i8254.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681
  1. /*
  2. * 8253/8254 interval timer emulation
  3. *
  4. * Copyright (c) 2003-2004 Fabrice Bellard
  5. * Copyright (c) 2006 Intel Corporation
  6. * Copyright (c) 2007 Keir Fraser, XenSource Inc
  7. * Copyright (c) 2008 Intel Corporation
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  22. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. * Authors:
  28. * Sheng Yang <sheng.yang@intel.com>
  29. * Based on QEMU and Xen.
  30. */
  31. #include <linux/kvm_host.h>
  32. #include "irq.h"
  33. #include "i8254.h"
  34. #ifndef CONFIG_X86_64
  35. #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
  36. #else
  37. #define mod_64(x, y) ((x) % (y))
  38. #endif
  39. #define RW_STATE_LSB 1
  40. #define RW_STATE_MSB 2
  41. #define RW_STATE_WORD0 3
  42. #define RW_STATE_WORD1 4
  43. /* Compute with 96 bit intermediate result: (a*b)/c */
  44. static u64 muldiv64(u64 a, u32 b, u32 c)
  45. {
  46. union {
  47. u64 ll;
  48. struct {
  49. u32 low, high;
  50. } l;
  51. } u, res;
  52. u64 rl, rh;
  53. u.ll = a;
  54. rl = (u64)u.l.low * (u64)b;
  55. rh = (u64)u.l.high * (u64)b;
  56. rh += (rl >> 32);
  57. res.l.high = div64_u64(rh, c);
  58. res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
  59. return res.ll;
  60. }
  61. static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
  62. {
  63. struct kvm_kpit_channel_state *c =
  64. &kvm->arch.vpit->pit_state.channels[channel];
  65. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  66. switch (c->mode) {
  67. default:
  68. case 0:
  69. case 4:
  70. /* XXX: just disable/enable counting */
  71. break;
  72. case 1:
  73. case 2:
  74. case 3:
  75. case 5:
  76. /* Restart counting on rising edge. */
  77. if (c->gate < val)
  78. c->count_load_time = ktime_get();
  79. break;
  80. }
  81. c->gate = val;
  82. }
  83. static int pit_get_gate(struct kvm *kvm, int channel)
  84. {
  85. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  86. return kvm->arch.vpit->pit_state.channels[channel].gate;
  87. }
  88. static s64 __kpit_elapsed(struct kvm *kvm)
  89. {
  90. s64 elapsed;
  91. ktime_t remaining;
  92. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  93. /*
  94. * The Counter does not stop when it reaches zero. In
  95. * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
  96. * the highest count, either FFFF hex for binary counting
  97. * or 9999 for BCD counting, and continues counting.
  98. * Modes 2 and 3 are periodic; the Counter reloads
  99. * itself with the initial count and continues counting
  100. * from there.
  101. */
  102. remaining = hrtimer_expires_remaining(&ps->pit_timer.timer);
  103. elapsed = ps->pit_timer.period - ktime_to_ns(remaining);
  104. elapsed = mod_64(elapsed, ps->pit_timer.period);
  105. return elapsed;
  106. }
  107. static s64 kpit_elapsed(struct kvm *kvm, struct kvm_kpit_channel_state *c,
  108. int channel)
  109. {
  110. if (channel == 0)
  111. return __kpit_elapsed(kvm);
  112. return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
  113. }
  114. static int pit_get_count(struct kvm *kvm, int channel)
  115. {
  116. struct kvm_kpit_channel_state *c =
  117. &kvm->arch.vpit->pit_state.channels[channel];
  118. s64 d, t;
  119. int counter;
  120. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  121. t = kpit_elapsed(kvm, c, channel);
  122. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  123. switch (c->mode) {
  124. case 0:
  125. case 1:
  126. case 4:
  127. case 5:
  128. counter = (c->count - d) & 0xffff;
  129. break;
  130. case 3:
  131. /* XXX: may be incorrect for odd counts */
  132. counter = c->count - (mod_64((2 * d), c->count));
  133. break;
  134. default:
  135. counter = c->count - mod_64(d, c->count);
  136. break;
  137. }
  138. return counter;
  139. }
  140. static int pit_get_out(struct kvm *kvm, int channel)
  141. {
  142. struct kvm_kpit_channel_state *c =
  143. &kvm->arch.vpit->pit_state.channels[channel];
  144. s64 d, t;
  145. int out;
