mmu.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <asm/cputype.h>
  18. #include <asm/mach-types.h>
  19. #include <asm/sections.h>
  20. #include <asm/cachetype.h>
  21. #include <asm/setup.h>
  22. #include <asm/sizes.h>
  23. #include <asm/tlb.h>
  24. #include <asm/highmem.h>
  25. #include <asm/mach/arch.h>
  26. #include <asm/mach/map.h>
  27. #include "mm.h"
  28. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  29. /*
  30. * empty_zero_page is a special page that is used for
  31. * zero-initialized data and COW.
  32. */
  33. struct page *empty_zero_page;
  34. EXPORT_SYMBOL(empty_zero_page);
  35. /*
  36. * The pmd table for the upper-most set of pages.
  37. */
  38. pmd_t *top_pmd;
  39. #define CPOLICY_UNCACHED 0
  40. #define CPOLICY_BUFFERED 1
  41. #define CPOLICY_WRITETHROUGH 2
  42. #define CPOLICY_WRITEBACK 3
  43. #define CPOLICY_WRITEALLOC 4
  44. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  45. static unsigned int ecc_mask __initdata = 0;
  46. pgprot_t pgprot_user;
  47. pgprot_t pgprot_kernel;
  48. EXPORT_SYMBOL(pgprot_user);
  49. EXPORT_SYMBOL(pgprot_kernel);
  50. struct cachepolicy {
  51. const char policy[16];
  52. unsigned int cr_mask;
  53. unsigned int pmd;
  54. unsigned int pte;
  55. };
  56. static struct cachepolicy cache_policies[] __initdata = {
  57. {
  58. .policy = "uncached",
  59. .cr_mask = CR_W|CR_C,
  60. .pmd = PMD_SECT_UNCACHED,
  61. .pte = L_PTE_MT_UNCACHED,
  62. }, {
  63. .policy = "buffered",
  64. .cr_mask = CR_C,
  65. .pmd = PMD_SECT_BUFFERED,
  66. .pte = L_PTE_MT_BUFFERABLE,
  67. }, {
  68. .policy = "writethrough",
  69. .cr_mask = 0,
  70. .pmd = PMD_SECT_WT,
  71. .pte = L_PTE_MT_WRITETHROUGH,
  72. }, {
  73. .policy = "writeback",
  74. .cr_mask = 0,
  75. .pmd = PMD_SECT_WB,
  76. .pte = L_PTE_MT_WRITEBACK,
  77. }, {
  78. .policy = "writealloc",
  79. .cr_mask = 0,
  80. .pmd = PMD_SECT_WBWA,
  81. .pte = L_PTE_MT_WRITEALLOC,
  82. }
  83. };
  84. /*
  85. * These are useful for identifying cache coherency
  86. * problems by allowing the cache or the cache and
  87. * writebuffer to be turned off. (Note: the write
  88. * buffer should not be on and the cache off).
