sh_tmu.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461
  1. /*
  2. * SuperH Timer Support - TMU
  3. *
  4. * Copyright (C) 2009 Magnus Damm
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/init.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/spinlock.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/io.h>
  26. #include <linux/clk.h>
  27. #include <linux/irq.h>
  28. #include <linux/err.h>
  29. #include <linux/clocksource.h>
  30. #include <linux/clockchips.h>
  31. #include <linux/sh_timer.h>
  32. struct sh_tmu_priv {
  33. void __iomem *mapbase;
  34. struct clk *clk;
  35. struct irqaction irqaction;
  36. struct platform_device *pdev;
  37. unsigned long rate;
  38. unsigned long periodic;
  39. struct clock_event_device ced;
  40. struct clocksource cs;
  41. };
  42. static DEFINE_SPINLOCK(sh_tmu_lock);
  43. #define TSTR -1 /* shared register */
  44. #define TCOR 0 /* channel register */
  45. #define TCNT 1 /* channel register */
  46. #define TCR 2 /* channel register */
  47. static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
  48. {
  49. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  50. void __iomem *base = p->mapbase;
  51. unsigned long offs;
  52. if (reg_nr == TSTR)
  53. return ioread8(base - cfg->channel_offset);
  54. offs = reg_nr << 2;
  55. if (reg_nr == TCR)
  56. return ioread16(base + offs);
  57. else
  58. return ioread32(base + offs);
  59. }
  60. static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
  61. unsigned long value)
  62. {
  63. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  64. void __iomem *base = p->mapbase;
  65. unsigned long offs;
  66. if (reg_nr == TSTR) {
  67. iowrite8(value, base - cfg->channel_offset);
  68. return;
  69. }
  70. offs = reg_nr << 2;
  71. if (reg_nr == TCR)
  72. iowrite16(value, base + offs);
  73. else
  74. iowrite32(value, base + offs);
  75. }
  76. static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
  77. {
  78. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  79. unsigned long flags, value;
  80. /* start stop register shared by multiple timer channels */
  81. spin_lock_irqsave(&sh_tmu_lock, flags);
  82. value = sh_tmu_read(p, TSTR);
  83. if (start)
  84. value |= 1 << cfg->timer_bit;
  85. else
  86. value &= ~(1 << cfg->timer_bit);
  87. sh_tmu_write(p, TSTR, value);
  88. spin_unlock_irqrestore(&sh_tmu_lock, flags);
  89. }
  90. static int sh_tmu_enable(struct sh_tmu_priv *p)
  91. {
  92. struct sh_timer_config *cfg = p->pdev->dev.platform_data;
  93. int ret;
  94. /* enable clock */
  95. ret = clk_enable(p->clk);
  96. if (ret) {
  97. pr_err("sh_tmu: cannot enable clock \"%s\"\n", cfg->clk);
  98. return ret;
  99. }
  100. /* make sure channel is disabled */
  101. sh_tmu_start_stop_ch(p, 0);
  102. /* maximum timeout */
  103. sh_tmu_write(p, TCOR, 0xffffffff);
  104. sh_tmu_write(p, TCNT, 0xffffffff);
  105. /* configure channel to parent clock / 4, irq off */
  106. p->rate = clk_get_rate(p->clk) / 4;
  107. sh_tmu_write(p, TCR, 0x0000);
  108. /* enable channel */
  109. sh_tmu_start_stop_ch(p, 1);
  110. return 0;
  111. }
  112. static void sh_tmu_disable(struct sh_tmu_priv *p)
  113. {
  114. /* disable channel */
  115. sh_tmu_start_stop_ch(p, 0);
  116. /* stop clock */
  117. clk_disable(p->clk);
  118. }
  119. static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
  120. int periodic)
  121. {
  122. /* stop timer */
  123. sh_tmu_start_stop_ch(p, 0);
  124. /* acknowledge interrupt */
  125. sh_tmu_read(p, TCR);
  126. /* enable interrupt */
  127. sh_tmu_write(p, TCR, 0x0020);
  128. /* reload delta value in case of periodic timer */
  129. if (periodic)
  130. sh_tmu_write(p, TCOR, delta);
  131. else
  132. sh_tmu_write(p, TCOR, 0);
  133. sh_tmu_write(p, TCNT, delta);
  134. /* start timer */
  135. sh_tmu_start_stop_ch(p, 1);
  136. }
  137. static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
  138. {
  139. struct sh_tmu_priv *p = dev_id;
  140. /* disable or acknowledge interrupt */
