pageattr.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282
  1. /*
  2. * Copyright 2002 Andi Kleen, SuSE Labs.
  3. * Thanks to Ben LaHaise for precious feedback.
  4. */
  5. #include <linux/highmem.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/seq_file.h>
  13. #include <linux/debugfs.h>
  14. #include <asm/e820.h>
  15. #include <asm/processor.h>
  16. #include <asm/tlbflush.h>
  17. #include <asm/sections.h>
  18. #include <asm/setup.h>
  19. #include <asm/uaccess.h>
  20. #include <asm/pgalloc.h>
  21. #include <asm/proto.h>
  22. #include <asm/pat.h>
  23. /*
  24. * The current flushing context - we pass it instead of 5 arguments:
  25. */
  26. struct cpa_data {
  27. unsigned long *vaddr;
  28. pgprot_t mask_set;
  29. pgprot_t mask_clr;
  30. int numpages;
  31. int flags;
  32. unsigned long pfn;
  33. unsigned force_split : 1;
  34. int curpage;
  35. struct page **pages;
  36. };
  37. /*
  38. * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  39. * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  40. * entries change the page attribute in parallel to some other cpu
  41. * splitting a large page entry along with changing the attribute.
  42. */
  43. static DEFINE_SPINLOCK(cpa_lock);
  44. #define CPA_FLUSHTLB 1
  45. #define CPA_ARRAY 2
  46. #define CPA_PAGES_ARRAY 4
  47. #ifdef CONFIG_PROC_FS
  48. static unsigned long direct_pages_count[PG_LEVEL_NUM];
  49. void update_page_count(int level, unsigned long pages)
  50. {
  51. unsigned long flags;
  52. /* Protect against CPA */
  53. spin_lock_irqsave(&pgd_lock, flags);
  54. direct_pages_count[level] += pages;
  55. spin_unlock_irqrestore(&pgd_lock, flags);
  56. }
  57. static void split_page_count(int level)
  58. {
  59. direct_pages_count[level]--;
  60. direct_pages_count[level - 1] += PTRS_PER_PTE;
  61. }
  62. void arch_report_meminfo(struct seq_file *m)
  63. {
  64. seq_printf(m, "DirectMap4k: %8lu kB\n",
  65. direct_pages_count[PG_LEVEL_4K] << 2);
  66. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  67. seq_printf(m, "DirectMap2M: %8lu kB\n",
  68. direct_pages_count[PG_LEVEL_2M] << 11);
  69. #else
  70. seq_printf(m, "DirectMap4M: %8lu kB\n",
  71. direct_pages_count[PG_LEVEL_2M] << 12);
  72. #endif
  73. #ifdef CONFIG_X86_64
  74. if (direct_gbpages)
  75. seq_printf(m, "DirectMap1G: %8lu kB\n",
  76. direct_pages_count[PG_LEVEL_1G] << 20);
  77. #endif
  78. }
  79. #else
  80. static inline void split_page_count(int level) { }
  81. #endif
  82. #ifdef CONFIG_X86_64
  83. static inline unsigned long highmap_start_pfn(void)
  84. {
  85. return __pa(_text) >> PAGE_SHIFT;
  86. }
  87. static inline unsigned long highmap_end_pfn(void)
  88. {
  89. return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
  90. }
  91. #endif
  92. #ifdef CONFIG_DEBUG_PAGEALLOC
  93. # define debug_pagealloc 1
  94. #else
  95. # define debug_pagealloc 0
  96. #endif
  97. static inline int
  98. within(unsigned long addr, unsigned long start, unsigned long end)
  99. {
  100. return addr >= start && addr < end;
  101. }
  102. /*
  103. * Flushing functions
  104. */
  105. /**
  106. * clflush_cache_range - flush a cache range with clflush
  107. * @addr: virtual start address
  108. * @size: number of bytes to flush
  109. *
  110. * clflush is an unordered instruction which needs fencing with mfence
  111. * to avoid ordering issues.
  112. */
  113. void clflush_cache_range(void *vaddr, unsigned int size)
  114. {
  115. void *vend = vaddr + size - 1;
  116. mb();
  117. for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
  118. clflush(vaddr);
  119. /*
  120. * Flush any possible final partial cacheline:
  121. */
  122. clflush(vend);
  123. mb();
  124. }
  125. static void __cpa_flush_all(void *arg)
  126. {
  127. unsigned long cache = (unsigned long)arg;
  128. /*
  129. * Flush all to work around Errata in early athlons regarding
  130. * large page flushing.
  131. */
  132. __flush_tlb_all();
  133. if (cache && boot_cpu_data.x86 >= 4)
  134. wbinvd();
  135. }
  136. static void cpa_flush_all(unsigned long cache)
  137. {
  138. BUG_ON(irqs_disabled());
  139. on_each_cpu(__cpa_flush_all, (void *) cache, 1);
  140. }
  141. static void __cpa_flush_range(void *arg)
  142. {
  143. /*
  144. * We could optimize that further and do individual per page
  145. * tlb invalidates for a low number of pages. Caveat: we must
  146. * flush the high aliases on 64bit as well.
