amd64_edac.c 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354
  1. #include "amd64_edac.h"
  2. #include <asm/k8.h>
  3. static struct edac_pci_ctl_info *amd64_ctl_pci;
  4. static int report_gart_errors;
  5. module_param(report_gart_errors, int, 0644);
  6. /*
  7. * Set by command line parameter. If BIOS has enabled the ECC, this override is
  8. * cleared to prevent re-enabling the hardware by this driver.
  9. */
  10. static int ecc_enable_override;
  11. module_param(ecc_enable_override, int, 0644);
  12. /* Lookup table for all possible MC control instances */
  13. struct amd64_pvt;
  14. static struct mem_ctl_info *mci_lookup[MAX_NUMNODES];
  15. static struct amd64_pvt *pvt_lookup[MAX_NUMNODES];
  16. /*
  17. * Memory scrubber control interface. For K8, memory scrubbing is handled by
  18. * hardware and can involve L2 cache, dcache as well as the main memory. With
  19. * F10, this is extended to L3 cache scrubbing on CPU models sporting that
  20. * functionality.
  21. *
  22. * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
  23. * (dram) over to cache lines. This is nasty, so we will use bandwidth in
  24. * bytes/sec for the setting.
  25. *
  26. * Currently, we only do dram scrubbing. If the scrubbing is done in software on
  27. * other archs, we might not have access to the caches directly.
  28. */
  29. /*
  30. * scan the scrub rate mapping table for a close or matching bandwidth value to
  31. * issue. If requested is too big, then use last maximum value found.
  32. */
  33. static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
  34. u32 min_scrubrate)
  35. {
  36. u32 scrubval;
  37. int i;
  38. /*
  39. * map the configured rate (new_bw) to a value specific to the AMD64
  40. * memory controller and apply to register. Search for the first
  41. * bandwidth entry that is greater or equal than the setting requested
  42. * and program that. If at last entry, turn off DRAM scrubbing.
  43. */
  44. for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
  45. /*
  46. * skip scrub rates which aren't recommended
  47. * (see F10 BKDG, F3x58)
  48. */
  49. if (scrubrates[i].scrubval < min_scrubrate)
  50. continue;
  51. if (scrubrates[i].bandwidth <= new_bw)
  52. break;
  53. /*
  54. * if no suitable bandwidth found, turn off DRAM scrubbing
  55. * entirely by falling back to the last element in the
  56. * scrubrates array.
  57. */
  58. }
  59. scrubval = scrubrates[i].scrubval;
  60. if (scrubval)
  61. edac_printk(KERN_DEBUG, EDAC_MC,
  62. "Setting scrub rate bandwidth: %u\n",
  63. scrubrates[i].bandwidth);
  64. else
  65. edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
  66. pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
  67. return 0;
  68. }
  69. static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
  70. {
  71. struct amd64_pvt *pvt = mci->pvt_info;
  72. u32 min_scrubrate = 0x0;
  73. switch (boot_cpu_data.x86) {
  74. case 0xf:
  75. min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
  76. break;
  77. case 0x10:
  78. min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
  79. break;
  80. case 0x11:
  81. min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
  82. break;
  83. default:
  84. amd64_printk(KERN_ERR, "Unsupported family!\n");
  85. break;
  86. }
  87. return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
  88. min_scrubrate);
  89. }
  90. static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
  91. {
  92. struct amd64_pvt *pvt = mci->pvt_info;
  93. u32 scrubval = 0;
  94. int status = -1, i, ret = 0;
  95. ret = pci_read_config_dword(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
  96. if (ret)
  97. debugf0("Reading K8_SCRCTRL failed\n");
  98. scrubval = scrubval & 0x001F;
  99. edac_printk(KERN_DEBUG, EDAC_MC,
  100. "pci-read, sdram scrub control value: %d \n", scrubval);
  101. for (i = 0; ARRAY_SIZE(scrubrates); i++) {
  102. if (scrubrates[i].scrubval == scrubval) {
  103. *bw = scrubrates[i].bandwidth;
  104. status = 0;
  105. break;
  106. }
  107. }
  108. return status;
  109. }
  110. /* Map from a CSROW entry to the mask entry that operates on it */
  111. static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
  112. {
  113. return csrow >> (pvt->num_dcsm >> 3);
  114. }
  115. /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
  116. static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
  117. {
  118. if (dct == 0)
  119. return pvt->dcsb0[csrow];
  120. else
  121. return pvt->dcsb1[csrow];
  122. }
  123. /*
  124. * Return the 'mask' address the i'th CS entry. This function is needed because
  125. * there number of DCSM registers on Rev E and prior vs Rev F and later is
  126. * different.
  127. */
  128. static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
  129. {
  130. if (dct == 0)
  131. return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
  132. else
  133. return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
  134. }
  135. /*
  136. * In *base and *limit, pass back the full 40-bit base and limit physical
  137. * addresses for the node given by node_id. This information is obtained from
  138. * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
  139. * base and limit addresses are of type SysAddr, as defined at the start of
  140. * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
  141. * in the address range they represent.
  142. */
  143. static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
  144. u64 *base, u64 *limit)
  145. {
  146. *base = pvt->dram_base[node_id];
  147. *limit = pvt->dram_limit[node_id];
  148. }
  149. /*
  150. * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
  151. * with node_id
  152. */
  153. static int amd64_base_limit_match(struct amd64_pvt *pvt,
  154. u64 sys_addr, int node_id)
  155. {
  156. u64 base, limit, addr;
  157. amd64_get_base_and_limit(pvt, node_id, &base, &limit);
  158. /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
  159. * all ones if the most significant implemented address bit is 1.
  160. * Here we discard bits 63-40. See section 3.4.2 of AMD publication
  161. * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
  162. * Application Programming.
  163. */
  164. addr = sys_addr & 0x000000ffffffffffull;
  165. return (addr >= base) && (addr <= limit);
  166. }
  167. /*
  168. * Attempt to map a SysAddr to a node. On success, return a pointer to the
  169. * mem_ctl_info structure for the node that the SysAddr maps to.
  170. *
  171. * On failure, return NULL.
  172. */
  173. static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
  174. u64 sys_addr)
  175. {
  176. struct amd64_pvt *pvt;
  177. int node_id;
  178. u32 intlv_en, bits;
  179. /*
  180. * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
  181. * 3.4.4.2) registers to map the SysAddr to a node ID.
  182. */
  183. pvt = mci->pvt_info;
  184. /*
  185. * The value of this field should be the same for all DRAM Base
  186. * registers. Therefore we arbitrarily choose to read it from the
  187. * register for node 0.
  188. */
  189. intlv_en = pvt->dram_IntlvEn[0];
  190. if (intlv_en == 0) {
  191. for (node_id = 0; ; ) {
  192. if (amd64_base_limit_match(pvt, sys_addr, node_id))
  193. break;
  194. if (++node_id >= DRAM_REG_COUNT)
  195. goto err_no_match;
  196. }
  197. goto found;
  198. }
  199. if (unlikely((intlv_en != (0x01 << 8)) &&
  200. (intlv_en != (0x03 << 8)) &&
  201. (intlv_en != (0x07 << 8)))) {
  202. amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
  203. "IntlvEn field of DRAM Base Register for node 0: "
  204. "This probably indicates a BIOS bug.\n", intlv_en);
  205. return NULL;
  206. }
  207. bits = (((u32) sys_addr) >> 12) & intlv_en;
  208. for (node_id = 0; ; ) {
  209. if ((pvt->dram_limit[node_id] & intlv_en) == bits)
  210. break; /* intlv_sel field matches */
  211. if (++node_id >= DRAM_REG_COUNT)
  212. goto err_no_match;
  213. }
  214. /* sanity test for sys_addr */
  215. if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
  216. amd64_printk(KERN_WARNING,
  217. "%s(): sys_addr 0x%lx falls outside base/limit "
  218. "address range for node %d with node interleaving "
  219. "enabled.\n", __func__, (unsigned long)sys_addr,
  220. node_id);
  221. return NULL;
  222. }
  223. found:
  224. return edac_mc_find(node_id);
  225. err_no_match:
  226. debugf2("sys_addr 0x%lx doesn't match any node\n",
  227. (unsigned long)sys_addr);
  228. return NULL;
  229. }
  230. /*
  231. * Extract the DRAM CS base address from selected csrow register.
  232. */
  233. static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
  234. {
  235. return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
  236. pvt->dcs_shift;
  237. }
  238. /*
  239. * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
  240. */
  241. static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
  242. {
  243. u64 dcsm_bits, other_bits;
  244. u64 mask;
  245. /* Extract bits from DRAM CS Mask. */
  246. dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
  247. other_bits = pvt->dcsm_mask;
  248. other_bits = ~(other_bits << pvt->dcs_shift);
  249. /*
  250. * The extracted bits from DCSM belong in the spaces represented by
  251. * the cleared bits in other_bits.
  252. */
  253. mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
  254. return mask;
  255. }
  256. /*
  257. * @input_addr is an InputAddr associated with the node given by mci. Return the
  258. * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
  259. */
  260. static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
  261. {
  262. struct amd64_pvt *pvt;
  263. int csrow;
  264. u64 base, mask;
  265. pvt = mci->pvt_info;
  266. /*
  267. * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
  268. * base/mask register pair, test the condition shown near the start of
  269. * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
  270. */
  271. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  272. /* This DRAM chip select is disabled on this node */
  273. if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
  274. continue;
  275. base = base_from_dct_base(pvt, csrow);
  276. mask = ~mask_from_dct_mask(pvt, csrow);
  277. if ((input_addr & mask) == (base & mask)) {
  278. debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
  279. (unsigned long)input_addr, csrow,
  280. pvt->mc_node_id);
  281. return csrow;
  282. }
  283. }
  284. debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
  285. (unsigned long)input_addr, pvt->mc_node_id);
  286. return -1;
  287. }
  288. /*
  289. * Return the base value defined by the DRAM Base register for the node
  290. * represented by mci. This function returns the full 40-bit value despite the
  291. * fact that the register only stores bits 39-24 of the value. See section
  292. * 3.4.4.1 (BKDG #26094, K8, revA-E)
  293. */
  294. static inline u64 get_dram_base(struct mem_ctl_info *mci)
  295. {
  296. struct amd64_pvt *pvt = mci->pvt_info;
  297. return pvt->dram_base[pvt->mc_node_id];
  298. }
  299. /*
  300. * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
  301. * for the node represented by mci. Info is passed back in *hole_base,
  302. * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
  303. * info is invalid. Info may be invalid for either of the following reasons:
  304. *
  305. * - The revision of the node is not E or greater. In this case, the DRAM Hole
  306. * Address Register does not exist.
  307. *
  308. * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
  309. * indicating that its contents are not valid.
  310. *
  311. * The values passed back in *hole_base, *hole_offset, and *hole_size are
  312. * complete 32-bit values despite the fact that the bitfields in the DHAR
  313. * only represent bits 31-24 of the base and offset values.
  314. */
  315. int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
  316. u64 *hole_offset, u64 *hole_size)
  317. {
  318. struct amd64_pvt *pvt = mci->pvt_info;
  319. u64 base;
  320. /* only revE and later have the DRAM Hole Address Register */
  321. if (boot_cpu_data.x86 == 0xf && pvt->ext_model < OPTERON_CPU_REV_E) {
  322. debugf1(" revision %d for node %d does not support DHAR\n",
  323. pvt->ext_model, pvt->mc_node_id);
  324. return 1;
  325. }
  326. /* only valid for Fam10h */
  327. if (boot_cpu_data.x86 == 0x10 &&
  328. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
  329. debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
  330. return 1;
  331. }
  332. if ((pvt->dhar & DHAR_VALID) == 0) {
  333. debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
  334. pvt->mc_node_id);
  335. return 1;
  336. }
  337. /* This node has Memory Hoisting */
  338. /* +------------------+--------------------+--------------------+-----
  339. * | memory | DRAM hole | relocated |
  340. * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
  341. * | | | DRAM hole |
  342. * | | | [0x100000000, |
  343. * | | | (0x100000000+ |
  344. * | | | (0xffffffff-x))] |
  345. * +------------------+--------------------+--------------------+-----
  346. *
  347. * Above is a diagram of physical memory showing the DRAM hole and the
  348. * relocated addresses from the DRAM hole. As shown, the DRAM hole
  349. * starts at address x (the base address) and extends through address
  350. * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
  351. * addresses in the hole so that they start at 0x100000000.
  352. */
  353. base = dhar_base(pvt->dhar);
  354. *hole_base = base;
  355. *hole_size = (0x1ull << 32) - base;
  356. if (boot_cpu_data.x86 > 0xf)
  357. *hole_offset = f10_dhar_offset(pvt->dhar);
  358. else
  359. *hole_offset = k8_dhar_offset(pvt->dhar);
  360. debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
  361. pvt->mc_node_id, (unsigned long)*hole_base,
  362. (unsigned long)*hole_offset, (unsigned long)*hole_size);
  363. return 0;
  364. }
  365. EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
  366. /*
  367. * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
  368. * assumed that sys_addr maps to the node given by mci.
  369. *
  370. * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
  371. * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
  372. * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
  373. * then it is also involved in translating a SysAddr to a DramAddr. Sections
  374. * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
  375. * These parts of the documentation are unclear. I interpret them as follows:
  376. *
  377. * When node n receives a SysAddr, it processes the SysAddr as follows:
  378. *
  379. * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
  380. * Limit registers for node n. If the SysAddr is not within the range
  381. * specified by the base and limit values, then node n ignores the Sysaddr
  382. * (since it does not map to node n). Otherwise continue to step 2 below.
  383. *
  384. * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
  385. * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
  386. * the range of relocated addresses (starting at 0x100000000) from the DRAM
  387. * hole. If not, skip to step 3 below. Else get the value of the
  388. * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
  389. * offset defined by this value from the SysAddr.
  390. *
  391. * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
  392. * Base register for node n. To obtain the DramAddr, subtract the base
  393. * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
  394. */
  395. static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
  396. {
  397. u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
  398. int ret = 0;
  399. dram_base = get_dram_base(mci);
  400. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  401. &hole_size);
  402. if (!ret) {
  403. if ((sys_addr >= (1ull << 32)) &&
  404. (sys_addr < ((1ull << 32) + hole_size))) {
  405. /* use DHAR to translate SysAddr to DramAddr */
  406. dram_addr = sys_addr - hole_offset;
  407. debugf2("using DHAR to translate SysAddr 0x%lx to "
  408. "DramAddr 0x%lx\n",
  409. (unsigned long)sys_addr,
  410. (unsigned long)dram_addr);
  411. return dram_addr;
  412. }
  413. }
  414. /*
  415. * Translate the SysAddr to a DramAddr as shown near the start of
  416. * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
  417. * only deals with 40-bit values. Therefore we discard bits 63-40 of
  418. * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
  419. * discard are all 1s. Otherwise the bits we discard are all 0s. See
  420. * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
  421. * Programmer's Manual Volume 1 Application Programming.
  422. */
  423. dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
  424. debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
  425. "DramAddr 0x%lx\n", (unsigned long)sys_addr,
  426. (unsigned long)dram_addr);
  427. return dram_addr;
  428. }
  429. /*
  430. * @intlv_en is the value of the IntlvEn field from a DRAM Base register
  431. * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
  432. * for node interleaving.
