setup_percpu.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. #include <linux/kernel.h>
  2. #include <linux/module.h>
  3. #include <linux/init.h>
  4. #include <linux/bootmem.h>
  5. #include <linux/percpu.h>
  6. #include <linux/kexec.h>
  7. #include <linux/crash_dump.h>
  8. #include <linux/smp.h>
  9. #include <linux/topology.h>
  10. #include <linux/pfn.h>
  11. #include <asm/sections.h>
  12. #include <asm/processor.h>
  13. #include <asm/setup.h>
  14. #include <asm/mpspec.h>
  15. #include <asm/apicdef.h>
  16. #include <asm/highmem.h>
  17. #include <asm/proto.h>
  18. #include <asm/cpumask.h>
  19. #include <asm/cpu.h>
  20. #include <asm/stackprotector.h>
  21. #ifdef CONFIG_DEBUG_PER_CPU_MAPS
  22. # define DBG(x...) printk(KERN_DEBUG x)
  23. #else
  24. # define DBG(x...)
  25. #endif
  26. DEFINE_PER_CPU(int, cpu_number);
  27. EXPORT_PER_CPU_SYMBOL(cpu_number);
  28. #ifdef CONFIG_X86_64
  29. #define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
  30. #else
  31. #define BOOT_PERCPU_OFFSET 0
  32. #endif
  33. DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
  34. EXPORT_PER_CPU_SYMBOL(this_cpu_off);
  35. unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
  36. [0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
  37. };
  38. EXPORT_SYMBOL(__per_cpu_offset);
  39. /*
  40. * On x86_64 symbols referenced from code should be reachable using
  41. * 32bit relocations. Reserve space for static percpu variables in
  42. * modules so that they are always served from the first chunk which
  43. * is located at the percpu segment base. On x86_32, anything can
  44. * address anywhere. No need to reserve space in the first chunk.
  45. */
  46. #ifdef CONFIG_X86_64
  47. #define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
  48. #else
  49. #define PERCPU_FIRST_CHUNK_RESERVE 0
  50. #endif
  51. /**
  52. * pcpu_need_numa - determine percpu allocation needs to consider NUMA
  53. *
  54. * If NUMA is not configured or there is only one NUMA node available,
  55. * there is no reason to consider NUMA. This function determines
  56. * whether percpu allocation should consider NUMA or not.
  57. *
  58. * RETURNS:
  59. * true if NUMA should be considered; otherwise, false.
  60. */
  61. static bool __init pcpu_need_numa(void)
  62. {
  63. #ifdef CONFIG_NEED_MULTIPLE_NODES
  64. pg_data_t *last = NULL;
  65. unsigned int cpu;
  66. for_each_possible_cpu(cpu) {
  67. int node = early_cpu_to_node(cpu);
  68. if (node_online(node) && NODE_DATA(node) &&
  69. last && last != NODE_DATA(node))
  70. return true;
  71. last = NODE_DATA(node);
  72. }
  73. #endif
  74. return false;
  75. }
  76. /**
  77. * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
  78. * @cpu: cpu to allocate for
  79. * @size: size allocation in bytes
  80. * @align: alignment
  81. *
  82. * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
  83. * does the right thing for NUMA regardless of the current
  84. * configuration.
  85. *
  86. * RETURNS:
  87. * Pointer to the allocated area on success, NULL on failure.
  88. */
  89. static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
  90. unsigned long align)
  91. {
  92. const unsigned long goal = __pa(MAX_DMA_ADDRESS);
  93. #ifdef CONFIG_NEED_MULTIPLE_NODES
  94. int node = early_cpu_to_node(cpu);
  95. void *ptr;
  96. if (!node_online(node) || !NODE_DATA(node)) {
  97. ptr = __alloc_bootmem_nopanic(size, align, goal);
  98. pr_info("cpu %d has no node %d or node-local memory\n",
  99. cpu, node);
  100. pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
  101. cpu, size, __pa(ptr));
  102. } else {
  103. ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
  104. size, align, goal);
  105. pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
  106. "%016lx\n", cpu, size, node, __pa(ptr));
  107. }
  108. return ptr;
  109. #else
  110. return __alloc_bootmem_nopanic(size, align, goal);
  111. #endif
  112. }
  113. /*
  114. * Remap allocator
  115. *
  116. * This allocator uses PMD page as unit. A PMD page is allocated for
  117. * each cpu and each is remapped into vmalloc area using PMD mapping.
