kvm-ia64.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025
  1. /*
  2. * kvm_ia64.c: Basic KVM suppport On Itanium series processors
  3. *
  4. *
  5. * Copyright (C) 2007, Intel Corporation.
  6. * Xiantao Zhang (xiantao.zhang@intel.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along with
  18. * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
  19. * Place - Suite 330, Boston, MA 02111-1307 USA.
  20. *
  21. */
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/fs.h>
  27. #include <linux/smp.h>
  28. #include <linux/kvm_host.h>
  29. #include <linux/kvm.h>
  30. #include <linux/bitops.h>
  31. #include <linux/hrtimer.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/iommu.h>
  34. #include <linux/intel-iommu.h>
  35. #include <asm/pgtable.h>
  36. #include <asm/gcc_intrin.h>
  37. #include <asm/pal.h>
  38. #include <asm/cacheflush.h>
  39. #include <asm/div64.h>
  40. #include <asm/tlb.h>
  41. #include <asm/elf.h>
  42. #include <asm/sn/addrs.h>
  43. #include <asm/sn/clksupport.h>
  44. #include <asm/sn/shub_mmr.h>
  45. #include "misc.h"
  46. #include "vti.h"
  47. #include "iodev.h"
  48. #include "ioapic.h"
  49. #include "lapic.h"
  50. #include "irq.h"
  51. static unsigned long kvm_vmm_base;
  52. static unsigned long kvm_vsa_base;
  53. static unsigned long kvm_vm_buffer;
  54. static unsigned long kvm_vm_buffer_size;
  55. unsigned long kvm_vmm_gp;
  56. static long vp_env_info;
  57. static struct kvm_vmm_info *kvm_vmm_info;
  58. static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
  59. struct kvm_stats_debugfs_item debugfs_entries[] = {
  60. { NULL }
  61. };
  62. static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
  63. {
  64. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  65. if (vcpu->kvm->arch.is_sn2)
  66. return rtc_time();
  67. else
  68. #endif
  69. return ia64_getreg(_IA64_REG_AR_ITC);
  70. }
  71. static void kvm_flush_icache(unsigned long start, unsigned long len)
  72. {
  73. int l;
  74. for (l = 0; l < (len + 32); l += 32)
  75. ia64_fc((void *)(start + l));
  76. ia64_sync_i();
  77. ia64_srlz_i();
  78. }
  79. static void kvm_flush_tlb_all(void)
  80. {
  81. unsigned long i, j, count0, count1, stride0, stride1, addr;
  82. long flags;
  83. addr = local_cpu_data->ptce_base;
  84. count0 = local_cpu_data->ptce_count[0];
  85. count1 = local_cpu_data->ptce_count[1];
  86. stride0 = local_cpu_data->ptce_stride[0];
  87. stride1 = local_cpu_data->ptce_stride[1];
  88. local_irq_save(flags);
  89. for (i = 0; i < count0; ++i) {
  90. for (j = 0; j < count1; ++j) {
  91. ia64_ptce(addr);
  92. addr += stride1;
  93. }
  94. addr += stride0;
  95. }
  96. local_irq_restore(flags);
  97. ia64_srlz_i(); /* srlz.i implies srlz.d */
  98. }
  99. long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
  100. {
  101. struct ia64_pal_retval iprv;
  102. PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
  103. (u64)opt_handler);
  104. return iprv.status;
  105. }
  106. static DEFINE_SPINLOCK(vp_lock);
  107. void kvm_arch_hardware_enable(void *garbage)
  108. {
  109. long status;
  110. long tmp_base;
  111. unsigned long pte;
  112. unsigned long saved_psr;
  113. int slot;
  114. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  115. local_irq_save(saved_psr);
  116. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  117. local_irq_restore(saved_psr);
  118. if (slot < 0)
  119. return;
  120. spin_lock(&vp_lock);
  121. status = ia64_pal_vp_init_env(kvm_vsa_base ?
  122. VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
  123. __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
  124. if (status != 0) {
  125. printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
  126. return ;
  127. }
  128. if (!kvm_vsa_base) {
  129. kvm_vsa_base = tmp_base;
  130. printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
  131. }
  132. spin_unlock(&vp_lock);
  133. ia64_ptr_entry(0x3, slot);
  134. }
  135. void kvm_arch_hardware_disable(void *garbage)
  136. {
  137. long status;
  138. int slot;
  139. unsigned long pte;
  140. unsigned long saved_psr;
  141. unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
  142. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
  143. PAGE_KERNEL));
  144. local_irq_save(saved_psr);
  145. slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  146. local_irq_restore(saved_psr);
  147. if (slot < 0)
  148. return;
  149. status = ia64_pal_vp_exit_env(host_iva);
  150. if (status)
  151. printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
  152. status);
  153. ia64_ptr_entry(0x3, slot);
  154. }
  155. void kvm_arch_check_processor_compat(void *rtn)
  156. {
  157. *(int *)rtn = 0;
  158. }
  159. int kvm_dev_ioctl_check_extension(long ext)
  160. {
  161. int r;
  162. switch (ext) {
  163. case KVM_CAP_IRQCHIP:
  164. case KVM_CAP_MP_STATE:
  165. case KVM_CAP_IRQ_INJECT_STATUS:
  166. r = 1;
  167. break;
  168. case KVM_CAP_COALESCED_MMIO:
  169. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  170. break;
  171. case KVM_CAP_IOMMU:
  172. r = iommu_found();
  173. break;
  174. default:
  175. r = 0;
  176. }
  177. return r;
  178. }
  179. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  180. gpa_t addr, int len, int is_write)
  181. {
  182. struct kvm_io_device *dev;
  183. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
  184. return dev;
  185. }
  186. static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  187. {
  188. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  189. kvm_run->hw.hardware_exit_reason = 1;
  190. return 0;
  191. }
  192. static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  193. {
  194. struct kvm_mmio_req *p;
  195. struct kvm_io_device *mmio_dev;
  196. p = kvm_get_vcpu_ioreq(vcpu);
  197. if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
  198. goto mmio;
  199. vcpu->mmio_needed = 1;
  200. vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
  201. vcpu->mmio_size = kvm_run->mmio.len = p->size;
  202. vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
  203. if (vcpu->mmio_is_write)
  204. memcpy(vcpu->mmio_data, &p->data, p->size);
  205. memcpy(kvm_run->mmio.data, &p->data, p->size);
  206. kvm_run->exit_reason = KVM_EXIT_MMIO;
  207. return 0;
  208. mmio:
  209. mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
  210. if (mmio_dev) {
  211. if (!p->dir)
  212. kvm_iodevice_write(mmio_dev, p->addr, p->size,
  213. &p->data);
  214. else
  215. kvm_iodevice_read(mmio_dev, p->addr, p->size,
  216. &p->data);
  217. } else
  218. printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
  219. p->state = STATE_IORESP_READY;
  220. return 1;
  221. }
  222. static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  223. {
  224. struct exit_ctl_data *p;
  225. p = kvm_get_exit_data(vcpu);
  226. if (p->exit_reason == EXIT_REASON_PAL_CALL)
  227. return kvm_pal_emul(vcpu, kvm_run);
  228. else {
  229. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  230. kvm_run->hw.hardware_exit_reason = 2;
  231. return 0;
  232. }
  233. }
  234. static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  235. {
  236. struct exit_ctl_data *p;
  237. p = kvm_get_exit_data(vcpu);
  238. if (p->exit_reason == EXIT_REASON_SAL_CALL) {
  239. kvm_sal_emul(vcpu);
  240. return 1;
  241. } else {
  242. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  243. kvm_run->hw.hardware_exit_reason = 3;
  244. return 0;
  245. }
  246. }
  247. static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
  248. {
  249. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  250. if (!test_and_set_bit(vector, &vpd->irr[0])) {
  251. vcpu->arch.irq_new_pending = 1;
  252. kvm_vcpu_kick(vcpu);
  253. return 1;
  254. }
  255. return 0;
  256. }
  257. /*
  258. * offset: address offset to IPI space.
