paging_tmpl.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  31. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  32. #ifdef CONFIG_X86_64
  33. #define PT_MAX_FULL_LEVELS 4
  34. #define CMPXCHG cmpxchg
  35. #else
  36. #define CMPXCHG cmpxchg64
  37. #define PT_MAX_FULL_LEVELS 2
  38. #endif
  39. #elif PTTYPE == 32
  40. #define pt_element_t u32
  41. #define guest_walker guest_walker32
  42. #define FNAME(name) paging##32_##name
  43. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  44. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  45. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  48. #define PT_MAX_FULL_LEVELS 2
  49. #define CMPXCHG cmpxchg
  50. #else
  51. #error Invalid PTTYPE value
  52. #endif
  53. #define gpte_to_gfn FNAME(gpte_to_gfn)
  54. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  55. /*
  56. * The guest_walker structure emulates the behavior of the hardware page
  57. * table walker.
  58. */
  59. struct guest_walker {
  60. int level;
  61. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  62. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  63. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  64. unsigned pt_access;
  65. unsigned pte_access;
  66. gfn_t gfn;
  67. u32 error_code;
  68. };
  69. static gfn_t gpte_to_gfn(pt_element_t gpte)
  70. {
  71. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  72. }
  73. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  74. {
  75. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  76. }
  77. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  78. gfn_t table_gfn, unsigned index,
  79. pt_element_t orig_pte, pt_element_t new_pte)
  80. {
  81. pt_element_t ret;
  82. pt_element_t *table;
  83. struct page *page;
  84. page = gfn_to_page(kvm, table_gfn);
  85. table = kmap_atomic(page, KM_USER0);
  86. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  87. kunmap_atomic(table, KM_USER0);
  88. kvm_release_page_dirty(page);
  89. return (ret != orig_pte);
  90. }
  91. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  92. {
  93. unsigned access;
  94. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  95. #if PTTYPE == 64
  96. if (is_nx(vcpu))
  97. access &= ~(gpte >> PT64_NX_SHIFT);
  98. #endif
  99. return access;
  100. }
  101. /*
  102. * Fetch a guest pte for a guest virtual address
  103. */
  104. static int FNAME(walk_addr)(struct guest_walker *walker,
  105. struct kvm_vcpu *vcpu, gva_t addr,
  106. int write_fault, int user_fault, int fetch_fault)
  107. {
  108. pt_element_t pte;
  109. gfn_t table_gfn;
  110. unsigned index, pt_access, pte_access;
  111. gpa_t pte_gpa;
  112. int rsvd_fault = 0;
  113. pgprintk("%s: addr %lx\n", __func__, addr);
  114. walk:
  115. walker->level = vcpu->arch.mmu.root_level;
  116. pte = vcpu->arch.cr3;
  117. #if PTTYPE == 64
  118. if (!is_long_mode(vcpu)) {
  119. pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
  120. if (!is_present_pte(pte))
  121. goto not_present;
  122. --walker->level;
  123. }
  124. #endif
  125. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  126. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  127. pt_access = ACC_ALL;
  128. for (;;) {
  129. index = PT_INDEX(addr, walker->level);
  130. table_gfn = gpte_to_gfn(pte);
  131. pte_gpa = gfn_to_gpa(table_gfn);
  132. pte_gpa += index * sizeof(pt_element_t);
  133. walker->table_gfn[walker->level - 1] = table_gfn;
  134. walker->pte_gpa[walker->level - 1] = pte_gpa;
  135. pgprintk("%s: table_gfn[%d] %lx\n", __func__,
  136. walker->level - 1, table_gfn);
  137. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  138. if (!is_present_pte(pte))
  139. goto not_present;
  140. rsvd_fault = is_rsvd_bits_set(vcpu, pte, walker->level);
  141. if (rsvd_fault)
  142. goto access_error;
  143. if (write_fault && !is_writeble_pte(pte))
  144. if (user_fault || is_write_protection(vcpu))
  145. goto access_error;
  146. if (user_fault && !(pte & PT_USER_MASK))
  147. goto access_error;
  148. #if PTTYPE == 64
  149. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  150. goto access_error;
  151. #endif
  152. if (!(pte & PT_ACCESSED_MASK)) {
  153. mark_page_dirty(vcpu->kvm, table_gfn);
