2055. page_count = obj->size / PAGE_SIZE;
  2056. /* Create an AGP memory structure pointing at our pages, and bind it
  2057. * into the GTT.
  2058. */
  2059. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2060. obj_priv->pages,
  2061. page_count,
  2062. obj_priv->gtt_offset,
  2063. obj_priv->agp_type);
  2064. if (obj_priv->agp_mem == NULL) {
  2065. i915_gem_object_put_pages(obj);
  2066. drm_mm_put_block(obj_priv->gtt_space);
  2067. obj_priv->gtt_space = NULL;
  2068. return -ENOMEM;
  2069. }
  2070. atomic_inc(&dev->gtt_count);
  2071. atomic_add(obj->size, &dev->gtt_memory);
  2072. /* Assert that the object is not currently in any GPU domain. As it
  2073. * wasn't in the GTT, there shouldn't be any way it could have been in
  2074. * a GPU cache
  2075. */
  2076. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2077. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2078. return 0;
  2079. }
  2080. void
  2081. i915_gem_clflush_object(struct drm_gem_object *obj)
  2082. {
  2083. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2084. /* If we don't have a page list set up, then we're not pinned
  2085. * to GPU, and we can ignore the cache flush because it'll happen
  2086. * again at bind time.
  2087. */
  2088. if (obj_priv->pages == NULL)
  2089. return;
  2090. /* XXX: The 865 in particular appears to be weird in how it handles
  2091. * cache flushing. We haven't figured it out, but the
  2092. * clflush+agp_chipset_flush doesn't appear to successfully get the
  2093. * data visible to the PGU, while wbinvd + agp_chipset_flush does.
  2094. */
  2095. if (IS_I865G(obj->dev)) {
  2096. wbinvd();
  2097. return;
  2098. }
  2099. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2100. }
  2101. /** Flushes any GPU write domain for the object if it's dirty. */
  2102. static void
  2103. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
  2104. {
  2105. struct drm_device *dev = obj->dev;
  2106. uint32_t seqno;
  2107. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2108. return;
  2109. /* Queue the GPU write cache flushing we need. */
  2110. i915_gem_flush(dev, 0, obj->write_domain);
  2111. seqno = i915_add_request(dev, NULL, obj->write_domain);
  2112. obj->write_domain = 0;
  2113. i915_gem_object_move_to_active(obj, seqno);
  2114. }
  2115. /** Flushes the GTT write domain for the object if it's dirty. */
  2116. static void
  2117. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2118. {
  2119. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2120. return;
  2121. /* No actual flushing is required for the GTT write domain. Writes
  2122. * to it immediately go to main memory as far as we know, so there's
  2123. * no chipset flush. It also doesn't land in render cache.
  2124. */
  2125. obj->write_domain = 0;
  2126. }
  2127. /** Flushes the CPU write domain for the object if it's dirty. */
  2128. static void
  2129. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2130. {
  2131. struct drm_device *dev = obj->dev;
  2132. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2133. return;
  2134. i915_gem_clflush_object(obj);
  2135. drm_agp_chipset_flush(dev);
  2136. obj->write_domain = 0;
  2137. }
  2138. /**
  2139. * Moves a single object to the GTT read, and possibly write domain.
  2140. *
  2141. * This function returns when the move is complete, including waiting on
  2142. * flushes to occur.
  2143. */
  2144. int
  2145. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2146. {
  2147. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2148. int ret;
  2149. /* Not valid to be called on unbound objects. */
  2150. if (obj_priv->gtt_space == NULL)
  2151. return -EINVAL;
  2152. i915_gem_object_flush_gpu_write_domain(obj);
  2153. /* Wait on any GPU rendering and flushing to occur. */
  2154. ret = i915_gem_object_wait_rendering(obj);
  2155. if (ret != 0)
  2156. return ret;
  2157. /* If we're writing through the GTT domain, then CPU and GPU caches
  2158. * will need to be invalidated at next use.
  2159. */
  2160. if (write)
  2161. obj->read_domains &= I915_GEM_DOMAIN_GTT;
  2162. i915_gem_object_flush_cpu_write_domain(obj);
  2163. /* It should now be out of any other write domains, and we can update
  2164. * the domain values for our changes.
  2165. */
  2166. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2167. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2168. if (write) {
  2169. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2170. obj_priv->dirty = 1;
  2171. }
  2172. return 0;
  2173. }
  2174. /**
  2175. * Moves a single object to the CPU read, and possibly write domain.
  2176. *
  2177. * This function returns when the move is complete, including waiting on
  2178. * flushes to occur.
  2179. */
  2180. static int
  2181. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2182. {
  2183. int ret;
  2184. i915_gem_object_flush_gpu_write_domain(obj);
  2185. /* Wait on any GPU rendering and flushing to occur. */
  2186. ret = i915_gem_object_wait_rendering(obj);
  2187. if (ret != 0)
  2188. return ret;
  2189. i915_gem_object_flush_gtt_write_domain(obj);
  2190. /* If we have a partially-valid cache of the object in the CPU,
  2191. * finish invalidating it and free the per-page flags.
  2192. */
  2193. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2194. /* Flush the CPU cache if it's still invalid. */
  2195. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2196. i915_gem_clflush_object(obj);
  2197. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2198. }
  2199. /* It should now be out of any other write domains, and we can update
  2200. * the domain values for our changes.
  2201. */
  2202. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2203. /* If we're writing through the CPU, then the GPU read domains will
  2204. * need to be invalidated at next use.
  2205. */
  2206. if (write) {
  2207. obj->read_domains &= I915_GEM_DOMAIN_CPU;
  2208. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2209. }
  2210. return 0;
  2211. }
  2212. /*
  2213. * Set the next domain for the specified object. This
  2214. * may not actually perform the necessary flushing/invaliding though,
  2215. * as that may want to be batched with other set_domain operations
  2216. *
  2217. * This is (we hope) the only really tricky part of gem. The goal
  2218. * is fairly simple -- track which caches hold bits of the object
  2219. * and make sure they remain coherent. A few concrete examples may
  2220. * help to explain how it works. For shorthand, we use the notation
  2221. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2222. * a pair of read and write domain masks.
  2223. *
  2224. * Case 1: the batch buffer
  2225. *
  2226. * 1. Allocated
  2227. * 2. Written by CPU
  2228. * 3. Mapped to GTT
  2229. * 4. Read by GPU
  2230. * 5. Unmapped from GTT
  2231. * 6. Freed
  2232. *
  2233. * Let's take these a step at a time
  2234. *
  2235. * 1. Allocated
  2236. * Pages allocated from the kernel may still have
  2237. * cache contents, so we set them to (CPU, CPU) always.
  2238. * 2. Written by CPU (using pwrite)
  2239. * The pwrite function calls set_domain (CPU, CPU) and
  2240. * this function does nothing (as nothing changes)
  2241. * 3. Mapped by GTT
  2242. * This function asserts that the object is not
  2243. * currently in any GPU-based read or write domains
  2244. * 4. Read by GPU
  2245. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2246. * As write_domain is zero, this function adds in the
  2247. * current read domains (CPU+COMMAND, 0).
  2248. * flush_domains is set to CPU.
  2249. * invalidate_domains is set to COMMAND
  2250. * clflush is run to get data out of the CPU caches
  2251. * then i915_dev_set_domain calls i915_gem_flush to
  2252. * emit an MI_FLUSH and drm_agp_chipset_flush
  2253. * 5. Unmapped from GTT
  2254. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2255. * flush_domains and invalidate_domains end up both zero
  2256. * so no flushing/invalidating happens
  2257. * 6. Freed
  2258. * yay, done
  2259. *
  2260. * Case 2: The shared render buffer
  2261. *
  2262. * 1. Allocated
  2263. * 2. Mapped to GTT
  2264. * 3. Read/written by GPU
  2265. * 4. set_domain to (CPU,CPU)
  2266. * 5. Read/written by CPU
  2267. * 6. Read/written by GPU
  2268. *
  2269. * 1. Allocated
  2270. * Same as last example, (CPU, CPU)
  2271. * 2. Mapped to GTT
  2272. * Nothing changes (assertions find that it is not in the GPU)
  2273. * 3. Read/written by GPU
  2274. * execbuffer calls set_domain (RENDER, RENDER)
  2275. * flush_domains gets CPU
  2276. * invalidate_domains gets GPU
  2277. * clflush (obj)
  2278. * MI_FLUSH and drm_agp_chipset_flush
  2279. * 4. set_domain (CPU, CPU)
  2280. * flush_domains gets GPU
  2281. * invalidate_domains gets CPU
  2282. * wait_rendering (obj) to make sure all drawing is complete.