  433. */
  434. static int num_node_interleave_bits(unsigned intlv_en)
  435. {
  436. static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
  437. int n;
  438. BUG_ON(intlv_en > 7);
  439. n = intlv_shift_table[intlv_en];
  440. return n;
  441. }
  442. /* Translate the DramAddr given by @dram_addr to an InputAddr. */
  443. static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
  444. {
  445. struct amd64_pvt *pvt;
  446. int intlv_shift;
  447. u64 input_addr;
  448. pvt = mci->pvt_info;
  449. /*
  450. * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  451. * concerning translating a DramAddr to an InputAddr.
  452. */
  453. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  454. input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
  455. (dram_addr & 0xfff);
  456. debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
  457. intlv_shift, (unsigned long)dram_addr,
  458. (unsigned long)input_addr);
  459. return input_addr;
  460. }
  461. /*
  462. * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
  463. * assumed that @sys_addr maps to the node given by mci.
  464. */
  465. static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
  466. {
  467. u64 input_addr;
  468. input_addr =
  469. dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
  470. debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
  471. (unsigned long)sys_addr, (unsigned long)input_addr);
  472. return input_addr;
  473. }
  474. /*
  475. * @input_addr is an InputAddr associated with the node represented by mci.
  476. * Translate @input_addr to a DramAddr and return the result.
  477. */
  478. static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
  479. {
  480. struct amd64_pvt *pvt;
  481. int node_id, intlv_shift;
  482. u64 bits, dram_addr;
  483. u32 intlv_sel;
  484. /*
  485. * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
  486. * shows how to translate a DramAddr to an InputAddr. Here we reverse
  487. * this procedure. When translating from a DramAddr to an InputAddr, the
  488. * bits used for node interleaving are discarded. Here we recover these
  489. * bits from the IntlvSel field of the DRAM Limit register (section
  490. * 3.4.4.2) for the node that input_addr is associated with.
  491. */
  492. pvt = mci->pvt_info;
  493. node_id = pvt->mc_node_id;
  494. BUG_ON((node_id < 0) || (node_id > 7));
  495. intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
  496. if (intlv_shift == 0) {
  497. debugf1(" InputAddr 0x%lx translates to DramAddr of "
  498. "same value\n", (unsigned long)input_addr);
  499. return input_addr;
  500. }
  501. bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
  502. (input_addr & 0xfff);
  503. intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
  504. dram_addr = bits + (intlv_sel << 12);
  505. debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
  506. "(%d node interleave bits)\n", (unsigned long)input_addr,
  507. (unsigned long)dram_addr, intlv_shift);
  508. return dram_addr;
  509. }
  510. /*
  511. * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
  512. * @dram_addr to a SysAddr.
  513. */
  514. static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
  515. {
  516. struct amd64_pvt *pvt = mci->pvt_info;
  517. u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
  518. int ret = 0;
  519. ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
  520. &hole_size);
  521. if (!ret) {
  522. if ((dram_addr >= hole_base) &&
  523. (dram_addr < (hole_base + hole_size))) {
  524. sys_addr = dram_addr + hole_offset;
  525. debugf1("using DHAR to translate DramAddr 0x%lx to "
  526. "SysAddr 0x%lx\n", (unsigned long)dram_addr,
  527. (unsigned long)sys_addr);
  528. return sys_addr;
  529. }
  530. }
  531. amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
  532. sys_addr = dram_addr + base;
  533. /*
  534. * The sys_addr we have computed up to this point is a 40-bit value
  535. * because the k8 deals with 40-bit values. However, the value we are
  536. * supposed to return is a full 64-bit physical address. The AMD
  537. * x86-64 architecture specifies that the most significant implemented
  538. * address bit through bit 63 of a physical address must be either all
  539. * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
  540. * 64-bit value below. See section 3.4.2 of AMD publication 24592:
  541. * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
  542. * Programming.
  543. */
  544. sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
  545. debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
  546. pvt->mc_node_id, (unsigned long)dram_addr,
  547. (unsigned long)sys_addr);
  548. return sys_addr;
  549. }
  550. /*
  551. * @input_addr is an InputAddr associated with the node given by mci. Translate
  552. * @input_addr to a SysAddr.
  553. */
  554. static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
  555. u64 input_addr)
  556. {
  557. return dram_addr_to_sys_addr(mci,
  558. input_addr_to_dram_addr(mci, input_addr));
  559. }
  560. /*
  561. * Find the minimum and maximum InputAddr values that map to the given @csrow.
  562. * Pass back these values in *input_addr_min and *input_addr_max.
  563. */
  564. static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
  565. u64 *input_addr_min, u64 *input_addr_max)
  566. {
  567. struct amd64_pvt *pvt;
  568. u64 base, mask;
  569. pvt = mci->pvt_info;
  570. BUG_ON((csrow < 0) || (csrow >= CHIPSELECT_COUNT));
  571. base = base_from_dct_base(pvt, csrow);
  572. mask = mask_from_dct_mask(pvt, csrow);
  573. *input_addr_min = base & ~mask;
  574. *input_addr_max = base | mask | pvt->dcs_mask_notused;
  575. }
  576. /*
  577. * Extract error address from MCA NB Address Low (section 3.6.4.5) and MCA NB
  578. * Address High (section 3.6.4.6) register values and return the result. Address
  579. * is located in the info structure (nbeah and nbeal), the encoding is device
  580. * specific.
  581. */
  582. static u64 extract_error_address(struct mem_ctl_info *mci,
  583. struct amd64_error_info_regs *info)
  584. {
  585. struct amd64_pvt *pvt = mci->pvt_info;
  586. return pvt->ops->get_error_address(mci, info);
  587. }
  588. /* Map the Error address to a PAGE and PAGE OFFSET. */
  589. static inline void error_address_to_page_and_offset(u64 error_address,
  590. u32 *page, u32 *offset)
  591. {
  592. *page = (u32) (error_address >> PAGE_SHIFT);
  593. *offset = ((u32) error_address) & ~PAGE_MASK;
  594. }
  595. /*
  596. * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
  597. * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
  598. * of a node that detected an ECC memory error. mci represents the node that
  599. * the error address maps to (possibly different from the node that detected
  600. * the error). Return the number of the csrow that sys_addr maps to, or -1 on
  601. * error.
  602. */
  603. static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
  604. {
  605. int csrow;
  606. csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
  607. if (csrow == -1)
  608. amd64_mc_printk(mci, KERN_ERR,
  609. "Failed to translate InputAddr to csrow for "
  610. "address 0x%lx\n", (unsigned long)sys_addr);
  611. return csrow;
  612. }
  613. static int get_channel_from_ecc_syndrome(unsigned short syndrome);
  614. static void amd64_cpu_display_info(struct amd64_pvt *pvt)
  615. {
  616. if (boot_cpu_data.x86 == 0x11)
  617. edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
  618. else if (boot_cpu_data.x86 == 0x10)
  619. edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
  620. else if (boot_cpu_data.x86 == 0xf)
  621. edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
  622. (pvt->ext_model >= OPTERON_CPU_REV_F) ?
  623. "Rev F or later" : "Rev E or earlier");
  624. else
  625. /* we'll hardly ever ever get here */
  626. edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
  627. }
  628. /*
  629. * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
  630. * are ECC capable.
  631. */
  632. static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
  633. {
  634. int bit;
  635. enum dev_type edac_cap = EDAC_NONE;
  636. bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= OPTERON_CPU_REV_F)
  637. ? 19
  638. : 17;
  639. if (pvt->dclr0 >> BIT(bit))
  640. edac_cap = EDAC_FLAG_SECDED;
  641. return edac_cap;
  642. }
  643. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  644. int ganged);
  645. /* Display and decode various NB registers for debug purposes. */
  646. static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
  647. {
  648. int ganged;
  649. debugf1(" nbcap:0x%8.08x DctDualCap=%s DualNode=%s 8-Node=%s\n",
  650. pvt->nbcap,
  651. (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "True" : "False",
  652. (pvt->nbcap & K8_NBCAP_DUAL_NODE) ? "True" : "False",
  653. (pvt->nbcap & K8_NBCAP_8_NODE) ? "True" : "False");
  654. debugf1(" ECC Capable=%s ChipKill Capable=%s\n",
  655. (pvt->nbcap & K8_NBCAP_SECDED) ? "True" : "False",
  656. (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "True" : "False");
  657. debugf1(" DramCfg0-low=0x%08x DIMM-ECC=%s Parity=%s Width=%s\n",
  658. pvt->dclr0,
  659. (pvt->dclr0 & BIT(19)) ? "Enabled" : "Disabled",
  660. (pvt->dclr0 & BIT(8)) ? "Enabled" : "Disabled",
  661. (pvt->dclr0 & BIT(11)) ? "128b" : "64b");
  662. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s DIMM Type=%s\n",
  663. (pvt->dclr0 & BIT(12)) ? "Y" : "N",
  664. (pvt->dclr0 & BIT(13)) ? "Y" : "N",
  665. (pvt->dclr0 & BIT(14)) ? "Y" : "N",
  666. (pvt->dclr0 & BIT(15)) ? "Y" : "N",
  667. (pvt->dclr0 & BIT(16)) ? "UN-Buffered" : "Buffered");
  668. debugf1(" online-spare: 0x%8.08x\n", pvt->online_spare);
  669. if (boot_cpu_data.x86 == 0xf) {
  670. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  671. pvt->dhar, dhar_base(pvt->dhar),
  672. k8_dhar_offset(pvt->dhar));
  673. debugf1(" DramHoleValid=%s\n",
  674. (pvt->dhar & DHAR_VALID) ? "True" : "False");
  675. debugf1(" dbam-dkt: 0x%8.08x\n", pvt->dbam0);
  676. /* everything below this point is Fam10h and above */
  677. return;
  678. } else {
  679. debugf1(" dhar: 0x%8.08x Base=0x%08x Offset=0x%08x\n",
  680. pvt->dhar, dhar_base(pvt->dhar),
  681. f10_dhar_offset(pvt->dhar));
  682. debugf1(" DramMemHoistValid=%s DramHoleValid=%s\n",
  683. (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) ?
  684. "True" : "False",
  685. (pvt->dhar & DHAR_VALID) ?
  686. "True" : "False");
  687. }
  688. /* Only if NOT ganged does dcl1 have valid info */
  689. if (!dct_ganging_enabled(pvt)) {
  690. debugf1(" DramCfg1-low=0x%08x DIMM-ECC=%s Parity=%s "
  691. "Width=%s\n", pvt->dclr1,
  692. (pvt->dclr1 & BIT(19)) ? "Enabled" : "Disabled",
  693. (pvt->dclr1 & BIT(8)) ? "Enabled" : "Disabled",
  694. (pvt->dclr1 & BIT(11)) ? "128b" : "64b");
  695. debugf1(" DIMM x4 Present: L0=%s L1=%s L2=%s L3=%s "
  696. "DIMM Type=%s\n",
  697. (pvt->dclr1 & BIT(12)) ? "Y" : "N",
  698. (pvt->dclr1 & BIT(13)) ? "Y" : "N",
  699. (pvt->dclr1 & BIT(14)) ? "Y" : "N",
  700. (pvt->dclr1 & BIT(15)) ? "Y" : "N",
  701. (pvt->dclr1 & BIT(16)) ? "UN-Buffered" : "Buffered");
  702. }
  703. /*
  704. * Determine if ganged and then dump memory sizes for first controller,
  705. * and if NOT ganged dump info for 2nd controller.
  706. */
  707. ganged = dct_ganging_enabled(pvt);
  708. f10_debug_display_dimm_sizes(0, pvt, ganged);
  709. if (!ganged)
  710. f10_debug_display_dimm_sizes(1, pvt, ganged);
  711. }
  712. /* Read in both of DBAM registers */
  713. static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
  714. {
  715. int err = 0;
  716. unsigned int reg;
  717. reg = DBAM0;
  718. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam0);
  719. if (err)
  720. goto err_reg;
  721. if (boot_cpu_data.x86 >= 0x10) {
  722. reg = DBAM1;
  723. err = pci_read_config_dword(pvt->dram_f2_ctl, reg, &pvt->dbam1);
  724. if (err)
  725. goto err_reg;
  726. }
  727. err_reg:
  728. debugf0("Error reading F2x%03x.\n", reg);
  729. }
  730. /*
  731. * NOTE: CPU Revision Dependent code: Rev E and Rev F
  732. *
  733. * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
  734. * set the shift factor for the DCSB and DCSM values.
  735. *
  736. * ->dcs_mask_notused, RevE:
  737. *
  738. * To find the max InputAddr for the csrow, start with the base address and set
  739. * all bits that are "don't care" bits in the test at the start of section
  740. * 3.5.4 (p. 84).
  741. *
  742. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  743. * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
  744. * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
  745. * gaps.
  746. *
  747. * ->dcs_mask_notused, RevF and later:
  748. *
  749. * To find the max InputAddr for the csrow, start with the base address and set
  750. * all bits that are "don't care" bits in the test at the start of NPT section
  751. * 4.5.4 (p. 87).
  752. *
  753. * The "don't care" bits are all set bits in the mask and all bits in the gaps
  754. * between bit ranges [36:27] and [21:13].
  755. *
  756. * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
  757. * which are all bits in the above-mentioned gaps.