  146. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  147. t = kpit_elapsed(kvm, c, channel);
  148. d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
  149. switch (c->mode) {
  150. default:
  151. case 0:
  152. out = (d >= c->count);
  153. break;
  154. case 1:
  155. out = (d < c->count);
  156. break;
  157. case 2:
  158. out = ((mod_64(d, c->count) == 0) && (d != 0));
  159. break;
  160. case 3:
  161. out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
  162. break;
  163. case 4:
  164. case 5:
  165. out = (d == c->count);
  166. break;
  167. }
  168. return out;
  169. }
  170. static void pit_latch_count(struct kvm *kvm, int channel)
  171. {
  172. struct kvm_kpit_channel_state *c =
  173. &kvm->arch.vpit->pit_state.channels[channel];
  174. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  175. if (!c->count_latched) {
  176. c->latched_count = pit_get_count(kvm, channel);
  177. c->count_latched = c->rw_mode;
  178. }
  179. }
  180. static void pit_latch_status(struct kvm *kvm, int channel)
  181. {
  182. struct kvm_kpit_channel_state *c =
  183. &kvm->arch.vpit->pit_state.channels[channel];
  184. WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));
  185. if (!c->status_latched) {
  186. /* TODO: Return NULL COUNT (bit 6). */
  187. c->status = ((pit_get_out(kvm, channel) << 7) |
  188. (c->rw_mode << 4) |
  189. (c->mode << 1) |
  190. c->bcd);
  191. c->status_latched = 1;
  192. }
  193. }
  194. int pit_has_pending_timer(struct kvm_vcpu *vcpu)
  195. {
  196. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  197. if (pit && vcpu->vcpu_id == 0 && pit->pit_state.irq_ack)
  198. return atomic_read(&pit->pit_state.pit_timer.pending);
  199. return 0;
  200. }
  201. static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
  202. {
  203. struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
  204. irq_ack_notifier);
  205. spin_lock(&ps->inject_lock);
  206. if (atomic_dec_return(&ps->pit_timer.pending) < 0)
  207. atomic_inc(&ps->pit_timer.pending);
  208. ps->irq_ack = 1;
  209. spin_unlock(&ps->inject_lock);
  210. }
  211. void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
  212. {
  213. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  214. struct hrtimer *timer;
  215. if (vcpu->vcpu_id != 0 || !pit)
  216. return;
  217. timer = &pit->pit_state.pit_timer.timer;
  218. if (hrtimer_cancel(timer))
  219. hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
  220. }
  221. static void destroy_pit_timer(struct kvm_timer *pt)
  222. {
  223. pr_debug("pit: execute del timer!\n");
  224. hrtimer_cancel(&pt->timer);
  225. }
  226. static bool kpit_is_periodic(struct kvm_timer *ktimer)
  227. {
  228. struct kvm_kpit_state *ps = container_of(ktimer, struct kvm_kpit_state,
  229. pit_timer);
  230. return ps->is_periodic;
  231. }
  232. static struct kvm_timer_ops kpit_ops = {
  233. .is_periodic = kpit_is_periodic,
  234. };
  235. static void create_pit_timer(struct kvm_kpit_state *ps, u32 val, int is_period)
  236. {
  237. struct kvm_timer *pt = &ps->pit_timer;
  238. s64 interval;
  239. interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
  240. pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);
  241. /* TODO The new value only affected after the retriggered */
  242. hrtimer_cancel(&pt->timer);
  243. pt->period = interval;
  244. ps->is_periodic = is_period;
  245. pt->timer.function = kvm_timer_fn;
  246. pt->t_ops = &kpit_ops;
  247. pt->kvm = ps->pit->kvm;
  248. pt->vcpu_id = 0;
  249. atomic_set(&pt->pending, 0);
  250. ps->irq_ack = 1;
  251. hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
  252. HRTIMER_MODE_ABS);
  253. }
  254. static void pit_load_count(struct kvm *kvm, int channel, u32 val)
  255. {
  256. struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;
  257. WARN_ON(!mutex_is_locked(&ps->lock));
  258. pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);
  259. /*
  260. * The largest possible initial count is 0; this is equivalent
  261. * to 216 for binary counting and 104 for BCD counting.