  2283. * This will include an MI_FLUSH to get the data from GPU
  2284. * to memory
  2285. * clflush (obj) to invalidate the CPU cache
  2286. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2287. * 5. Read/written by CPU
  2288. * cache lines are loaded and dirtied
  2289. * 6. Read written by GPU
  2290. * Same as last GPU access
  2291. *
  2292. * Case 3: The constant buffer
  2293. *
  2294. * 1. Allocated
  2295. * 2. Written by CPU
  2296. * 3. Read by GPU
  2297. * 4. Updated (written) by CPU again
  2298. * 5. Read by GPU
  2299. *
  2300. * 1. Allocated
  2301. * (CPU, CPU)
  2302. * 2. Written by CPU
  2303. * (CPU, CPU)
  2304. * 3. Read by GPU
  2305. * (CPU+RENDER, 0)
  2306. * flush_domains = CPU
  2307. * invalidate_domains = RENDER
  2308. * clflush (obj)
  2309. * MI_FLUSH
  2310. * drm_agp_chipset_flush
  2311. * 4. Updated (written) by CPU again
  2312. * (CPU, CPU)
  2313. * flush_domains = 0 (no previous write domain)
  2314. * invalidate_domains = 0 (no new read domains)
  2315. * 5. Read by GPU
  2316. * (CPU+RENDER, 0)
  2317. * flush_domains = CPU
  2318. * invalidate_domains = RENDER
  2319. * clflush (obj)
  2320. * MI_FLUSH
  2321. * drm_agp_chipset_flush
  2322. */
  2323. static void
  2324. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
  2325. {
  2326. struct drm_device *dev = obj->dev;
  2327. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2328. uint32_t invalidate_domains = 0;
  2329. uint32_t flush_domains = 0;
  2330. BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
  2331. BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
  2332. #if WATCH_BUF
  2333. DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
  2334. __func__, obj,
  2335. obj->read_domains, obj->pending_read_domains,
  2336. obj->write_domain, obj->pending_write_domain);
  2337. #endif
  2338. /*
  2339. * If the object isn't moving to a new write domain,
  2340. * let the object stay in multiple read domains
  2341. */
  2342. if (obj->pending_write_domain == 0)
  2343. obj->pending_read_domains |= obj->read_domains;
  2344. else
  2345. obj_priv->dirty = 1;
  2346. /*
  2347. * Flush the current write domain if
  2348. * the new read domains don't match. Invalidate
  2349. * any read domains which differ from the old
  2350. * write domain
  2351. */
  2352. if (obj->write_domain &&
  2353. obj->write_domain != obj->pending_read_domains) {
  2354. flush_domains |= obj->write_domain;
  2355. invalidate_domains |=
  2356. obj->pending_read_domains & ~obj->write_domain;
  2357. }
  2358. /*
  2359. * Invalidate any read caches which may have
  2360. * stale data. That is, any new read domains.
  2361. */
  2362. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2363. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
  2364. #if WATCH_BUF
  2365. DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
  2366. __func__, flush_domains, invalidate_domains);
  2367. #endif
  2368. i915_gem_clflush_object(obj);
  2369. }
  2370. /* The actual obj->write_domain will be updated with
  2371. * pending_write_domain after we emit the accumulated flush for all
  2372. * of our domain changes in execbuffers (which clears objects'
  2373. * write_domains). So if we have a current write domain that we
  2374. * aren't changing, set pending_write_domain to that.
  2375. */
  2376. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2377. obj->pending_write_domain = obj->write_domain;
  2378. obj->read_domains = obj->pending_read_domains;
  2379. dev->invalidate_domains |= invalidate_domains;
  2380. dev->flush_domains |= flush_domains;
  2381. #if WATCH_BUF
  2382. DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
  2383. __func__,
  2384. obj->read_domains, obj->write_domain,
  2385. dev->invalidate_domains, dev->flush_domains);
  2386. #endif
  2387. }
  2388. /**
  2389. * Moves the object from a partially CPU read to a full one.
  2390. *
  2391. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2392. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2393. */
  2394. static void
  2395. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2396. {
  2397. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2398. if (!obj_priv->page_cpu_valid)
  2399. return;
  2400. /* If we're partially in the CPU read domain, finish moving it in.
  2401. */
  2402. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2403. int i;
  2404. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2405. if (obj_priv->page_cpu_valid[i])
  2406. continue;
  2407. drm_clflush_pages(obj_priv->pages + i, 1);
  2408. }
  2409. }
  2410. /* Free the page_cpu_valid mappings which are now stale, whether
  2411. * or not we've got I915_GEM_DOMAIN_CPU.
  2412. */
  2413. drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
  2414. DRM_MEM_DRIVER);
  2415. obj_priv->page_cpu_valid = NULL;
  2416. }
  2417. /**
  2418. * Set the CPU read domain on a range of the object.
  2419. *
  2420. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2421. * not entirely valid. The page_cpu_valid member of the object flags which
  2422. * pages have been flushed, and will be respected by
  2423. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2424. * of the whole object.
  2425. *
  2426. * This function returns when the move is complete, including waiting on
  2427. * flushes to occur.
  2428. */
  2429. static int
  2430. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2431. uint64_t offset, uint64_t size)
  2432. {
  2433. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2434. int i, ret;
  2435. if (offset == 0 && size == obj->size)
  2436. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2437. i915_gem_object_flush_gpu_write_domain(obj);
  2438. /* Wait on any GPU rendering and flushing to occur. */
  2439. ret = i915_gem_object_wait_rendering(obj);
  2440. if (ret != 0)
  2441. return ret;
  2442. i915_gem_object_flush_gtt_write_domain(obj);
  2443. /* If we're already fully in the CPU read domain, we're done. */
  2444. if (obj_priv->page_cpu_valid == NULL &&
  2445. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2446. return 0;
  2447. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2448. * newly adding I915_GEM_DOMAIN_CPU
  2449. */
  2450. if (obj_priv->page_cpu_valid == NULL) {
  2451. obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
  2452. DRM_MEM_DRIVER);
  2453. if (obj_priv->page_cpu_valid == NULL)
  2454. return -ENOMEM;
  2455. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2456. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2457. /* Flush the cache on any pages that are still invalid from the CPU's
  2458. * perspective.
  2459. */
  2460. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2461. i++) {
  2462. if (obj_priv->page_cpu_valid[i])
  2463. continue;
  2464. drm_clflush_pages(obj_priv->pages + i, 1);
  2465. obj_priv->page_cpu_valid[i] = 1;
  2466. }
  2467. /* It should now be out of any other write domains, and we can update
  2468. * the domain values for our changes.
  2469. */
  2470. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2471. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2472. return 0;
  2473. }
  2474. /**
  2475. * Pin an object to the GTT and evaluate the relocations landing in it.
  2476. */
  2477. static int
  2478. i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
  2479. struct drm_file *file_priv,
  2480. struct drm_i915_gem_exec_object *entry,
  2481. struct drm_i915_gem_relocation_entry *relocs)
  2482. {
  2483. struct drm_device *dev = obj->dev;
  2484. drm_i915_private_t *dev_priv = dev->dev_private;
  2485. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  2486. int i, ret;
  2487. void __iomem *reloc_page;
  2488. /* Choose the GTT offset for our buffer and put it there. */
  2489. ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
  2490. if (ret)
  2491. return ret;
  2492. entry->offset = obj_priv->gtt_offset;
  2493. /* Apply the relocations, using the GTT aperture to avoid cache
  2494. * flushing requirements.
  2495. */
  2496. for (i = 0; i < entry->relocation_count; i++) {
  2497. struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
  2498. struct drm_gem_object *target_obj;
  2499. struct drm_i915_gem_object *target_obj_priv;
  2500. uint32_t reloc_val, reloc_offset;
  2501. uint32_t __iomem *reloc_entry;
  2502. target_obj = drm_gem_object_lookup(obj->dev, file_priv,
  2503. reloc->target_handle);
  2504. if (target_obj == NULL) {
  2505. i915_gem_object_unpin(obj);
  2506. return -EBADF;
  2507. }
  2508. target_obj_priv = target_obj->driver_private;
  2509. /* The target buffer should have appeared before us in the
  2510. * exec_object list, so it should have a GTT space bound by now.