  758. */
  759. static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
  760. {
  761. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  762. pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
  763. pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
  764. pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
  765. pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
  766. switch (boot_cpu_data.x86) {
  767. case 0xf:
  768. pvt->num_dcsm = REV_F_DCSM_COUNT;
  769. break;
  770. case 0x10:
  771. pvt->num_dcsm = F10_DCSM_COUNT;
  772. break;
  773. case 0x11:
  774. pvt->num_dcsm = F11_DCSM_COUNT;
  775. break;
  776. default:
  777. amd64_printk(KERN_ERR, "Unsupported family!\n");
  778. break;
  779. }
  780. } else {
  781. pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
  782. pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
  783. pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
  784. pvt->dcs_shift = REV_E_DCS_SHIFT;
  785. pvt->num_dcsm = REV_E_DCSM_COUNT;
  786. }
  787. }
  788. /*
  789. * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
  790. */
  791. static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
  792. {
  793. int cs, reg, err = 0;
  794. amd64_set_dct_base_and_mask(pvt);
  795. for (cs = 0; cs < CHIPSELECT_COUNT; cs++) {
  796. reg = K8_DCSB0 + (cs * 4);
  797. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  798. &pvt->dcsb0[cs]);
  799. if (unlikely(err))
  800. debugf0("Reading K8_DCSB0[%d] failed\n", cs);
  801. else
  802. debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
  803. cs, pvt->dcsb0[cs], reg);
  804. /* If DCT are NOT ganged, then read in DCT1's base */
  805. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  806. reg = F10_DCSB1 + (cs * 4);
  807. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  808. &pvt->dcsb1[cs]);
  809. if (unlikely(err))
  810. debugf0("Reading F10_DCSB1[%d] failed\n", cs);
  811. else
  812. debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
  813. cs, pvt->dcsb1[cs], reg);
  814. } else {
  815. pvt->dcsb1[cs] = 0;
  816. }
  817. }
  818. for (cs = 0; cs < pvt->num_dcsm; cs++) {
  819. reg = K8_DCSB0 + (cs * 4);
  820. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  821. &pvt->dcsm0[cs]);
  822. if (unlikely(err))
  823. debugf0("Reading K8_DCSM0 failed\n");
  824. else
  825. debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
  826. cs, pvt->dcsm0[cs], reg);
  827. /* If DCT are NOT ganged, then read in DCT1's mask */
  828. if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
  829. reg = F10_DCSM1 + (cs * 4);
  830. err = pci_read_config_dword(pvt->dram_f2_ctl, reg,
  831. &pvt->dcsm1[cs]);
  832. if (unlikely(err))
  833. debugf0("Reading F10_DCSM1[%d] failed\n", cs);
  834. else
  835. debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
  836. cs, pvt->dcsm1[cs], reg);
  837. } else
  838. pvt->dcsm1[cs] = 0;
  839. }
  840. }
  841. static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
  842. {
  843. enum mem_type type;
  844. if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= OPTERON_CPU_REV_F) {
  845. /* Rev F and later */
  846. type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
  847. } else {
  848. /* Rev E and earlier */
  849. type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
  850. }
  851. debugf1(" Memory type is: %s\n",
  852. (type == MEM_DDR2) ? "MEM_DDR2" :
  853. (type == MEM_RDDR2) ? "MEM_RDDR2" :
  854. (type == MEM_DDR) ? "MEM_DDR" : "MEM_RDDR");
  855. return type;
  856. }
  857. /*
  858. * Read the DRAM Configuration Low register. It differs between CG, D & E revs
  859. * and the later RevF memory controllers (DDR vs DDR2)
  860. *
  861. * Return:
  862. * number of memory channels in operation
  863. * Pass back:
  864. * contents of the DCL0_LOW register
  865. */
  866. static int k8_early_channel_count(struct amd64_pvt *pvt)
  867. {
  868. int flag, err = 0;
  869. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  870. if (err)
  871. return err;
  872. if ((boot_cpu_data.x86_model >> 4) >= OPTERON_CPU_REV_F) {
  873. /* RevF (NPT) and later */
  874. flag = pvt->dclr0 & F10_WIDTH_128;
  875. } else {
  876. /* RevE and earlier */
  877. flag = pvt->dclr0 & REVE_WIDTH_128;
  878. }
  879. /* not used */
  880. pvt->dclr1 = 0;
  881. return (flag) ? 2 : 1;
  882. }
  883. /* extract the ERROR ADDRESS for the K8 CPUs */
  884. static u64 k8_get_error_address(struct mem_ctl_info *mci,
  885. struct amd64_error_info_regs *info)
  886. {
  887. return (((u64) (info->nbeah & 0xff)) << 32) +
  888. (info->nbeal & ~0x03);
  889. }
  890. /*
  891. * Read the Base and Limit registers for K8 based Memory controllers; extract
  892. * fields from the 'raw' reg into separate data fields
  893. *
  894. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
  895. */
  896. static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  897. {
  898. u32 low;
  899. u32 off = dram << 3; /* 8 bytes between DRAM entries */
  900. int err;
  901. err = pci_read_config_dword(pvt->addr_f1_ctl,
  902. K8_DRAM_BASE_LOW + off, &low);
  903. if (err)
  904. debugf0("Reading K8_DRAM_BASE_LOW failed\n");
  905. /* Extract parts into separate data entries */
  906. pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
  907. pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
  908. pvt->dram_rw_en[dram] = (low & 0x3);
  909. err = pci_read_config_dword(pvt->addr_f1_ctl,
  910. K8_DRAM_LIMIT_LOW + off, &low);
  911. if (err)
  912. debugf0("Reading K8_DRAM_LIMIT_LOW failed\n");
  913. /*
  914. * Extract parts into separate data entries. Limit is the HIGHEST memory
  915. * location of the region, so lower 24 bits need to be all ones
  916. */
  917. pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
  918. pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
  919. pvt->dram_DstNode[dram] = (low & 0x7);
  920. }
  921. static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  922. struct amd64_error_info_regs *info,
  923. u64 SystemAddress)
  924. {
  925. struct mem_ctl_info *src_mci;
  926. unsigned short syndrome;
  927. int channel, csrow;
  928. u32 page, offset;
  929. /* Extract the syndrome parts and form a 16-bit syndrome */
  930. syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
  931. syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
  932. /* CHIPKILL enabled */
  933. if (info->nbcfg & K8_NBCFG_CHIPKILL) {
  934. channel = get_channel_from_ecc_syndrome(syndrome);
  935. if (channel < 0) {
  936. /*
  937. * Syndrome didn't map, so we don't know which of the
  938. * 2 DIMMs is in error. So we need to ID 'both' of them
  939. * as suspect.
  940. */
  941. amd64_mc_printk(mci, KERN_WARNING,
  942. "unknown syndrome 0x%x - possible error "
  943. "reporting race\n", syndrome);
  944. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  945. return;
  946. }
  947. } else {
  948. /*
  949. * non-chipkill ecc mode
  950. *
  951. * The k8 documentation is unclear about how to determine the
  952. * channel number when using non-chipkill memory. This method
  953. * was obtained from email communication with someone at AMD.
  954. * (Wish the email was placed in this comment - norsk)
  955. */
  956. channel = ((SystemAddress & BIT(3)) != 0);
  957. }
  958. /*
  959. * Find out which node the error address belongs to. This may be
  960. * different from the node that detected the error.
  961. */
  962. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  963. if (src_mci) {
  964. amd64_mc_printk(mci, KERN_ERR,
  965. "failed to map error address 0x%lx to a node\n",
  966. (unsigned long)SystemAddress);
  967. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  968. return;
  969. }
  970. /* Now map the SystemAddress to a CSROW */
  971. csrow = sys_addr_to_csrow(src_mci, SystemAddress);
  972. if (csrow < 0) {
  973. edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
  974. } else {
  975. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  976. edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
  977. channel, EDAC_MOD_STR);
  978. }
  979. }
  980. /*
  981. * determrine the number of PAGES in for this DIMM's size based on its DRAM
  982. * Address Mapping.
  983. *
  984. * First step is to calc the number of bits to shift a value of 1 left to
  985. * indicate show many pages. Start with the DBAM value as the starting bits,
  986. * then proceed to adjust those shift bits, based on CPU rev and the table.
  987. * See BKDG on the DBAM
  988. */
  989. static int k8_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  990. {
  991. int nr_pages;
  992. if (pvt->ext_model >= OPTERON_CPU_REV_F) {
  993. nr_pages = 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  994. } else {
  995. /*
  996. * RevE and less section; this line is tricky. It collapses the
  997. * table used by RevD and later to one that matches revisions CG
  998. * and earlier.
  999. */
  1000. dram_map -= (pvt->ext_model >= OPTERON_CPU_REV_D) ?
  1001. (dram_map > 8 ? 4 : (dram_map > 5 ?
  1002. 3 : (dram_map > 2 ? 1 : 0))) : 0;
  1003. /* 25 shift is 32MiB minimum DIMM size in RevE and prior */
  1004. nr_pages = 1 << (dram_map + 25 - PAGE_SHIFT);
  1005. }
  1006. return nr_pages;
  1007. }
  1008. /*
  1009. * Get the number of DCT channels in use.
  1010. *
  1011. * Return:
  1012. * number of Memory Channels in operation
  1013. * Pass back:
  1014. * contents of the DCL0_LOW register
  1015. */
  1016. static int f10_early_channel_count(struct amd64_pvt *pvt)
  1017. {
  1018. int err = 0, channels = 0;
  1019. u32 dbam;
  1020. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  1021. if (err)
  1022. goto err_reg;
  1023. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
  1024. if (err)
  1025. goto err_reg;
  1026. /* If we are in 128 bit mode, then we are using 2 channels */
  1027. if (pvt->dclr0 & F10_WIDTH_128) {
  1028. debugf0("Data WIDTH is 128 bits - 2 channels\n");
  1029. channels = 2;
  1030. return channels;
  1031. }
  1032. /*
  1033. * Need to check if in UN-ganged mode: In such, there are 2 channels,
  1034. * but they are NOT in 128 bit mode and thus the above 'dcl0' status bit
  1035. * will be OFF.
  1036. *
  1037. * Need to check DCT0[0] and DCT1[0] to see if only one of them has
  1038. * their CSEnable bit on. If so, then SINGLE DIMM case.
  1039. */
  1040. debugf0("Data WIDTH is NOT 128 bits - need more decoding\n");
  1041. /*
  1042. * Check DRAM Bank Address Mapping values for each DIMM to see if there
  1043. * is more than just one DIMM present in unganged mode. Need to check
  1044. * both controllers since DIMMs can be placed in either one.
  1045. */
  1046. channels = 0;
  1047. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM0, &dbam);
  1048. if (err)
  1049. goto err_reg;
  1050. if (DBAM_DIMM(0, dbam) > 0)
  1051. channels++;
  1052. if (DBAM_DIMM(1, dbam) > 0)
  1053. channels++;
  1054. if (DBAM_DIMM(2, dbam) > 0)
  1055. channels++;
  1056. if (DBAM_DIMM(3, dbam) > 0)
  1057. channels++;
  1058. /* If more than 2 DIMMs are present, then we have 2 channels */
  1059. if (channels > 2)
  1060. channels = 2;
  1061. else if (channels == 0) {
  1062. /* No DIMMs on DCT0, so look at DCT1 */
  1063. err = pci_read_config_dword(pvt->dram_f2_ctl, DBAM1, &dbam);
  1064. if (err)
  1065. goto err_reg;
  1066. if (DBAM_DIMM(0, dbam) > 0)
  1067. channels++;
  1068. if (DBAM_DIMM(1, dbam) > 0)
  1069. channels++;
  1070. if (DBAM_DIMM(2, dbam) > 0)
  1071. channels++;
  1072. if (DBAM_DIMM(3, dbam) > 0)
  1073. channels++;
  1074. if (channels > 2)
  1075. channels = 2;
  1076. }
  1077. /* If we found ALL 0 values, then assume just ONE DIMM-ONE Channel */
  1078. if (channels == 0)
  1079. channels = 1;
  1080. debugf0("DIMM count= %d\n", channels);
  1081. return channels;
  1082. err_reg:
  1083. return -1;
  1084. }
  1085. static int f10_dbam_map_to_pages(struct amd64_pvt *pvt, int dram_map)
  1086. {
  1087. return 1 << (revf_quad_ddr2_shift[dram_map] - PAGE_SHIFT);
  1088. }
  1089. /* Enable extended configuration access via 0xCF8 feature */
  1090. static void amd64_setup(struct amd64_pvt *pvt)
  1091. {
  1092. u32 reg;
  1093. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1094. pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
  1095. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1096. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1097. }
  1098. /* Restore the extended configuration access via 0xCF8 feature */
  1099. static void amd64_teardown(struct amd64_pvt *pvt)
  1100. {
  1101. u32 reg;
  1102. pci_read_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
  1103. reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1104. if (pvt->flags.cf8_extcfg)
  1105. reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
  1106. pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
  1107. }
  1108. static u64 f10_get_error_address(struct mem_ctl_info *mci,
  1109. struct amd64_error_info_regs *info)
  1110. {
  1111. return (((u64) (info->nbeah & 0xffff)) << 32) +
  1112. (info->nbeal & ~0x01);
  1113. }
  1114. /*
  1115. * Read the Base and Limit registers for F10 based Memory controllers. Extract
  1116. * fields from the 'raw' reg into separate data fields.
  1117. *
  1118. * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
  1119. */
  1120. static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
  1121. {
  1122. u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
  1123. low_offset = K8_DRAM_BASE_LOW + (dram << 3);
  1124. high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
  1125. /* read the 'raw' DRAM BASE Address register */
  1126. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_base);
  1127. /* Read from the ECS data register */
  1128. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_base);
  1129. /* Extract parts into separate data entries */
  1130. pvt->dram_rw_en[dram] = (low_base & 0x3);
  1131. if (pvt->dram_rw_en[dram] == 0)
  1132. return;
  1133. pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
  1134. pvt->dram_base[dram] = (((((u64) high_base & 0x000000FF) << 32) |
  1135. ((u64) low_base & 0xFFFF0000))) << 8;
  1136. low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
  1137. high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
  1138. /* read the 'raw' LIMIT registers */
  1139. pci_read_config_dword(pvt->addr_f1_ctl, low_offset, &low_limit);
  1140. /* Read from the ECS data register for the HIGH portion */
  1141. pci_read_config_dword(pvt->addr_f1_ctl, high_offset, &high_limit);
  1142. debugf0(" HW Regs: BASE=0x%08x-%08x LIMIT= 0x%08x-%08x\n",
  1143. high_base, low_base, high_limit, low_limit);
  1144. pvt->dram_DstNode[dram] = (low_limit & 0x7);
  1145. pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
  1146. /*
  1147. * Extract address values and form a LIMIT address. Limit is the HIGHEST
  1148. * memory location of the region, so low 24 bits need to be all ones.
  1149. */
  1150. low_limit |= 0x0000FFFF;
  1151. pvt->dram_limit[dram] =
  1152. ((((u64) high_limit << 32) + (u64) low_limit) << 8) | (0xFF);
  1153. }
  1154. static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
  1155. {
  1156. int err = 0;
  1157. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
  1158. &pvt->dram_ctl_select_low);
  1159. if (err) {
  1160. debugf0("Reading F10_DCTL_SEL_LOW failed\n");
  1161. } else {
  1162. debugf0("DRAM_DCTL_SEL_LOW=0x%x DctSelBaseAddr=0x%x\n",
  1163. pvt->dram_ctl_select_low, dct_sel_baseaddr(pvt));
  1164. debugf0(" DRAM DCTs are=%s DRAM Is=%s DRAM-Ctl-"
  1165. "sel-hi-range=%s\n",
  1166. (dct_ganging_enabled(pvt) ? "GANGED" : "NOT GANGED"),
  1167. (dct_dram_enabled(pvt) ? "Enabled" : "Disabled"),
  1168. (dct_high_range_enabled(pvt) ? "Enabled" : "Disabled"));
  1169. debugf0(" DctDatIntLv=%s MemCleared=%s DctSelIntLvAddr=0x%x\n",
  1170. (dct_data_intlv_enabled(pvt) ? "Enabled" : "Disabled"),
  1171. (dct_memory_cleared(pvt) ? "True " : "False "),
  1172. dct_sel_interleave_addr(pvt));
  1173. }
  1174. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
  1175. &pvt->dram_ctl_select_high);
  1176. if (err)
  1177. debugf0("Reading F10_DCTL_SEL_HIGH failed\n");
  1178. }
  1179. /*
  1180. * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
  1181. * Interleaving Modes.