  141. if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
  142. sh_tmu_write(p, TCR, 0x0000);
  143. else
  144. sh_tmu_write(p, TCR, 0x0020);
  145. /* notify clockevent layer */
  146. p->ced.event_handler(&p->ced);
  147. return IRQ_HANDLED;
  148. }
  149. static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
  150. {
  151. return container_of(cs, struct sh_tmu_priv, cs);
  152. }
  153. static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
  154. {
  155. struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
  156. return sh_tmu_read(p, TCNT) ^ 0xffffffff;
  157. }
  158. static int sh_tmu_clocksource_enable(struct clocksource *cs)
  159. {
  160. struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
  161. int ret;
  162. ret = sh_tmu_enable(p);
  163. if (ret)
  164. return ret;
  165. /* TODO: calculate good shift from rate and counter bit width */
  166. cs->shift = 10;
  167. cs->mult = clocksource_hz2mult(p->rate, cs->shift);
  168. return 0;
  169. }
  170. static void sh_tmu_clocksource_disable(struct clocksource *cs)
  171. {
  172. sh_tmu_disable(cs_to_sh_tmu(cs));
  173. }
  174. static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
  175. char *name, unsigned long rating)
  176. {
  177. struct clocksource *cs = &p->cs;
  178. cs->name = name;
  179. cs->rating = rating;
  180. cs->read = sh_tmu_clocksource_read;
  181. cs->enable = sh_tmu_clocksource_enable;
  182. cs->disable = sh_tmu_clocksource_disable;
  183. cs->mask = CLOCKSOURCE_MASK(32);
  184. cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
  185. pr_info("sh_tmu: %s used as clock source\n", cs->name);
  186. clocksource_register(cs);
  187. return 0;
  188. }
  189. static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
  190. {
  191. return container_of(ced, struct sh_tmu_priv, ced);
  192. }
  193. static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
  194. {
  195. struct clock_event_device *ced = &p->ced;
  196. sh_tmu_enable(p);
  197. /* TODO: calculate good shift from rate and counter bit width */
  198. ced->shift = 32;
  199. ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
  200. ced->max_delta_ns = clockevent_delta2ns(0xffffffff, ced);
  201. ced->min_delta_ns = 5000;
  202. if (periodic) {
  203. p->periodic = (p->rate + HZ/2) / HZ;
  204. sh_tmu_set_next(p, p->periodic, 1);
  205. }
  206. }
  207. static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
  208. struct clock_event_device *ced)
  209. {
  210. struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
  211. int disabled = 0;
  212. /* deal with old setting first */
  213. switch (ced->mode) {
  214. case CLOCK_EVT_MODE_PERIODIC:
  215. case CLOCK_EVT_MODE_ONESHOT:
  216. sh_tmu_disable(p);
  217. disabled = 1;
  218. break;
  219. default:
  220. break;
  221. }
  222. switch (mode) {
  223. case CLOCK_EVT_MODE_PERIODIC:
  224. pr_info("sh_tmu: %s used for periodic clock events\n",
  225. ced->name);
  226. sh_tmu_clock_event_start(p, 1);
  227. break;
  228. case CLOCK_EVT_MODE_ONESHOT:
  229. pr_info("sh_tmu: %s used for oneshot clock events\n",
  230. ced->name);
  231. sh_tmu_clock_event_start(p, 0);
  232. break;
  233. case CLOCK_EVT_MODE_UNUSED:
  234. if (!disabled)
  235. sh_tmu_disable(p);
  236. break;
  237. case CLOCK_EVT_MODE_SHUTDOWN:
  238. default:
  239. break;
  240. }
  241. }
  242. static int sh_tmu_clock_event_next(unsigned long delta,
  243. struct clock_event_device *ced)
  244. {
  245. struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
  246. BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
  247. /* program new delta value */
  248. sh_tmu_set_next(p, delta, 0);
  249. return 0;
  250. }
  251. static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
  252. char *name, unsigned long rating)
  253. {
  254. struct clock_event_device *ced = &p->ced;
  255. int ret;
  256. memset(ced, 0, sizeof(*ced));
  257. ced->name = name;
  258. ced->features = CLOCK_EVT_FEAT_PERIODIC;
  259. ced->features |= CLOCK_EVT_FEAT_ONESHOT;