  259. * value: deliver value.
  260. */
  261. static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
  262. uint64_t vector)
  263. {
  264. switch (dm) {
  265. case SAPIC_FIXED:
  266. break;
  267. case SAPIC_NMI:
  268. vector = 2;
  269. break;
  270. case SAPIC_EXTINT:
  271. vector = 0;
  272. break;
  273. case SAPIC_INIT:
  274. case SAPIC_PMI:
  275. default:
  276. printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
  277. return;
  278. }
  279. __apic_accept_irq(vcpu, vector);
  280. }
  281. static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
  282. unsigned long eid)
  283. {
  284. union ia64_lid lid;
  285. int i;
  286. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  287. if (kvm->vcpus[i]) {
  288. lid.val = VCPU_LID(kvm->vcpus[i]);
  289. if (lid.id == id && lid.eid == eid)
  290. return kvm->vcpus[i];
  291. }
  292. }
  293. return NULL;
  294. }
  295. static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  296. {
  297. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  298. struct kvm_vcpu *target_vcpu;
  299. struct kvm_pt_regs *regs;
  300. union ia64_ipi_a addr = p->u.ipi_data.addr;
  301. union ia64_ipi_d data = p->u.ipi_data.data;
  302. target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
  303. if (!target_vcpu)
  304. return handle_vm_error(vcpu, kvm_run);
  305. if (!target_vcpu->arch.launched) {
  306. regs = vcpu_regs(target_vcpu);
  307. regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
  308. regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
  309. target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  310. if (waitqueue_active(&target_vcpu->wq))
  311. wake_up_interruptible(&target_vcpu->wq);
  312. } else {
  313. vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
  314. if (target_vcpu != vcpu)
  315. kvm_vcpu_kick(target_vcpu);
  316. }
  317. return 1;
  318. }
  319. struct call_data {
  320. struct kvm_ptc_g ptc_g_data;
  321. struct kvm_vcpu *vcpu;
  322. };
  323. static void vcpu_global_purge(void *info)
  324. {
  325. struct call_data *p = (struct call_data *)info;
  326. struct kvm_vcpu *vcpu = p->vcpu;
  327. if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  328. return;
  329. set_bit(KVM_REQ_PTC_G, &vcpu->requests);
  330. if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
  331. vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
  332. p->ptc_g_data;
  333. } else {
  334. clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
  335. vcpu->arch.ptc_g_count = 0;
  336. set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
  337. }
  338. }
  339. static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  340. {
  341. struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
  342. struct kvm *kvm = vcpu->kvm;
  343. struct call_data call_data;
  344. int i;
  345. call_data.ptc_g_data = p->u.ptc_g_data;
  346. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  347. if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
  348. KVM_MP_STATE_UNINITIALIZED ||
  349. vcpu == kvm->vcpus[i])
  350. continue;
  351. if (waitqueue_active(&kvm->vcpus[i]->wq))
  352. wake_up_interruptible(&kvm->vcpus[i]->wq);
  353. if (kvm->vcpus[i]->cpu != -1) {
  354. call_data.vcpu = kvm->vcpus[i];
  355. smp_call_function_single(kvm->vcpus[i]->cpu,
  356. vcpu_global_purge, &call_data, 1);
  357. } else
  358. printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
  359. }
  360. return 1;
  361. }
  362. static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  363. {
  364. return 1;
  365. }
  366. static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
  367. {
  368. unsigned long pte, rtc_phys_addr, map_addr;
  369. int slot;
  370. map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
  371. rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
  372. pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
  373. slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
  374. vcpu->arch.sn_rtc_tr_slot = slot;
  375. if (slot < 0) {
  376. printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
  377. slot = 0;
  378. }
  379. return slot;
  380. }
  381. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  382. {
  383. ktime_t kt;
  384. long itc_diff;
  385. unsigned long vcpu_now_itc;
  386. unsigned long expires;
  387. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  388. unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
  389. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  390. if (irqchip_in_kernel(vcpu->kvm)) {
  391. vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
  392. if (time_after(vcpu_now_itc, vpd->itm)) {
  393. vcpu->arch.timer_check = 1;
  394. return 1;
  395. }
  396. itc_diff = vpd->itm - vcpu_now_itc;
  397. if (itc_diff < 0)
  398. itc_diff = -itc_diff;
  399. expires = div64_u64(itc_diff, cyc_per_usec);
  400. kt = ktime_set(0, 1000 * expires);
  401. vcpu->arch.ht_active = 1;
  402. hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
  403. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  404. kvm_vcpu_block(vcpu);
  405. hrtimer_cancel(p_ht);
  406. vcpu->arch.ht_active = 0;
  407. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
  408. kvm_cpu_has_pending_timer(vcpu))
  409. if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
  410. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  411. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  412. return -EINTR;
  413. return 1;
  414. } else {
  415. printk(KERN_ERR"kvm: Unsupported userspace halt!");
  416. return 0;
  417. }
  418. }
  419. static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
  420. struct kvm_run *kvm_run)
  421. {
  422. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  423. return 0;
  424. }
  425. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  426. struct kvm_run *kvm_run)
  427. {
  428. return 1;
  429. }
  430. static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
  431. struct kvm_run *kvm_run)
  432. {
  433. printk("VMM: %s", vcpu->arch.log_buf);
  434. return 1;
  435. }
  436. static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
  437. struct kvm_run *kvm_run) = {
  438. [EXIT_REASON_VM_PANIC] = handle_vm_error,
  439. [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
  440. [EXIT_REASON_PAL_CALL] = handle_pal_call,
  441. [EXIT_REASON_SAL_CALL] = handle_sal_call,
  442. [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
  443. [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
  444. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  445. [EXIT_REASON_IPI] = handle_ipi,
  446. [EXIT_REASON_PTC_G] = handle_global_purge,
  447. [EXIT_REASON_DEBUG] = handle_vcpu_debug,
  448. };
  449. static const int kvm_vti_max_exit_handlers =
  450. sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
  451. static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
  452. {
  453. struct exit_ctl_data *p_exit_data;
  454. p_exit_data = kvm_get_exit_data(vcpu);
  455. return p_exit_data->exit_reason;
  456. }
  457. /*
  458. * The guest has exited. See if we can fix it or if we need userspace
  459. * assistance.