  1182. */
  1183. static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
  1184. int hi_range_sel, u32 intlv_en)
  1185. {
  1186. u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
  1187. if (dct_ganging_enabled(pvt))
  1188. cs = 0;
  1189. else if (hi_range_sel)
  1190. cs = dct_sel_high;
  1191. else if (dct_interleave_enabled(pvt)) {
  1192. /*
  1193. * see F2x110[DctSelIntLvAddr] - channel interleave mode
  1194. */
  1195. if (dct_sel_interleave_addr(pvt) == 0)
  1196. cs = sys_addr >> 6 & 1;
  1197. else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
  1198. temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
  1199. if (dct_sel_interleave_addr(pvt) & 1)
  1200. cs = (sys_addr >> 9 & 1) ^ temp;
  1201. else
  1202. cs = (sys_addr >> 6 & 1) ^ temp;
  1203. } else if (intlv_en & 4)
  1204. cs = sys_addr >> 15 & 1;
  1205. else if (intlv_en & 2)
  1206. cs = sys_addr >> 14 & 1;
  1207. else if (intlv_en & 1)
  1208. cs = sys_addr >> 13 & 1;
  1209. else
  1210. cs = sys_addr >> 12 & 1;
  1211. } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
  1212. cs = ~dct_sel_high & 1;
  1213. else
  1214. cs = 0;
  1215. return cs;
  1216. }
  1217. static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
  1218. {
  1219. if (intlv_en == 1)
  1220. return 1;
  1221. else if (intlv_en == 3)
  1222. return 2;
  1223. else if (intlv_en == 7)
  1224. return 3;
  1225. return 0;
  1226. }
  1227. /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
  1228. static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
  1229. u32 dct_sel_base_addr,
  1230. u64 dct_sel_base_off,
  1231. u32 hole_valid, u32 hole_off,
  1232. u64 dram_base)
  1233. {
  1234. u64 chan_off;
  1235. if (hi_range_sel) {
  1236. if (!(dct_sel_base_addr & 0xFFFFF800) &&
  1237. hole_valid && (sys_addr >= 0x100000000ULL))
  1238. chan_off = hole_off << 16;
  1239. else
  1240. chan_off = dct_sel_base_off;
  1241. } else {
  1242. if (hole_valid && (sys_addr >= 0x100000000ULL))
  1243. chan_off = hole_off << 16;
  1244. else
  1245. chan_off = dram_base & 0xFFFFF8000000ULL;
  1246. }
  1247. return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
  1248. (chan_off & 0x0000FFFFFF800000ULL);
  1249. }
  1250. /* Hack for the time being - Can we get this from BIOS?? */
  1251. #define CH0SPARE_RANK 0
  1252. #define CH1SPARE_RANK 1
  1253. /*
  1254. * checks if the csrow passed in is marked as SPARED, if so returns the new
  1255. * spare row
  1256. */
  1257. static inline int f10_process_possible_spare(int csrow,
  1258. u32 cs, struct amd64_pvt *pvt)
  1259. {
  1260. u32 swap_done;
  1261. u32 bad_dram_cs;
  1262. /* Depending on channel, isolate respective SPARING info */
  1263. if (cs) {
  1264. swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
  1265. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
  1266. if (swap_done && (csrow == bad_dram_cs))
  1267. csrow = CH1SPARE_RANK;
  1268. } else {
  1269. swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
  1270. bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
  1271. if (swap_done && (csrow == bad_dram_cs))
  1272. csrow = CH0SPARE_RANK;
  1273. }
  1274. return csrow;
  1275. }
  1276. /*
  1277. * Iterate over the DRAM DCT "base" and "mask" registers looking for a
  1278. * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
  1279. *
  1280. * Return:
  1281. * -EINVAL: NOT FOUND
  1282. * 0..csrow = Chip-Select Row
  1283. */
  1284. static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
  1285. {
  1286. struct mem_ctl_info *mci;
  1287. struct amd64_pvt *pvt;
  1288. u32 cs_base, cs_mask;
  1289. int cs_found = -EINVAL;
  1290. int csrow;
  1291. mci = mci_lookup[nid];
  1292. if (!mci)
  1293. return cs_found;
  1294. pvt = mci->pvt_info;
  1295. debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
  1296. for (csrow = 0; csrow < CHIPSELECT_COUNT; csrow++) {
  1297. cs_base = amd64_get_dct_base(pvt, cs, csrow);
  1298. if (!(cs_base & K8_DCSB_CS_ENABLE))
  1299. continue;
  1300. /*
  1301. * We have an ENABLED CSROW, Isolate just the MASK bits of the
  1302. * target: [28:19] and [13:5], which map to [36:27] and [21:13]
  1303. * of the actual address.
  1304. */
  1305. cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
  1306. /*
  1307. * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
  1308. * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
  1309. */
  1310. cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
  1311. debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
  1312. csrow, cs_base, cs_mask);
  1313. cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
  1314. debugf1(" Final CSMask=0x%x\n", cs_mask);
  1315. debugf1(" (InputAddr & ~CSMask)=0x%x "
  1316. "(CSBase & ~CSMask)=0x%x\n",
  1317. (in_addr & ~cs_mask), (cs_base & ~cs_mask));
  1318. if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
  1319. cs_found = f10_process_possible_spare(csrow, cs, pvt);
  1320. debugf1(" MATCH csrow=%d\n", cs_found);
  1321. break;
  1322. }
  1323. }
  1324. return cs_found;
  1325. }
  1326. /* For a given @dram_range, check if @sys_addr falls within it. */
  1327. static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
  1328. u64 sys_addr, int *nid, int *chan_sel)
  1329. {
  1330. int node_id, cs_found = -EINVAL, high_range = 0;
  1331. u32 intlv_en, intlv_sel, intlv_shift, hole_off;
  1332. u32 hole_valid, tmp, dct_sel_base, channel;
  1333. u64 dram_base, chan_addr, dct_sel_base_off;
  1334. dram_base = pvt->dram_base[dram_range];
  1335. intlv_en = pvt->dram_IntlvEn[dram_range];
  1336. node_id = pvt->dram_DstNode[dram_range];
  1337. intlv_sel = pvt->dram_IntlvSel[dram_range];
  1338. debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
  1339. dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
  1340. /*
  1341. * This assumes that one node's DHAR is the same as all the other
  1342. * nodes' DHAR.
  1343. */
  1344. hole_off = (pvt->dhar & 0x0000FF80);
  1345. hole_valid = (pvt->dhar & 0x1);
  1346. dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
  1347. debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
  1348. hole_off, hole_valid, intlv_sel);
  1349. if (intlv_en ||
  1350. (intlv_sel != ((sys_addr >> 12) & intlv_en)))
  1351. return -EINVAL;
  1352. dct_sel_base = dct_sel_baseaddr(pvt);
  1353. /*
  1354. * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
  1355. * select between DCT0 and DCT1.
  1356. */
  1357. if (dct_high_range_enabled(pvt) &&
  1358. !dct_ganging_enabled(pvt) &&
  1359. ((sys_addr >> 27) >= (dct_sel_base >> 11)))
  1360. high_range = 1;
  1361. channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
  1362. chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
  1363. dct_sel_base_off, hole_valid,
  1364. hole_off, dram_base);
  1365. intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
  1366. /* remove Node ID (in case of memory interleaving) */
  1367. tmp = chan_addr & 0xFC0;
  1368. chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
  1369. /* remove channel interleave and hash */
  1370. if (dct_interleave_enabled(pvt) &&
  1371. !dct_high_range_enabled(pvt) &&
  1372. !dct_ganging_enabled(pvt)) {
  1373. if (dct_sel_interleave_addr(pvt) != 1)
  1374. chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
  1375. else {
  1376. tmp = chan_addr & 0xFC0;
  1377. chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
  1378. | tmp;
  1379. }
  1380. }
  1381. debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
  1382. chan_addr, (u32)(chan_addr >> 8));
  1383. cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
  1384. if (cs_found >= 0) {
  1385. *nid = node_id;
  1386. *chan_sel = channel;
  1387. }
  1388. return cs_found;
  1389. }
  1390. static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
  1391. int *node, int *chan_sel)
  1392. {
  1393. int dram_range, cs_found = -EINVAL;
  1394. u64 dram_base, dram_limit;
  1395. for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
  1396. if (!pvt->dram_rw_en[dram_range])
  1397. continue;
  1398. dram_base = pvt->dram_base[dram_range];
  1399. dram_limit = pvt->dram_limit[dram_range];
  1400. if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
  1401. cs_found = f10_match_to_this_node(pvt, dram_range,
  1402. sys_addr, node,
  1403. chan_sel);
  1404. if (cs_found >= 0)
  1405. break;
  1406. }
  1407. }
  1408. return cs_found;
  1409. }
  1410. /*
  1411. * This the F10h reference code from AMD to map a @sys_addr to NodeID,
  1412. * CSROW, Channel.
  1413. *
  1414. * The @sys_addr is usually an error address received from the hardware.
  1415. */
  1416. static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
  1417. struct amd64_error_info_regs *info,
  1418. u64 sys_addr)
  1419. {
  1420. struct amd64_pvt *pvt = mci->pvt_info;
  1421. u32 page, offset;
  1422. unsigned short syndrome;
  1423. int nid, csrow, chan = 0;
  1424. csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
  1425. if (csrow >= 0) {
  1426. error_address_to_page_and_offset(sys_addr, &page, &offset);
  1427. syndrome = EXTRACT_HIGH_SYNDROME(info->nbsl) << 8;
  1428. syndrome |= EXTRACT_LOW_SYNDROME(info->nbsh);
  1429. /*
  1430. * Is CHIPKILL on? If so, then we can attempt to use the
  1431. * syndrome to isolate which channel the error was on.
  1432. */
  1433. if (pvt->nbcfg & K8_NBCFG_CHIPKILL)
  1434. chan = get_channel_from_ecc_syndrome(syndrome);
  1435. if (chan >= 0) {
  1436. edac_mc_handle_ce(mci, page, offset, syndrome,
  1437. csrow, chan, EDAC_MOD_STR);
  1438. } else {
  1439. /*
  1440. * Channel unknown, report all channels on this
  1441. * CSROW as failed.
  1442. */
  1443. for (chan = 0; chan < mci->csrows[csrow].nr_channels;
  1444. chan++) {
  1445. edac_mc_handle_ce(mci, page, offset,
  1446. syndrome,
  1447. csrow, chan,
  1448. EDAC_MOD_STR);
  1449. }
  1450. }
  1451. } else {
  1452. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1453. }
  1454. }
  1455. /*
  1456. * Input (@index) is the DBAM DIMM value (1 of 4) used as an index into a shift
  1457. * table (revf_quad_ddr2_shift) which starts at 128MB DIMM size. Index of 0
  1458. * indicates an empty DIMM slot, as reported by Hardware on empty slots.
  1459. *
  1460. * Normalize to 128MB by subracting 27 bit shift.
  1461. */
  1462. static int map_dbam_to_csrow_size(int index)
  1463. {
  1464. int mega_bytes = 0;
  1465. if (index > 0 && index <= DBAM_MAX_VALUE)
  1466. mega_bytes = ((128 << (revf_quad_ddr2_shift[index]-27)));
  1467. return mega_bytes;
  1468. }
  1469. /*
  1470. * debug routine to display the memory sizes of a DIMM (ganged or not) and it
  1471. * CSROWs as well
  1472. */
  1473. static void f10_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt,
  1474. int ganged)
  1475. {
  1476. int dimm, size0, size1;
  1477. u32 dbam;
  1478. u32 *dcsb;
  1479. debugf1(" dbam%d: 0x%8.08x CSROW is %s\n", ctrl,
  1480. ctrl ? pvt->dbam1 : pvt->dbam0,
  1481. ganged ? "GANGED - dbam1 not used" : "NON-GANGED");
  1482. dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
  1483. dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
  1484. /* Dump memory sizes for DIMM and its CSROWs */
  1485. for (dimm = 0; dimm < 4; dimm++) {
  1486. size0 = 0;
  1487. if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
  1488. size0 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1489. size1 = 0;
  1490. if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
  1491. size1 = map_dbam_to_csrow_size(DBAM_DIMM(dimm, dbam));
  1492. debugf1(" CTRL-%d DIMM-%d=%5dMB CSROW-%d=%5dMB "
  1493. "CSROW-%d=%5dMB\n",
  1494. ctrl,
  1495. dimm,
  1496. size0 + size1,
  1497. dimm * 2,
  1498. size0,
  1499. dimm * 2 + 1,
  1500. size1);
  1501. }
  1502. }
  1503. /*
  1504. * Very early hardware probe on pci_probe thread to determine if this module
  1505. * supports the hardware.
  1506. *
  1507. * Return:
  1508. * 0 for OK
  1509. * 1 for error
  1510. */
  1511. static int f10_probe_valid_hardware(struct amd64_pvt *pvt)
  1512. {
  1513. int ret = 0;
  1514. /*
  1515. * If we are on a DDR3 machine, we don't know yet if
  1516. * we support that properly at this time
  1517. */
  1518. if ((pvt->dchr0 & F10_DCHR_Ddr3Mode) ||
  1519. (pvt->dchr1 & F10_DCHR_Ddr3Mode)) {
  1520. amd64_printk(KERN_WARNING,
  1521. "%s() This machine is running with DDR3 memory. "
  1522. "This is not currently supported. "
  1523. "DCHR0=0x%x DCHR1=0x%x\n",
  1524. __func__, pvt->dchr0, pvt->dchr1);
  1525. amd64_printk(KERN_WARNING,
  1526. " Contact '%s' module MAINTAINER to help add"
  1527. " support.\n",
  1528. EDAC_MOD_STR);
  1529. ret = 1;
  1530. }
  1531. return ret;
  1532. }
  1533. /*
  1534. * There currently are 3 types type of MC devices for AMD Athlon/Opterons
  1535. * (as per PCI DEVICE_IDs):
  1536. *
  1537. * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
  1538. * DEVICE ID, even though there is differences between the different Revisions
  1539. * (CG,D,E,F).
  1540. *
  1541. * Family F10h and F11h.
  1542. *
  1543. */
  1544. static struct amd64_family_type amd64_family_types[] = {
  1545. [K8_CPUS] = {
  1546. .ctl_name = "RevF",
  1547. .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
  1548. .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
  1549. .ops = {
  1550. .early_channel_count = k8_early_channel_count,
  1551. .get_error_address = k8_get_error_address,
  1552. .read_dram_base_limit = k8_read_dram_base_limit,
  1553. .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
  1554. .dbam_map_to_pages = k8_dbam_map_to_pages,
  1555. }
  1556. },
  1557. [F10_CPUS] = {
  1558. .ctl_name = "Family 10h",
  1559. .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
  1560. .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
  1561. .ops = {
  1562. .probe_valid_hardware = f10_probe_valid_hardware,
  1563. .early_channel_count = f10_early_channel_count,
  1564. .get_error_address = f10_get_error_address,
  1565. .read_dram_base_limit = f10_read_dram_base_limit,
  1566. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1567. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1568. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1569. }
  1570. },
  1571. [F11_CPUS] = {
  1572. .ctl_name = "Family 11h",
  1573. .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
  1574. .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
  1575. .ops = {
  1576. .probe_valid_hardware = f10_probe_valid_hardware,
  1577. .early_channel_count = f10_early_channel_count,
  1578. .get_error_address = f10_get_error_address,
  1579. .read_dram_base_limit = f10_read_dram_base_limit,
  1580. .read_dram_ctl_register = f10_read_dram_ctl_register,
  1581. .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
  1582. .dbam_map_to_pages = f10_dbam_map_to_pages,
  1583. }
  1584. },
  1585. };
  1586. static struct pci_dev *pci_get_related_function(unsigned int vendor,
  1587. unsigned int device,
  1588. struct pci_dev *related)
  1589. {
  1590. struct pci_dev *dev = NULL;
  1591. dev = pci_get_device(vendor, device, dev);
  1592. while (dev) {
  1593. if ((dev->bus->number == related->bus->number) &&
  1594. (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
  1595. break;
  1596. dev = pci_get_device(vendor, device, dev);
  1597. }
  1598. return dev;
  1599. }
  1600. /*
  1601. * syndrome mapping table for ECC ChipKill devices
  1602. *
  1603. * The comment in each row is the token (nibble) number that is in error.