  147. */
  148. __flush_tlb_all();
  149. }
  150. static void cpa_flush_range(unsigned long start, int numpages, int cache)
  151. {
  152. unsigned int i, level;
  153. unsigned long addr;
  154. BUG_ON(irqs_disabled());
  155. WARN_ON(PAGE_ALIGN(start) != start);
  156. on_each_cpu(__cpa_flush_range, NULL, 1);
  157. if (!cache)
  158. return;
  159. /*
  160. * We only need to flush on one CPU,
  161. * clflush is a MESI-coherent instruction that
  162. * will cause all other CPUs to flush the same
  163. * cachelines:
  164. */
  165. for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
  166. pte_t *pte = lookup_address(addr, &level);
  167. /*
  168. * Only flush present addresses:
  169. */
  170. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  171. clflush_cache_range((void *) addr, PAGE_SIZE);
  172. }
  173. }
  174. static void cpa_flush_array(unsigned long *start, int numpages, int cache,
  175. int in_flags, struct page **pages)
  176. {
  177. unsigned int i, level;
  178. unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
  179. BUG_ON(irqs_disabled());
  180. on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
  181. if (!cache || do_wbinvd)
  182. return;
  183. /*
  184. * We only need to flush on one CPU,
  185. * clflush is a MESI-coherent instruction that
  186. * will cause all other CPUs to flush the same
  187. * cachelines:
  188. */
  189. for (i = 0; i < numpages; i++) {
  190. unsigned long addr;
  191. pte_t *pte;
  192. if (in_flags & CPA_PAGES_ARRAY)
  193. addr = (unsigned long)page_address(pages[i]);
  194. else
  195. addr = start[i];
  196. pte = lookup_address(addr, &level);
  197. /*
  198. * Only flush present addresses:
  199. */
  200. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  201. clflush_cache_range((void *)addr, PAGE_SIZE);
  202. }
  203. }
  204. /*
  205. * Certain areas of memory on x86 require very specific protection flags,
  206. * for example the BIOS area or kernel text. Callers don't always get this
  207. * right (again, ioremap() on BIOS memory is not uncommon) so this function
  208. * checks and fixes these known static required protection bits.
  209. */
  210. static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
  211. unsigned long pfn)
  212. {
  213. pgprot_t forbidden = __pgprot(0);
  214. /*
  215. * The BIOS area between 640k and 1Mb needs to be executable for
  216. * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
  217. */
  218. if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
  219. pgprot_val(forbidden) |= _PAGE_NX;
  220. /*
  221. * The kernel text needs to be executable for obvious reasons
  222. * Does not cover __inittext since that is gone later on. On
  223. * 64bit we do not enforce !NX on the low mapping
  224. */
  225. if (within(address, (unsigned long)_text, (unsigned long)_etext))
  226. pgprot_val(forbidden) |= _PAGE_NX;
  227. /*
  228. * The .rodata section needs to be read-only. Using the pfn
  229. * catches all aliases.
  230. */
  231. if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
  232. __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
  233. pgprot_val(forbidden) |= _PAGE_RW;
  234. prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
  235. return prot;
  236. }
  237. /*
  238. * Lookup the page table entry for a virtual address. Return a pointer
  239. * to the entry and the level of the mapping.
  240. *
  241. * Note: We return pud and pmd either when the entry is marked large
  242. * or when the present bit is not set. Otherwise we would return a
  243. * pointer to a nonexisting mapping.