  2511. */
  2512. if (target_obj_priv->gtt_space == NULL) {
  2513. DRM_ERROR("No GTT space found for object %d\n",
  2514. reloc->target_handle);
  2515. drm_gem_object_unreference(target_obj);
  2516. i915_gem_object_unpin(obj);
  2517. return -EINVAL;
  2518. }
  2519. if (reloc->offset > obj->size - 4) {
  2520. DRM_ERROR("Relocation beyond object bounds: "
  2521. "obj %p target %d offset %d size %d.\n",
  2522. obj, reloc->target_handle,
  2523. (int) reloc->offset, (int) obj->size);
  2524. drm_gem_object_unreference(target_obj);
  2525. i915_gem_object_unpin(obj);
  2526. return -EINVAL;
  2527. }
  2528. if (reloc->offset & 3) {
  2529. DRM_ERROR("Relocation not 4-byte aligned: "
  2530. "obj %p target %d offset %d.\n",
  2531. obj, reloc->target_handle,
  2532. (int) reloc->offset);
  2533. drm_gem_object_unreference(target_obj);
  2534. i915_gem_object_unpin(obj);
  2535. return -EINVAL;
  2536. }
  2537. if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
  2538. reloc->read_domains & I915_GEM_DOMAIN_CPU) {
  2539. DRM_ERROR("reloc with read/write CPU domains: "
  2540. "obj %p target %d offset %d "
  2541. "read %08x write %08x",
  2542. obj, reloc->target_handle,
  2543. (int) reloc->offset,
  2544. reloc->read_domains,
  2545. reloc->write_domain);
  2546. drm_gem_object_unreference(target_obj);
  2547. i915_gem_object_unpin(obj);
  2548. return -EINVAL;
  2549. }
  2550. if (reloc->write_domain && target_obj->pending_write_domain &&
  2551. reloc->write_domain != target_obj->pending_write_domain) {
  2552. DRM_ERROR("Write domain conflict: "
  2553. "obj %p target %d offset %d "
  2554. "new %08x old %08x\n",
  2555. obj, reloc->target_handle,
  2556. (int) reloc->offset,
  2557. reloc->write_domain,
  2558. target_obj->pending_write_domain);
  2559. drm_gem_object_unreference(target_obj);
  2560. i915_gem_object_unpin(obj);
  2561. return -EINVAL;
  2562. }
  2563. #if WATCH_RELOC
  2564. DRM_INFO("%s: obj %p offset %08x target %d "
  2565. "read %08x write %08x gtt %08x "
  2566. "presumed %08x delta %08x\n",
  2567. __func__,
  2568. obj,
  2569. (int) reloc->offset,
  2570. (int) reloc->target_handle,
  2571. (int) reloc->read_domains,
  2572. (int) reloc->write_domain,
  2573. (int) target_obj_priv->gtt_offset,
  2574. (int) reloc->presumed_offset,
  2575. reloc->delta);
  2576. #endif
  2577. target_obj->pending_read_domains |= reloc->read_domains;
  2578. target_obj->pending_write_domain |= reloc->write_domain;
  2579. /* If the relocation already has the right value in it, no
  2580. * more work needs to be done.
  2581. */
  2582. if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
  2583. drm_gem_object_unreference(target_obj);
  2584. continue;
  2585. }
  2586. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  2587. if (ret != 0) {
  2588. drm_gem_object_unreference(target_obj);
  2589. i915_gem_object_unpin(obj);
  2590. return -EINVAL;
  2591. }
  2592. /* Map the page containing the relocation we're going to
  2593. * perform.
  2594. */
  2595. reloc_offset = obj_priv->gtt_offset + reloc->offset;
  2596. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2597. (reloc_offset &
  2598. ~(PAGE_SIZE - 1)));
  2599. reloc_entry = (uint32_t __iomem *)(reloc_page +
  2600. (reloc_offset & (PAGE_SIZE - 1)));
  2601. reloc_val = target_obj_priv->gtt_offset + reloc->delta;
  2602. #if WATCH_BUF
  2603. DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
  2604. obj, (unsigned int) reloc->offset,
  2605. readl(reloc_entry), reloc_val);
  2606. #endif
  2607. writel(reloc_val, reloc_entry);
  2608. io_mapping_unmap_atomic(reloc_page);
  2609. /* The updated presumed offset for this entry will be
  2610. * copied back out to the user.
  2611. */
  2612. reloc->presumed_offset = target_obj_priv->gtt_offset;
  2613. drm_gem_object_unreference(target_obj);
  2614. }
  2615. #if WATCH_BUF
  2616. if (0)
  2617. i915_gem_dump_object(obj, 128, __func__, ~0);
  2618. #endif
  2619. return 0;
  2620. }
  2621. /** Dispatch a batchbuffer to the ring
  2622. */
  2623. static int
  2624. i915_dispatch_gem_execbuffer(struct drm_device *dev,
  2625. struct drm_i915_gem_execbuffer *exec,
  2626. struct drm_clip_rect *cliprects,
  2627. uint64_t exec_offset)
  2628. {
  2629. drm_i915_private_t *dev_priv = dev->dev_private;
  2630. int nbox = exec->num_cliprects;
  2631. int i = 0, count;
  2632. uint32_t exec_start, exec_len;
  2633. RING_LOCALS;
  2634. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2635. exec_len = (uint32_t) exec->batch_len;
  2636. count = nbox ? nbox : 1;
  2637. for (i = 0; i < count; i++) {
  2638. if (i < nbox) {
  2639. int ret = i915_emit_box(dev, cliprects, i,
  2640. exec->DR1, exec->DR4);
  2641. if (ret)
  2642. return ret;
  2643. }
  2644. if (IS_I830(dev) || IS_845G(dev)) {
  2645. BEGIN_LP_RING(4);
  2646. OUT_RING(MI_BATCH_BUFFER);
  2647. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2648. OUT_RING(exec_start + exec_len - 4);
  2649. OUT_RING(0);
  2650. ADVANCE_LP_RING();
  2651. } else {
  2652. BEGIN_LP_RING(2);
  2653. if (IS_I965G(dev)) {
  2654. OUT_RING(MI_BATCH_BUFFER_START |
  2655. (2 << 6) |
  2656. MI_BATCH_NON_SECURE_I965);
  2657. OUT_RING(exec_start);
  2658. } else {
  2659. OUT_RING(MI_BATCH_BUFFER_START |
  2660. (2 << 6));
  2661. OUT_RING(exec_start | MI_BATCH_NON_SECURE);
  2662. }
  2663. ADVANCE_LP_RING();
  2664. }
  2665. }
  2666. /* XXX breadcrumb */
  2667. return 0;
  2668. }
  2669. /* Throttle our rendering by waiting until the ring has completed our requests
  2670. * emitted over 20 msec ago.
  2671. *
  2672. * Note that if we were to use the current jiffies each time around the loop,
  2673. * we wouldn't escape the function with any frames outstanding if the time to
  2674. * render a frame was over 20ms.
  2675. *
  2676. * This should get us reasonable parallelism between CPU and GPU but also
  2677. * relatively low latency when blocking on a particular request to finish.