  1604. * The least significant nibble of the syndrome is the mask for the bits
  1605. * that are in error (need to be toggled) for the particular nibble.
  1606. *
  1607. * Each row contains 16 entries.
  1608. * The first entry (0th) is the channel number for that row of syndromes.
  1609. * The remaining 15 entries are the syndromes for the respective Error
  1610. * bit mask index.
  1611. *
  1612. * 1st index entry is 0x0001 mask, indicating that the rightmost bit is the
  1613. * bit in error.
  1614. * The 2nd index entry is 0x0010 that the second bit is damaged.
  1615. * The 3rd index entry is 0x0011 indicating that the rightmost 2 bits
  1616. * are damaged.
  1617. * Thus so on until index 15, 0x1111, whose entry has the syndrome
  1618. * indicating that all 4 bits are damaged.
  1619. *
  1620. * A search is performed on this table looking for a given syndrome.
  1621. *
  1622. * See the AMD documentation for ECC syndromes. This ECC table is valid
  1623. * across all the versions of the AMD64 processors.
  1624. *
  1625. * A fast lookup is to use the LAST four bits of the 16-bit syndrome as a
  1626. * COLUMN index, then search all ROWS of that column, looking for a match
  1627. * with the input syndrome. The ROW value will be the token number.
  1628. *
  1629. * The 0'th entry on that row, can be returned as the CHANNEL (0 or 1) of this
  1630. * error.
  1631. */
  1632. #define NUMBER_ECC_ROWS 36
  1633. static const unsigned short ecc_chipkill_syndromes[NUMBER_ECC_ROWS][16] = {
  1634. /* Channel 0 syndromes */
  1635. {/*0*/ 0, 0xe821, 0x7c32, 0x9413, 0xbb44, 0x5365, 0xc776, 0x2f57,
  1636. 0xdd88, 0x35a9, 0xa1ba, 0x499b, 0x66cc, 0x8eed, 0x1afe, 0xf2df },
  1637. {/*1*/ 0, 0x5d31, 0xa612, 0xfb23, 0x9584, 0xc8b5, 0x3396, 0x6ea7,
  1638. 0xeac8, 0xb7f9, 0x4cda, 0x11eb, 0x7f4c, 0x227d, 0xd95e, 0x846f },
  1639. {/*2*/ 0, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
  1640. 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f },
  1641. {/*3*/ 0, 0x2021, 0x3032, 0x1013, 0x4044, 0x6065, 0x7076, 0x5057,
  1642. 0x8088, 0xa0a9, 0xb0ba, 0x909b, 0xc0cc, 0xe0ed, 0xf0fe, 0xd0df },
  1643. {/*4*/ 0, 0x5041, 0xa082, 0xf0c3, 0x9054, 0xc015, 0x30d6, 0x6097,
  1644. 0xe0a8, 0xb0e9, 0x402a, 0x106b, 0x70fc, 0x20bd, 0xd07e, 0x803f },
  1645. {/*5*/ 0, 0xbe21, 0xd732, 0x6913, 0x2144, 0x9f65, 0xf676, 0x4857,
  1646. 0x3288, 0x8ca9, 0xe5ba, 0x5b9b, 0x13cc, 0xaded, 0xc4fe, 0x7adf },
  1647. {/*6*/ 0, 0x4951, 0x8ea2, 0xc7f3, 0x5394, 0x1ac5, 0xdd36, 0x9467,
  1648. 0xa1e8, 0xe8b9, 0x2f4a, 0x661b, 0xf27c, 0xbb2d, 0x7cde, 0x358f },
  1649. {/*7*/ 0, 0x74e1, 0x9872, 0xec93, 0xd6b4, 0xa255, 0x4ec6, 0x3a27,
  1650. 0x6bd8, 0x1f39, 0xf3aa, 0x874b, 0xbd6c, 0xc98d, 0x251e, 0x51ff },
  1651. {/*8*/ 0, 0x15c1, 0x2a42, 0x3f83, 0xcef4, 0xdb35, 0xe4b6, 0xf177,
  1652. 0x4758, 0x5299, 0x6d1a, 0x78db, 0x89ac, 0x9c6d, 0xa3ee, 0xb62f },
  1653. {/*9*/ 0, 0x3d01, 0x1602, 0x2b03, 0x8504, 0xb805, 0x9306, 0xae07,
  1654. 0xca08, 0xf709, 0xdc0a, 0xe10b, 0x4f0c, 0x720d, 0x590e, 0x640f },
  1655. {/*a*/ 0, 0x9801, 0xec02, 0x7403, 0x6b04, 0xf305, 0x8706, 0x1f07,
  1656. 0xbd08, 0x2509, 0x510a, 0xc90b, 0xd60c, 0x4e0d, 0x3a0e, 0xa20f },
  1657. {/*b*/ 0, 0xd131, 0x6212, 0xb323, 0x3884, 0xe9b5, 0x5a96, 0x8ba7,
  1658. 0x1cc8, 0xcdf9, 0x7eda, 0xafeb, 0x244c, 0xf57d, 0x465e, 0x976f },
  1659. {/*c*/ 0, 0xe1d1, 0x7262, 0x93b3, 0xb834, 0x59e5, 0xca56, 0x2b87,
  1660. 0xdc18, 0x3dc9, 0xae7a, 0x4fab, 0x542c, 0x85fd, 0x164e, 0xf79f },
  1661. {/*d*/ 0, 0x6051, 0xb0a2, 0xd0f3, 0x1094, 0x70c5, 0xa036, 0xc067,
  1662. 0x20e8, 0x40b9, 0x904a, 0x601b, 0x307c, 0x502d, 0x80de, 0xe08f },
  1663. {/*e*/ 0, 0xa4c1, 0xf842, 0x5c83, 0xe6f4, 0x4235, 0x1eb6, 0xba77,
  1664. 0x7b58, 0xdf99, 0x831a, 0x27db, 0x9dac, 0x396d, 0x65ee, 0xc12f },
  1665. {/*f*/ 0, 0x11c1, 0x2242, 0x3383, 0xc8f4, 0xd935, 0xeab6, 0xfb77,
  1666. 0x4c58, 0x5d99, 0x6e1a, 0x7fdb, 0x84ac, 0x956d, 0xa6ee, 0xb72f },
  1667. /* Channel 1 syndromes */
  1668. {/*10*/ 1, 0x45d1, 0x8a62, 0xcfb3, 0x5e34, 0x1be5, 0xd456, 0x9187,
  1669. 0xa718, 0xe2c9, 0x2d7a, 0x68ab, 0xf92c, 0xbcfd, 0x734e, 0x369f },
  1670. {/*11*/ 1, 0x63e1, 0xb172, 0xd293, 0x14b4, 0x7755, 0xa5c6, 0xc627,
  1671. 0x28d8, 0x4b39, 0x99aa, 0xfa4b, 0x3c6c, 0x5f8d, 0x8d1e, 0xeeff },
  1672. {/*12*/ 1, 0xb741, 0xd982, 0x6ec3, 0x2254, 0x9515, 0xfbd6, 0x4c97,
  1673. 0x33a8, 0x84e9, 0xea2a, 0x5d6b, 0x11fc, 0xa6bd, 0xc87e, 0x7f3f },
  1674. {/*13*/ 1, 0xdd41, 0x6682, 0xbbc3, 0x3554, 0xe815, 0x53d6, 0xce97,
  1675. 0x1aa8, 0xc7e9, 0x7c2a, 0xa1fb, 0x2ffc, 0xf2bd, 0x497e, 0x943f },
  1676. {/*14*/ 1, 0x2bd1, 0x3d62, 0x16b3, 0x4f34, 0x64e5, 0x7256, 0x5987,
  1677. 0x8518, 0xaec9, 0xb87a, 0x93ab, 0xca2c, 0xe1fd, 0xf74e, 0xdc9f },
  1678. {/*15*/ 1, 0x83c1, 0xc142, 0x4283, 0xa4f4, 0x2735, 0x65b6, 0xe677,
  1679. 0xf858, 0x7b99, 0x391a, 0xbadb, 0x5cac, 0xdf6d, 0x9dee, 0x1e2f },
  1680. {/*16*/ 1, 0x8fd1, 0xc562, 0x4ab3, 0xa934, 0x26e5, 0x6c56, 0xe387,
  1681. 0xfe18, 0x71c9, 0x3b7a, 0xb4ab, 0x572c, 0xd8fd, 0x924e, 0x1d9f },
  1682. {/*17*/ 1, 0x4791, 0x89e2, 0xce73, 0x5264, 0x15f5, 0xdb86, 0x9c17,
  1683. 0xa3b8, 0xe429, 0x2a5a, 0x6dcb, 0xf1dc, 0xb64d, 0x783e, 0x3faf },
  1684. {/*18*/ 1, 0x5781, 0xa9c2, 0xfe43, 0x92a4, 0xc525, 0x3b66, 0x6ce7,
  1685. 0xe3f8, 0xb479, 0x4a3a, 0x1dbb, 0x715c, 0x26dd, 0xd89e, 0x8f1f },
  1686. {/*19*/ 1, 0xbf41, 0xd582, 0x6ac3, 0x2954, 0x9615, 0xfcd6, 0x4397,
  1687. 0x3ea8, 0x81e9, 0xeb2a, 0x546b, 0x17fc, 0xa8bd, 0xc27e, 0x7d3f },
  1688. {/*1a*/ 1, 0x9891, 0xe1e2, 0x7273, 0x6464, 0xf7f5, 0x8586, 0x1617,
  1689. 0xb8b8, 0x2b29, 0x595a, 0xcacb, 0xdcdc, 0x4f4d, 0x3d3e, 0xaeaf },
  1690. {/*1b*/ 1, 0xcce1, 0x4472, 0x8893, 0xfdb4, 0x3f55, 0xb9c6, 0x7527,
  1691. 0x56d8, 0x9a39, 0x12aa, 0xde4b, 0xab6c, 0x678d, 0xef1e, 0x23ff },
  1692. {/*1c*/ 1, 0xa761, 0xf9b2, 0x5ed3, 0xe214, 0x4575, 0x1ba6, 0xbcc7,
  1693. 0x7328, 0xd449, 0x8a9a, 0x2dfb, 0x913c, 0x365d, 0x688e, 0xcfef },
  1694. {/*1d*/ 1, 0xff61, 0x55b2, 0xaad3, 0x7914, 0x8675, 0x2ca6, 0xd3c7,
  1695. 0x9e28, 0x6149, 0xcb9a, 0x34fb, 0xe73c, 0x185d, 0xb28e, 0x4def },
  1696. {/*1e*/ 1, 0x5451, 0xa8a2, 0xfcf3, 0x9694, 0xc2c5, 0x3e36, 0x6a67,
  1697. 0xebe8, 0xbfb9, 0x434a, 0x171b, 0x7d7c, 0x292d, 0xd5de, 0x818f },
  1698. {/*1f*/ 1, 0x6fc1, 0xb542, 0xda83, 0x19f4, 0x7635, 0xacb6, 0xc377,
  1699. 0x2e58, 0x4199, 0x9b1a, 0xf4db, 0x37ac, 0x586d, 0x82ee, 0xed2f },
  1700. /* ECC bits are also in the set of tokens and they too can go bad
  1701. * first 2 cover channel 0, while the second 2 cover channel 1
  1702. */
  1703. {/*20*/ 0, 0xbe01, 0xd702, 0x6903, 0x2104, 0x9f05, 0xf606, 0x4807,
  1704. 0x3208, 0x8c09, 0xe50a, 0x5b0b, 0x130c, 0xad0d, 0xc40e, 0x7a0f },
  1705. {/*21*/ 0, 0x4101, 0x8202, 0xc303, 0x5804, 0x1905, 0xda06, 0x9b07,
  1706. 0xac08, 0xed09, 0x2e0a, 0x6f0b, 0x640c, 0xb50d, 0x760e, 0x370f },
  1707. {/*22*/ 1, 0xc441, 0x4882, 0x8cc3, 0xf654, 0x3215, 0xbed6, 0x7a97,
  1708. 0x5ba8, 0x9fe9, 0x132a, 0xd76b, 0xadfc, 0x69bd, 0xe57e, 0x213f },
  1709. {/*23*/ 1, 0x7621, 0x9b32, 0xed13, 0xda44, 0xac65, 0x4176, 0x3757,
  1710. 0x6f88, 0x19a9, 0xf4ba, 0x829b, 0xb5cc, 0xc3ed, 0x2efe, 0x58df }
  1711. };
  1712. /*
  1713. * Given the syndrome argument, scan each of the channel tables for a syndrome
  1714. * match. Depending on which table it is found, return the channel number.
  1715. */
  1716. static int get_channel_from_ecc_syndrome(unsigned short syndrome)
  1717. {
  1718. int row;
  1719. int column;
  1720. /* Determine column to scan */
  1721. column = syndrome & 0xF;
  1722. /* Scan all rows, looking for syndrome, or end of table */
  1723. for (row = 0; row < NUMBER_ECC_ROWS; row++) {
  1724. if (ecc_chipkill_syndromes[row][column] == syndrome)
  1725. return ecc_chipkill_syndromes[row][0];
  1726. }
  1727. debugf0("syndrome(%x) not found\n", syndrome);
  1728. return -1;
  1729. }
  1730. /*
  1731. * Check for valid error in the NB Status High register. If so, proceed to read
  1732. * NB Status Low, NB Address Low and NB Address High registers and store data
  1733. * into error structure.
  1734. *
  1735. * Returns:
  1736. * - 1: if hardware regs contains valid error info
  1737. * - 0: if no valid error is indicated
  1738. */
  1739. static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
  1740. struct amd64_error_info_regs *regs)
  1741. {
  1742. struct amd64_pvt *pvt;
  1743. struct pci_dev *misc_f3_ctl;
  1744. int err = 0;
  1745. pvt = mci->pvt_info;
  1746. misc_f3_ctl = pvt->misc_f3_ctl;
  1747. err = pci_read_config_dword(misc_f3_ctl, K8_NBSH, &regs->nbsh);
  1748. if (err)
  1749. goto err_reg;
  1750. if (!(regs->nbsh & K8_NBSH_VALID_BIT))
  1751. return 0;
  1752. /* valid error, read remaining error information registers */
  1753. err = pci_read_config_dword(misc_f3_ctl, K8_NBSL, &regs->nbsl);
  1754. if (err)
  1755. goto err_reg;
  1756. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAL, &regs->nbeal);
  1757. if (err)
  1758. goto err_reg;
  1759. err = pci_read_config_dword(misc_f3_ctl, K8_NBEAH, &regs->nbeah);
  1760. if (err)
  1761. goto err_reg;
  1762. err = pci_read_config_dword(misc_f3_ctl, K8_NBCFG, &regs->nbcfg);
  1763. if (err)
  1764. goto err_reg;
  1765. return 1;
  1766. err_reg:
  1767. debugf0("Reading error info register failed\n");
  1768. return 0;
  1769. }
  1770. /*
  1771. * This function is called to retrieve the error data from hardware and store it
  1772. * in the info structure.