  118. * As PMD page is quite large, only part of it is used for the first
  119. * chunk. Unused part is returned to the bootmem allocator.
  120. *
  121. * So, the PMD pages are mapped twice - once to the physical mapping
  122. * and to the vmalloc area for the first percpu chunk. The double
  123. * mapping does add one more PMD TLB entry pressure but still is much
  124. * better than only using 4k mappings while still being NUMA friendly.
  125. */
  126. #ifdef CONFIG_NEED_MULTIPLE_NODES
  127. static size_t pcpur_size __initdata;
  128. static void **pcpur_ptrs __initdata;
  129. static struct page * __init pcpur_get_page(unsigned int cpu, int pageno)
  130. {
  131. size_t off = (size_t)pageno << PAGE_SHIFT;
  132. if (off >= pcpur_size)
  133. return NULL;
  134. return virt_to_page(pcpur_ptrs[cpu] + off);
  135. }
  136. static ssize_t __init setup_pcpu_remap(size_t static_size)
  137. {
  138. static struct vm_struct vm;
  139. size_t ptrs_size, dyn_size;
  140. unsigned int cpu;
  141. ssize_t ret;
  142. /*
  143. * If large page isn't supported, there's no benefit in doing
  144. * this. Also, on non-NUMA, embedding is better.
  145. *
  146. * NOTE: disabled for now.
  147. */
  148. if (true || !cpu_has_pse || !pcpu_need_numa())
  149. return -EINVAL;
  150. /*
  151. * Currently supports only single page. Supporting multiple
  152. * pages won't be too difficult if it ever becomes necessary.
  153. */
  154. pcpur_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
  155. PERCPU_DYNAMIC_RESERVE);
  156. if (pcpur_size > PMD_SIZE) {
  157. pr_warning("PERCPU: static data is larger than large page, "
  158. "can't use large page\n");
  159. return -EINVAL;
  160. }
  161. dyn_size = pcpur_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
  162. /* allocate pointer array and alloc large pages */
  163. ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
  164. pcpur_ptrs = alloc_bootmem(ptrs_size);
  165. for_each_possible_cpu(cpu) {
  166. pcpur_ptrs[cpu] = pcpu_alloc_bootmem(cpu, PMD_SIZE, PMD_SIZE);
  167. if (!pcpur_ptrs[cpu])
  168. goto enomem;
  169. /*
  170. * Only use pcpur_size bytes and give back the rest.
  171. *
  172. * Ingo: The 2MB up-rounding bootmem is needed to make
  173. * sure the partial 2MB page is still fully RAM - it's
  174. * not well-specified to have a PAT-incompatible area
  175. * (unmapped RAM, device memory, etc.) in that hole.