  244. */
  245. pte_t *lookup_address(unsigned long address, unsigned int *level)
  246. {
  247. pgd_t *pgd = pgd_offset_k(address);
  248. pud_t *pud;
  249. pmd_t *pmd;
  250. *level = PG_LEVEL_NONE;
  251. if (pgd_none(*pgd))
  252. return NULL;
  253. pud = pud_offset(pgd, address);
  254. if (pud_none(*pud))
  255. return NULL;
  256. *level = PG_LEVEL_1G;
  257. if (pud_large(*pud) || !pud_present(*pud))
  258. return (pte_t *)pud;
  259. pmd = pmd_offset(pud, address);
  260. if (pmd_none(*pmd))
  261. return NULL;
  262. *level = PG_LEVEL_2M;
  263. if (pmd_large(*pmd) || !pmd_present(*pmd))
  264. return (pte_t *)pmd;
  265. *level = PG_LEVEL_4K;
  266. return pte_offset_kernel(pmd, address);
  267. }
  268. EXPORT_SYMBOL_GPL(lookup_address);
  269. /*
  270. * Set the new pmd in all the pgds we know about:
  271. */
  272. static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
  273. {
  274. /* change init_mm */
  275. set_pte_atomic(kpte, pte);
  276. #ifdef CONFIG_X86_32
  277. if (!SHARED_KERNEL_PMD) {
  278. struct page *page;
  279. list_for_each_entry(page, &pgd_list, lru) {
  280. pgd_t *pgd;
  281. pud_t *pud;
  282. pmd_t *pmd;
  283. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  284. pud = pud_offset(pgd, address);
  285. pmd = pmd_offset(pud, address);
  286. set_pte_atomic((pte_t *)pmd, pte);
  287. }
  288. }
  289. #endif
  290. }
  291. static int
  292. try_preserve_large_page(pte_t *kpte, unsigned long address,
  293. struct cpa_data *cpa)
  294. {
  295. unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
  296. pte_t new_pte, old_pte, *tmp;
  297. pgprot_t old_prot, new_prot;
  298. int i, do_split = 1;
  299. unsigned int level;
  300. if (cpa->force_split)
  301. return 1;
  302. spin_lock_irqsave(&pgd_lock, flags);
  303. /*
  304. * Check for races, another CPU might have split this page
  305. * up already:
  306. */
  307. tmp = lookup_address(address, &level);
  308. if (tmp != kpte)
  309. goto out_unlock;
  310. switch (level) {
  311. case PG_LEVEL_2M:
  312. psize = PMD_PAGE_SIZE;
  313. pmask = PMD_PAGE_MASK;
  314. break;
  315. #ifdef CONFIG_X86_64
  316. case PG_LEVEL_1G:
  317. psize = PUD_PAGE_SIZE;
  318. pmask = PUD_PAGE_MASK;
  319. break;
  320. #endif
  321. default:
  322. do_split = -EINVAL;
  323. goto out_unlock;
  324. }
  325. /*
  326. * Calculate the number of pages, which fit into this large
  327. * page starting at address:
  328. */
  329. nextpage_addr = (address + psize) & pmask;
  330. numpages = (nextpage_addr - address) >> PAGE_SHIFT;
  331. if (numpages < cpa->numpages)
  332. cpa->numpages = numpages;
  333. /*
  334. * We are safe now. Check whether the new pgprot is the same:
  335. */
  336. old_pte = *kpte;
  337. old_prot = new_prot = pte_pgprot(old_pte);
  338. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  339. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  340. /*
  341. * old_pte points to the large page base address. So we need
  342. * to add the offset of the virtual address:
  343. */
  344. pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
  345. cpa->pfn = pfn;
  346. new_prot = static_protections(new_prot, address, pfn);
  347. /*
  348. * We need to check the full range, whether
  349. * static_protection() requires a different pgprot for one of
  350. * the pages in the range we try to preserve:
  351. */
  352. addr = address + PAGE_SIZE;
  353. pfn++;
  354. for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
  355. pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
  356. if (pgprot_val(chk_prot) != pgprot_val(new_prot))
  357. goto out_unlock;
  358. }
  359. /*
  360. * If there are no changes, return. maxpages has been updated
  361. * above:
  362. */
  363. if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
  364. do_split = 0;
  365. goto out_unlock;
  366. }
  367. /*
  368. * We need to change the attributes. Check, whether we can
  369. * change the large page in one go. We request a split, when
  370. * the address is not aligned and the number of pages is
  371. * smaller than the number of pages in the large page. Note
  372. * that we limited the number of possible pages already to
  373. * the number of pages in the large page.
  374. */
  375. if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
  376. /*
  377. * The address is aligned and the number of pages
  378. * covers the full page.
  379. */
  380. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  381. __set_pmd_pte(kpte, address, new_pte);
  382. cpa->flags |= CPA_FLUSHTLB;
  383. do_split = 0;
  384. }
  385. out_unlock:
  386. spin_unlock_irqrestore(&pgd_lock, flags);
  387. return do_split;
  388. }
  389. static int split_large_page(pte_t *kpte, unsigned long address)
  390. {
  391. unsigned long flags, pfn, pfninc = 1;
  392. unsigned int i, level;
  393. pte_t *pbase, *tmp;
  394. pgprot_t ref_prot;
  395. struct page *base;
  396. if (!debug_pagealloc)
  397. spin_unlock(&cpa_lock);
  398. base = alloc_pages(GFP_KERNEL, 0);
  399. if (!debug_pagealloc)
  400. spin_lock(&cpa_lock);
  401. if (!base)
  402. return -ENOMEM;
  403. spin_lock_irqsave(&pgd_lock, flags);
  404. /*
  405. * Check for races, another CPU might have split this page
  406. * up for us already:
  407. */
  408. tmp = lookup_address(address, &level);
  409. if (tmp != kpte)
  410. goto out_unlock;
  411. pbase = (pte_t *)page_address(base);
  412. paravirt_alloc_pte(&init_mm, page_to_pfn(base));
  413. ref_prot = pte_pgprot(pte_clrhuge(*kpte));
  414. /*
  415. * If we ever want to utilize the PAT bit, we need to
  416. * update this function to make sure it's converted from
  417. * bit 12 to bit 7 when we cross from the 2MB level to
  418. * the 4K level:
  419. */
  420. WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
  421. #ifdef CONFIG_X86_64
  422. if (level == PG_LEVEL_1G) {
  423. pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
  424. pgprot_val(ref_prot) |= _PAGE_PSE;
  425. }
  426. #endif
  427. /*
  428. * Get the target pfn from the original entry:
  429. */
  430. pfn = pte_pfn(*kpte);
  431. for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
  432. set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
  433. if (address >= (unsigned long)__va(0) &&
  434. address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
  435. split_page_count(level);
  436. #ifdef CONFIG_X86_64
  437. if (address >= (unsigned long)__va(1UL<<32) &&
  438. address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
  439. split_page_count(level);
  440. #endif
  441. /*
  442. * Install the new, split up pagetable.