  460. */
  461. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  462. {
  463. u32 exit_reason = kvm_get_exit_reason(vcpu);
  464. vcpu->arch.last_exit = exit_reason;
  465. if (exit_reason < kvm_vti_max_exit_handlers
  466. && kvm_vti_exit_handlers[exit_reason])
  467. return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
  468. else {
  469. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  470. kvm_run->hw.hardware_exit_reason = exit_reason;
  471. }
  472. return 0;
  473. }
  474. static inline void vti_set_rr6(unsigned long rr6)
  475. {
  476. ia64_set_rr(RR6, rr6);
  477. ia64_srlz_i();
  478. }
  479. static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
  480. {
  481. unsigned long pte;
  482. struct kvm *kvm = vcpu->kvm;
  483. int r;
  484. /*Insert a pair of tr to map vmm*/
  485. pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
  486. r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
  487. if (r < 0)
  488. goto out;
  489. vcpu->arch.vmm_tr_slot = r;
  490. /*Insert a pairt of tr to map data of vm*/
  491. pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
  492. r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
  493. pte, KVM_VM_DATA_SHIFT);
  494. if (r < 0)
  495. goto out;
  496. vcpu->arch.vm_tr_slot = r;
  497. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  498. if (kvm->arch.is_sn2) {
  499. r = kvm_sn2_setup_mappings(vcpu);
  500. if (r < 0)
  501. goto out;
  502. }
  503. #endif
  504. r = 0;
  505. out:
  506. return r;
  507. }
  508. static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
  509. {
  510. struct kvm *kvm = vcpu->kvm;
  511. ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
  512. ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
  513. #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
  514. if (kvm->arch.is_sn2)
  515. ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
  516. #endif
  517. }
  518. static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
  519. {
  520. unsigned long psr;
  521. int r;
  522. int cpu = smp_processor_id();
  523. if (vcpu->arch.last_run_cpu != cpu ||
  524. per_cpu(last_vcpu, cpu) != vcpu) {
  525. per_cpu(last_vcpu, cpu) = vcpu;
  526. vcpu->arch.last_run_cpu = cpu;
  527. kvm_flush_tlb_all();
  528. }
  529. vcpu->arch.host_rr6 = ia64_get_rr(RR6);
  530. vti_set_rr6(vcpu->arch.vmm_rr);
  531. local_irq_save(psr);
  532. r = kvm_insert_vmm_mapping(vcpu);
  533. local_irq_restore(psr);
  534. return r;
  535. }
  536. static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
  537. {
  538. kvm_purge_vmm_mapping(vcpu);
  539. vti_set_rr6(vcpu->arch.host_rr6);
  540. }
  541. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  542. {
  543. union context *host_ctx, *guest_ctx;
  544. int r;
  545. /*
  546. * down_read() may sleep and return with interrupts enabled
  547. */
  548. down_read(&vcpu->kvm->slots_lock);
  549. again:
  550. if (signal_pending(current)) {
  551. r = -EINTR;
  552. kvm_run->exit_reason = KVM_EXIT_INTR;
  553. goto out;
  554. }
  555. preempt_disable();
  556. local_irq_disable();
  557. /*Get host and guest context with guest address space.*/
  558. host_ctx = kvm_get_host_context(vcpu);
  559. guest_ctx = kvm_get_guest_context(vcpu);
  560. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  561. r = kvm_vcpu_pre_transition(vcpu);
  562. if (r < 0)
  563. goto vcpu_run_fail;
  564. up_read(&vcpu->kvm->slots_lock);
  565. kvm_guest_enter();
  566. /*
  567. * Transition to the guest
  568. */
  569. kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
  570. kvm_vcpu_post_transition(vcpu);
  571. vcpu->arch.launched = 1;
  572. set_bit(KVM_REQ_KICK, &vcpu->requests);
  573. local_irq_enable();
  574. /*
  575. * We must have an instruction between local_irq_enable() and
  576. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  577. * the interrupt shadow. The stat.exits increment will do nicely.
  578. * But we need to prevent reordering, hence this barrier():
  579. */
  580. barrier();
  581. kvm_guest_exit();
  582. preempt_enable();
  583. down_read(&vcpu->kvm->slots_lock);
  584. r = kvm_handle_exit(kvm_run, vcpu);
  585. if (r > 0) {
  586. if (!need_resched())
  587. goto again;
  588. }
  589. out:
  590. up_read(&vcpu->kvm->slots_lock);
  591. if (r > 0) {
  592. kvm_resched(vcpu);
  593. down_read(&vcpu->kvm->slots_lock);
  594. goto again;
  595. }
  596. return r;
  597. vcpu_run_fail:
  598. local_irq_enable();
  599. preempt_enable();
  600. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  601. goto out;
  602. }
  603. static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
  604. {
  605. struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
  606. if (!vcpu->mmio_is_write)
  607. memcpy(&p->data, vcpu->mmio_data, 8);
  608. p->state = STATE_IORESP_READY;
  609. }
  610. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  611. {
  612. int r;
  613. sigset_t sigsaved;
  614. vcpu_load(vcpu);
  615. if (vcpu->sigset_active)
  616. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  617. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  618. kvm_vcpu_block(vcpu);
  619. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  620. r = -EAGAIN;
  621. goto out;
  622. }
  623. if (vcpu->mmio_needed) {
  624. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  625. kvm_set_mmio_data(vcpu);
  626. vcpu->mmio_read_completed = 1;
  627. vcpu->mmio_needed = 0;
  628. }
  629. r = __vcpu_run(vcpu, kvm_run);
  630. out:
  631. if (vcpu->sigset_active)
  632. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  633. vcpu_put(vcpu);
  634. return r;
  635. }
  636. static struct kvm *kvm_alloc_kvm(void)
  637. {
  638. struct kvm *kvm;
  639. uint64_t vm_base;
  640. BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
  641. vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
  642. if (!vm_base)
  643. return ERR_PTR(-ENOMEM);
  644. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  645. kvm = (struct kvm *)(vm_base +
  646. offsetof(struct kvm_vm_data, kvm_vm_struct));
  647. kvm->arch.vm_base = vm_base;
  648. printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