  2678. */
  2679. static int
  2680. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
  2681. {
  2682. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  2683. int ret = 0;
  2684. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2685. mutex_lock(&dev->struct_mutex);
  2686. while (!list_empty(&i915_file_priv->mm.request_list)) {
  2687. struct drm_i915_gem_request *request;
  2688. request = list_first_entry(&i915_file_priv->mm.request_list,
  2689. struct drm_i915_gem_request,
  2690. client_list);
  2691. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2692. break;
  2693. ret = i915_wait_request(dev, request->seqno);
  2694. if (ret != 0)
  2695. break;
  2696. }
  2697. mutex_unlock(&dev->struct_mutex);
  2698. return ret;
  2699. }
  2700. static int
  2701. i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
  2702. uint32_t buffer_count,
  2703. struct drm_i915_gem_relocation_entry **relocs)
  2704. {
  2705. uint32_t reloc_count = 0, reloc_index = 0, i;
  2706. int ret;
  2707. *relocs = NULL;
  2708. for (i = 0; i < buffer_count; i++) {
  2709. if (reloc_count + exec_list[i].relocation_count < reloc_count)
  2710. return -EINVAL;
  2711. reloc_count += exec_list[i].relocation_count;
  2712. }
  2713. *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
  2714. if (*relocs == NULL)
  2715. return -ENOMEM;
  2716. for (i = 0; i < buffer_count; i++) {
  2717. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2718. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2719. ret = copy_from_user(&(*relocs)[reloc_index],
  2720. user_relocs,
  2721. exec_list[i].relocation_count *
  2722. sizeof(**relocs));
  2723. if (ret != 0) {
  2724. drm_free_large(*relocs);
  2725. *relocs = NULL;
  2726. return -EFAULT;
  2727. }
  2728. reloc_index += exec_list[i].relocation_count;
  2729. }
  2730. return 0;
  2731. }
  2732. static int
  2733. i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
  2734. uint32_t buffer_count,
  2735. struct drm_i915_gem_relocation_entry *relocs)
  2736. {
  2737. uint32_t reloc_count = 0, i;
  2738. int ret = 0;
  2739. for (i = 0; i < buffer_count; i++) {
  2740. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2741. int unwritten;
  2742. user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
  2743. unwritten = copy_to_user(user_relocs,
  2744. &relocs[reloc_count],
  2745. exec_list[i].relocation_count *
  2746. sizeof(*relocs));
  2747. if (unwritten) {
  2748. ret = -EFAULT;
  2749. goto err;
  2750. }
  2751. reloc_count += exec_list[i].relocation_count;
  2752. }
  2753. err:
  2754. drm_free_large(relocs);
  2755. return ret;
  2756. }
  2757. static int
  2758. i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
  2759. uint64_t exec_offset)
  2760. {
  2761. uint32_t exec_start, exec_len;
  2762. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  2763. exec_len = (uint32_t) exec->batch_len;
  2764. if ((exec_start | exec_len) & 0x7)
  2765. return -EINVAL;
  2766. if (!exec_start)
  2767. return -EINVAL;
  2768. return 0;
  2769. }
  2770. int
  2771. i915_gem_execbuffer(struct drm_device *dev, void *data,
  2772. struct drm_file *file_priv)
  2773. {
  2774. drm_i915_private_t *dev_priv = dev->dev_private;
  2775. struct drm_i915_gem_execbuffer *args = data;
  2776. struct drm_i915_gem_exec_object *exec_list = NULL;
  2777. struct drm_gem_object **object_list = NULL;
  2778. struct drm_gem_object *batch_obj;
  2779. struct drm_i915_gem_object *obj_priv;
  2780. struct drm_clip_rect *cliprects = NULL;
  2781. struct drm_i915_gem_relocation_entry *relocs;
  2782. int ret, ret2, i, pinned = 0;
  2783. uint64_t exec_offset;
  2784. uint32_t seqno, flush_domains, reloc_index;
  2785. int pin_tries;
  2786. #if WATCH_EXEC
  2787. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  2788. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  2789. #endif
  2790. if (args->buffer_count < 1) {
  2791. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  2792. return -EINVAL;
  2793. }
  2794. /* Copy in the exec list from userland */
  2795. exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
  2796. object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
  2797. if (exec_list == NULL || object_list == NULL) {
  2798. DRM_ERROR("Failed to allocate exec or object list "
  2799. "for %d buffers\n",
  2800. args->buffer_count);
  2801. ret = -ENOMEM;
  2802. goto pre_mutex_err;
  2803. }
  2804. ret = copy_from_user(exec_list,
  2805. (struct drm_i915_relocation_entry __user *)
  2806. (uintptr_t) args->buffers_ptr,
  2807. sizeof(*exec_list) * args->buffer_count);
  2808. if (ret != 0) {
  2809. DRM_ERROR("copy %d exec entries failed %d\n",
  2810. args->buffer_count, ret);
  2811. goto pre_mutex_err;
  2812. }
  2813. if (args->num_cliprects != 0) {
  2814. cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
  2815. DRM_MEM_DRIVER);
  2816. if (cliprects == NULL)
  2817. goto pre_mutex_err;
  2818. ret = copy_from_user(cliprects,
  2819. (struct drm_clip_rect __user *)
  2820. (uintptr_t) args->cliprects_ptr,
  2821. sizeof(*cliprects) * args->num_cliprects);
  2822. if (ret != 0) {
  2823. DRM_ERROR("copy %d cliprects failed: %d\n",
  2824. args->num_cliprects, ret);
  2825. goto pre_mutex_err;
  2826. }
  2827. }
  2828. ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
  2829. &relocs);
  2830. if (ret != 0)
  2831. goto pre_mutex_err;
  2832. mutex_lock(&dev->struct_mutex);
  2833. i915_verify_inactive(dev, __FILE__, __LINE__);
  2834. if (dev_priv->mm.wedged) {
  2835. DRM_ERROR("Execbuf while wedged\n");
  2836. mutex_unlock(&dev->struct_mutex);
  2837. ret = -EIO;
  2838. goto pre_mutex_err;
  2839. }
  2840. if (dev_priv->mm.suspended) {
  2841. DRM_ERROR("Execbuf while VT-switched.\n");
  2842. mutex_unlock(&dev->struct_mutex);
  2843. ret = -EBUSY;
  2844. goto pre_mutex_err;
  2845. }
  2846. /* Look up object handles */
  2847. for (i = 0; i < args->buffer_count; i++) {
  2848. object_list[i] = drm_gem_object_lookup(dev, file_priv,
  2849. exec_list[i].handle);
  2850. if (object_list[i] == NULL) {
  2851. DRM_ERROR("Invalid object handle %d at index %d\n",
  2852. exec_list[i].handle, i);
  2853. ret = -EBADF;
  2854. goto err;
  2855. }
  2856. obj_priv = object_list[i]->driver_private;
  2857. if (obj_priv->in_execbuffer) {
  2858. DRM_ERROR("Object %p appears more than once in object list\n",
  2859. object_list[i]);
  2860. ret = -EBADF;
  2861. goto err;
  2862. }
  2863. obj_priv->in_execbuffer = true;
  2864. }
  2865. /* Pin and relocate */
  2866. for (pin_tries = 0; ; pin_tries++) {
  2867. ret = 0;
  2868. reloc_index = 0;
  2869. for (i = 0; i < args->buffer_count; i++) {
  2870. object_list[i]->pending_read_domains = 0;
  2871. object_list[i]->pending_write_domain = 0;
  2872. ret = i915_gem_object_pin_and_relocate(object_list[i],
  2873. file_priv,
  2874. &exec_list[i],
  2875. &relocs[reloc_index]);
  2876. if (ret)
  2877. break;
  2878. pinned = i + 1;
  2879. reloc_index += exec_list[i].relocation_count;
  2880. }
  2881. /* success */
  2882. if (ret == 0)
  2883. break;
  2884. /* error other than GTT full, or we've already tried again */
  2885. if (ret != -ENOSPC || pin_tries >= 1) {
  2886. if (ret != -ERESTARTSYS)
  2887. DRM_ERROR("Failed to pin buffers %d\n", ret);
  2888. goto err;
  2889. }
  2890. /* unpin all of our buffers */
  2891. for (i = 0; i < pinned; i++)
  2892. i915_gem_object_unpin(object_list[i]);
  2893. pinned = 0;
  2894. /* evict everyone we can from the aperture */
  2895. ret = i915_gem_evict_everything(dev);
  2896. if (ret)
  2897. goto err;
  2898. }
  2899. /* Set the pending read domains for the batch buffer to COMMAND */
  2900. batch_obj = object_list[args->buffer_count-1];
  2901. if (batch_obj->pending_write_domain) {
  2902. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  2903. ret = -EINVAL;
  2904. goto err;
  2905. }
  2906. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  2907. /* Sanity check the batch buffer, prior to moving objects */