  443. *
  444. * We use the standard kernel pagetable protections for the new
  445. * pagetable protections, the actual ptes set above control the
  446. * primary protection behavior:
  447. */
  448. __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
  449. /*
  450. * Intel Atom errata AAH41 workaround.
  451. *
  452. * The real fix should be in hw or in a microcode update, but
  453. * we also probabilistically try to reduce the window of having
  454. * a large TLB mixed with 4K TLBs while instruction fetches are
  455. * going on.
  456. */
  457. __flush_tlb_all();
  458. base = NULL;
  459. out_unlock:
  460. /*
  461. * If we dropped out via the lookup_address check under
  462. * pgd_lock then stick the page back into the pool:
  463. */
  464. if (base)
  465. __free_page(base);
  466. spin_unlock_irqrestore(&pgd_lock, flags);
  467. return 0;
  468. }
  469. static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
  470. int primary)
  471. {
  472. /*
  473. * Ignore all non primary paths.
  474. */
  475. if (!primary)
  476. return 0;
  477. /*
  478. * Ignore the NULL PTE for kernel identity mapping, as it is expected
  479. * to have holes.
  480. * Also set numpages to '1' indicating that we processed cpa req for
  481. * one virtual address page and its pfn. TBD: numpages can be set based
  482. * on the initial value and the level returned by lookup_address().
  483. */
  484. if (within(vaddr, PAGE_OFFSET,
  485. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
  486. cpa->numpages = 1;
  487. cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
  488. return 0;
  489. } else {
  490. WARN(1, KERN_WARNING "CPA: called for zero pte. "
  491. "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
  492. *cpa->vaddr);
  493. return -EFAULT;
  494. }
  495. }
  496. static int __change_page_attr(struct cpa_data *cpa, int primary)
  497. {
  498. unsigned long address;
  499. int do_split, err;
  500. unsigned int level;
  501. pte_t *kpte, old_pte;
  502. if (cpa->flags & CPA_PAGES_ARRAY)
  503. address = (unsigned long)page_address(cpa->pages[cpa->curpage]);
  504. else if (cpa->flags & CPA_ARRAY)
  505. address = cpa->vaddr[cpa->curpage];
  506. else
  507. address = *cpa->vaddr;
  508. repeat:
  509. kpte = lookup_address(address, &level);
  510. if (!kpte)
  511. return __cpa_process_fault(cpa, address, primary);
  512. old_pte = *kpte;
  513. if (!pte_val(old_pte))
  514. return __cpa_process_fault(cpa, address, primary);
  515. if (level == PG_LEVEL_4K) {
  516. pte_t new_pte;
  517. pgprot_t new_prot = pte_pgprot(old_pte);
  518. unsigned long pfn = pte_pfn(old_pte);
  519. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  520. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  521. new_prot = static_protections(new_prot, address, pfn);
  522. /*
  523. * We need to keep the pfn from the existing PTE,
  524. * after all we're only going to change it's attributes
  525. * not the memory it points to
  526. */
  527. new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
  528. cpa->pfn = pfn;
  529. /*
  530. * Do we really change anything ?
  531. */
  532. if (pte_val(old_pte) != pte_val(new_pte)) {
  533. set_pte_atomic(kpte, new_pte);
  534. cpa->flags |= CPA_FLUSHTLB;
  535. }
  536. cpa->numpages = 1;
  537. return 0;
  538. }
  539. /*
  540. * Check, whether we can keep the large page intact
  541. * and just change the pte:
  542. */
  543. do_split = try_preserve_large_page(kpte, address, cpa);
  544. /*
  545. * When the range fits into the existing large page,
  546. * return. cp->numpages and cpa->tlbflush have been updated in
  547. * try_large_page:
  548. */
  549. if (do_split <= 0)
  550. return do_split;
  551. /*
  552. * We have to split the large page:
  553. */
  554. err = split_large_page(kpte, address);
  555. if (!err) {
  556. /*
  557. * Do a global flush tlb after splitting the large page
  558. * and before we do the actual change page attribute in the PTE.