  89. */
  90. static void __init early_cachepolicy(char **p)
  91. {
  92. int i;
  93. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  94. int len = strlen(cache_policies[i].policy);
  95. if (memcmp(*p, cache_policies[i].policy, len) == 0) {
  96. cachepolicy = i;
  97. cr_alignment &= ~cache_policies[i].cr_mask;
  98. cr_no_alignment &= ~cache_policies[i].cr_mask;
  99. *p += len;
  100. break;
  101. }
  102. }
  103. if (i == ARRAY_SIZE(cache_policies))
  104. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  105. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  106. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  107. cachepolicy = CPOLICY_WRITEBACK;
  108. }
  109. flush_cache_all();
  110. set_cr(cr_alignment);
  111. }
  112. __early_param("cachepolicy=", early_cachepolicy);
  113. static void __init early_nocache(char **__unused)
  114. {
  115. char *p = "buffered";
  116. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  117. early_cachepolicy(&p);
  118. }
  119. __early_param("nocache", early_nocache);
  120. static void __init early_nowrite(char **__unused)
  121. {
  122. char *p = "uncached";
  123. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  124. early_cachepolicy(&p);
  125. }
  126. __early_param("nowb", early_nowrite);
  127. static void __init early_ecc(char **p)
  128. {
  129. if (memcmp(*p, "on", 2) == 0) {
  130. ecc_mask = PMD_PROTECTION;
  131. *p += 2;
  132. } else if (memcmp(*p, "off", 3) == 0) {
  133. ecc_mask = 0;
  134. *p += 3;
  135. }
  136. }
  137. __early_param("ecc=", early_ecc);
  138. static int __init noalign_setup(char *__unused)
  139. {
  140. cr_alignment &= ~CR_A;
  141. cr_no_alignment &= ~CR_A;
  142. set_cr(cr_alignment);
  143. return 1;
  144. }
  145. __setup("noalign", noalign_setup);
  146. #ifndef CONFIG_SMP
  147. void adjust_cr(unsigned long mask, unsigned long set)
  148. {
  149. unsigned long flags;
  150. mask &= ~CR_A;
  151. set &= mask;
  152. local_irq_save(flags);
  153. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  154. cr_alignment = (cr_alignment & ~mask) | set;
  155. set_cr((get_cr() & ~mask) | set);
  156. local_irq_restore(flags);
  157. }
  158. #endif
  159. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  160. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  161. static struct mem_type mem_types[] = {
  162. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  163. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  164. L_PTE_SHARED,
  165. .prot_l1 = PMD_TYPE_TABLE,
  166. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  167. .domain = DOMAIN_IO,
  168. },
  169. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  170. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  171. .prot_l1 = PMD_TYPE_TABLE,
  172. .prot_sect = PROT_SECT_DEVICE,
  173. .domain = DOMAIN_IO,
  174. },
  175. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  176. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  177. .prot_l1 = PMD_TYPE_TABLE,
  178. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  179. .domain = DOMAIN_IO,
  180. },
  181. [MT_DEVICE_WC] = { /* ioremap_wc */
  182. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  183. .prot_l1 = PMD_TYPE_TABLE,
  184. .prot_sect = PROT_SECT_DEVICE,
  185. .domain = DOMAIN_IO,
  186. },
  187. [MT_UNCACHED] = {
  188. .prot_pte = PROT_PTE_DEVICE,
  189. .prot_l1 = PMD_TYPE_TABLE,
  190. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  191. .domain = DOMAIN_IO,
  192. },
  193. [MT_CACHECLEAN] = {
  194. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  195. .domain = DOMAIN_KERNEL,
  196. },
  197. [MT_MINICLEAN] = {
  198. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  199. .domain = DOMAIN_KERNEL,
  200. },
  201. [MT_LOW_VECTORS] = {
  202. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  203. L_PTE_EXEC,
  204. .prot_l1 = PMD_TYPE_TABLE,
  205. .domain = DOMAIN_USER,
  206. },
  207. [MT_HIGH_VECTORS] = {
  208. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  209. L_PTE_USER | L_PTE_EXEC,
  210. .prot_l1 = PMD_TYPE_TABLE,
  211. .domain = DOMAIN_USER,
  212. },
  213. [MT_MEMORY] = {
  214. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  215. .domain = DOMAIN_KERNEL,
  216. },
  217. [MT_ROM] = {
  218. .prot_sect = PMD_TYPE_SECT,
  219. .domain = DOMAIN_KERNEL,
  220. },
  221. [MT_MEMORY_NONCACHED] = {
  222. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  223. .domain = DOMAIN_KERNEL,
  224. },
  225. };
  226. const struct mem_type *get_mem_type(unsigned int type)
  227. {
  228. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  229. }
  230. EXPORT_SYMBOL(get_mem_type);
  231. /*
  232. * Adjust the PMD section entries according to the CPU in use.