  1773. *
  1774. * Returns:
  1775. * - 1: if a valid error is found
  1776. * - 0: if no error is found
  1777. */
  1778. static int amd64_get_error_info(struct mem_ctl_info *mci,
  1779. struct amd64_error_info_regs *info)
  1780. {
  1781. struct amd64_pvt *pvt;
  1782. struct amd64_error_info_regs regs;
  1783. pvt = mci->pvt_info;
  1784. if (!amd64_get_error_info_regs(mci, info))
  1785. return 0;
  1786. /*
  1787. * Here's the problem with the K8's EDAC reporting: There are four
  1788. * registers which report pieces of error information. They are shared
  1789. * between CEs and UEs. Furthermore, contrary to what is stated in the
  1790. * BKDG, the overflow bit is never used! Every error always updates the
  1791. * reporting registers.
  1792. *
  1793. * Can you see the race condition? All four error reporting registers
  1794. * must be read before a new error updates them! There is no way to read
  1795. * all four registers atomically. The best than can be done is to detect
  1796. * that a race has occured and then report the error without any kind of
  1797. * precision.
  1798. *
  1799. * What is still positive is that errors are still reported and thus
  1800. * problems can still be detected - just not localized because the
  1801. * syndrome and address are spread out across registers.
  1802. *
  1803. * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
  1804. * UEs and CEs should have separate register sets with proper overflow
  1805. * bits that are used! At very least the problem can be fixed by
  1806. * honoring the ErrValid bit in 'nbsh' and not updating registers - just
  1807. * set the overflow bit - unless the current error is CE and the new
  1808. * error is UE which would be the only situation for overwriting the
  1809. * current values.
  1810. */
  1811. regs = *info;
  1812. /* Use info from the second read - most current */
  1813. if (unlikely(!amd64_get_error_info_regs(mci, info)))
  1814. return 0;
  1815. /* clear the error bits in hardware */
  1816. pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
  1817. /* Check for the possible race condition */
  1818. if ((regs.nbsh != info->nbsh) ||
  1819. (regs.nbsl != info->nbsl) ||
  1820. (regs.nbeah != info->nbeah) ||
  1821. (regs.nbeal != info->nbeal)) {
  1822. amd64_mc_printk(mci, KERN_WARNING,
  1823. "hardware STATUS read access race condition "
  1824. "detected!\n");
  1825. return 0;
  1826. }
  1827. return 1;
  1828. }
  1829. static inline void amd64_decode_gart_tlb_error(struct mem_ctl_info *mci,
  1830. struct amd64_error_info_regs *info)
  1831. {
  1832. u32 err_code;
  1833. u32 ec_tt; /* error code transaction type (2b) */
  1834. u32 ec_ll; /* error code cache level (2b) */
  1835. err_code = EXTRACT_ERROR_CODE(info->nbsl);
  1836. ec_ll = EXTRACT_LL_CODE(err_code);
  1837. ec_tt = EXTRACT_TT_CODE(err_code);
  1838. amd64_mc_printk(mci, KERN_ERR,
  1839. "GART TLB event: transaction type(%s), "
  1840. "cache level(%s)\n", tt_msgs[ec_tt], ll_msgs[ec_ll]);
  1841. }
  1842. static inline void amd64_decode_mem_cache_error(struct mem_ctl_info *mci,
  1843. struct amd64_error_info_regs *info)
  1844. {
  1845. u32 err_code;
  1846. u32 ec_rrrr; /* error code memory transaction (4b) */
  1847. u32 ec_tt; /* error code transaction type (2b) */
  1848. u32 ec_ll; /* error code cache level (2b) */
  1849. err_code = EXTRACT_ERROR_CODE(info->nbsl);
  1850. ec_ll = EXTRACT_LL_CODE(err_code);
  1851. ec_tt = EXTRACT_TT_CODE(err_code);
  1852. ec_rrrr = EXTRACT_RRRR_CODE(err_code);
  1853. amd64_mc_printk(mci, KERN_ERR,
  1854. "cache hierarchy error: memory transaction type(%s), "
  1855. "transaction type(%s), cache level(%s)\n",
  1856. rrrr_msgs[ec_rrrr], tt_msgs[ec_tt], ll_msgs[ec_ll]);
  1857. }
  1858. /*
  1859. * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
  1860. * ADDRESS and process.
  1861. */
  1862. static void amd64_handle_ce(struct mem_ctl_info *mci,
  1863. struct amd64_error_info_regs *info)
  1864. {
  1865. struct amd64_pvt *pvt = mci->pvt_info;
  1866. u64 SystemAddress;
  1867. /* Ensure that the Error Address is VALID */
  1868. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1869. amd64_mc_printk(mci, KERN_ERR,
  1870. "HW has no ERROR_ADDRESS available\n");
  1871. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
  1872. return;
  1873. }
  1874. SystemAddress = extract_error_address(mci, info);
  1875. amd64_mc_printk(mci, KERN_ERR,
  1876. "CE ERROR_ADDRESS= 0x%llx\n", SystemAddress);
  1877. pvt->ops->map_sysaddr_to_csrow(mci, info, SystemAddress);
  1878. }
  1879. /* Handle any Un-correctable Errors (UEs) */
  1880. static void amd64_handle_ue(struct mem_ctl_info *mci,
  1881. struct amd64_error_info_regs *info)
  1882. {
  1883. int csrow;
  1884. u64 SystemAddress;
  1885. u32 page, offset;
  1886. struct mem_ctl_info *log_mci, *src_mci = NULL;
  1887. log_mci = mci;
  1888. if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
  1889. amd64_mc_printk(mci, KERN_CRIT,
  1890. "HW has no ERROR_ADDRESS available\n");
  1891. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1892. return;
  1893. }
  1894. SystemAddress = extract_error_address(mci, info);
  1895. /*
  1896. * Find out which node the error address belongs to. This may be
  1897. * different from the node that detected the error.
  1898. */
  1899. src_mci = find_mc_by_sys_addr(mci, SystemAddress);
  1900. if (!src_mci) {
  1901. amd64_mc_printk(mci, KERN_CRIT,
  1902. "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
  1903. (unsigned long)SystemAddress);
  1904. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1905. return;
  1906. }
  1907. log_mci = src_mci;
  1908. csrow = sys_addr_to_csrow(log_mci, SystemAddress);
  1909. if (csrow < 0) {
  1910. amd64_mc_printk(mci, KERN_CRIT,
  1911. "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
  1912. (unsigned long)SystemAddress);
  1913. edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
  1914. } else {
  1915. error_address_to_page_and_offset(SystemAddress, &page, &offset);
  1916. edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
  1917. }
  1918. }
  1919. static void amd64_decode_bus_error(struct mem_ctl_info *mci,
  1920. struct amd64_error_info_regs *info)
  1921. {
  1922. u32 err_code, ext_ec;
  1923. u32 ec_pp; /* error code participating processor (2p) */
  1924. u32 ec_to; /* error code timed out (1b) */
  1925. u32 ec_rrrr; /* error code memory transaction (4b) */
  1926. u32 ec_ii; /* error code memory or I/O (2b) */
  1927. u32 ec_ll; /* error code cache level (2b) */
  1928. ext_ec = EXTRACT_EXT_ERROR_CODE(info->nbsl);
  1929. err_code = EXTRACT_ERROR_CODE(info->nbsl);
  1930. ec_ll = EXTRACT_LL_CODE(err_code);
  1931. ec_ii = EXTRACT_II_CODE(err_code);
  1932. ec_rrrr = EXTRACT_RRRR_CODE(err_code);
  1933. ec_to = EXTRACT_TO_CODE(err_code);
  1934. ec_pp = EXTRACT_PP_CODE(err_code);
  1935. amd64_mc_printk(mci, KERN_ERR,
  1936. "BUS ERROR:\n"
  1937. " time-out(%s) mem or i/o(%s)\n"
  1938. " participating processor(%s)\n"
  1939. " memory transaction type(%s)\n"
  1940. " cache level(%s) Error Found by: %s\n",
  1941. to_msgs[ec_to],
  1942. ii_msgs[ec_ii],
  1943. pp_msgs[ec_pp],
  1944. rrrr_msgs[ec_rrrr],
  1945. ll_msgs[ec_ll],
  1946. (info->nbsh & K8_NBSH_ERR_SCRUBER) ?
  1947. "Scrubber" : "Normal Operation");
  1948. /* If this was an 'observed' error, early out */
  1949. if (ec_pp == K8_NBSL_PP_OBS)
  1950. return; /* We aren't the node involved */
  1951. /* Parse out the extended error code for ECC events */
  1952. switch (ext_ec) {
  1953. /* F10 changed to one Extended ECC error code */
  1954. case F10_NBSL_EXT_ERR_RES: /* Reserved field */
  1955. case F10_NBSL_EXT_ERR_ECC: /* F10 ECC ext err code */
  1956. break;
  1957. default:
  1958. amd64_mc_printk(mci, KERN_ERR, "NOT ECC: no special error "
  1959. "handling for this error\n");
  1960. return;
  1961. }
  1962. if (info->nbsh & K8_NBSH_CECC)
  1963. amd64_handle_ce(mci, info);
  1964. else if (info->nbsh & K8_NBSH_UECC)
  1965. amd64_handle_ue(mci, info);
  1966. /*
  1967. * If main error is CE then overflow must be CE. If main error is UE
  1968. * then overflow is unknown. We'll call the overflow a CE - if
  1969. * panic_on_ue is set then we're already panic'ed and won't arrive
  1970. * here. Else, then apparently someone doesn't think that UE's are
  1971. * catastrophic.
  1972. */
  1973. if (info->nbsh & K8_NBSH_OVERFLOW)
  1974. edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR
  1975. "Error Overflow set");
  1976. }
  1977. int amd64_process_error_info(struct mem_ctl_info *mci,
  1978. struct amd64_error_info_regs *info,
  1979. int handle_errors)
  1980. {
  1981. struct amd64_pvt *pvt;
  1982. struct amd64_error_info_regs *regs;
  1983. u32 err_code, ext_ec;
  1984. int gart_tlb_error = 0;
  1985. pvt = mci->pvt_info;
  1986. /* If caller doesn't want us to process the error, return */
  1987. if (!handle_errors)
  1988. return 1;
  1989. regs = info;
  1990. debugf1("NorthBridge ERROR: mci(0x%p)\n", mci);
  1991. debugf1(" MC node(%d) Error-Address(0x%.8x-%.8x)\n",
  1992. pvt->mc_node_id, regs->nbeah, regs->nbeal);
  1993. debugf1(" nbsh(0x%.8x) nbsl(0x%.8x)\n",
  1994. regs->nbsh, regs->nbsl);
  1995. debugf1(" Valid Error=%s Overflow=%s\n",
  1996. (regs->nbsh & K8_NBSH_VALID_BIT) ? "True" : "False",
  1997. (regs->nbsh & K8_NBSH_OVERFLOW) ? "True" : "False");
  1998. debugf1(" Err Uncorrected=%s MCA Error Reporting=%s\n",
  1999. (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) ?
  2000. "True" : "False",
  2001. (regs->nbsh & K8_NBSH_ERR_ENABLE) ?
  2002. "True" : "False");
  2003. debugf1(" MiscErr Valid=%s ErrAddr Valid=%s PCC=%s\n",
  2004. (regs->nbsh & K8_NBSH_MISC_ERR_VALID) ?
  2005. "True" : "False",
  2006. (regs->nbsh & K8_NBSH_VALID_ERROR_ADDR) ?
  2007. "True" : "False",
  2008. (regs->nbsh & K8_NBSH_PCC) ?
  2009. "True" : "False");
  2010. debugf1(" CECC=%s UECC=%s Found by Scruber=%s\n",
  2011. (regs->nbsh & K8_NBSH_CECC) ?
  2012. "True" : "False",
  2013. (regs->nbsh & K8_NBSH_UECC) ?
  2014. "True" : "False",
  2015. (regs->nbsh & K8_NBSH_ERR_SCRUBER) ?
  2016. "True" : "False");
  2017. debugf1(" CORE0=%s CORE1=%s CORE2=%s CORE3=%s\n",
  2018. (regs->nbsh & K8_NBSH_CORE0) ? "True" : "False",
  2019. (regs->nbsh & K8_NBSH_CORE1) ? "True" : "False",
  2020. (regs->nbsh & K8_NBSH_CORE2) ? "True" : "False",
  2021. (regs->nbsh & K8_NBSH_CORE3) ? "True" : "False");
  2022. err_code = EXTRACT_ERROR_CODE(regs->nbsl);
  2023. /* Determine which error type:
  2024. * 1) GART errors - non-fatal, developmental events
  2025. * 2) MEMORY errors
  2026. * 3) BUS errors
  2027. * 4) Unknown error
  2028. */
  2029. if (TEST_TLB_ERROR(err_code)) {
  2030. /*
  2031. * GART errors are intended to help graphics driver developers
  2032. * to detect bad GART PTEs. It is recommended by AMD to disable
  2033. * GART table walk error reporting by default[1] (currently
  2034. * being disabled in mce_cpu_quirks()) and according to the
  2035. * comment in mce_cpu_quirks(), such GART errors can be
  2036. * incorrectly triggered. We may see these errors anyway and
  2037. * unless requested by the user, they won't be reported.
  2038. *
  2039. * [1] section 13.10.1 on BIOS and Kernel Developers Guide for
  2040. * AMD NPT family 0Fh processors
  2041. */
  2042. if (report_gart_errors == 0)
  2043. return 1;
  2044. /*
  2045. * Only if GART error reporting is requested should we generate
  2046. * any logs.
  2047. */
  2048. gart_tlb_error = 1;
  2049. debugf1("GART TLB error\n");
  2050. amd64_decode_gart_tlb_error(mci, info);
  2051. } else if (TEST_MEM_ERROR(err_code)) {
  2052. debugf1("Memory/Cache error\n");
  2053. amd64_decode_mem_cache_error(mci, info);
  2054. } else if (TEST_BUS_ERROR(err_code)) {
  2055. debugf1("Bus (Link/DRAM) error\n");
  2056. amd64_decode_bus_error(mci, info);
  2057. } else {
  2058. /* shouldn't reach here! */
  2059. amd64_mc_printk(mci, KERN_WARNING,
  2060. "%s(): unknown MCE error 0x%x\n", __func__,
  2061. err_code);
  2062. }
  2063. ext_ec = EXTRACT_EXT_ERROR_CODE(regs->nbsl);
  2064. amd64_mc_printk(mci, KERN_ERR,
  2065. "ExtErr=(0x%x) %s\n", ext_ec, ext_msgs[ext_ec]);
  2066. if (((ext_ec >= F10_NBSL_EXT_ERR_CRC &&
  2067. ext_ec <= F10_NBSL_EXT_ERR_TGT) ||
  2068. (ext_ec == F10_NBSL_EXT_ERR_RMW)) &&
  2069. EXTRACT_LDT_LINK(info->nbsh)) {
  2070. amd64_mc_printk(mci, KERN_ERR,
  2071. "Error on hypertransport link: %s\n",
  2072. htlink_msgs[
  2073. EXTRACT_LDT_LINK(info->nbsh)]);
  2074. }
  2075. /*
  2076. * Check the UE bit of the NB status high register, if set generate some
  2077. * logs. If NOT a GART error, then process the event as a NO-INFO event.
  2078. * If it was a GART error, skip that process.