  559. *
  560. * With out this, we violate the TLB application note, that says
  561. * "The TLBs may contain both ordinary and large-page
  562. * translations for a 4-KByte range of linear addresses. This
  563. * may occur if software modifies the paging structures so that
  564. * the page size used for the address range changes. If the two
  565. * translations differ with respect to page frame or attributes
  566. * (e.g., permissions), processor behavior is undefined and may
  567. * be implementation-specific."
  568. *
  569. * We do this global tlb flush inside the cpa_lock, so that we
  570. * don't allow any other cpu, with stale tlb entries change the
  571. * page attribute in parallel, that also falls into the
  572. * just split large page entry.
  573. */
  574. flush_tlb_all();
  575. goto repeat;
  576. }
  577. return err;
  578. }
  579. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
  580. static int cpa_process_alias(struct cpa_data *cpa)
  581. {
  582. struct cpa_data alias_cpa;
  583. int ret = 0;
  584. unsigned long temp_cpa_vaddr, vaddr;
  585. if (cpa->pfn >= max_pfn_mapped)
  586. return 0;
  587. #ifdef CONFIG_X86_64
  588. if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
  589. return 0;
  590. #endif
  591. /*
  592. * No need to redo, when the primary call touched the direct
  593. * mapping already:
  594. */
  595. if (cpa->flags & CPA_PAGES_ARRAY)
  596. vaddr = (unsigned long)page_address(cpa->pages[cpa->curpage]);
  597. else if (cpa->flags & CPA_ARRAY)
  598. vaddr = cpa->vaddr[cpa->curpage];
  599. else
  600. vaddr = *cpa->vaddr;
  601. if (!(within(vaddr, PAGE_OFFSET,
  602. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
  603. alias_cpa = *cpa;
  604. temp_cpa_vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
  605. alias_cpa.vaddr = &temp_cpa_vaddr;
  606. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  607. ret = __change_page_attr_set_clr(&alias_cpa, 0);
  608. }
  609. #ifdef CONFIG_X86_64
  610. if (ret)
  611. return ret;
  612. /*
  613. * No need to redo, when the primary call touched the high
  614. * mapping already:
  615. */
  616. if (within(vaddr, (unsigned long) _text, _brk_end))
  617. return 0;
  618. /*
  619. * If the physical address is inside the kernel map, we need
  620. * to touch the high mapped kernel as well:
  621. */
  622. if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
  623. return 0;
  624. alias_cpa = *cpa;
  625. temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
  626. alias_cpa.vaddr = &temp_cpa_vaddr;
  627. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  628. /*
  629. * The high mapping range is imprecise, so ignore the return value.
  630. */
  631. __change_page_attr_set_clr(&alias_cpa, 0);
  632. #endif
  633. return ret;
  634. }
  635. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
  636. {
  637. int ret, numpages = cpa->numpages;
  638. while (numpages) {
  639. /*
  640. * Store the remaining nr of pages for the large page
  641. * preservation check.
  642. */
  643. cpa->numpages = numpages;
  644. /* for array changes, we can't use large page */
  645. if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
  646. cpa->numpages = 1;
  647. if (!debug_pagealloc)
  648. spin_lock(&cpa_lock);
  649. ret = __change_page_attr(cpa, checkalias);
  650. if (!debug_pagealloc)
  651. spin_unlock(&cpa_lock);
  652. if (ret)
  653. return ret;
  654. if (checkalias) {
  655. ret = cpa_process_alias(cpa);
  656. if (ret)
  657. return ret;
  658. }
  659. /*
  660. * Adjust the number of pages with the result of the
  661. * CPA operation. Either a large page has been
  662. * preserved or a single page update happened.