  154. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  155. index, pte, pte|PT_ACCESSED_MASK))
  156. goto walk;
  157. pte |= PT_ACCESSED_MASK;
  158. }
  159. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  160. walker->ptes[walker->level - 1] = pte;
  161. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  162. walker->gfn = gpte_to_gfn(pte);
  163. break;
  164. }
  165. if (walker->level == PT_DIRECTORY_LEVEL
  166. && (pte & PT_PAGE_SIZE_MASK)
  167. && (PTTYPE == 64 || is_pse(vcpu))) {
  168. walker->gfn = gpte_to_gfn_pde(pte);
  169. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  170. if (PTTYPE == 32 && is_cpuid_PSE36())
  171. walker->gfn += pse36_gfn_delta(pte);
  172. break;
  173. }
  174. pt_access = pte_access;
  175. --walker->level;
  176. }
  177. if (write_fault && !is_dirty_pte(pte)) {
  178. bool ret;
  179. mark_page_dirty(vcpu->kvm, table_gfn);
  180. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  181. pte|PT_DIRTY_MASK);
  182. if (ret)
  183. goto walk;
  184. pte |= PT_DIRTY_MASK;
  185. walker->ptes[walker->level - 1] = pte;
  186. }
  187. walker->pt_access = pt_access;
  188. walker->pte_access = pte_access;
  189. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  190. __func__, (u64)pte, pt_access, pte_access);
  191. return 1;
  192. not_present:
  193. walker->error_code = 0;
  194. goto err;
  195. access_error:
  196. walker->error_code = PFERR_PRESENT_MASK;
  197. err:
  198. if (write_fault)
  199. walker->error_code |= PFERR_WRITE_MASK;
  200. if (user_fault)
  201. walker->error_code |= PFERR_USER_MASK;
  202. if (fetch_fault)
  203. walker->error_code |= PFERR_FETCH_MASK;
  204. if (rsvd_fault)
  205. walker->error_code |= PFERR_RSVD_MASK;
  206. return 0;
  207. }
  208. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  209. u64 *spte, const void *pte)
  210. {
  211. pt_element_t gpte;
  212. unsigned pte_access;
  213. pfn_t pfn;
  214. int largepage = vcpu->arch.update_pte.largepage;
  215. gpte = *(const pt_element_t *)pte;
  216. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  217. if (!is_present_pte(gpte))
  218. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  219. return;
  220. }
  221. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  222. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  223. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  224. return;
  225. pfn = vcpu->arch.update_pte.pfn;
  226. if (is_error_pfn(pfn))
  227. return;
  228. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  229. return;
  230. kvm_get_pfn(pfn);
  231. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  232. gpte & PT_DIRTY_MASK, NULL, largepage,
  233. gpte_to_gfn(gpte), pfn, true);
  234. }
  235. /*
  236. * Fetch a shadow pte for a specific level in the paging hierarchy.
  237. */
  238. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  239. struct guest_walker *gw,
  240. int user_fault, int write_fault, int largepage,
  241. int *ptwrite, pfn_t pfn)
  242. {
  243. unsigned access = gw->pt_access;
  244. struct kvm_mmu_page *shadow_page;
  245. u64 spte, *sptep;
  246. int direct;
  247. gfn_t table_gfn;
  248. int r;
  249. int level;
  250. pt_element_t curr_pte;
  251. struct kvm_shadow_walk_iterator iterator;
  252. if (!is_present_pte(gw->ptes[gw->level - 1]))
  253. return NULL;
  254. for_each_shadow_entry(vcpu, addr, iterator) {
  255. level = iterator.level;
  256. sptep = iterator.sptep;
  257. if (level == PT_PAGE_TABLE_LEVEL
  258. || (largepage && level == PT_DIRECTORY_LEVEL)) {
  259. mmu_set_spte(vcpu, sptep, access,
  260. gw->pte_access & access,
  261. user_fault, write_fault,
  262. gw->ptes[gw->level-1] & PT_DIRTY_MASK,
  263. ptwrite, largepage,
  264. gw->gfn, pfn, false);
  265. break;
  266. }
  267. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep))
  268. continue;
  269. if (is_large_pte(*sptep)) {
  270. rmap_remove(vcpu->kvm, sptep);
  271. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  272. kvm_flush_remote_tlbs(vcpu->kvm);
  273. }
  274. if (level == PT_DIRECTORY_LEVEL
  275. && gw->level == PT_DIRECTORY_LEVEL) {
  276. direct = 1;
  277. if (!is_dirty_pte(gw->ptes[level - 1]))
  278. access &= ~ACC_WRITE_MASK;