  649. return kvm;
  650. }
  651. struct kvm_io_range {
  652. unsigned long start;
  653. unsigned long size;
  654. unsigned long type;
  655. };
  656. static const struct kvm_io_range io_ranges[] = {
  657. {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
  658. {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
  659. {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
  660. {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
  661. {PIB_START, PIB_SIZE, GPFN_PIB},
  662. };
  663. static void kvm_build_io_pmt(struct kvm *kvm)
  664. {
  665. unsigned long i, j;
  666. /* Mark I/O ranges */
  667. for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
  668. i++) {
  669. for (j = io_ranges[i].start;
  670. j < io_ranges[i].start + io_ranges[i].size;
  671. j += PAGE_SIZE)
  672. kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
  673. io_ranges[i].type, 0);
  674. }
  675. }
  676. /*Use unused rids to virtualize guest rid.*/
  677. #define GUEST_PHYSICAL_RR0 0x1739
  678. #define GUEST_PHYSICAL_RR4 0x2739
  679. #define VMM_INIT_RR 0x1660
  680. static void kvm_init_vm(struct kvm *kvm)
  681. {
  682. BUG_ON(!kvm);
  683. kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
  684. kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
  685. kvm->arch.vmm_init_rr = VMM_INIT_RR;
  686. /*
  687. *Fill P2M entries for MMIO/IO ranges
  688. */
  689. kvm_build_io_pmt(kvm);
  690. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  691. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  692. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  693. }
  694. struct kvm *kvm_arch_create_vm(void)
  695. {
  696. struct kvm *kvm = kvm_alloc_kvm();
  697. if (IS_ERR(kvm))
  698. return ERR_PTR(-ENOMEM);
  699. kvm->arch.is_sn2 = ia64_platform_is("sn2");
  700. kvm_init_vm(kvm);
  701. kvm->arch.online_vcpus = 0;
  702. return kvm;
  703. }
  704. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
  705. struct kvm_irqchip *chip)
  706. {
  707. int r;
  708. r = 0;
  709. switch (chip->chip_id) {
  710. case KVM_IRQCHIP_IOAPIC:
  711. memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
  712. sizeof(struct kvm_ioapic_state));
  713. break;
  714. default:
  715. r = -EINVAL;
  716. break;
  717. }
  718. return r;
  719. }
  720. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  721. {
  722. int r;
  723. r = 0;
  724. switch (chip->chip_id) {
  725. case KVM_IRQCHIP_IOAPIC:
  726. memcpy(ioapic_irqchip(kvm),
  727. &chip->chip.ioapic,
  728. sizeof(struct kvm_ioapic_state));
  729. break;
  730. default:
  731. r = -EINVAL;
  732. break;
  733. }
  734. return r;
  735. }
  736. #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
  737. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  738. {
  739. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  740. int i;
  741. vcpu_load(vcpu);
  742. for (i = 0; i < 16; i++) {
  743. vpd->vgr[i] = regs->vpd.vgr[i];
  744. vpd->vbgr[i] = regs->vpd.vbgr[i];
  745. }
  746. for (i = 0; i < 128; i++)
  747. vpd->vcr[i] = regs->vpd.vcr[i];
  748. vpd->vhpi = regs->vpd.vhpi;
  749. vpd->vnat = regs->vpd.vnat;
  750. vpd->vbnat = regs->vpd.vbnat;
  751. vpd->vpsr = regs->vpd.vpsr;
  752. vpd->vpr = regs->vpd.vpr;
  753. memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
  754. RESTORE_REGS(mp_state);
  755. RESTORE_REGS(vmm_rr);
  756. memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
  757. memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
  758. RESTORE_REGS(itr_regions);
  759. RESTORE_REGS(dtr_regions);
  760. RESTORE_REGS(tc_regions);
  761. RESTORE_REGS(irq_check);
  762. RESTORE_REGS(itc_check);
  763. RESTORE_REGS(timer_check);
  764. RESTORE_REGS(timer_pending);
  765. RESTORE_REGS(last_itc);
  766. for (i = 0; i < 8; i++) {
  767. vcpu->arch.vrr[i] = regs->vrr[i];
  768. vcpu->arch.ibr[i] = regs->ibr[i];
  769. vcpu->arch.dbr[i] = regs->dbr[i];
  770. }
  771. for (i = 0; i < 4; i++)
  772. vcpu->arch.insvc[i] = regs->insvc[i];
  773. RESTORE_REGS(xtp);
  774. RESTORE_REGS(metaphysical_rr0);
  775. RESTORE_REGS(metaphysical_rr4);
  776. RESTORE_REGS(metaphysical_saved_rr0);
  777. RESTORE_REGS(metaphysical_saved_rr4);
  778. RESTORE_REGS(fp_psr);
  779. RESTORE_REGS(saved_gp);
  780. vcpu->arch.irq_new_pending = 1;
  781. vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
  782. set_bit(KVM_REQ_RESUME, &vcpu->requests);
  783. vcpu_put(vcpu);
  784. return 0;
  785. }
  786. long kvm_arch_vm_ioctl(struct file *filp,
  787. unsigned int ioctl, unsigned long arg)
  788. {
  789. struct kvm *kvm = filp->private_data;
  790. void __user *argp = (void __user *)arg;
  791. int r = -EINVAL;
  792. switch (ioctl) {
  793. case KVM_SET_MEMORY_REGION: {
  794. struct kvm_memory_region kvm_mem;
  795. struct kvm_userspace_memory_region kvm_userspace_mem;
  796. r = -EFAULT;
  797. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  798. goto out;
  799. kvm_userspace_mem.slot = kvm_mem.slot;
  800. kvm_userspace_mem.flags = kvm_mem.flags;
  801. kvm_userspace_mem.guest_phys_addr =
  802. kvm_mem.guest_phys_addr;
  803. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  804. r = kvm_vm_ioctl_set_memory_region(kvm,
  805. &kvm_userspace_mem, 0);
  806. if (r)
  807. goto out;
  808. break;
  809. }
  810. case KVM_CREATE_IRQCHIP:
  811. r = -EFAULT;
  812. r = kvm_ioapic_init(kvm);
  813. if (r)
  814. goto out;
  815. r = kvm_setup_default_irq_routing(kvm);
  816. if (r) {
  817. kfree(kvm->arch.vioapic);
  818. goto out;
  819. }
  820. break;
  821. case KVM_IRQ_LINE_STATUS:
  822. case KVM_IRQ_LINE: {
  823. struct kvm_irq_level irq_event;
  824. r = -EFAULT;
  825. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  826. goto out;
  827. if (irqchip_in_kernel(kvm)) {
  828. __s32 status;
  829. mutex_lock(&kvm->lock);
  830. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  831. irq_event.irq, irq_event.level);
  832. mutex_unlock(&kvm->lock);
  833. if (ioctl == KVM_IRQ_LINE_STATUS) {
  834. irq_event.status = status;
  835. if (copy_to_user(argp, &irq_event,
  836. sizeof irq_event))
  837. goto out;
  838. }
  839. r = 0;
  840. }
  841. break;
  842. }
  843. case KVM_GET_IRQCHIP: {