  176. */
  177. free_bootmem(__pa(pcpur_ptrs[cpu] + pcpur_size),
  178. PMD_SIZE - pcpur_size);
  179. memcpy(pcpur_ptrs[cpu], __per_cpu_load, static_size);
  180. }
  181. /* allocate address and map */
  182. vm.flags = VM_ALLOC;
  183. vm.size = num_possible_cpus() * PMD_SIZE;
  184. vm_area_register_early(&vm, PMD_SIZE);
  185. for_each_possible_cpu(cpu) {
  186. pmd_t *pmd;
  187. pmd = populate_extra_pmd((unsigned long)vm.addr
  188. + cpu * PMD_SIZE);
  189. set_pmd(pmd, pfn_pmd(page_to_pfn(virt_to_page(pcpur_ptrs[cpu])),
  190. PAGE_KERNEL_LARGE));
  191. }
  192. /* we're ready, commit */
  193. pr_info("PERCPU: Remapped at %p with large pages, static data "
  194. "%zu bytes\n", vm.addr, static_size);
  195. ret = pcpu_setup_first_chunk(pcpur_get_page, static_size,
  196. PERCPU_FIRST_CHUNK_RESERVE, dyn_size,
  197. PMD_SIZE, vm.addr, NULL);
  198. goto out_free_ar;
  199. enomem:
  200. for_each_possible_cpu(cpu)
  201. if (pcpur_ptrs[cpu])
  202. free_bootmem(__pa(pcpur_ptrs[cpu]), PMD_SIZE);
  203. ret = -ENOMEM;
  204. out_free_ar:
  205. free_bootmem(__pa(pcpur_ptrs), ptrs_size);
  206. return ret;
  207. }
  208. #else
  209. static ssize_t __init setup_pcpu_remap(size_t static_size)
  210. {
  211. return -EINVAL;
  212. }
  213. #endif
  214. /*
  215. * Embedding allocator
  216. *
  217. * The first chunk is sized to just contain the static area plus
  218. * module and dynamic reserves and embedded into linear physical
  219. * mapping so that it can use PMD mapping without additional TLB
  220. * pressure.
  221. */
  222. static ssize_t __init setup_pcpu_embed(size_t static_size)
  223. {
  224. size_t reserve = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
  225. /*
  226. * If large page isn't supported, there's no benefit in doing
  227. * this. Also, embedding allocation doesn't play well with
  228. * NUMA.
  229. */
  230. if (!cpu_has_pse || pcpu_need_numa())
  231. return -EINVAL;
  232. return pcpu_embed_first_chunk(static_size, PERCPU_FIRST_CHUNK_RESERVE,
  233. reserve - PERCPU_FIRST_CHUNK_RESERVE, -1);
  234. }
  235. /*
  236. * 4k page allocator
  237. *
  238. * This is the basic allocator. Static percpu area is allocated
  239. * page-by-page and most of initialization is done by the generic
  240. * setup function.
  241. */
  242. static struct page **pcpu4k_pages __initdata;
  243. static int pcpu4k_nr_static_pages __initdata;
  244. static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno)
  245. {
  246. if (pageno < pcpu4k_nr_static_pages)
  247. return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno];
  248. return NULL;
  249. }
  250. static void __init pcpu4k_populate_pte(unsigned long addr)
  251. {
  252. populate_extra_pte(addr);
  253. }
  254. static ssize_t __init setup_pcpu_4k(size_t static_size)
  255. {
  256. size_t pages_size;
  257. unsigned int cpu;
  258. int i, j;
  259. ssize_t ret;
  260. pcpu4k_nr_static_pages = PFN_UP(static_size);
  261. /* unaligned allocations can't be freed, round up to page size */
  262. pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus()
  263. * sizeof(pcpu4k_pages[0]));
  264. pcpu4k_pages = alloc_bootmem(pages_size);
  265. /* allocate and copy */
  266. j = 0;
  267. for_each_possible_cpu(cpu)
  268. for (i = 0; i < pcpu4k_nr_static_pages; i++) {
  269. void *ptr;
  270. ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE);
  271. if (!ptr)
  272. goto enomem;
  273. memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE);
  274. pcpu4k_pages[j++] = virt_to_page(ptr);
  275. }
  276. /* we're ready, commit */
  277. pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
  278. pcpu4k_nr_static_pages, static_size);
  279. ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size,
  280. PERCPU_FIRST_CHUNK_RESERVE, -1,
  281. -1, NULL, pcpu4k_populate_pte);
  282. goto out_free_ar;
  283. enomem:
  284. while (--j >= 0)
  285. free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE);
  286. ret = -ENOMEM;
  287. out_free_ar:
  288. free_bootmem(__pa(pcpu4k_pages), pages_size);
  289. return ret;
  290. }
  291. static inline void setup_percpu_segment(int cpu)
  292. {
  293. #ifdef CONFIG_X86_32
  294. struct desc_struct gdt;
  295. pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF,
  296. 0x2 | DESCTYPE_S, 0x8);
  297. gdt.s = 1;
  298. write_gdt_entry(get_cpu_gdt_table(cpu),
  299. GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S);
  300. #endif
  301. }
  302. /*
  303. * Great future plan:
  304. * Declare PDA itself and support (irqstack,tss,pgd) as per cpu data.