  2079. */
  2080. if (regs->nbsh & K8_NBSH_UNCORRECTED_ERR) {
  2081. amd64_mc_printk(mci, KERN_CRIT, "uncorrected error\n");
  2082. if (!gart_tlb_error)
  2083. edac_mc_handle_ue_no_info(mci, "UE bit is set\n");
  2084. }
  2085. if (regs->nbsh & K8_NBSH_PCC)
  2086. amd64_mc_printk(mci, KERN_CRIT,
  2087. "PCC (processor context corrupt) set\n");
  2088. return 1;
  2089. }
  2090. EXPORT_SYMBOL_GPL(amd64_process_error_info);
  2091. /*
  2092. * The main polling 'check' function, called FROM the edac core to perform the
  2093. * error checking and if an error is encountered, error processing.
  2094. */
  2095. static void amd64_check(struct mem_ctl_info *mci)
  2096. {
  2097. struct amd64_error_info_regs info;
  2098. if (amd64_get_error_info(mci, &info))
  2099. amd64_process_error_info(mci, &info, 1);
  2100. }
  2101. /*
  2102. * Input:
  2103. * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
  2104. * 2) AMD Family index value
  2105. *
  2106. * Ouput:
  2107. * Upon return of 0, the following filled in:
  2108. *
  2109. * struct pvt->addr_f1_ctl
  2110. * struct pvt->misc_f3_ctl
  2111. *
  2112. * Filled in with related device funcitions of 'dram_f2_ctl'
  2113. * These devices are "reserved" via the pci_get_device()
  2114. *
  2115. * Upon return of 1 (error status):
  2116. *
  2117. * Nothing reserved
  2118. */
  2119. static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
  2120. {
  2121. const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
  2122. /* Reserve the ADDRESS MAP Device */
  2123. pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  2124. amd64_dev->addr_f1_ctl,
  2125. pvt->dram_f2_ctl);
  2126. if (!pvt->addr_f1_ctl) {
  2127. amd64_printk(KERN_ERR, "error address map device not found: "
  2128. "vendor %x device 0x%x (broken BIOS?)\n",
  2129. PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
  2130. return 1;
  2131. }
  2132. /* Reserve the MISC Device */
  2133. pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
  2134. amd64_dev->misc_f3_ctl,
  2135. pvt->dram_f2_ctl);
  2136. if (!pvt->misc_f3_ctl) {
  2137. pci_dev_put(pvt->addr_f1_ctl);
  2138. pvt->addr_f1_ctl = NULL;
  2139. amd64_printk(KERN_ERR, "error miscellaneous device not found: "
  2140. "vendor %x device 0x%x (broken BIOS?)\n",
  2141. PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
  2142. return 1;
  2143. }
  2144. debugf1(" Addr Map device PCI Bus ID:\t%s\n",
  2145. pci_name(pvt->addr_f1_ctl));
  2146. debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
  2147. pci_name(pvt->dram_f2_ctl));
  2148. debugf1(" Misc device PCI Bus ID:\t%s\n",
  2149. pci_name(pvt->misc_f3_ctl));
  2150. return 0;
  2151. }
  2152. static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
  2153. {
  2154. pci_dev_put(pvt->addr_f1_ctl);
  2155. pci_dev_put(pvt->misc_f3_ctl);
  2156. }
  2157. /*
  2158. * Retrieve the hardware registers of the memory controller (this includes the
  2159. * 'Address Map' and 'Misc' device regs)
  2160. */
  2161. static void amd64_read_mc_registers(struct amd64_pvt *pvt)
  2162. {
  2163. u64 msr_val;
  2164. int dram, err = 0;
  2165. /*
  2166. * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
  2167. * those are Read-As-Zero
  2168. */
  2169. rdmsrl(MSR_K8_TOP_MEM1, msr_val);
  2170. pvt->top_mem = msr_val >> 23;
  2171. debugf0(" TOP_MEM=0x%08llx\n", pvt->top_mem);
  2172. /* check first whether TOP_MEM2 is enabled */
  2173. rdmsrl(MSR_K8_SYSCFG, msr_val);
  2174. if (msr_val & (1U << 21)) {
  2175. rdmsrl(MSR_K8_TOP_MEM2, msr_val);
  2176. pvt->top_mem2 = msr_val >> 23;
  2177. debugf0(" TOP_MEM2=0x%08llx\n", pvt->top_mem2);
  2178. } else
  2179. debugf0(" TOP_MEM2 disabled.\n");
  2180. amd64_cpu_display_info(pvt);
  2181. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
  2182. if (err)
  2183. goto err_reg;
  2184. if (pvt->ops->read_dram_ctl_register)
  2185. pvt->ops->read_dram_ctl_register(pvt);
  2186. for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
  2187. /*
  2188. * Call CPU specific READ function to get the DRAM Base and
  2189. * Limit values from the DCT.
  2190. */
  2191. pvt->ops->read_dram_base_limit(pvt, dram);
  2192. /*
  2193. * Only print out debug info on rows with both R and W Enabled.
  2194. * Normal processing, compiler should optimize this whole 'if'
  2195. * debug output block away.
  2196. */
  2197. if (pvt->dram_rw_en[dram] != 0) {
  2198. debugf1(" DRAM_BASE[%d]: 0x%8.08x-%8.08x "
  2199. "DRAM_LIMIT: 0x%8.08x-%8.08x\n",
  2200. dram,
  2201. (u32)(pvt->dram_base[dram] >> 32),
  2202. (u32)(pvt->dram_base[dram] & 0xFFFFFFFF),
  2203. (u32)(pvt->dram_limit[dram] >> 32),
  2204. (u32)(pvt->dram_limit[dram] & 0xFFFFFFFF));
  2205. debugf1(" IntlvEn=%s %s %s "
  2206. "IntlvSel=%d DstNode=%d\n",
  2207. pvt->dram_IntlvEn[dram] ?
  2208. "Enabled" : "Disabled",
  2209. (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
  2210. (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
  2211. pvt->dram_IntlvSel[dram],
  2212. pvt->dram_DstNode[dram]);
  2213. }
  2214. }
  2215. amd64_read_dct_base_mask(pvt);
  2216. err = pci_read_config_dword(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
  2217. if (err)
  2218. goto err_reg;
  2219. amd64_read_dbam_reg(pvt);
  2220. err = pci_read_config_dword(pvt->misc_f3_ctl,
  2221. F10_ONLINE_SPARE, &pvt->online_spare);
  2222. if (err)
  2223. goto err_reg;
  2224. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
  2225. if (err)
  2226. goto err_reg;
  2227. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
  2228. if (err)
  2229. goto err_reg;
  2230. if (!dct_ganging_enabled(pvt)) {
  2231. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCLR_1,
  2232. &pvt->dclr1);
  2233. if (err)
  2234. goto err_reg;
  2235. err = pci_read_config_dword(pvt->dram_f2_ctl, F10_DCHR_1,
  2236. &pvt->dchr1);
  2237. if (err)
  2238. goto err_reg;
  2239. }
  2240. amd64_dump_misc_regs(pvt);
  2241. err_reg:
  2242. debugf0("Reading an MC register failed\n");
  2243. }
  2244. /*
  2245. * NOTE: CPU Revision Dependent code
  2246. *
  2247. * Input:
  2248. * @csrow_nr ChipSelect Row Number (0..CHIPSELECT_COUNT-1)
  2249. * k8 private pointer to -->
  2250. * DRAM Bank Address mapping register
  2251. * node_id
  2252. * DCL register where dual_channel_active is
  2253. *
  2254. * The DBAM register consists of 4 sets of 4 bits each definitions:
  2255. *
  2256. * Bits: CSROWs
  2257. * 0-3 CSROWs 0 and 1
  2258. * 4-7 CSROWs 2 and 3
  2259. * 8-11 CSROWs 4 and 5
  2260. * 12-15 CSROWs 6 and 7
  2261. *
  2262. * Values range from: 0 to 15
  2263. * The meaning of the values depends on CPU revision and dual-channel state,
  2264. * see relevant BKDG more info.
  2265. *
  2266. * The memory controller provides for total of only 8 CSROWs in its current
  2267. * architecture. Each "pair" of CSROWs normally represents just one DIMM in
  2268. * single channel or two (2) DIMMs in dual channel mode.
  2269. *
  2270. * The following code logic collapses the various tables for CSROW based on CPU
  2271. * revision.
  2272. *
  2273. * Returns:
  2274. * The number of PAGE_SIZE pages on the specified CSROW number it
  2275. * encompasses
  2276. *
  2277. */
  2278. static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
  2279. {
  2280. u32 dram_map, nr_pages;
  2281. /*
  2282. * The math on this doesn't look right on the surface because x/2*4 can
  2283. * be simplified to x*2 but this expression makes use of the fact that
  2284. * it is integral math where 1/2=0. This intermediate value becomes the
  2285. * number of bits to shift the DBAM register to extract the proper CSROW
  2286. * field.
  2287. */
  2288. dram_map = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
  2289. nr_pages = pvt->ops->dbam_map_to_pages(pvt, dram_map);
  2290. /*
  2291. * If dual channel then double the memory size of single channel.
  2292. * Channel count is 1 or 2
  2293. */
  2294. nr_pages <<= (pvt->channel_count - 1);
  2295. debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, dram_map);
  2296. debugf0(" nr_pages= %u channel-count = %d\n",
  2297. nr_pages, pvt->channel_count);
  2298. return nr_pages;
  2299. }
  2300. /*
  2301. * Initialize the array of csrow attribute instances, based on the values
  2302. * from pci config hardware registers.
  2303. */
  2304. static int amd64_init_csrows(struct mem_ctl_info *mci)
  2305. {
  2306. struct csrow_info *csrow;
  2307. struct amd64_pvt *pvt;
  2308. u64 input_addr_min, input_addr_max, sys_addr;
  2309. int i, err = 0, empty = 1;
  2310. pvt = mci->pvt_info;
  2311. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
  2312. if (err)
  2313. debugf0("Reading K8_NBCFG failed\n");
  2314. debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
  2315. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2316. (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
  2317. );
  2318. for (i = 0; i < CHIPSELECT_COUNT; i++) {
  2319. csrow = &mci->csrows[i];
  2320. if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
  2321. debugf1("----CSROW %d EMPTY for node %d\n", i,
  2322. pvt->mc_node_id);
  2323. continue;
  2324. }
  2325. debugf1("----CSROW %d VALID for MC node %d\n",
  2326. i, pvt->mc_node_id);
  2327. empty = 0;
  2328. csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
  2329. find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
  2330. sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
  2331. csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
  2332. sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
  2333. csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
  2334. csrow->page_mask = ~mask_from_dct_mask(pvt, i);
  2335. /* 8 bytes of resolution */
  2336. csrow->mtype = amd64_determine_memory_type(pvt);
  2337. debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
  2338. debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
  2339. (unsigned long)input_addr_min,
  2340. (unsigned long)input_addr_max);
  2341. debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
  2342. (unsigned long)sys_addr, csrow->page_mask);
  2343. debugf1(" nr_pages: %u first_page: 0x%lx "
  2344. "last_page: 0x%lx\n",
  2345. (unsigned)csrow->nr_pages,
  2346. csrow->first_page, csrow->last_page);
  2347. /*
  2348. * determine whether CHIPKILL or JUST ECC or NO ECC is operating
  2349. */
  2350. if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
  2351. csrow->edac_mode =
  2352. (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
  2353. EDAC_S4ECD4ED : EDAC_SECDED;
  2354. else
  2355. csrow->edac_mode = EDAC_NONE;
  2356. }
  2357. return empty;
  2358. }
  2359. /*
  2360. * Only if 'ecc_enable_override' is set AND BIOS had ECC disabled, do "we"
  2361. * enable it.
  2362. */
  2363. static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
  2364. {
  2365. struct amd64_pvt *pvt = mci->pvt_info;
  2366. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2367. int cpu, idx = 0, err = 0;
  2368. struct msr msrs[cpumask_weight(cpumask)];
  2369. u32 value;
  2370. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2371. if (!ecc_enable_override)
  2372. return;
  2373. memset(msrs, 0, sizeof(msrs));
  2374. amd64_printk(KERN_WARNING,
  2375. "'ecc_enable_override' parameter is active, "
  2376. "Enabling AMD ECC hardware now: CAUTION\n");
  2377. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2378. if (err)
  2379. debugf0("Reading K8_NBCTL failed\n");
  2380. /* turn on UECCn and CECCEn bits */
  2381. pvt->old_nbctl = value & mask;
  2382. pvt->nbctl_mcgctl_saved = 1;
  2383. value |= mask;
  2384. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2385. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2386. for_each_cpu(cpu, cpumask) {
  2387. if (msrs[idx].l & K8_MSR_MCGCTL_NBE)
  2388. set_bit(idx, &pvt->old_mcgctl);
  2389. msrs[idx].l |= K8_MSR_MCGCTL_NBE;
  2390. idx++;
  2391. }
  2392. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2393. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2394. if (err)
  2395. debugf0("Reading K8_NBCFG failed\n");
  2396. debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2397. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2398. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2399. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2400. amd64_printk(KERN_WARNING,
  2401. "This node reports that DRAM ECC is "
  2402. "currently Disabled; ENABLING now\n");
  2403. /* Attempt to turn on DRAM ECC Enable */
  2404. value |= K8_NBCFG_ECC_ENABLE;
  2405. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
  2406. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2407. if (err)
  2408. debugf0("Reading K8_NBCFG failed\n");
  2409. if (!(value & K8_NBCFG_ECC_ENABLE)) {
  2410. amd64_printk(KERN_WARNING,
  2411. "Hardware rejects Enabling DRAM ECC checking\n"
  2412. "Check memory DIMM configuration\n");
  2413. } else {
  2414. amd64_printk(KERN_DEBUG,
  2415. "Hardware accepted DRAM ECC Enable\n");
  2416. }
  2417. }
  2418. debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
  2419. (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
  2420. (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
  2421. pvt->ctl_error_info.nbcfg = value;
  2422. }
  2423. static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
  2424. {
  2425. const cpumask_t *cpumask = cpumask_of_node(pvt->mc_node_id);
  2426. int cpu, idx = 0, err = 0;
  2427. struct msr msrs[cpumask_weight(cpumask)];
  2428. u32 value;
  2429. u32 mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
  2430. if (!pvt->nbctl_mcgctl_saved)
  2431. return;
  2432. memset(msrs, 0, sizeof(msrs));
  2433. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCTL, &value);
  2434. if (err)
  2435. debugf0("Reading K8_NBCTL failed\n");
  2436. value &= ~mask;
  2437. value |= pvt->old_nbctl;
  2438. /* restore the NB Enable MCGCTL bit */
  2439. pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
  2440. rdmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2441. for_each_cpu(cpu, cpumask) {
  2442. msrs[idx].l &= ~K8_MSR_MCGCTL_NBE;
  2443. msrs[idx].l |=
  2444. test_bit(idx, &pvt->old_mcgctl) << K8_MSR_MCGCTL_NBE;
  2445. idx++;
  2446. }
  2447. wrmsr_on_cpus(cpumask, K8_MSR_MCGCTL, msrs);
  2448. }
  2449. static void check_mcg_ctl(void *ret)
  2450. {
  2451. u64 msr_val = 0;
  2452. u8 nbe;
  2453. rdmsrl(MSR_IA32_MCG_CTL, msr_val);
  2454. nbe = msr_val & K8_MSR_MCGCTL_NBE;
  2455. debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
  2456. raw_smp_processor_id(), msr_val,
  2457. (nbe ? "enabled" : "disabled"));
  2458. if (!nbe)
  2459. *(int *)ret = 0;
  2460. }
  2461. /* check MCG_CTL on all the cpus on this node */
  2462. static int amd64_mcg_ctl_enabled_on_cpus(const cpumask_t *mask)
  2463. {
  2464. int ret = 1;
  2465. preempt_disable();
  2466. smp_call_function_many(mask, check_mcg_ctl, &ret, 1);
  2467. preempt_enable();
  2468. return ret;
  2469. }
  2470. /*
  2471. * EDAC requires that the BIOS have ECC enabled before taking over the
  2472. * processing of ECC errors. This is because the BIOS can properly initialize
  2473. * the memory system completely. A command line option allows to force-enable
  2474. * hardware ECC later in amd64_enable_ecc_error_reporting().