  663. */
  664. BUG_ON(cpa->numpages > numpages);
  665. numpages -= cpa->numpages;
  666. if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
  667. cpa->curpage++;
  668. else
  669. *cpa->vaddr += cpa->numpages * PAGE_SIZE;
  670. }
  671. return 0;
  672. }
  673. static inline int cache_attr(pgprot_t attr)
  674. {
  675. return pgprot_val(attr) &
  676. (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
  677. }
  678. static int change_page_attr_set_clr(unsigned long *addr, int numpages,
  679. pgprot_t mask_set, pgprot_t mask_clr,
  680. int force_split, int in_flag,
  681. struct page **pages)
  682. {
  683. struct cpa_data cpa;
  684. int ret, cache, checkalias;
  685. /*
  686. * Check, if we are requested to change a not supported
  687. * feature:
  688. */
  689. mask_set = canon_pgprot(mask_set);
  690. mask_clr = canon_pgprot(mask_clr);
  691. if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
  692. return 0;
  693. /* Ensure we are PAGE_SIZE aligned */
  694. if (in_flag & CPA_ARRAY) {
  695. int i;
  696. for (i = 0; i < numpages; i++) {
  697. if (addr[i] & ~PAGE_MASK) {
  698. addr[i] &= PAGE_MASK;
  699. WARN_ON_ONCE(1);
  700. }
  701. }
  702. } else if (!(in_flag & CPA_PAGES_ARRAY)) {
  703. /*
  704. * in_flag of CPA_PAGES_ARRAY implies it is aligned.
  705. * No need to cehck in that case
  706. */
  707. if (*addr & ~PAGE_MASK) {
  708. *addr &= PAGE_MASK;
  709. /*
  710. * People should not be passing in unaligned addresses:
  711. */
  712. WARN_ON_ONCE(1);
  713. }
  714. }
  715. /* Must avoid aliasing mappings in the highmem code */
  716. kmap_flush_unused();
  717. vm_unmap_aliases();
  718. cpa.vaddr = addr;
  719. cpa.pages = pages;
  720. cpa.numpages = numpages;
  721. cpa.mask_set = mask_set;
  722. cpa.mask_clr = mask_clr;
  723. cpa.flags = 0;
  724. cpa.curpage = 0;
  725. cpa.force_split = force_split;
  726. if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
  727. cpa.flags |= in_flag;
  728. /* No alias checking for _NX bit modifications */
  729. checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
  730. ret = __change_page_attr_set_clr(&cpa, checkalias);
  731. /*
  732. * Check whether we really changed something:
  733. */
  734. if (!(cpa.flags & CPA_FLUSHTLB))
  735. goto out;
  736. /*
  737. * No need to flush, when we did not set any of the caching
  738. * attributes:
  739. */
  740. cache = cache_attr(mask_set);
  741. /*
  742. * On success we use clflush, when the CPU supports it to
  743. * avoid the wbindv. If the CPU does not support it and in the
  744. * error case we fall back to cpa_flush_all (which uses
  745. * wbindv):
  746. */
  747. if (!ret && cpu_has_clflush) {
  748. if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
  749. cpa_flush_array(addr, numpages, cache,
  750. cpa.flags, pages);
  751. } else
  752. cpa_flush_range(*addr, numpages, cache);
  753. } else
  754. cpa_flush_all(cache);
  755. out:
  756. return ret;
  757. }
  758. static inline int change_page_attr_set(unsigned long *addr, int numpages,
  759. pgprot_t mask, int array)
  760. {
  761. return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
  762. (array ? CPA_ARRAY : 0), NULL);
  763. }
  764. static inline int change_page_attr_clear(unsigned long *addr, int numpages,
  765. pgprot_t mask, int array)
  766. {
  767. return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
  768. (array ? CPA_ARRAY : 0), NULL);
  769. }
  770. static inline int cpa_set_pages_array(struct page **pages, int numpages,
  771. pgprot_t mask)
  772. {
  773. return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
  774. CPA_PAGES_ARRAY, pages);
  775. }
  776. static inline int cpa_clear_pages_array(struct page **pages, int numpages,
  777. pgprot_t mask)
  778. {
  779. return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
  780. CPA_PAGES_ARRAY, pages);
  781. }
  782. int _set_memory_uc(unsigned long addr, int numpages)
  783. {
  784. /*
  785. * for now UC MINUS. see comments in ioremap_nocache()
  786. */
  787. return change_page_attr_set(&addr, numpages,
  788. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  789. }
  790. int set_memory_uc(unsigned long addr, int numpages)
  791. {
  792. int ret;
  793. /*
  794. * for now UC MINUS. see comments in ioremap_nocache()
  795. */
  796. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  797. _PAGE_CACHE_UC_MINUS, NULL);
  798. if (ret)
  799. goto out_err;
  800. ret = _set_memory_uc(addr, numpages);
  801. if (ret)
  802. goto out_free;
  803. return 0;
  804. out_free:
  805. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  806. out_err:
  807. return ret;
  808. }
  809. EXPORT_SYMBOL(set_memory_uc);
  810. int set_memory_array_uc(unsigned long *addr, int addrinarray)
  811. {
  812. int i, j;
  813. int ret;
  814. /*
  815. * for now UC MINUS. see comments in ioremap_nocache()
  816. */
  817. for (i = 0; i < addrinarray; i++) {
  818. ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
  819. _PAGE_CACHE_UC_MINUS, NULL);
  820. if (ret)
  821. goto out_free;
  822. }
  823. ret = change_page_attr_set(addr, addrinarray,
  824. __pgprot(_PAGE_CACHE_UC_MINUS), 1);
  825. if (ret)
  826. goto out_free;
  827. return 0;
  828. out_free:
  829. for (j = 0; j < i; j++)
  830. free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
  831. return ret;
  832. }
  833. EXPORT_SYMBOL(set_memory_array_uc);
  834. int _set_memory_wc(unsigned long addr, int numpages)
  835. {
  836. int ret;
  837. ret = change_page_attr_set(&addr, numpages,
  838. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  839. if (!ret) {
  840. ret = change_page_attr_set(&addr, numpages,
  841. __pgprot(_PAGE_CACHE_WC), 0);
  842. }
  843. return ret;
  844. }
  845. int set_memory_wc(unsigned long addr, int numpages)
  846. {
  847. int ret;
  848. if (!pat_enabled)
  849. return set_memory_uc(addr, numpages);
  850. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  851. _PAGE_CACHE_WC, NULL);
  852. if (ret)
  853. goto out_err;
  854. ret = _set_memory_wc(addr, numpages);
  855. if (ret)
  856. goto out_free;
  857. return 0;
  858. out_free:
  859. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  860. out_err:
  861. return ret;
  862. }
  863. EXPORT_SYMBOL(set_memory_wc);
  864. int _set_memory_wb(unsigned long addr, int numpages)
  865. {
  866. return change_page_attr_clear(&addr, numpages,
  867. __pgprot(_PAGE_CACHE_MASK), 0);
  868. }
  869. int set_memory_wb(unsigned long addr, int numpages)
  870. {
  871. int ret;
  872. ret = _set_memory_wb(addr, numpages);
  873. if (ret)
  874. return ret;
  875. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  876. return 0;
  877. }
  878. EXPORT_SYMBOL(set_memory_wb);
  879. int set_memory_array_wb(unsigned long *addr, int addrinarray)
  880. {
  881. int i;
  882. int ret;
  883. ret = change_page_attr_clear(addr, addrinarray,
  884. __pgprot(_PAGE_CACHE_MASK), 1);
  885. if (ret)
  886. return ret;
  887. for (i = 0; i < addrinarray; i++)
  888. free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
  889. return 0;
  890. }
  891. EXPORT_SYMBOL(set_memory_array_wb);
  892. int set_memory_x(unsigned long addr, int numpages)
  893. {
  894. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
  895. }
  896. EXPORT_SYMBOL(set_memory_x);
  897. int set_memory_nx(unsigned long addr, int numpages)
  898. {
  899. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
  900. }
  901. EXPORT_SYMBOL(set_memory_nx);
  902. int set_memory_ro(unsigned long addr, int numpages)
  903. {
  904. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
  905. }
  906. EXPORT_SYMBOL_GPL(set_memory_ro);
  907. int set_memory_rw(unsigned long addr, int numpages)
  908. {
  909. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
  910. }
  911. EXPORT_SYMBOL_GPL(set_memory_rw);
  912. int set_memory_np(unsigned long addr, int numpages)
  913. {
  914. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
  915. }
  916. int set_memory_4k(unsigned long addr, int numpages)
  917. {
  918. return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
  919. __pgprot(0), 1, 0, NULL);
  920. }
  921. int set_pages_uc(struct page *page, int numpages)
  922. {
  923. unsigned long addr = (unsigned long)page_address(page);
  924. return set_memory_uc(addr, numpages);
  925. }
  926. EXPORT_SYMBOL(set_pages_uc);
  927. int set_pages_array_uc(struct page **pages, int addrinarray)
  928. {
  929. unsigned long start;
  930. unsigned long end;
  931. int i;
  932. int free_idx;
  933. for (i = 0; i < addrinarray; i++) {
  934. start = (unsigned long)page_address(pages[i]);
  935. end = start + PAGE_SIZE;
  936. if (reserve_memtype(start, end, _PAGE_CACHE_UC_MINUS, NULL))
  937. goto err_out;
  938. }
  939. if (cpa_set_pages_array(pages, addrinarray,
  940. __pgprot(_PAGE_CACHE_UC_MINUS)) == 0) {
  941. return 0; /* Success */
  942. }
  943. err_out:
  944. free_idx = i;
  945. for (i = 0; i < free_idx; i++) {
  946. start = (unsigned long)page_address(pages[i]);
  947. end = start + PAGE_SIZE;
  948. free_memtype(start, end);
  949. }
  950. return -EINVAL;
  951. }