  844. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  845. struct kvm_irqchip chip;
  846. r = -EFAULT;
  847. if (copy_from_user(&chip, argp, sizeof chip))
  848. goto out;
  849. r = -ENXIO;
  850. if (!irqchip_in_kernel(kvm))
  851. goto out;
  852. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  853. if (r)
  854. goto out;
  855. r = -EFAULT;
  856. if (copy_to_user(argp, &chip, sizeof chip))
  857. goto out;
  858. r = 0;
  859. break;
  860. }
  861. case KVM_SET_IRQCHIP: {
  862. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  863. struct kvm_irqchip chip;
  864. r = -EFAULT;
  865. if (copy_from_user(&chip, argp, sizeof chip))
  866. goto out;
  867. r = -ENXIO;
  868. if (!irqchip_in_kernel(kvm))
  869. goto out;
  870. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  871. if (r)
  872. goto out;
  873. r = 0;
  874. break;
  875. }
  876. default:
  877. ;
  878. }
  879. out:
  880. return r;
  881. }
  882. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  883. struct kvm_sregs *sregs)
  884. {
  885. return -EINVAL;
  886. }
  887. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  888. struct kvm_sregs *sregs)
  889. {
  890. return -EINVAL;
  891. }
  892. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  893. struct kvm_translation *tr)
  894. {
  895. return -EINVAL;
  896. }
  897. static int kvm_alloc_vmm_area(void)
  898. {
  899. if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
  900. kvm_vmm_base = __get_free_pages(GFP_KERNEL,
  901. get_order(KVM_VMM_SIZE));
  902. if (!kvm_vmm_base)
  903. return -ENOMEM;
  904. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  905. kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
  906. printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
  907. kvm_vmm_base, kvm_vm_buffer);
  908. }
  909. return 0;
  910. }
  911. static void kvm_free_vmm_area(void)
  912. {
  913. if (kvm_vmm_base) {
  914. /*Zero this area before free to avoid bits leak!!*/
  915. memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
  916. free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
  917. kvm_vmm_base = 0;
  918. kvm_vm_buffer = 0;
  919. kvm_vsa_base = 0;
  920. }
  921. }
  922. static int vti_init_vpd(struct kvm_vcpu *vcpu)
  923. {
  924. int i;
  925. union cpuid3_t cpuid3;
  926. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  927. if (IS_ERR(vpd))
  928. return PTR_ERR(vpd);
  929. /* CPUID init */
  930. for (i = 0; i < 5; i++)
  931. vpd->vcpuid[i] = ia64_get_cpuid(i);
  932. /* Limit the CPUID number to 5 */
  933. cpuid3.value = vpd->vcpuid[3];
  934. cpuid3.number = 4; /* 5 - 1 */
  935. vpd->vcpuid[3] = cpuid3.value;
  936. /*Set vac and vdc fields*/
  937. vpd->vac.a_from_int_cr = 1;
  938. vpd->vac.a_to_int_cr = 1;
  939. vpd->vac.a_from_psr = 1;
  940. vpd->vac.a_from_cpuid = 1;
  941. vpd->vac.a_cover = 1;
  942. vpd->vac.a_bsw = 1;
  943. vpd->vac.a_int = 1;
  944. vpd->vdc.d_vmsw = 1;
  945. /*Set virtual buffer*/
  946. vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
  947. return 0;
  948. }
  949. static int vti_create_vp(struct kvm_vcpu *vcpu)
  950. {
  951. long ret;
  952. struct vpd *vpd = vcpu->arch.vpd;
  953. unsigned long vmm_ivt;
  954. vmm_ivt = kvm_vmm_info->vmm_ivt;
  955. printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
  956. ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
  957. if (ret) {
  958. printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
  959. return -EINVAL;
  960. }
  961. return 0;
  962. }
  963. static void init_ptce_info(struct kvm_vcpu *vcpu)
  964. {
  965. ia64_ptce_info_t ptce = {0};
  966. ia64_get_ptce(&ptce);
  967. vcpu->arch.ptce_base = ptce.base;
  968. vcpu->arch.ptce_count[0] = ptce.count[0];
  969. vcpu->arch.ptce_count[1] = ptce.count[1];
  970. vcpu->arch.ptce_stride[0] = ptce.stride[0];
  971. vcpu->arch.ptce_stride[1] = ptce.stride[1];
  972. }
  973. static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
  974. {
  975. struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
  976. if (hrtimer_cancel(p_ht))
  977. hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
  978. }
  979. static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
  980. {
  981. struct kvm_vcpu *vcpu;
  982. wait_queue_head_t *q;
  983. vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
  984. q = &vcpu->wq;
  985. if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
  986. goto out;
  987. if (waitqueue_active(q))
  988. wake_up_interruptible(q);
  989. out:
  990. vcpu->arch.timer_fired = 1;
  991. vcpu->arch.timer_check = 1;
  992. return HRTIMER_NORESTART;
  993. }
  994. #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
  995. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  996. {
  997. struct kvm_vcpu *v;
  998. int r;
  999. int i;
  1000. long itc_offset;
  1001. struct kvm *kvm = vcpu->kvm;
  1002. struct kvm_pt_regs *regs = vcpu_regs(vcpu);
  1003. union context *p_ctx = &vcpu->arch.guest;
  1004. struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
  1005. /*Init vcpu context for first run.*/
  1006. if (IS_ERR(vmm_vcpu))
  1007. return PTR_ERR(vmm_vcpu);
  1008. if (vcpu->vcpu_id == 0) {
  1009. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  1010. /*Set entry address for first run.*/
  1011. regs->cr_iip = PALE_RESET_ENTRY;
  1012. /*Initialize itc offset for vcpus*/
  1013. itc_offset = 0UL - kvm_get_itc(vcpu);
  1014. for (i = 0; i < kvm->arch.online_vcpus; i++) {
  1015. v = (struct kvm_vcpu *)((char *)vcpu +
  1016. sizeof(struct kvm_vcpu_data) * i);
  1017. v->arch.itc_offset = itc_offset;
  1018. v->arch.last_itc = 0;
  1019. }
  1020. } else
  1021. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  1022. r = -ENOMEM;
  1023. vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
  1024. if (!vcpu->arch.apic)
  1025. goto out;
  1026. vcpu->arch.apic->vcpu = vcpu;
  1027. p_ctx->gr[1] = 0;
  1028. p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
  1029. p_ctx->gr[13] = (unsigned long)vmm_vcpu;
  1030. p_ctx->psr = 0x1008522000UL;
  1031. p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
  1032. p_ctx->caller_unat = 0;