  262. */
  263. if (val == 0)
  264. val = 0x10000;
  265. ps->channels[channel].count = val;
  266. if (channel != 0) {
  267. ps->channels[channel].count_load_time = ktime_get();
  268. return;
  269. }
  270. /* Two types of timer
  271. * mode 1 is one shot, mode 2 is period, otherwise del timer */
  272. switch (ps->channels[0].mode) {
  273. case 0:
  274. case 1:
  275. /* FIXME: enhance mode 4 precision */
  276. case 4:
  277. create_pit_timer(ps, val, 0);
  278. break;
  279. case 2:
  280. case 3:
  281. create_pit_timer(ps, val, 1);
  282. break;
  283. default:
  284. destroy_pit_timer(&ps->pit_timer);
  285. }
  286. }
  287. void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
  288. {
  289. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  290. pit_load_count(kvm, channel, val);
  291. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  292. }
  293. static void pit_ioport_write(struct kvm_io_device *this,
  294. gpa_t addr, int len, const void *data)
  295. {
  296. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  297. struct kvm_kpit_state *pit_state = &pit->pit_state;
  298. struct kvm *kvm = pit->kvm;
  299. int channel, access;
  300. struct kvm_kpit_channel_state *s;
  301. u32 val = *(u32 *) data;
  302. val &= 0xff;
  303. addr &= KVM_PIT_CHANNEL_MASK;
  304. mutex_lock(&pit_state->lock);
  305. if (val != 0)
  306. pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
  307. (unsigned int)addr, len, val);
  308. if (addr == 3) {
  309. channel = val >> 6;
  310. if (channel == 3) {
  311. /* Read-Back Command. */
  312. for (channel = 0; channel < 3; channel++) {
  313. s = &pit_state->channels[channel];
  314. if (val & (2 << channel)) {
  315. if (!(val & 0x20))
  316. pit_latch_count(kvm, channel);
  317. if (!(val & 0x10))
  318. pit_latch_status(kvm, channel);
  319. }
  320. }
  321. } else {
  322. /* Select Counter <channel>. */
  323. s = &pit_state->channels[channel];
  324. access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
  325. if (access == 0) {
  326. pit_latch_count(kvm, channel);
  327. } else {
  328. s->rw_mode = access;
  329. s->read_state = access;
  330. s->write_state = access;
  331. s->mode = (val >> 1) & 7;
  332. if (s->mode > 5)
  333. s->mode -= 4;
  334. s->bcd = val & 1;
  335. }
  336. }
  337. } else {
  338. /* Write Count. */
  339. s = &pit_state->channels[addr];
  340. switch (s->write_state) {
  341. default:
  342. case RW_STATE_LSB:
  343. pit_load_count(kvm, addr, val);
  344. break;
  345. case RW_STATE_MSB:
  346. pit_load_count(kvm, addr, val << 8);
  347. break;
  348. case RW_STATE_WORD0:
  349. s->write_latch = val;
  350. s->write_state = RW_STATE_WORD1;
  351. break;
  352. case RW_STATE_WORD1:
  353. pit_load_count(kvm, addr, s->write_latch | (val << 8));
  354. s->write_state = RW_STATE_WORD0;
  355. break;
  356. }
  357. }
  358. mutex_unlock(&pit_state->lock);
  359. }
  360. static void pit_ioport_read(struct kvm_io_device *this,
  361. gpa_t addr, int len, void *data)
  362. {
  363. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  364. struct kvm_kpit_state *pit_state = &pit->pit_state;
  365. struct kvm *kvm = pit->kvm;
  366. int ret, count;
  367. struct kvm_kpit_channel_state *s;
  368. addr &= KVM_PIT_CHANNEL_MASK;
  369. s = &pit_state->channels[addr];
  370. mutex_lock(&pit_state->lock);
  371. if (s->status_latched) {
  372. s->status_latched = 0;
  373. ret = s->status;
  374. } else if (s->count_latched) {
  375. switch (s->count_latched) {
  376. default:
  377. case RW_STATE_LSB:
  378. ret = s->latched_count & 0xff;
  379. s->count_latched = 0;
  380. break;
  381. case RW_STATE_MSB:
  382. ret = s->latched_count >> 8;
  383. s->count_latched = 0;
  384. break;
  385. case RW_STATE_WORD0:
  386. ret = s->latched_count & 0xff;
  387. s->count_latched = RW_STATE_MSB;
  388. break;
  389. }
  390. } else {
  391. switch (s->read_state) {
  392. default:
  393. case RW_STATE_LSB:
  394. count = pit_get_count(kvm, addr);
  395. ret = count & 0xff;
  396. break;
  397. case RW_STATE_MSB:
  398. count = pit_get_count(kvm, addr);
  399. ret = (count >> 8) & 0xff;
  400. break;
  401. case RW_STATE_WORD0:
  402. count = pit_get_count(kvm, addr);
  403. ret = count & 0xff;
  404. s->read_state = RW_STATE_WORD1;
  405. break;
  406. case RW_STATE_WORD1:
  407. count = pit_get_count(kvm, addr);
  408. ret = (count >> 8) & 0xff;
  409. s->read_state = RW_STATE_WORD0;
  410. break;
  411. }
  412. }
  413. if (len > sizeof(ret))
  414. len = sizeof(ret);
  415. memcpy(data, (char *)&ret, len);
  416. mutex_unlock(&pit_state->lock);
  417. }
  418. static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
  419. int len, int is_write)
  420. {
  421. return ((addr >= KVM_PIT_BASE_ADDRESS) &&
  422. (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
  423. }
  424. static void speaker_ioport_write(struct kvm_io_device *this,
  425. gpa_t addr, int len, const void *data)
  426. {
  427. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  428. struct kvm_kpit_state *pit_state = &pit->pit_state;
  429. struct kvm *kvm = pit->kvm;
  430. u32 val = *(u32 *) data;
  431. mutex_lock(&pit_state->lock);
  432. pit_state->speaker_data_on = (val >> 1) & 1;
  433. pit_set_gate(kvm, 2, val & 1);
  434. mutex_unlock(&pit_state->lock);
  435. }
  436. static void speaker_ioport_read(struct kvm_io_device *this,
  437. gpa_t addr, int len, void *data)
  438. {
  439. struct kvm_pit *pit = (struct kvm_pit *)this->private;
  440. struct kvm_kpit_state *pit_state = &pit->pit_state;
  441. struct kvm *kvm = pit->kvm;
  442. unsigned int refresh_clock;
  443. int ret;
  444. /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
  445. refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
  446. mutex_lock(&pit_state->lock);
  447. ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
  448. (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
  449. if (len > sizeof(ret))
  450. len = sizeof(ret);
  451. memcpy(data, (char *)&ret, len);
  452. mutex_unlock(&pit_state->lock);
  453. }
  454. static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
  455. int len, int is_write)
  456. {
  457. return (addr == KVM_SPEAKER_BASE_ADDRESS);
  458. }
  459. void kvm_pit_reset(struct kvm_pit *pit)
  460. {
  461. int i;
  462. struct kvm_kpit_channel_state *c;
  463. mutex_lock(&pit->pit_state.lock);
  464. for (i = 0; i < 3; i++) {
  465. c = &pit->pit_state.channels[i];
  466. c->mode = 0xff;
  467. c->gate = (i != 2);
  468. pit_load_count(pit->kvm, i, 0);
  469. }
  470. mutex_unlock(&pit->pit_state.lock);
  471. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  472. pit->pit_state.irq_ack = 1;
  473. }
  474. static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
  475. {
  476. struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
  477. if (!mask) {
  478. atomic_set(&pit->pit_state.pit_timer.pending, 0);
  479. pit->pit_state.irq_ack = 1;
  480. }
  481. }
  482. struct kvm_pit *kvm_create_pit(struct kvm *kvm)
  483. {
  484. struct kvm_pit *pit;
  485. struct kvm_kpit_state *pit_state;
  486. pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