  2908. exec_offset = exec_list[args->buffer_count - 1].offset;
  2909. ret = i915_gem_check_execbuffer (args, exec_offset);
  2910. if (ret != 0) {
  2911. DRM_ERROR("execbuf with invalid offset/length\n");
  2912. goto err;
  2913. }
  2914. i915_verify_inactive(dev, __FILE__, __LINE__);
  2915. /* Zero the global flush/invalidate flags. These
  2916. * will be modified as new domains are computed
  2917. * for each object
  2918. */
  2919. dev->invalidate_domains = 0;
  2920. dev->flush_domains = 0;
  2921. for (i = 0; i < args->buffer_count; i++) {
  2922. struct drm_gem_object *obj = object_list[i];
  2923. /* Compute new gpu domains and update invalidate/flush */
  2924. i915_gem_object_set_to_gpu_domain(obj);
  2925. }
  2926. i915_verify_inactive(dev, __FILE__, __LINE__);
  2927. if (dev->invalidate_domains | dev->flush_domains) {
  2928. #if WATCH_EXEC
  2929. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2930. __func__,
  2931. dev->invalidate_domains,
  2932. dev->flush_domains);
  2933. #endif
  2934. i915_gem_flush(dev,
  2935. dev->invalidate_domains,
  2936. dev->flush_domains);
  2937. if (dev->flush_domains)
  2938. (void)i915_add_request(dev, file_priv,
  2939. dev->flush_domains);
  2940. }
  2941. for (i = 0; i < args->buffer_count; i++) {
  2942. struct drm_gem_object *obj = object_list[i];
  2943. obj->write_domain = obj->pending_write_domain;
  2944. }
  2945. i915_verify_inactive(dev, __FILE__, __LINE__);
  2946. #if WATCH_COHERENCY
  2947. for (i = 0; i < args->buffer_count; i++) {
  2948. i915_gem_object_check_coherency(object_list[i],
  2949. exec_list[i].handle);
  2950. }
  2951. #endif
  2952. #if WATCH_EXEC
  2953. i915_gem_dump_object(batch_obj,
  2954. args->batch_len,
  2955. __func__,
  2956. ~0);
  2957. #endif
  2958. /* Exec the batchbuffer */
  2959. ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
  2960. if (ret) {
  2961. DRM_ERROR("dispatch failed %d\n", ret);
  2962. goto err;
  2963. }
  2964. /*
  2965. * Ensure that the commands in the batch buffer are
  2966. * finished before the interrupt fires
  2967. */
  2968. flush_domains = i915_retire_commands(dev);
  2969. i915_verify_inactive(dev, __FILE__, __LINE__);
  2970. /*
  2971. * Get a seqno representing the execution of the current buffer,
  2972. * which we can wait on. We would like to mitigate these interrupts,
  2973. * likely by only creating seqnos occasionally (so that we have
  2974. * *some* interrupts representing completion of buffers that we can
  2975. * wait on when trying to clear up gtt space).
  2976. */
  2977. seqno = i915_add_request(dev, file_priv, flush_domains);
  2978. BUG_ON(seqno == 0);
  2979. for (i = 0; i < args->buffer_count; i++) {
  2980. struct drm_gem_object *obj = object_list[i];
  2981. i915_gem_object_move_to_active(obj, seqno);
  2982. #if WATCH_LRU
  2983. DRM_INFO("%s: move to exec list %p\n", __func__, obj);
  2984. #endif
  2985. }
  2986. #if WATCH_LRU
  2987. i915_dump_lru(dev, __func__);
  2988. #endif
  2989. i915_verify_inactive(dev, __FILE__, __LINE__);
  2990. err:
  2991. for (i = 0; i < pinned; i++)
  2992. i915_gem_object_unpin(object_list[i]);
  2993. for (i = 0; i < args->buffer_count; i++) {
  2994. if (object_list[i]) {
  2995. obj_priv = object_list[i]->driver_private;
  2996. obj_priv->in_execbuffer = false;
  2997. }
  2998. drm_gem_object_unreference(object_list[i]);
  2999. }
  3000. mutex_unlock(&dev->struct_mutex);
  3001. if (!ret) {
  3002. /* Copy the new buffer offsets back to the user's exec list. */
  3003. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3004. (uintptr_t) args->buffers_ptr,
  3005. exec_list,
  3006. sizeof(*exec_list) * args->buffer_count);
  3007. if (ret) {
  3008. ret = -EFAULT;
  3009. DRM_ERROR("failed to copy %d exec entries "
  3010. "back to user (%d)\n",
  3011. args->buffer_count, ret);
  3012. }
  3013. }
  3014. /* Copy the updated relocations out regardless of current error
  3015. * state. Failure to update the relocs would mean that the next
  3016. * time userland calls execbuf, it would do so with presumed offset
  3017. * state that didn't match the actual object state.
  3018. */
  3019. ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
  3020. relocs);
  3021. if (ret2 != 0) {
  3022. DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
  3023. if (ret == 0)
  3024. ret = ret2;
  3025. }
  3026. pre_mutex_err:
  3027. drm_free_large(object_list);
  3028. drm_free_large(exec_list);
  3029. drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
  3030. DRM_MEM_DRIVER);
  3031. return ret;
  3032. }
  3033. int
  3034. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3035. {
  3036. struct drm_device *dev = obj->dev;
  3037. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3038. int ret;
  3039. i915_verify_inactive(dev, __FILE__, __LINE__);
  3040. if (obj_priv->gtt_space == NULL) {
  3041. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3042. if (ret != 0) {
  3043. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3044. DRM_ERROR("Failure to bind: %d\n", ret);
  3045. return ret;
  3046. }
  3047. }
  3048. /*
  3049. * Pre-965 chips need a fence register set up in order to
  3050. * properly handle tiled surfaces.
  3051. */
  3052. if (!IS_I965G(dev) &&
  3053. obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  3054. obj_priv->tiling_mode != I915_TILING_NONE) {
  3055. ret = i915_gem_object_get_fence_reg(obj, true);
  3056. if (ret != 0) {
  3057. if (ret != -EBUSY && ret != -ERESTARTSYS)
  3058. DRM_ERROR("Failure to install fence: %d\n",
  3059. ret);
  3060. return ret;
  3061. }
  3062. }
  3063. obj_priv->pin_count++;
  3064. /* If the object is not active and not pending a flush,
  3065. * remove it from the inactive list
  3066. */
  3067. if (obj_priv->pin_count == 1) {
  3068. atomic_inc(&dev->pin_count);
  3069. atomic_add(obj->size, &dev->pin_memory);
  3070. if (!obj_priv->active &&
  3071. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
  3072. !list_empty(&obj_priv->list))
  3073. list_del_init(&obj_priv->list);
  3074. }
  3075. i915_verify_inactive(dev, __FILE__, __LINE__);
  3076. return 0;
  3077. }
  3078. void
  3079. i915_gem_object_unpin(struct drm_gem_object *obj)
  3080. {
  3081. struct drm_device *dev = obj->dev;
  3082. drm_i915_private_t *dev_priv = dev->dev_private;
  3083. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3084. i915_verify_inactive(dev, __FILE__, __LINE__);
  3085. obj_priv->pin_count--;
  3086. BUG_ON(obj_priv->pin_count < 0);
  3087. BUG_ON(obj_priv->gtt_space == NULL);
  3088. /* If the object is no longer pinned, and is
  3089. * neither active nor being flushed, then stick it on
  3090. * the inactive list
  3091. */
  3092. if (obj_priv->pin_count == 0) {
  3093. if (!obj_priv->active &&
  3094. (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  3095. list_move_tail(&obj_priv->list,
  3096. &dev_priv->mm.inactive_list);
  3097. atomic_dec(&dev->pin_count);
  3098. atomic_sub(obj->size, &dev->pin_memory);
  3099. }
  3100. i915_verify_inactive(dev, __FILE__, __LINE__);
  3101. }
  3102. int
  3103. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3104. struct drm_file *file_priv)
  3105. {
  3106. struct drm_i915_gem_pin *args = data;
  3107. struct drm_gem_object *obj;
  3108. struct drm_i915_gem_object *obj_priv;
  3109. int ret;
  3110. mutex_lock(&dev->struct_mutex);
  3111. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3112. if (obj == NULL) {
  3113. DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
  3114. args->handle);
  3115. mutex_unlock(&dev->struct_mutex);
  3116. return -EBADF;
  3117. }
  3118. obj_priv = obj->driver_private;
  3119. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3120. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3121. args->handle);
  3122. drm_gem_object_unreference(obj);
  3123. mutex_unlock(&dev->struct_mutex);
  3124. return -EINVAL;
  3125. }
  3126. obj_priv->user_pin_count++;