  1033. p_ctx->pr = 0x0;
  1034. p_ctx->ar[36] = 0x0; /*unat*/
  1035. p_ctx->ar[19] = 0x0; /*rnat*/
  1036. p_ctx->ar[18] = (unsigned long)vmm_vcpu +
  1037. ((sizeof(struct kvm_vcpu)+15) & ~15);
  1038. p_ctx->ar[64] = 0x0; /*pfs*/
  1039. p_ctx->cr[0] = 0x7e04UL;
  1040. p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
  1041. p_ctx->cr[8] = 0x3c;
  1042. /*Initilize region register*/
  1043. p_ctx->rr[0] = 0x30;
  1044. p_ctx->rr[1] = 0x30;
  1045. p_ctx->rr[2] = 0x30;
  1046. p_ctx->rr[3] = 0x30;
  1047. p_ctx->rr[4] = 0x30;
  1048. p_ctx->rr[5] = 0x30;
  1049. p_ctx->rr[7] = 0x30;
  1050. /*Initilize branch register 0*/
  1051. p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
  1052. vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
  1053. vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
  1054. vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
  1055. hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
  1056. vcpu->arch.hlt_timer.function = hlt_timer_fn;
  1057. vcpu->arch.last_run_cpu = -1;
  1058. vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
  1059. vcpu->arch.vsa_base = kvm_vsa_base;
  1060. vcpu->arch.__gp = kvm_vmm_gp;
  1061. vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
  1062. vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
  1063. vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
  1064. init_ptce_info(vcpu);
  1065. r = 0;
  1066. out:
  1067. return r;
  1068. }
  1069. static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
  1070. {
  1071. unsigned long psr;
  1072. int r;
  1073. local_irq_save(psr);
  1074. r = kvm_insert_vmm_mapping(vcpu);
  1075. local_irq_restore(psr);
  1076. if (r)
  1077. goto fail;
  1078. r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
  1079. if (r)
  1080. goto fail;
  1081. r = vti_init_vpd(vcpu);
  1082. if (r) {
  1083. printk(KERN_DEBUG"kvm: vpd init error!!\n");
  1084. goto uninit;
  1085. }
  1086. r = vti_create_vp(vcpu);
  1087. if (r)
  1088. goto uninit;
  1089. kvm_purge_vmm_mapping(vcpu);
  1090. return 0;
  1091. uninit:
  1092. kvm_vcpu_uninit(vcpu);
  1093. fail:
  1094. return r;
  1095. }
  1096. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  1097. unsigned int id)
  1098. {
  1099. struct kvm_vcpu *vcpu;
  1100. unsigned long vm_base = kvm->arch.vm_base;
  1101. int r;
  1102. int cpu;
  1103. BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
  1104. r = -EINVAL;
  1105. if (id >= KVM_MAX_VCPUS) {
  1106. printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
  1107. KVM_MAX_VCPUS);
  1108. goto fail;
  1109. }
  1110. r = -ENOMEM;
  1111. if (!vm_base) {
  1112. printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
  1113. goto fail;
  1114. }
  1115. vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
  1116. vcpu_data[id].vcpu_struct));
  1117. vcpu->kvm = kvm;
  1118. cpu = get_cpu();
  1119. r = vti_vcpu_setup(vcpu, id);
  1120. put_cpu();
  1121. if (r) {
  1122. printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
  1123. goto fail;
  1124. }
  1125. kvm->arch.online_vcpus++;
  1126. return vcpu;
  1127. fail:
  1128. return ERR_PTR(r);
  1129. }
  1130. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  1131. {
  1132. return 0;
  1133. }
  1134. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1135. {
  1136. return -EINVAL;
  1137. }
  1138. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1139. {
  1140. return -EINVAL;
  1141. }
  1142. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  1143. struct kvm_guest_debug *dbg)
  1144. {
  1145. return -EINVAL;
  1146. }
  1147. static void free_kvm(struct kvm *kvm)
  1148. {
  1149. unsigned long vm_base = kvm->arch.vm_base;
  1150. if (vm_base) {
  1151. memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
  1152. free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
  1153. }
  1154. }
  1155. static void kvm_release_vm_pages(struct kvm *kvm)
  1156. {
  1157. struct kvm_memory_slot *memslot;
  1158. int i, j;
  1159. unsigned long base_gfn;
  1160. for (i = 0; i < kvm->nmemslots; i++) {
  1161. memslot = &kvm->memslots[i];
  1162. base_gfn = memslot->base_gfn;
  1163. for (j = 0; j < memslot->npages; j++) {
  1164. if (memslot->rmap[j])
  1165. put_page((struct page *)memslot->rmap[j]);
  1166. }
  1167. }
  1168. }
  1169. void kvm_arch_sync_events(struct kvm *kvm)
  1170. {
  1171. }
  1172. void kvm_arch_destroy_vm(struct kvm *kvm)
  1173. {
  1174. kvm_iommu_unmap_guest(kvm);
  1175. #ifdef KVM_CAP_DEVICE_ASSIGNMENT
  1176. kvm_free_all_assigned_devices(kvm);
  1177. #endif
  1178. kfree(kvm->arch.vioapic);
  1179. kvm_release_vm_pages(kvm);
  1180. kvm_free_physmem(kvm);
  1181. free_kvm(kvm);
  1182. }
  1183. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1184. {
  1185. }
  1186. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1187. {
  1188. if (cpu != vcpu->cpu) {
  1189. vcpu->cpu = cpu;
  1190. if (vcpu->arch.ht_active)
  1191. kvm_migrate_hlt_timer(vcpu);
  1192. }
  1193. }
  1194. #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
  1195. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  1196. {
  1197. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1198. int i;
  1199. vcpu_load(vcpu);
  1200. for (i = 0; i < 16; i++) {
  1201. regs->vpd.vgr[i] = vpd->vgr[i];
  1202. regs->vpd.vbgr[i] = vpd->vbgr[i];
  1203. }
  1204. for (i = 0; i < 128; i++)
  1205. regs->vpd.vcr[i] = vpd->vcr[i];
  1206. regs->vpd.vhpi = vpd->vhpi;
  1207. regs->vpd.vnat = vpd->vnat;
  1208. regs->vpd.vbnat = vpd->vbnat;
  1209. regs->vpd.vpsr = vpd->vpsr;
  1210. regs->vpd.vpr = vpd->vpr;
  1211. memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
  1212. SAVE_REGS(mp_state);
  1213. SAVE_REGS(vmm_rr);
  1214. memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
  1215. memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
  1216. SAVE_REGS(itr_regions);
  1217. SAVE_REGS(dtr_regions);
  1218. SAVE_REGS(tc_regions);
  1219. SAVE_REGS(irq_check);
  1220. SAVE_REGS(itc_check);
  1221. SAVE_REGS(timer_check);
  1222. SAVE_REGS(timer_pending);
  1223. SAVE_REGS(last_itc);
  1224. for (i = 0; i < 8; i++) {
  1225. regs->vrr[i] = vcpu->arch.vrr[i];