  952. EXPORT_SYMBOL(set_pages_array_uc);
  953. int set_pages_wb(struct page *page, int numpages)
  954. {
  955. unsigned long addr = (unsigned long)page_address(page);
  956. return set_memory_wb(addr, numpages);
  957. }
  958. EXPORT_SYMBOL(set_pages_wb);
  959. int set_pages_array_wb(struct page **pages, int addrinarray)
  960. {
  961. int retval;
  962. unsigned long start;
  963. unsigned long end;
  964. int i;
  965. retval = cpa_clear_pages_array(pages, addrinarray,
  966. __pgprot(_PAGE_CACHE_MASK));
  967. if (retval)
  968. return retval;
  969. for (i = 0; i < addrinarray; i++) {
  970. start = (unsigned long)page_address(pages[i]);
  971. end = start + PAGE_SIZE;
  972. free_memtype(start, end);
  973. }
  974. return 0;
  975. }
  976. EXPORT_SYMBOL(set_pages_array_wb);
  977. int set_pages_x(struct page *page, int numpages)
  978. {
  979. unsigned long addr = (unsigned long)page_address(page);
  980. return set_memory_x(addr, numpages);
  981. }
  982. EXPORT_SYMBOL(set_pages_x);
  983. int set_pages_nx(struct page *page, int numpages)
  984. {
  985. unsigned long addr = (unsigned long)page_address(page);
  986. return set_memory_nx(addr, numpages);
  987. }
  988. EXPORT_SYMBOL(set_pages_nx);
  989. int set_pages_ro(struct page *page, int numpages)
  990. {
  991. unsigned long addr = (unsigned long)page_address(page);
  992. return set_memory_ro(addr, numpages);
  993. }
  994. int set_pages_rw(struct page *page, int numpages)
  995. {
  996. unsigned long addr = (unsigned long)page_address(page);
  997. return set_memory_rw(addr, numpages);
  998. }
  999. #ifdef CONFIG_DEBUG_PAGEALLOC
  1000. static int __set_pages_p(struct page *page, int numpages)
  1001. {
  1002. unsigned long tempaddr = (unsigned long) page_address(page);
  1003. struct cpa_data cpa = { .vaddr = &tempaddr,
  1004. .numpages = numpages,
  1005. .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1006. .mask_clr = __pgprot(0),
  1007. .flags = 0};
  1008. /*
  1009. * No alias checking needed for setting present flag. otherwise,
  1010. * we may need to break large pages for 64-bit kernel text
  1011. * mappings (this adds to complexity if we want to do this from
  1012. * atomic context especially). Let's keep it simple!
  1013. */
  1014. return __change_page_attr_set_clr(&cpa, 0);
  1015. }
  1016. static int __set_pages_np(struct page *page, int numpages)
  1017. {
  1018. unsigned long tempaddr = (unsigned long) page_address(page);
  1019. struct cpa_data cpa = { .vaddr = &tempaddr,
  1020. .numpages = numpages,
  1021. .mask_set = __pgprot(0),
  1022. .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1023. .flags = 0};
  1024. /*
  1025. * No alias checking needed for setting not present flag. otherwise,
  1026. * we may need to break large pages for 64-bit kernel text
  1027. * mappings (this adds to complexity if we want to do this from
  1028. * atomic context especially). Let's keep it simple!
  1029. */
  1030. return __change_page_attr_set_clr(&cpa, 0);
  1031. }
  1032. void kernel_map_pages(struct page *page, int numpages, int enable)
  1033. {
  1034. if (PageHighMem(page))
  1035. return;
  1036. if (!enable) {
  1037. debug_check_no_locks_freed(page_address(page),
  1038. numpages * PAGE_SIZE);
  1039. }
  1040. /*
  1041. * If page allocator is not up yet then do not call c_p_a():
  1042. */
  1043. if (!debug_pagealloc_enabled)
  1044. return;
  1045. /*
  1046. * The return value is ignored as the calls cannot fail.
  1047. * Large pages for identity mappings are not used at boot time
  1048. * and hence no memory allocations during large page split.
  1049. */
  1050. if (enable)
  1051. __set_pages_p(page, numpages);
  1052. else
  1053. __set_pages_np(page, numpages);
  1054. /*
  1055. * We should perform an IPI and flush all tlbs,
  1056. * but that can deadlock->flush only current cpu:
  1057. */
  1058. __flush_tlb_all();
  1059. }
  1060. #ifdef CONFIG_HIBERNATION
  1061. bool kernel_page_present(struct page *page)
  1062. {
  1063. unsigned int level;
  1064. pte_t *pte;
  1065. if (PageHighMem(page))
  1066. return false;
  1067. pte = lookup_address((unsigned long)page_address(page), &level);
  1068. return (pte_val(*pte) & _PAGE_PRESENT);
  1069. }
  1070. #endif /* CONFIG_HIBERNATION */
  1071. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1072. /*
  1073. * The testcases use internal knowledge of the implementation that shouldn't
  1074. * be exposed to the rest of the kernel. Include these directly here.
  1075. */
  1076. #ifdef CONFIG_CPA_DEBUG
  1077. #include "pageattr-test.c"
  1078. #endif