  3127. obj_priv->pin_filp = file_priv;
  3128. if (obj_priv->user_pin_count == 1) {
  3129. ret = i915_gem_object_pin(obj, args->alignment);
  3130. if (ret != 0) {
  3131. drm_gem_object_unreference(obj);
  3132. mutex_unlock(&dev->struct_mutex);
  3133. return ret;
  3134. }
  3135. }
  3136. /* XXX - flush the CPU caches for pinned objects
  3137. * as the X server doesn't manage domains yet
  3138. */
  3139. i915_gem_object_flush_cpu_write_domain(obj);
  3140. args->offset = obj_priv->gtt_offset;
  3141. drm_gem_object_unreference(obj);
  3142. mutex_unlock(&dev->struct_mutex);
  3143. return 0;
  3144. }
  3145. int
  3146. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3147. struct drm_file *file_priv)
  3148. {
  3149. struct drm_i915_gem_pin *args = data;
  3150. struct drm_gem_object *obj;
  3151. struct drm_i915_gem_object *obj_priv;
  3152. mutex_lock(&dev->struct_mutex);
  3153. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3154. if (obj == NULL) {
  3155. DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
  3156. args->handle);
  3157. mutex_unlock(&dev->struct_mutex);
  3158. return -EBADF;
  3159. }
  3160. obj_priv = obj->driver_private;
  3161. if (obj_priv->pin_filp != file_priv) {
  3162. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3163. args->handle);
  3164. drm_gem_object_unreference(obj);
  3165. mutex_unlock(&dev->struct_mutex);
  3166. return -EINVAL;
  3167. }
  3168. obj_priv->user_pin_count--;
  3169. if (obj_priv->user_pin_count == 0) {
  3170. obj_priv->pin_filp = NULL;
  3171. i915_gem_object_unpin(obj);
  3172. }
  3173. drm_gem_object_unreference(obj);
  3174. mutex_unlock(&dev->struct_mutex);
  3175. return 0;
  3176. }
  3177. int
  3178. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3179. struct drm_file *file_priv)
  3180. {
  3181. struct drm_i915_gem_busy *args = data;
  3182. struct drm_gem_object *obj;
  3183. struct drm_i915_gem_object *obj_priv;
  3184. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3185. if (obj == NULL) {
  3186. DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
  3187. args->handle);
  3188. return -EBADF;
  3189. }
  3190. mutex_lock(&dev->struct_mutex);
  3191. /* Update the active list for the hardware's current position.
  3192. * Otherwise this only updates on a delayed timer or when irqs are
  3193. * actually unmasked, and our working set ends up being larger than
  3194. * required.
  3195. */
  3196. i915_gem_retire_requests(dev);
  3197. obj_priv = obj->driver_private;
  3198. /* Don't count being on the flushing list against the object being
  3199. * done. Otherwise, a buffer left on the flushing list but not getting
  3200. * flushed (because nobody's flushing that domain) won't ever return
  3201. * unbusy and get reused by libdrm's bo cache. The other expected
  3202. * consumer of this interface, OpenGL's occlusion queries, also specs
  3203. * that the objects get unbusy "eventually" without any interference.
  3204. */
  3205. args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
  3206. drm_gem_object_unreference(obj);
  3207. mutex_unlock(&dev->struct_mutex);
  3208. return 0;
  3209. }
  3210. int
  3211. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3212. struct drm_file *file_priv)
  3213. {
  3214. return i915_gem_ring_throttle(dev, file_priv);
  3215. }
  3216. int i915_gem_init_object(struct drm_gem_object *obj)
  3217. {
  3218. struct drm_i915_gem_object *obj_priv;
  3219. obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
  3220. if (obj_priv == NULL)
  3221. return -ENOMEM;
  3222. /*
  3223. * We've just allocated pages from the kernel,
  3224. * so they've just been written by the CPU with
  3225. * zeros. They'll need to be clflushed before we
  3226. * use them with the GPU.
  3227. */
  3228. obj->write_domain = I915_GEM_DOMAIN_CPU;
  3229. obj->read_domains = I915_GEM_DOMAIN_CPU;
  3230. obj_priv->agp_type = AGP_USER_MEMORY;
  3231. obj->driver_private = obj_priv;
  3232. obj_priv->obj = obj;
  3233. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  3234. INIT_LIST_HEAD(&obj_priv->list);
  3235. return 0;
  3236. }
  3237. void i915_gem_free_object(struct drm_gem_object *obj)
  3238. {
  3239. struct drm_device *dev = obj->dev;
  3240. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3241. while (obj_priv->pin_count > 0)
  3242. i915_gem_object_unpin(obj);
  3243. if (obj_priv->phys_obj)
  3244. i915_gem_detach_phys_object(dev, obj);
  3245. i915_gem_object_unbind(obj);
  3246. i915_gem_free_mmap_offset(obj);
  3247. drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
  3248. kfree(obj_priv->bit_17);
  3249. drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
  3250. }
  3251. /** Unbinds all objects that are on the given buffer list. */
  3252. static int
  3253. i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
  3254. {
  3255. struct drm_gem_object *obj;
  3256. struct drm_i915_gem_object *obj_priv;
  3257. int ret;
  3258. while (!list_empty(head)) {
  3259. obj_priv = list_first_entry(head,
  3260. struct drm_i915_gem_object,
  3261. list);
  3262. obj = obj_priv->obj;
  3263. if (obj_priv->pin_count != 0) {
  3264. DRM_ERROR("Pinned object in unbind list\n");
  3265. mutex_unlock(&dev->struct_mutex);
  3266. return -EINVAL;
  3267. }
  3268. ret = i915_gem_object_unbind(obj);
  3269. if (ret != 0) {
  3270. DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
  3271. ret);
  3272. mutex_unlock(&dev->struct_mutex);
  3273. return ret;
  3274. }
  3275. }
  3276. return 0;
  3277. }
  3278. int
  3279. i915_gem_idle(struct drm_device *dev)
  3280. {
  3281. drm_i915_private_t *dev_priv = dev->dev_private;
  3282. uint32_t seqno, cur_seqno, last_seqno;
  3283. int stuck, ret;
  3284. mutex_lock(&dev->struct_mutex);
  3285. if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
  3286. mutex_unlock(&dev->struct_mutex);
  3287. return 0;
  3288. }
  3289. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3290. * We need to replace this with a semaphore, or something.
  3291. */
  3292. dev_priv->mm.suspended = 1;
  3293. /* Cancel the retire work handler, wait for it to finish if running
  3294. */
  3295. mutex_unlock(&dev->struct_mutex);
  3296. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3297. mutex_lock(&dev->struct_mutex);
  3298. i915_kernel_lost_context(dev);
  3299. /* Flush the GPU along with all non-CPU write domains
  3300. */
  3301. i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  3302. seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
  3303. if (seqno == 0) {
  3304. mutex_unlock(&dev->struct_mutex);
  3305. return -ENOMEM;
  3306. }
  3307. dev_priv->mm.waiting_gem_seqno = seqno;
  3308. last_seqno = 0;
  3309. stuck = 0;
  3310. for (;;) {
  3311. cur_seqno = i915_get_gem_seqno(dev);
  3312. if (i915_seqno_passed(cur_seqno, seqno))
  3313. break;
  3314. if (last_seqno == cur_seqno) {
  3315. if (stuck++ > 100) {
  3316. DRM_ERROR("hardware wedged\n");
  3317. dev_priv->mm.wedged = 1;
  3318. DRM_WAKEUP(&dev_priv->irq_queue);
  3319. break;
  3320. }
  3321. }
  3322. msleep(10);
  3323. last_seqno = cur_seqno;
  3324. }
  3325. dev_priv->mm.waiting_gem_seqno = 0;
  3326. i915_gem_retire_requests(dev);
  3327. spin_lock(&dev_priv->mm.active_list_lock);
  3328. if (!dev_priv->mm.wedged) {
  3329. /* Active and flushing should now be empty as we've
  3330. * waited for a sequence higher than any pending execbuffer
  3331. */
  3332. WARN_ON(!list_empty(&dev_priv->mm.active_list));
  3333. WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
  3334. /* Request should now be empty as we've also waited
  3335. * for the last request in the list
  3336. */
  3337. WARN_ON(!list_empty(&dev_priv->mm.request_list));
  3338. }
  3339. /* Empty the active and flushing lists to inactive. If there's
  3340. * anything left at this point, it means that we're wedged and
  3341. * nothing good's going to happen by leaving them there. So strip
  3342. * the GPU domains and just stuff them onto inactive.