  1226. regs->ibr[i] = vcpu->arch.ibr[i];
  1227. regs->dbr[i] = vcpu->arch.dbr[i];
  1228. }
  1229. for (i = 0; i < 4; i++)
  1230. regs->insvc[i] = vcpu->arch.insvc[i];
  1231. regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
  1232. SAVE_REGS(xtp);
  1233. SAVE_REGS(metaphysical_rr0);
  1234. SAVE_REGS(metaphysical_rr4);
  1235. SAVE_REGS(metaphysical_saved_rr0);
  1236. SAVE_REGS(metaphysical_saved_rr4);
  1237. SAVE_REGS(fp_psr);
  1238. SAVE_REGS(saved_gp);
  1239. vcpu_put(vcpu);
  1240. return 0;
  1241. }
  1242. int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
  1243. struct kvm_ia64_vcpu_stack *stack)
  1244. {
  1245. memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
  1246. return 0;
  1247. }
  1248. int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
  1249. struct kvm_ia64_vcpu_stack *stack)
  1250. {
  1251. memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
  1252. sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
  1253. vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
  1254. return 0;
  1255. }
  1256. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  1257. {
  1258. hrtimer_cancel(&vcpu->arch.hlt_timer);
  1259. kfree(vcpu->arch.apic);
  1260. }
  1261. long kvm_arch_vcpu_ioctl(struct file *filp,
  1262. unsigned int ioctl, unsigned long arg)
  1263. {
  1264. struct kvm_vcpu *vcpu = filp->private_data;
  1265. void __user *argp = (void __user *)arg;
  1266. struct kvm_ia64_vcpu_stack *stack = NULL;
  1267. long r;
  1268. switch (ioctl) {
  1269. case KVM_IA64_VCPU_GET_STACK: {
  1270. struct kvm_ia64_vcpu_stack __user *user_stack;
  1271. void __user *first_p = argp;
  1272. r = -EFAULT;
  1273. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1274. goto out;
  1275. if (!access_ok(VERIFY_WRITE, user_stack,
  1276. sizeof(struct kvm_ia64_vcpu_stack))) {
  1277. printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
  1278. "Illegal user destination address for stack\n");
  1279. goto out;
  1280. }
  1281. stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1282. if (!stack) {
  1283. r = -ENOMEM;
  1284. goto out;
  1285. }
  1286. r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
  1287. if (r)
  1288. goto out;
  1289. if (copy_to_user(user_stack, stack,
  1290. sizeof(struct kvm_ia64_vcpu_stack)))
  1291. goto out;
  1292. break;
  1293. }
  1294. case KVM_IA64_VCPU_SET_STACK: {
  1295. struct kvm_ia64_vcpu_stack __user *user_stack;
  1296. void __user *first_p = argp;
  1297. r = -EFAULT;
  1298. if (copy_from_user(&user_stack, first_p, sizeof(void *)))
  1299. goto out;
  1300. if (!access_ok(VERIFY_READ, user_stack,
  1301. sizeof(struct kvm_ia64_vcpu_stack))) {
  1302. printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
  1303. "Illegal user address for stack\n");
  1304. goto out;
  1305. }
  1306. stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
  1307. if (!stack) {
  1308. r = -ENOMEM;
  1309. goto out;
  1310. }
  1311. if (copy_from_user(stack, user_stack,
  1312. sizeof(struct kvm_ia64_vcpu_stack)))
  1313. goto out;
  1314. r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
  1315. break;
  1316. }
  1317. default:
  1318. r = -EINVAL;
  1319. }
  1320. out:
  1321. kfree(stack);
  1322. return r;
  1323. }
  1324. int kvm_arch_set_memory_region(struct kvm *kvm,
  1325. struct kvm_userspace_memory_region *mem,
  1326. struct kvm_memory_slot old,
  1327. int user_alloc)
  1328. {
  1329. unsigned long i;
  1330. unsigned long pfn;
  1331. int npages = mem->memory_size >> PAGE_SHIFT;
  1332. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  1333. unsigned long base_gfn = memslot->base_gfn;
  1334. if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
  1335. return -ENOMEM;
  1336. for (i = 0; i < npages; i++) {
  1337. pfn = gfn_to_pfn(kvm, base_gfn + i);
  1338. if (!kvm_is_mmio_pfn(pfn)) {
  1339. kvm_set_pmt_entry(kvm, base_gfn + i,
  1340. pfn << PAGE_SHIFT,
  1341. _PAGE_AR_RWX | _PAGE_MA_WB);
  1342. memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
  1343. } else {
  1344. kvm_set_pmt_entry(kvm, base_gfn + i,
  1345. GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
  1346. _PAGE_MA_UC);
  1347. memslot->rmap[i] = 0;
  1348. }
  1349. }
  1350. return 0;
  1351. }
  1352. void kvm_arch_flush_shadow(struct kvm *kvm)
  1353. {
  1354. kvm_flush_remote_tlbs(kvm);
  1355. }
  1356. long kvm_arch_dev_ioctl(struct file *filp,
  1357. unsigned int ioctl, unsigned long arg)
  1358. {
  1359. return -EINVAL;
  1360. }
  1361. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1362. {
  1363. kvm_vcpu_uninit(vcpu);
  1364. }
  1365. static int vti_cpu_has_kvm_support(void)
  1366. {
  1367. long avail = 1, status = 1, control = 1;
  1368. long ret;
  1369. ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
  1370. if (ret)
  1371. goto out;
  1372. if (!(avail & PAL_PROC_VM_BIT))
  1373. goto out;
  1374. printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
  1375. ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
  1376. if (ret)
  1377. goto out;
  1378. printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
  1379. if (!(vp_env_info & VP_OPCODE)) {
  1380. printk(KERN_WARNING"kvm: No opcode ability on hardware, "
  1381. "vm_env_info:0x%lx\n", vp_env_info);
  1382. }
  1383. return 1;
  1384. out:
  1385. return 0;
  1386. }
  1387. /*
  1388. * On SN2, the ITC isn't stable, so copy in fast path code to use the
  1389. * SN2 RTC, replacing the ITC based default verion.
  1390. */
  1391. static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
  1392. struct module *module)
  1393. {
  1394. unsigned long new_ar, new_ar_sn2;
  1395. unsigned long module_base;
  1396. if (!ia64_platform_is("sn2"))
  1397. return;
  1398. module_base = (unsigned long)module->module_core;
  1399. new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
  1400. new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
  1401. printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
  1402. "as source\n");
  1403. /*
  1404. * Copy the SN2 version of mov_ar into place. They are both
  1405. * the same size, so 6 bundles is sufficient (6 * 0x10).