  2475. */
  2476. static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
  2477. {
  2478. u32 value;
  2479. int err = 0, ret = 0;
  2480. u8 ecc_enabled = 0;
  2481. err = pci_read_config_dword(pvt->misc_f3_ctl, K8_NBCFG, &value);
  2482. if (err)
  2483. debugf0("Reading K8_NBCTL failed\n");
  2484. ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
  2485. ret = amd64_mcg_ctl_enabled_on_cpus(cpumask_of_node(pvt->mc_node_id));
  2486. debugf0("K8_NBCFG=0x%x, DRAM ECC is %s\n", value,
  2487. (value & K8_NBCFG_ECC_ENABLE ? "enabled" : "disabled"));
  2488. if (!ecc_enabled || !ret) {
  2489. if (!ecc_enabled) {
  2490. amd64_printk(KERN_WARNING, "This node reports that "
  2491. "Memory ECC is currently "
  2492. "disabled.\n");
  2493. amd64_printk(KERN_WARNING, "bit 0x%lx in register "
  2494. "F3x%x of the MISC_CONTROL device (%s) "
  2495. "should be enabled\n", K8_NBCFG_ECC_ENABLE,
  2496. K8_NBCFG, pci_name(pvt->misc_f3_ctl));
  2497. }
  2498. if (!ret) {
  2499. amd64_printk(KERN_WARNING, "bit 0x%016lx in MSR 0x%08x "
  2500. "of node %d should be enabled\n",
  2501. K8_MSR_MCGCTL_NBE, MSR_IA32_MCG_CTL,
  2502. pvt->mc_node_id);
  2503. }
  2504. if (!ecc_enable_override) {
  2505. amd64_printk(KERN_WARNING, "WARNING: ECC is NOT "
  2506. "currently enabled by the BIOS. Module "
  2507. "will NOT be loaded.\n"
  2508. " Either Enable ECC in the BIOS, "
  2509. "or use the 'ecc_enable_override' "
  2510. "parameter.\n"
  2511. " Might be a BIOS bug, if BIOS says "
  2512. "ECC is enabled\n"
  2513. " Use of the override can cause "
  2514. "unknown side effects.\n");
  2515. ret = -ENODEV;
  2516. }
  2517. } else {
  2518. amd64_printk(KERN_INFO,
  2519. "ECC is enabled by BIOS, Proceeding "
  2520. "with EDAC module initialization\n");
  2521. /* CLEAR the override, since BIOS controlled it */
  2522. ecc_enable_override = 0;
  2523. }
  2524. return ret;
  2525. }
  2526. struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
  2527. ARRAY_SIZE(amd64_inj_attrs) +
  2528. 1];
  2529. struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
  2530. static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
  2531. {
  2532. unsigned int i = 0, j = 0;
  2533. for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
  2534. sysfs_attrs[i] = amd64_dbg_attrs[i];
  2535. for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
  2536. sysfs_attrs[i] = amd64_inj_attrs[j];
  2537. sysfs_attrs[i] = terminator;
  2538. mci->mc_driver_sysfs_attributes = sysfs_attrs;
  2539. }
  2540. static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
  2541. {
  2542. struct amd64_pvt *pvt = mci->pvt_info;
  2543. mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
  2544. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2545. mci->edac_cap = EDAC_FLAG_NONE;
  2546. if (pvt->nbcap & K8_NBCAP_SECDED)
  2547. mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
  2548. if (pvt->nbcap & K8_NBCAP_CHIPKILL)
  2549. mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
  2550. mci->edac_cap = amd64_determine_edac_cap(pvt);
  2551. mci->mod_name = EDAC_MOD_STR;
  2552. mci->mod_ver = EDAC_AMD64_VERSION;
  2553. mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
  2554. mci->dev_name = pci_name(pvt->dram_f2_ctl);
  2555. mci->ctl_page_to_phys = NULL;
  2556. /* IMPORTANT: Set the polling 'check' function in this module */
  2557. mci->edac_check = amd64_check;
  2558. /* memory scrubber interface */
  2559. mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
  2560. mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
  2561. }
  2562. /*
  2563. * Init stuff for this DRAM Controller device.
  2564. *
  2565. * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
  2566. * Space feature MUST be enabled on ALL Processors prior to actually reading
  2567. * from the ECS registers. Since the loading of the module can occur on any
  2568. * 'core', and cores don't 'see' all the other processors ECS data when the
  2569. * others are NOT enabled. Our solution is to first enable ECS access in this
  2570. * routine on all processors, gather some data in a amd64_pvt structure and
  2571. * later come back in a finish-setup function to perform that final
  2572. * initialization. See also amd64_init_2nd_stage() for that.
  2573. */
  2574. static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
  2575. int mc_type_index)
  2576. {
  2577. struct amd64_pvt *pvt = NULL;
  2578. int err = 0, ret;
  2579. ret = -ENOMEM;
  2580. pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
  2581. if (!pvt)
  2582. goto err_exit;
  2583. pvt->mc_node_id = get_mc_node_id_from_pdev(dram_f2_ctl);
  2584. pvt->dram_f2_ctl = dram_f2_ctl;
  2585. pvt->ext_model = boot_cpu_data.x86_model >> 4;
  2586. pvt->mc_type_index = mc_type_index;
  2587. pvt->ops = family_ops(mc_type_index);
  2588. pvt->old_mcgctl = 0;
  2589. /*
  2590. * We have the dram_f2_ctl device as an argument, now go reserve its
  2591. * sibling devices from the PCI system.
  2592. */
  2593. ret = -ENODEV;
  2594. err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
  2595. if (err)
  2596. goto err_free;
  2597. ret = -EINVAL;
  2598. err = amd64_check_ecc_enabled(pvt);
  2599. if (err)
  2600. goto err_put;
  2601. /*
  2602. * Key operation here: setup of HW prior to performing ops on it. Some
  2603. * setup is required to access ECS data. After this is performed, the
  2604. * 'teardown' function must be called upon error and normal exit paths.
  2605. */
  2606. if (boot_cpu_data.x86 >= 0x10)
  2607. amd64_setup(pvt);
  2608. /*
  2609. * Save the pointer to the private data for use in 2nd initialization
  2610. * stage
  2611. */
  2612. pvt_lookup[pvt->mc_node_id] = pvt;
  2613. return 0;
  2614. err_put:
  2615. amd64_free_mc_sibling_devices(pvt);
  2616. err_free:
  2617. kfree(pvt);
  2618. err_exit:
  2619. return ret;
  2620. }
  2621. /*
  2622. * This is the finishing stage of the init code. Needs to be performed after all
  2623. * MCs' hardware have been prepped for accessing extended config space.
  2624. */
  2625. static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
  2626. {
  2627. int node_id = pvt->mc_node_id;
  2628. struct mem_ctl_info *mci;
  2629. int ret, err = 0;
  2630. amd64_read_mc_registers(pvt);
  2631. ret = -ENODEV;
  2632. if (pvt->ops->probe_valid_hardware) {
  2633. err = pvt->ops->probe_valid_hardware(pvt);
  2634. if (err)
  2635. goto err_exit;
  2636. }
  2637. /*
  2638. * We need to determine how many memory channels there are. Then use
  2639. * that information for calculating the size of the dynamic instance
  2640. * tables in the 'mci' structure
  2641. */
  2642. pvt->channel_count = pvt->ops->early_channel_count(pvt);
  2643. if (pvt->channel_count < 0)
  2644. goto err_exit;
  2645. ret = -ENOMEM;
  2646. mci = edac_mc_alloc(0, CHIPSELECT_COUNT, pvt->channel_count, node_id);
  2647. if (!mci)
  2648. goto err_exit;
  2649. mci->pvt_info = pvt;
  2650. mci->dev = &pvt->dram_f2_ctl->dev;
  2651. amd64_setup_mci_misc_attributes(mci);
  2652. if (amd64_init_csrows(mci))
  2653. mci->edac_cap = EDAC_FLAG_NONE;
  2654. amd64_enable_ecc_error_reporting(mci);
  2655. amd64_set_mc_sysfs_attributes(mci);
  2656. ret = -ENODEV;
  2657. if (edac_mc_add_mc(mci)) {
  2658. debugf1("failed edac_mc_add_mc()\n");
  2659. goto err_add_mc;
  2660. }
  2661. mci_lookup[node_id] = mci;
  2662. pvt_lookup[node_id] = NULL;
  2663. return 0;
  2664. err_add_mc:
  2665. edac_mc_free(mci);
  2666. err_exit:
  2667. debugf0("failure to init 2nd stage: ret=%d\n", ret);
  2668. amd64_restore_ecc_error_reporting(pvt);
  2669. if (boot_cpu_data.x86 > 0xf)
  2670. amd64_teardown(pvt);
  2671. amd64_free_mc_sibling_devices(pvt);
  2672. kfree(pvt_lookup[pvt->mc_node_id]);
  2673. pvt_lookup[node_id] = NULL;
  2674. return ret;
  2675. }
  2676. static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
  2677. const struct pci_device_id *mc_type)
  2678. {
  2679. int ret = 0;
  2680. debugf0("(MC node=%d,mc_type='%s')\n",
  2681. get_mc_node_id_from_pdev(pdev),
  2682. get_amd_family_name(mc_type->driver_data));
  2683. ret = pci_enable_device(pdev);
  2684. if (ret < 0)
  2685. ret = -EIO;
  2686. else
  2687. ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
  2688. if (ret < 0)
  2689. debugf0("ret=%d\n", ret);
  2690. return ret;
  2691. }
  2692. static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
  2693. {
  2694. struct mem_ctl_info *mci;
  2695. struct amd64_pvt *pvt;
  2696. /* Remove from EDAC CORE tracking list */
  2697. mci = edac_mc_del_mc(&pdev->dev);
  2698. if (!mci)
  2699. return;
  2700. pvt = mci->pvt_info;
  2701. amd64_restore_ecc_error_reporting(pvt);
  2702. if (boot_cpu_data.x86 > 0xf)
  2703. amd64_teardown(pvt);
  2704. amd64_free_mc_sibling_devices(pvt);
  2705. kfree(pvt);
  2706. mci->pvt_info = NULL;
  2707. mci_lookup[pvt->mc_node_id] = NULL;
  2708. /* Free the EDAC CORE resources */
  2709. edac_mc_free(mci);
  2710. }
  2711. /*
  2712. * This table is part of the interface for loading drivers for PCI devices. The
  2713. * PCI core identifies what devices are on a system during boot, and then
  2714. * inquiry this table to see if this driver is for a given device found.
  2715. */
  2716. static const struct pci_device_id amd64_pci_table[] __devinitdata = {
  2717. {
  2718. .vendor = PCI_VENDOR_ID_AMD,
  2719. .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
  2720. .subvendor = PCI_ANY_ID,
  2721. .subdevice = PCI_ANY_ID,
  2722. .class = 0,
  2723. .class_mask = 0,
  2724. .driver_data = K8_CPUS
  2725. },
  2726. {
  2727. .vendor = PCI_VENDOR_ID_AMD,
  2728. .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
  2729. .subvendor = PCI_ANY_ID,
  2730. .subdevice = PCI_ANY_ID,
  2731. .class = 0,
  2732. .class_mask = 0,
  2733. .driver_data = F10_CPUS
  2734. },
  2735. {
  2736. .vendor = PCI_VENDOR_ID_AMD,
  2737. .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
  2738. .subvendor = PCI_ANY_ID,
  2739. .subdevice = PCI_ANY_ID,
  2740. .class = 0,
  2741. .class_mask = 0,
  2742. .driver_data = F11_CPUS
  2743. },
  2744. {0, }
  2745. };
  2746. MODULE_DEVICE_TABLE(pci, amd64_pci_table);
  2747. static struct pci_driver amd64_pci_driver = {
  2748. .name = EDAC_MOD_STR,
  2749. .probe = amd64_init_one_instance,
  2750. .remove = __devexit_p(amd64_remove_one_instance),
  2751. .id_table = amd64_pci_table,
  2752. };
  2753. static void amd64_setup_pci_device(void)
  2754. {
  2755. struct mem_ctl_info *mci;
  2756. struct amd64_pvt *pvt;
  2757. if (amd64_ctl_pci)
  2758. return;
  2759. mci = mci_lookup[0];
  2760. if (mci) {
  2761. pvt = mci->pvt_info;
  2762. amd64_ctl_pci =
  2763. edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
  2764. EDAC_MOD_STR);
  2765. if (!amd64_ctl_pci) {
  2766. pr_warning("%s(): Unable to create PCI control\n",
  2767. __func__);
  2768. pr_warning("%s(): PCI error report via EDAC not set\n",
  2769. __func__);
  2770. }
  2771. }
  2772. }
  2773. static int __init amd64_edac_init(void)
  2774. {
  2775. int nb, err = -ENODEV;
  2776. edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
  2777. opstate_init();
  2778. if (cache_k8_northbridges() < 0)
  2779. goto err_exit;
  2780. err = pci_register_driver(&amd64_pci_driver);
  2781. if (err)
  2782. return err;
  2783. /*
  2784. * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
  2785. * amd64_pvt structs. These will be used in the 2nd stage init function
  2786. * to finish initialization of the MC instances.
  2787. */
  2788. for (nb = 0; nb < num_k8_northbridges; nb++) {
  2789. if (!pvt_lookup[nb])
  2790. continue;
  2791. err = amd64_init_2nd_stage(pvt_lookup[nb]);
  2792. if (err)
  2793. goto err_exit;
  2794. }
  2795. amd64_setup_pci_device();
  2796. return 0;
  2797. err_exit:
  2798. debugf0("'finish_setup' stage failed\n");
  2799. pci_unregister_driver(&amd64_pci_driver);
  2800. return err;
  2801. }
  2802. static void __exit amd64_edac_exit(void)
  2803. {
  2804. if (amd64_ctl_pci)
  2805. edac_pci_release_generic_ctl(amd64_ctl_pci);
  2806. pci_unregister_driver(&amd64_pci_driver);
  2807. }
  2808. module_init(amd64_edac_init);
  2809. module_exit(amd64_edac_exit);
  2810. MODULE_LICENSE("GPL");
  2811. MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
  2812. "Dave Peterson, Thayne Harbaugh");
  2813. MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
  2814. EDAC_AMD64_VERSION);
  2815. module_param(edac_op_state, int, 0444);
  2816. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");