  3343. */
  3344. while (!list_empty(&dev_priv->mm.active_list)) {
  3345. struct drm_i915_gem_object *obj_priv;
  3346. obj_priv = list_first_entry(&dev_priv->mm.active_list,
  3347. struct drm_i915_gem_object,
  3348. list);
  3349. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3350. i915_gem_object_move_to_inactive(obj_priv->obj);
  3351. }
  3352. spin_unlock(&dev_priv->mm.active_list_lock);
  3353. while (!list_empty(&dev_priv->mm.flushing_list)) {
  3354. struct drm_i915_gem_object *obj_priv;
  3355. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  3356. struct drm_i915_gem_object,
  3357. list);
  3358. obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
  3359. i915_gem_object_move_to_inactive(obj_priv->obj);
  3360. }
  3361. /* Move all inactive buffers out of the GTT. */
  3362. ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
  3363. WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
  3364. if (ret) {
  3365. mutex_unlock(&dev->struct_mutex);
  3366. return ret;
  3367. }
  3368. i915_gem_cleanup_ringbuffer(dev);
  3369. mutex_unlock(&dev->struct_mutex);
  3370. return 0;
  3371. }
  3372. static int
  3373. i915_gem_init_hws(struct drm_device *dev)
  3374. {
  3375. drm_i915_private_t *dev_priv = dev->dev_private;
  3376. struct drm_gem_object *obj;
  3377. struct drm_i915_gem_object *obj_priv;
  3378. int ret;
  3379. /* If we need a physical address for the status page, it's already
  3380. * initialized at driver load time.
  3381. */
  3382. if (!I915_NEED_GFX_HWS(dev))
  3383. return 0;
  3384. obj = drm_gem_object_alloc(dev, 4096);
  3385. if (obj == NULL) {
  3386. DRM_ERROR("Failed to allocate status page\n");
  3387. return -ENOMEM;
  3388. }
  3389. obj_priv = obj->driver_private;
  3390. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3391. ret = i915_gem_object_pin(obj, 4096);
  3392. if (ret != 0) {
  3393. drm_gem_object_unreference(obj);
  3394. return ret;
  3395. }
  3396. dev_priv->status_gfx_addr = obj_priv->gtt_offset;
  3397. dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
  3398. if (dev_priv->hw_status_page == NULL) {
  3399. DRM_ERROR("Failed to map status page.\n");
  3400. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3401. i915_gem_object_unpin(obj);
  3402. drm_gem_object_unreference(obj);
  3403. return -EINVAL;
  3404. }
  3405. dev_priv->hws_obj = obj;
  3406. memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
  3407. I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
  3408. I915_READ(HWS_PGA); /* posting read */
  3409. DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
  3410. return 0;
  3411. }
  3412. static void
  3413. i915_gem_cleanup_hws(struct drm_device *dev)
  3414. {
  3415. drm_i915_private_t *dev_priv = dev->dev_private;
  3416. struct drm_gem_object *obj;
  3417. struct drm_i915_gem_object *obj_priv;
  3418. if (dev_priv->hws_obj == NULL)
  3419. return;
  3420. obj = dev_priv->hws_obj;
  3421. obj_priv = obj->driver_private;
  3422. kunmap(obj_priv->pages[0]);
  3423. i915_gem_object_unpin(obj);
  3424. drm_gem_object_unreference(obj);
  3425. dev_priv->hws_obj = NULL;
  3426. memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
  3427. dev_priv->hw_status_page = NULL;
  3428. /* Write high address into HWS_PGA when disabling. */
  3429. I915_WRITE(HWS_PGA, 0x1ffff000);
  3430. }
  3431. int
  3432. i915_gem_init_ringbuffer(struct drm_device *dev)
  3433. {
  3434. drm_i915_private_t *dev_priv = dev->dev_private;
  3435. struct drm_gem_object *obj;
  3436. struct drm_i915_gem_object *obj_priv;
  3437. drm_i915_ring_buffer_t *ring = &dev_priv->ring;
  3438. int ret;
  3439. u32 head;
  3440. ret = i915_gem_init_hws(dev);
  3441. if (ret != 0)
  3442. return ret;
  3443. obj = drm_gem_object_alloc(dev, 128 * 1024);
  3444. if (obj == NULL) {
  3445. DRM_ERROR("Failed to allocate ringbuffer\n");
  3446. i915_gem_cleanup_hws(dev);
  3447. return -ENOMEM;
  3448. }
  3449. obj_priv = obj->driver_private;
  3450. ret = i915_gem_object_pin(obj, 4096);
  3451. if (ret != 0) {
  3452. drm_gem_object_unreference(obj);
  3453. i915_gem_cleanup_hws(dev);
  3454. return ret;
  3455. }
  3456. /* Set up the kernel mapping for the ring. */
  3457. ring->Size = obj->size;
  3458. ring->tail_mask = obj->size - 1;
  3459. ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
  3460. ring->map.size = obj->size;
  3461. ring->map.type = 0;
  3462. ring->map.flags = 0;
  3463. ring->map.mtrr = 0;
  3464. drm_core_ioremap_wc(&ring->map, dev);
  3465. if (ring->map.handle == NULL) {
  3466. DRM_ERROR("Failed to map ringbuffer.\n");
  3467. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3468. i915_gem_object_unpin(obj);
  3469. drm_gem_object_unreference(obj);
  3470. i915_gem_cleanup_hws(dev);
  3471. return -EINVAL;
  3472. }
  3473. ring->ring_obj = obj;
  3474. ring->virtual_start = ring->map.handle;
  3475. /* Stop the ring if it's running. */
  3476. I915_WRITE(PRB0_CTL, 0);
  3477. I915_WRITE(PRB0_TAIL, 0);
  3478. I915_WRITE(PRB0_HEAD, 0);
  3479. /* Initialize the ring. */
  3480. I915_WRITE(PRB0_START, obj_priv->gtt_offset);
  3481. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3482. /* G45 ring initialization fails to reset head to zero */
  3483. if (head != 0) {
  3484. DRM_ERROR("Ring head not reset to zero "
  3485. "ctl %08x head %08x tail %08x start %08x\n",
  3486. I915_READ(PRB0_CTL),
  3487. I915_READ(PRB0_HEAD),
  3488. I915_READ(PRB0_TAIL),
  3489. I915_READ(PRB0_START));
  3490. I915_WRITE(PRB0_HEAD, 0);
  3491. DRM_ERROR("Ring head forced to zero "
  3492. "ctl %08x head %08x tail %08x start %08x\n",
  3493. I915_READ(PRB0_CTL),
  3494. I915_READ(PRB0_HEAD),
  3495. I915_READ(PRB0_TAIL),
  3496. I915_READ(PRB0_START));
  3497. }
  3498. I915_WRITE(PRB0_CTL,
  3499. ((obj->size - 4096) & RING_NR_PAGES) |
  3500. RING_NO_REPORT |
  3501. RING_VALID);
  3502. head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3503. /* If the head is still not zero, the ring is dead */
  3504. if (head != 0) {
  3505. DRM_ERROR("Ring initialization failed "
  3506. "ctl %08x head %08x tail %08x start %08x\n",
  3507. I915_READ(PRB0_CTL),
  3508. I915_READ(PRB0_HEAD),
  3509. I915_READ(PRB0_TAIL),
  3510. I915_READ(PRB0_START));
  3511. return -EIO;
  3512. }
  3513. /* Update our cache of the ring state */
  3514. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3515. i915_kernel_lost_context(dev);
  3516. else {
  3517. ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
  3518. ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
  3519. ring->space = ring->head - (ring->tail + 8);
  3520. if (ring->space < 0)
  3521. ring->space += ring->Size;
  3522. }
  3523. return 0;
  3524. }
  3525. void
  3526. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3527. {
  3528. drm_i915_private_t *dev_priv = dev->dev_private;
  3529. if (dev_priv->ring.ring_obj == NULL)
  3530. return;
  3531. drm_core_ioremapfree(&dev_priv->ring.map, dev);
  3532. i915_gem_object_unpin(dev_priv->ring.ring_obj);
  3533. drm_gem_object_unreference(dev_priv->ring.ring_obj);
  3534. dev_priv->ring.ring_obj = NULL;
  3535. memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
  3536. i915_gem_cleanup_hws(dev);
  3537. }
  3538. int
  3539. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3540. struct drm_file *file_priv)
  3541. {
  3542. drm_i915_private_t *dev_priv = dev->dev_private;
  3543. int ret;
  3544. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3545. return 0;
  3546. if (dev_priv->mm.wedged) {