  487. if (!pit)
  488. return NULL;
  489. pit->irq_source_id = kvm_request_irq_source_id(kvm);
  490. if (pit->irq_source_id < 0) {
  491. kfree(pit);
  492. return NULL;
  493. }
  494. mutex_init(&pit->pit_state.lock);
  495. mutex_lock(&pit->pit_state.lock);
  496. spin_lock_init(&pit->pit_state.inject_lock);
  497. /* Initialize PIO device */
  498. pit->dev.read = pit_ioport_read;
  499. pit->dev.write = pit_ioport_write;
  500. pit->dev.in_range = pit_in_range;
  501. pit->dev.private = pit;
  502. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);
  503. pit->speaker_dev.read = speaker_ioport_read;
  504. pit->speaker_dev.write = speaker_ioport_write;
  505. pit->speaker_dev.in_range = speaker_in_range;
  506. pit->speaker_dev.private = pit;
  507. kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);
  508. kvm->arch.vpit = pit;
  509. pit->kvm = kvm;
  510. pit_state = &pit->pit_state;
  511. pit_state->pit = pit;
  512. hrtimer_init(&pit_state->pit_timer.timer,
  513. CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  514. pit_state->irq_ack_notifier.gsi = 0;
  515. pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
  516. kvm_register_irq_ack_notifier(kvm, &pit_state->irq_ack_notifier);
  517. pit_state->pit_timer.reinject = true;
  518. mutex_unlock(&pit->pit_state.lock);
  519. kvm_pit_reset(pit);
  520. pit->mask_notifier.func = pit_mask_notifer;
  521. kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
  522. return pit;
  523. }
  524. void kvm_free_pit(struct kvm *kvm)
  525. {
  526. struct hrtimer *timer;
  527. if (kvm->arch.vpit) {
  528. kvm_unregister_irq_mask_notifier(kvm, 0,
  529. &kvm->arch.vpit->mask_notifier);
  530. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  531. timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
  532. hrtimer_cancel(timer);
  533. kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
  534. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  535. kfree(kvm->arch.vpit);
  536. }
  537. }
  538. static void __inject_pit_timer_intr(struct kvm *kvm)
  539. {
  540. struct kvm_vcpu *vcpu;
  541. int i;
  542. mutex_lock(&kvm->lock);
  543. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1);
  544. kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0);
  545. mutex_unlock(&kvm->lock);
  546. /*
  547. * Provides NMI watchdog support via Virtual Wire mode.
  548. * The route is: PIT -> PIC -> LVT0 in NMI mode.
  549. *
  550. * Note: Our Virtual Wire implementation is simplified, only
  551. * propagating PIT interrupts to all VCPUs when they have set
  552. * LVT0 to NMI delivery. Other PIC interrupts are just sent to
  553. * VCPU0, and only if its LVT0 is in EXTINT mode.
  554. */
  555. if (kvm->arch.vapics_in_nmi_mode > 0)
  556. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  557. vcpu = kvm->vcpus[i];
  558. if (vcpu)
  559. kvm_apic_nmi_wd_deliver(vcpu);
  560. }
  561. }
  562. void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
  563. {
  564. struct kvm_pit *pit = vcpu->kvm->arch.vpit;
  565. struct kvm *kvm = vcpu->kvm;
  566. struct kvm_kpit_state *ps;
  567. if (vcpu && pit) {
  568. int inject = 0;
  569. ps = &pit->pit_state;
  570. /* Try to inject pending interrupts when
  571. * last one has been acked.
  572. */
  573. spin_lock(&ps->inject_lock);
  574. if (atomic_read(&ps->pit_timer.pending) && ps->irq_ack) {
  575. ps->irq_ack = 0;
  576. inject = 1;
  577. }
  578. spin_unlock(&ps->inject_lock);
  579. if (inject)
  580. __inject_pit_timer_intr(kvm);
  581. }
  582. }