  1406. */
  1407. memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
  1408. }
  1409. static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
  1410. struct module *module)
  1411. {
  1412. unsigned long module_base;
  1413. unsigned long vmm_size;
  1414. unsigned long vmm_offset, func_offset, fdesc_offset;
  1415. struct fdesc *p_fdesc;
  1416. BUG_ON(!module);
  1417. if (!kvm_vmm_base) {
  1418. printk("kvm: kvm area hasn't been initilized yet!!\n");
  1419. return -EFAULT;
  1420. }
  1421. /*Calculate new position of relocated vmm module.*/
  1422. module_base = (unsigned long)module->module_core;
  1423. vmm_size = module->core_size;
  1424. if (unlikely(vmm_size > KVM_VMM_SIZE))
  1425. return -EFAULT;
  1426. memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
  1427. kvm_patch_vmm(vmm_info, module);
  1428. kvm_flush_icache(kvm_vmm_base, vmm_size);
  1429. /*Recalculate kvm_vmm_info based on new VMM*/
  1430. vmm_offset = vmm_info->vmm_ivt - module_base;
  1431. kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
  1432. printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
  1433. kvm_vmm_info->vmm_ivt);
  1434. fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
  1435. kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
  1436. fdesc_offset);
  1437. func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
  1438. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1439. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1440. p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
  1441. printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
  1442. KVM_VMM_BASE+func_offset);
  1443. fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
  1444. kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
  1445. fdesc_offset);
  1446. func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
  1447. p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
  1448. p_fdesc->ip = KVM_VMM_BASE + func_offset;
  1449. p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
  1450. kvm_vmm_gp = p_fdesc->gp;
  1451. printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
  1452. kvm_vmm_info->vmm_entry);
  1453. printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
  1454. KVM_VMM_BASE + func_offset);
  1455. return 0;
  1456. }
  1457. int kvm_arch_init(void *opaque)
  1458. {
  1459. int r;
  1460. struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
  1461. if (!vti_cpu_has_kvm_support()) {
  1462. printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
  1463. r = -EOPNOTSUPP;
  1464. goto out;
  1465. }
  1466. if (kvm_vmm_info) {
  1467. printk(KERN_ERR "kvm: Already loaded VMM module!\n");
  1468. r = -EEXIST;
  1469. goto out;
  1470. }
  1471. r = -ENOMEM;
  1472. kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
  1473. if (!kvm_vmm_info)
  1474. goto out;
  1475. if (kvm_alloc_vmm_area())
  1476. goto out_free0;
  1477. r = kvm_relocate_vmm(vmm_info, vmm_info->module);
  1478. if (r)
  1479. goto out_free1;
  1480. return 0;
  1481. out_free1:
  1482. kvm_free_vmm_area();
  1483. out_free0:
  1484. kfree(kvm_vmm_info);
  1485. out:
  1486. return r;
  1487. }
  1488. void kvm_arch_exit(void)
  1489. {
  1490. kvm_free_vmm_area();
  1491. kfree(kvm_vmm_info);
  1492. kvm_vmm_info = NULL;
  1493. }
  1494. static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
  1495. struct kvm_dirty_log *log)
  1496. {
  1497. struct kvm_memory_slot *memslot;
  1498. int r, i;
  1499. long n, base;
  1500. unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
  1501. offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
  1502. r = -EINVAL;
  1503. if (log->slot >= KVM_MEMORY_SLOTS)
  1504. goto out;
  1505. memslot = &kvm->memslots[log->slot];
  1506. r = -ENOENT;
  1507. if (!memslot->dirty_bitmap)
  1508. goto out;
  1509. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1510. base = memslot->base_gfn / BITS_PER_LONG;
  1511. for (i = 0; i < n/sizeof(long); ++i) {
  1512. memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
  1513. dirty_bitmap[base + i] = 0;
  1514. }
  1515. r = 0;
  1516. out:
  1517. return r;
  1518. }
  1519. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1520. struct kvm_dirty_log *log)
  1521. {
  1522. int r;
  1523. int n;
  1524. struct kvm_memory_slot *memslot;
  1525. int is_dirty = 0;
  1526. spin_lock(&kvm->arch.dirty_log_lock);
  1527. r = kvm_ia64_sync_dirty_log(kvm, log);
  1528. if (r)
  1529. goto out;
  1530. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1531. if (r)
  1532. goto out;
  1533. /* If nothing is dirty, don't bother messing with page tables. */
  1534. if (is_dirty) {
  1535. kvm_flush_remote_tlbs(kvm);
  1536. memslot = &kvm->memslots[log->slot];
  1537. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1538. memset(memslot->dirty_bitmap, 0, n);
  1539. }
  1540. r = 0;
  1541. out:
  1542. spin_unlock(&kvm->arch.dirty_log_lock);
  1543. return r;
  1544. }
  1545. int kvm_arch_hardware_setup(void)
  1546. {
  1547. return 0;
  1548. }
  1549. void kvm_arch_hardware_unsetup(void)
  1550. {
  1551. }
  1552. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  1553. {
  1554. int me;
  1555. int cpu = vcpu->cpu;
  1556. if (waitqueue_active(&vcpu->wq))
  1557. wake_up_interruptible(&vcpu->wq);
  1558. me = get_cpu();
  1559. if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
  1560. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  1561. smp_send_reschedule(cpu);
  1562. put_cpu();
  1563. }
  1564. int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
  1565. {
  1566. return __apic_accept_irq(vcpu, irq->vector);
  1567. }
  1568. int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
  1569. {
  1570. return apic->vcpu->vcpu_id == dest;
  1571. }
  1572. int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
  1573. {
  1574. return 0;
  1575. }
  1576. int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
  1577. {
  1578. return vcpu1->arch.xtp - vcpu2->arch.xtp;
  1579. }
  1580. int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
  1581. int short_hand, int dest, int dest_mode)
  1582. {
  1583. struct kvm_lapic *target = vcpu->arch.apic;
  1584. return (dest_mode == 0) ?
  1585. kvm_apic_match_physical_addr(target, dest) :
  1586. kvm_apic_match_logical_addr(target, dest);
  1587. }
  1588. static int find_highest_bits(int *dat)
  1589. {
  1590. u32 bits, bitnum;
  1591. int i;
  1592. /* loop for all 256 bits */
  1593. for (i = 7; i >= 0 ; i--) {
  1594. bits = dat[i];
  1595. if (bits) {
  1596. bitnum = fls(bits);
  1597. return i * 32 + bitnum - 1;
  1598. }
  1599. }
  1600. return -1;
  1601. }
  1602. int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
  1603. {
  1604. struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
  1605. if (vpd->irr[0] & (1UL << NMI_VECTOR))
  1606. return NMI_VECTOR;
  1607. if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
  1608. return ExtINT_VECTOR;
  1609. return find_highest_bits((int *)&vpd->irr[0]);
  1610. }
  1611. int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
  1612. {
  1613. if (kvm_highest_pending_irq(vcpu) != -1)
  1614. return 1;
  1615. return 0;
  1616. }
  1617. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  1618. {
  1619. /* do real check here */
  1620. return 1;
  1621. }
  1622. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  1623. {
  1624. return vcpu->arch.timer_fired;
  1625. }
  1626. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1627. {
  1628. return gfn;
  1629. }
  1630. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  1631. {
  1632. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
  1633. }
  1634. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  1635. struct kvm_mp_state *mp_state)
  1636. {
  1637. vcpu_load(vcpu);
  1638. mp_state->mp_state = vcpu->arch.mp_state;
  1639. vcpu_put(vcpu);
  1640. return 0;
  1641. }
  1642. static int vcpu_reset(struct kvm_vcpu *vcpu)
  1643. {
  1644. int r;
  1645. long psr;
  1646. local_irq_save(psr);
  1647. r = kvm_insert_vmm_mapping(vcpu);
  1648. local_irq_restore(psr);
  1649. if (r)
  1650. goto fail;
  1651. vcpu->arch.launched = 0;
  1652. kvm_arch_vcpu_uninit(vcpu);
  1653. r = kvm_arch_vcpu_init(vcpu);
  1654. if (r)
  1655. goto fail;
  1656. kvm_purge_vmm_mapping(vcpu);
  1657. r = 0;
  1658. fail:
  1659. return r;
  1660. }
  1661. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  1662. struct kvm_mp_state *mp_state)
  1663. {
  1664. int r = 0;
  1665. vcpu_load(vcpu);
  1666. vcpu->arch.mp_state = mp_state->mp_state;
  1667. if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
  1668. r = vcpu_reset(vcpu);
  1669. vcpu_put(vcpu);
  1670. return r;
  1671. }