  279. table_gfn = gpte_to_gfn(gw->ptes[level - 1]);
  280. } else {
  281. direct = 0;
  282. table_gfn = gw->table_gfn[level - 2];
  283. }
  284. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  285. direct, access, sptep);
  286. if (!direct) {
  287. r = kvm_read_guest_atomic(vcpu->kvm,
  288. gw->pte_gpa[level - 2],
  289. &curr_pte, sizeof(curr_pte));
  290. if (r || curr_pte != gw->ptes[level - 2]) {
  291. kvm_mmu_put_page(shadow_page, sptep);
  292. kvm_release_pfn_clean(pfn);
  293. sptep = NULL;
  294. break;
  295. }
  296. }
  297. spte = __pa(shadow_page->spt)
  298. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  299. | PT_WRITABLE_MASK | PT_USER_MASK;
  300. *sptep = spte;
  301. }
  302. return sptep;
  303. }
  304. /*
  305. * Page fault handler. There are several causes for a page fault:
  306. * - there is no shadow pte for the guest pte
  307. * - write access through a shadow pte marked read only so that we can set
  308. * the dirty bit
  309. * - write access to a shadow pte marked read only so we can update the page
  310. * dirty bitmap, when userspace requests it
  311. * - mmio access; in this case we will never install a present shadow pte
  312. * - normal guest page fault due to the guest pte marked not present, not
  313. * writable, or not executable
  314. *
  315. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  316. * a negative value on error.
  317. */
  318. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  319. u32 error_code)
  320. {
  321. int write_fault = error_code & PFERR_WRITE_MASK;
  322. int user_fault = error_code & PFERR_USER_MASK;
  323. int fetch_fault = error_code & PFERR_FETCH_MASK;
  324. struct guest_walker walker;
  325. u64 *shadow_pte;
  326. int write_pt = 0;
  327. int r;
  328. pfn_t pfn;
  329. int largepage = 0;
  330. unsigned long mmu_seq;
  331. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  332. kvm_mmu_audit(vcpu, "pre page fault");
  333. r = mmu_topup_memory_caches(vcpu);
  334. if (r)
  335. return r;
  336. /*
  337. * Look up the guest pte for the faulting address.
  338. */
  339. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  340. fetch_fault);
  341. /*
  342. * The page is not mapped by the guest. Let the guest handle it.
  343. */
  344. if (!r) {
  345. pgprintk("%s: guest page fault\n", __func__);
  346. inject_page_fault(vcpu, addr, walker.error_code);
  347. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  348. return 0;
  349. }
  350. if (walker.level == PT_DIRECTORY_LEVEL) {
  351. gfn_t large_gfn;
  352. large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
  353. if (is_largepage_backed(vcpu, large_gfn)) {
  354. walker.gfn = large_gfn;
  355. largepage = 1;
  356. }
  357. }
  358. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  359. smp_rmb();
  360. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  361. /* mmio */
  362. if (is_error_pfn(pfn)) {
  363. pgprintk("gfn %lx is mmio\n", walker.gfn);
  364. kvm_release_pfn_clean(pfn);
  365. return 1;
  366. }
  367. spin_lock(&vcpu->kvm->mmu_lock);
  368. if (mmu_notifier_retry(vcpu, mmu_seq))
  369. goto out_unlock;
  370. kvm_mmu_free_some_pages(vcpu);
  371. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  372. largepage, &write_pt, pfn);
  373. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  374. shadow_pte, *shadow_pte, write_pt);
  375. if (!write_pt)
  376. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  377. ++vcpu->stat.pf_fixed;
  378. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  379. spin_unlock(&vcpu->kvm->mmu_lock);
  380. return write_pt;
  381. out_unlock:
  382. spin_unlock(&vcpu->kvm->mmu_lock);
  383. kvm_release_pfn_clean(pfn);
  384. return 0;
  385. }
  386. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  387. {
  388. struct kvm_shadow_walk_iterator iterator;
  389. pt_element_t gpte;
  390. gpa_t pte_gpa = -1;
  391. int level;
  392. u64 *sptep;
  393. int need_flush = 0;
  394. spin_lock(&vcpu->kvm->mmu_lock);
  395. for_each_shadow_entry(vcpu, gva, iterator) {
  396. level = iterator.level;
  397. sptep = iterator.sptep;
  398. /* FIXME: properly handle invlpg on large guest pages */
  399. if (level == PT_PAGE_TABLE_LEVEL ||