  260. ced->rating = rating;
  261. ced->cpumask = cpumask_of(0);
  262. ced->set_next_event = sh_tmu_clock_event_next;
  263. ced->set_mode = sh_tmu_clock_event_mode;
  264. ret = setup_irq(p->irqaction.irq, &p->irqaction);
  265. if (ret) {
  266. pr_err("sh_tmu: failed to request irq %d\n",
  267. p->irqaction.irq);
  268. return;
  269. }
  270. pr_info("sh_tmu: %s used for clock events\n", ced->name);
  271. clockevents_register_device(ced);
  272. }
  273. static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
  274. unsigned long clockevent_rating,
  275. unsigned long clocksource_rating)
  276. {
  277. if (clockevent_rating)
  278. sh_tmu_register_clockevent(p, name, clockevent_rating);
  279. else if (clocksource_rating)
  280. sh_tmu_register_clocksource(p, name, clocksource_rating);
  281. return 0;
  282. }
  283. static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
  284. {
  285. struct sh_timer_config *cfg = pdev->dev.platform_data;
  286. struct resource *res;
  287. int irq, ret;
  288. ret = -ENXIO;
  289. memset(p, 0, sizeof(*p));
  290. p->pdev = pdev;
  291. if (!cfg) {
  292. dev_err(&p->pdev->dev, "missing platform data\n");
  293. goto err0;
  294. }
  295. platform_set_drvdata(pdev, p);
  296. res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
  297. if (!res) {
  298. dev_err(&p->pdev->dev, "failed to get I/O memory\n");
  299. goto err0;
  300. }
  301. irq = platform_get_irq(p->pdev, 0);
  302. if (irq < 0) {
  303. dev_err(&p->pdev->dev, "failed to get irq\n");
  304. goto err0;
  305. }
  306. /* map memory, let mapbase point to our channel */
  307. p->mapbase = ioremap_nocache(res->start, resource_size(res));
  308. if (p->mapbase == NULL) {
  309. pr_err("sh_tmu: failed to remap I/O memory\n");
  310. goto err0;
  311. }
  312. /* setup data for setup_irq() (too early for request_irq()) */
  313. p->irqaction.name = cfg->name;
  314. p->irqaction.handler = sh_tmu_interrupt;
  315. p->irqaction.dev_id = p;
  316. p->irqaction.irq = irq;
  317. p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL;
  318. p->irqaction.mask = CPU_MASK_NONE;
  319. /* get hold of clock */
  320. p->clk = clk_get(&p->pdev->dev, cfg->clk);
  321. if (IS_ERR(p->clk)) {
  322. pr_err("sh_tmu: cannot get clock \"%s\"\n", cfg->clk);
  323. ret = PTR_ERR(p->clk);
  324. goto err1;
  325. }
  326. return sh_tmu_register(p, cfg->name,
  327. cfg->clockevent_rating,
  328. cfg->clocksource_rating);
  329. err1:
  330. iounmap(p->mapbase);
  331. err0:
  332. return ret;
  333. }
  334. static int __devinit sh_tmu_probe(struct platform_device *pdev)
  335. {
  336. struct sh_tmu_priv *p = platform_get_drvdata(pdev);
  337. struct sh_timer_config *cfg = pdev->dev.platform_data;
  338. int ret;
  339. if (p) {
  340. pr_info("sh_tmu: %s kept as earlytimer\n", cfg->name);
  341. return 0;
  342. }
  343. p = kmalloc(sizeof(*p), GFP_KERNEL);
  344. if (p == NULL) {
  345. dev_err(&pdev->dev, "failed to allocate driver data\n");
  346. return -ENOMEM;
  347. }
  348. ret = sh_tmu_setup(p, pdev);
  349. if (ret) {
  350. kfree(p);
  351. platform_set_drvdata(pdev, NULL);
  352. }
  353. return ret;
  354. }
  355. static int __devexit sh_tmu_remove(struct platform_device *pdev)
  356. {
  357. return -EBUSY; /* cannot unregister clockevent and clocksource */
  358. }
  359. static struct platform_driver sh_tmu_device_driver = {
  360. .probe = sh_tmu_probe,
  361. .remove = __devexit_p(sh_tmu_remove),
  362. .driver = {
  363. .name = "sh_tmu",
  364. }
  365. };
  366. static int __init sh_tmu_init(void)
  367. {
  368. return platform_driver_register(&sh_tmu_device_driver);
  369. }
  370. static void __exit sh_tmu_exit(void)
  371. {
  372. platform_driver_unregister(&sh_tmu_device_driver);
  373. }
  374. early_platform_init("earlytimer", &sh_tmu_device_driver);
  375. module_init(sh_tmu_init);
  376. module_exit(sh_tmu_exit);
  377. MODULE_AUTHOR("Magnus Damm");
  378. MODULE_DESCRIPTION("SuperH TMU Timer Driver");
  379. MODULE_LICENSE("GPL v2");