  3547. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3548. dev_priv->mm.wedged = 0;
  3549. }
  3550. mutex_lock(&dev->struct_mutex);
  3551. dev_priv->mm.suspended = 0;
  3552. ret = i915_gem_init_ringbuffer(dev);
  3553. if (ret != 0) {
  3554. mutex_unlock(&dev->struct_mutex);
  3555. return ret;
  3556. }
  3557. spin_lock(&dev_priv->mm.active_list_lock);
  3558. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3559. spin_unlock(&dev_priv->mm.active_list_lock);
  3560. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3561. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3562. BUG_ON(!list_empty(&dev_priv->mm.request_list));
  3563. mutex_unlock(&dev->struct_mutex);
  3564. drm_irq_install(dev);
  3565. return 0;
  3566. }
  3567. int
  3568. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3569. struct drm_file *file_priv)
  3570. {
  3571. int ret;
  3572. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3573. return 0;
  3574. ret = i915_gem_idle(dev);
  3575. drm_irq_uninstall(dev);
  3576. return ret;
  3577. }
  3578. void
  3579. i915_gem_lastclose(struct drm_device *dev)
  3580. {
  3581. int ret;
  3582. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3583. return;
  3584. ret = i915_gem_idle(dev);
  3585. if (ret)
  3586. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3587. }
  3588. void
  3589. i915_gem_load(struct drm_device *dev)
  3590. {
  3591. drm_i915_private_t *dev_priv = dev->dev_private;
  3592. spin_lock_init(&dev_priv->mm.active_list_lock);
  3593. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3594. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3595. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3596. INIT_LIST_HEAD(&dev_priv->mm.request_list);
  3597. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3598. i915_gem_retire_work_handler);
  3599. dev_priv->mm.next_gem_seqno = 1;
  3600. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3601. dev_priv->fence_reg_start = 3;
  3602. if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3603. dev_priv->num_fence_regs = 16;
  3604. else
  3605. dev_priv->num_fence_regs = 8;
  3606. i915_gem_detect_bit_6_swizzle(dev);
  3607. }
  3608. /*
  3609. * Create a physically contiguous memory object for this object
  3610. * e.g. for cursor + overlay regs
  3611. */
  3612. int i915_gem_init_phys_object(struct drm_device *dev,
  3613. int id, int size)
  3614. {
  3615. drm_i915_private_t *dev_priv = dev->dev_private;
  3616. struct drm_i915_gem_phys_object *phys_obj;
  3617. int ret;
  3618. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3619. return 0;
  3620. phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3621. if (!phys_obj)
  3622. return -ENOMEM;
  3623. phys_obj->id = id;
  3624. phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
  3625. if (!phys_obj->handle) {
  3626. ret = -ENOMEM;
  3627. goto kfree_obj;
  3628. }
  3629. #ifdef CONFIG_X86
  3630. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3631. #endif
  3632. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3633. return 0;
  3634. kfree_obj:
  3635. drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
  3636. return ret;
  3637. }
  3638. void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3639. {
  3640. drm_i915_private_t *dev_priv = dev->dev_private;
  3641. struct drm_i915_gem_phys_object *phys_obj;
  3642. if (!dev_priv->mm.phys_objs[id - 1])
  3643. return;
  3644. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3645. if (phys_obj->cur_obj) {
  3646. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3647. }
  3648. #ifdef CONFIG_X86
  3649. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3650. #endif
  3651. drm_pci_free(dev, phys_obj->handle);
  3652. kfree(phys_obj);
  3653. dev_priv->mm.phys_objs[id - 1] = NULL;
  3654. }
  3655. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3656. {
  3657. int i;
  3658. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3659. i915_gem_free_phys_object(dev, i);
  3660. }
  3661. void i915_gem_detach_phys_object(struct drm_device *dev,
  3662. struct drm_gem_object *obj)
  3663. {
  3664. struct drm_i915_gem_object *obj_priv;
  3665. int i;
  3666. int ret;
  3667. int page_count;
  3668. obj_priv = obj->driver_private;
  3669. if (!obj_priv->phys_obj)
  3670. return;
  3671. ret = i915_gem_object_get_pages(obj);
  3672. if (ret)
  3673. goto out;
  3674. page_count = obj->size / PAGE_SIZE;
  3675. for (i = 0; i < page_count; i++) {
  3676. char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3677. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3678. memcpy(dst, src, PAGE_SIZE);
  3679. kunmap_atomic(dst, KM_USER0);
  3680. }
  3681. drm_clflush_pages(obj_priv->pages, page_count);
  3682. drm_agp_chipset_flush(dev);
  3683. out:
  3684. obj_priv->phys_obj->cur_obj = NULL;
  3685. obj_priv->phys_obj = NULL;
  3686. }
  3687. int
  3688. i915_gem_attach_phys_object(struct drm_device *dev,
  3689. struct drm_gem_object *obj, int id)
  3690. {
  3691. drm_i915_private_t *dev_priv = dev->dev_private;
  3692. struct drm_i915_gem_object *obj_priv;
  3693. int ret = 0;
  3694. int page_count;
  3695. int i;
  3696. if (id > I915_MAX_PHYS_OBJECT)
  3697. return -EINVAL;
  3698. obj_priv = obj->driver_private;
  3699. if (obj_priv->phys_obj) {
  3700. if (obj_priv->phys_obj->id == id)
  3701. return 0;
  3702. i915_gem_detach_phys_object(dev, obj);
  3703. }
  3704. /* create a new object */
  3705. if (!dev_priv->mm.phys_objs[id - 1]) {
  3706. ret = i915_gem_init_phys_object(dev, id,
  3707. obj->size);
  3708. if (ret) {
  3709. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  3710. goto out;
  3711. }
  3712. }
  3713. /* bind to the object */
  3714. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3715. obj_priv->phys_obj->cur_obj = obj;
  3716. ret = i915_gem_object_get_pages(obj);
  3717. if (ret) {
  3718. DRM_ERROR("failed to get page list\n");
  3719. goto out;
  3720. }
  3721. page_count = obj->size / PAGE_SIZE;
  3722. for (i = 0; i < page_count; i++) {
  3723. char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
  3724. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3725. memcpy(dst, src, PAGE_SIZE);
  3726. kunmap_atomic(src, KM_USER0);
  3727. }
  3728. return 0;
  3729. out:
  3730. return ret;
  3731. }
  3732. static int
  3733. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  3734. struct drm_i915_gem_pwrite *args,
  3735. struct drm_file *file_priv)
  3736. {
  3737. struct drm_i915_gem_object *obj_priv = obj->driver_private;
  3738. void *obj_addr;
  3739. int ret;
  3740. char __user *user_data;
  3741. user_data = (char __user *) (uintptr_t) args->data_ptr;
  3742. obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
  3743. DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
  3744. ret = copy_from_user(obj_addr, user_data, args->size);
  3745. if (ret)
  3746. return -EFAULT;
  3747. drm_agp_chipset_flush(dev);
  3748. return 0;
  3749. }
  3750. void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
  3751. {
  3752. struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
  3753. /* Clean up our request list when the client is going away, so that
  3754. * later retire_requests won't dereference our soon-to-be-gone
  3755. * file_priv.
  3756. */
  3757. mutex_lock(&dev->struct_mutex);
  3758. while (!list_empty(&i915_file_priv->mm.request_list))
  3759. list_del_init(i915_file_priv->mm.request_list.next);
  3760. mutex_unlock(&dev->struct_mutex);
  3761. }