  305. * Always point %gs to its beginning
  306. */
  307. void __init setup_per_cpu_areas(void)
  308. {
  309. size_t static_size = __per_cpu_end - __per_cpu_start;
  310. unsigned int cpu;
  311. unsigned long delta;
  312. size_t pcpu_unit_size;
  313. ssize_t ret;
  314. pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
  315. NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
  316. /*
  317. * Allocate percpu area. If PSE is supported, try to make use
  318. * of large page mappings. Please read comments on top of
  319. * each allocator for details.
  320. */
  321. ret = setup_pcpu_remap(static_size);
  322. if (ret < 0)
  323. ret = setup_pcpu_embed(static_size);
  324. if (ret < 0)
  325. ret = setup_pcpu_4k(static_size);
  326. if (ret < 0)
  327. panic("cannot allocate static percpu area (%zu bytes, err=%zd)",
  328. static_size, ret);
  329. pcpu_unit_size = ret;
  330. /* alrighty, percpu areas up and running */
  331. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  332. for_each_possible_cpu(cpu) {
  333. per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
  334. per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
  335. per_cpu(cpu_number, cpu) = cpu;
  336. setup_percpu_segment(cpu);
  337. setup_stack_canary_segment(cpu);
  338. /*
  339. * Copy data used in early init routines from the
  340. * initial arrays to the per cpu data areas. These
  341. * arrays then become expendable and the *_early_ptr's
  342. * are zeroed indicating that the static arrays are
  343. * gone.
  344. */
  345. #ifdef CONFIG_X86_LOCAL_APIC
  346. per_cpu(x86_cpu_to_apicid, cpu) =
  347. early_per_cpu_map(x86_cpu_to_apicid, cpu);
  348. per_cpu(x86_bios_cpu_apicid, cpu) =
  349. early_per_cpu_map(x86_bios_cpu_apicid, cpu);
  350. #endif
  351. #ifdef CONFIG_X86_64
  352. per_cpu(irq_stack_ptr, cpu) =
  353. per_cpu(irq_stack_union.irq_stack, cpu) +
  354. IRQ_STACK_SIZE - 64;
  355. #ifdef CONFIG_NUMA
  356. per_cpu(x86_cpu_to_node_map, cpu) =
  357. early_per_cpu_map(x86_cpu_to_node_map, cpu);
  358. #endif
  359. #endif
  360. /*
  361. * Up to this point, the boot CPU has been using .data.init
  362. * area. Reload any changed state for the boot CPU.
  363. */
  364. if (cpu == boot_cpu_id)
  365. switch_to_new_gdt(cpu);
  366. }
  367. /* indicate the early static arrays will soon be gone */
  368. #ifdef CONFIG_X86_LOCAL_APIC
  369. early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
  370. early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
  371. #endif
  372. #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
  373. early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
  374. #endif
  375. #if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
  376. /*
  377. * make sure boot cpu node_number is right, when boot cpu is on the
  378. * node that doesn't have mem installed
  379. */
  380. per_cpu(node_number, boot_cpu_id) = cpu_to_node(boot_cpu_id);
  381. #endif
  382. /* Setup node to cpumask map */
  383. setup_node_to_cpumask_map();
  384. /* Setup cpu initialized, callin, callout masks */
  385. setup_cpu_local_masks();
  386. }