  400. ((level == PT_DIRECTORY_LEVEL) && is_large_pte(*sptep))) {
  401. struct kvm_mmu_page *sp = page_header(__pa(sptep));
  402. pte_gpa = (sp->gfn << PAGE_SHIFT);
  403. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  404. if (is_shadow_present_pte(*sptep)) {
  405. rmap_remove(vcpu->kvm, sptep);
  406. if (is_large_pte(*sptep))
  407. --vcpu->kvm->stat.lpages;
  408. need_flush = 1;
  409. }
  410. set_shadow_pte(sptep, shadow_trap_nonpresent_pte);
  411. break;
  412. }
  413. if (!is_shadow_present_pte(*sptep))
  414. break;
  415. }
  416. if (need_flush)
  417. kvm_flush_remote_tlbs(vcpu->kvm);
  418. spin_unlock(&vcpu->kvm->mmu_lock);
  419. if (pte_gpa == -1)
  420. return;
  421. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  422. sizeof(pt_element_t)))
  423. return;
  424. if (is_present_pte(gpte) && (gpte & PT_ACCESSED_MASK)) {
  425. if (mmu_topup_memory_caches(vcpu))
  426. return;
  427. kvm_mmu_pte_write(vcpu, pte_gpa, (const u8 *)&gpte,
  428. sizeof(pt_element_t), 0);
  429. }
  430. }
  431. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  432. {
  433. struct guest_walker walker;
  434. gpa_t gpa = UNMAPPED_GVA;
  435. int r;
  436. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  437. if (r) {
  438. gpa = gfn_to_gpa(walker.gfn);
  439. gpa |= vaddr & ~PAGE_MASK;
  440. }
  441. return gpa;
  442. }
  443. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  444. struct kvm_mmu_page *sp)
  445. {
  446. int i, j, offset, r;
  447. pt_element_t pt[256 / sizeof(pt_element_t)];
  448. gpa_t pte_gpa;
  449. if (sp->role.direct
  450. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  451. nonpaging_prefetch_page(vcpu, sp);
  452. return;
  453. }
  454. pte_gpa = gfn_to_gpa(sp->gfn);
  455. if (PTTYPE == 32) {
  456. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  457. pte_gpa += offset * sizeof(pt_element_t);
  458. }
  459. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  460. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  461. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  462. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  463. if (r || is_present_pte(pt[j]))
  464. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  465. else
  466. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  467. }
  468. }
  469. /*
  470. * Using the cached information from sp->gfns is safe because:
  471. * - The spte has a reference to the struct page, so the pfn for a given gfn
  472. * can't change unless all sptes pointing to it are nuked first.
  473. * - Alias changes zap the entire shadow cache.
  474. */
  475. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  476. {
  477. int i, offset, nr_present;
  478. offset = nr_present = 0;
  479. if (PTTYPE == 32)
  480. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  481. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  482. unsigned pte_access;
  483. pt_element_t gpte;
  484. gpa_t pte_gpa;
  485. gfn_t gfn = sp->gfns[i];
  486. if (!is_shadow_present_pte(sp->spt[i]))
  487. continue;
  488. pte_gpa = gfn_to_gpa(sp->gfn);
  489. pte_gpa += (i+offset) * sizeof(pt_element_t);
  490. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  491. sizeof(pt_element_t)))
  492. return -EINVAL;
  493. if (gpte_to_gfn(gpte) != gfn || !is_present_pte(gpte) ||
  494. !(gpte & PT_ACCESSED_MASK)) {
  495. u64 nonpresent;
  496. rmap_remove(vcpu->kvm, &sp->spt[i]);
  497. if (is_present_pte(gpte))
  498. nonpresent = shadow_trap_nonpresent_pte;
  499. else
  500. nonpresent = shadow_notrap_nonpresent_pte;
  501. set_shadow_pte(&sp->spt[i], nonpresent);
  502. continue;
  503. }
  504. nr_present++;
  505. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
  506. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  507. is_dirty_pte(gpte), 0, gfn,
  508. spte_to_pfn(sp->spt[i]), true, false);
  509. }
  510. return !nr_present;
  511. }
  512. #undef pt_element_t
  513. #undef guest_walker
  514. #undef FNAME
  515. #undef PT_BASE_ADDR_MASK
  516. #undef PT_INDEX
  517. #undef PT_LEVEL_MASK
  518. #undef PT_DIR_BASE_ADDR_MASK
  519. #undef PT_LEVEL_BITS
  520. #undef PT_MAX_FULL_LEVELS
  521. #undef gpte_to_gfn
  522. #undef gpte_to_gfn_pde
  523. #undef CMPXCHG