  233. */
  234. static void __init build_mem_type_table(void)
  235. {
  236. struct cachepolicy *cp;
  237. unsigned int cr = get_cr();
  238. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  239. int cpu_arch = cpu_architecture();
  240. int i;
  241. if (cpu_arch < CPU_ARCH_ARMv6) {
  242. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  243. if (cachepolicy > CPOLICY_BUFFERED)
  244. cachepolicy = CPOLICY_BUFFERED;
  245. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  246. if (cachepolicy > CPOLICY_WRITETHROUGH)
  247. cachepolicy = CPOLICY_WRITETHROUGH;
  248. #endif
  249. }
  250. if (cpu_arch < CPU_ARCH_ARMv5) {
  251. if (cachepolicy >= CPOLICY_WRITEALLOC)
  252. cachepolicy = CPOLICY_WRITEBACK;
  253. ecc_mask = 0;
  254. }
  255. #ifdef CONFIG_SMP
  256. cachepolicy = CPOLICY_WRITEALLOC;
  257. #endif
  258. /*
  259. * Strip out features not present on earlier architectures.
  260. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  261. * without extended page tables don't have the 'Shared' bit.
  262. */
  263. if (cpu_arch < CPU_ARCH_ARMv5)
  264. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  265. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  266. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  267. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  268. mem_types[i].prot_sect &= ~PMD_SECT_S;
  269. /*
  270. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  271. * "update-able on write" bit on ARM610). However, Xscale and
  272. * Xscale3 require this bit to be cleared.
  273. */
  274. if (cpu_is_xscale() || cpu_is_xsc3()) {
  275. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  276. mem_types[i].prot_sect &= ~PMD_BIT4;
  277. mem_types[i].prot_l1 &= ~PMD_BIT4;
  278. }
  279. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  280. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  281. if (mem_types[i].prot_l1)
  282. mem_types[i].prot_l1 |= PMD_BIT4;
  283. if (mem_types[i].prot_sect)
  284. mem_types[i].prot_sect |= PMD_BIT4;
  285. }
  286. }
  287. /*
  288. * Mark the device areas according to the CPU/architecture.
  289. */
  290. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  291. if (!cpu_is_xsc3()) {
  292. /*
  293. * Mark device regions on ARMv6+ as execute-never
  294. * to prevent speculative instruction fetches.
  295. */
  296. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  297. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  298. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  299. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  300. }
  301. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  302. /*
  303. * For ARMv7 with TEX remapping,
  304. * - shared device is SXCB=1100
  305. * - nonshared device is SXCB=0100
  306. * - write combine device mem is SXCB=0001
  307. * (Uncached Normal memory)
  308. */
  309. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  310. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  311. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  312. } else if (cpu_is_xsc3()) {
  313. /*
  314. * For Xscale3,
  315. * - shared device is TEXCB=00101
  316. * - nonshared device is TEXCB=01000
  317. * - write combine device mem is TEXCB=00100
  318. * (Inner/Outer Uncacheable in xsc3 parlance)
  319. */
  320. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  321. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  322. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  323. } else {
  324. /*
  325. * For ARMv6 and ARMv7 without TEX remapping,
  326. * - shared device is TEXCB=00001
  327. * - nonshared device is TEXCB=01000
  328. * - write combine device mem is TEXCB=00100
  329. * (Uncached Normal in ARMv6 parlance).
  330. */
  331. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  332. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  333. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  334. }
  335. } else {
  336. /*
  337. * On others, write combining is "Uncached/Buffered"
  338. */
  339. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  340. }
  341. /*
  342. * Now deal with the memory-type mappings
  343. */
  344. cp = &cache_policies[cachepolicy];
  345. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  346. #ifndef CONFIG_SMP
  347. /*
  348. * Only use write-through for non-SMP systems
  349. */
  350. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  351. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  352. #endif
  353. /*
  354. * Enable CPU-specific coherency if supported.
  355. * (Only available on XSC3 at the moment.)
  356. */
  357. if (arch_is_coherent() && cpu_is_xsc3())
  358. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  359. /*
  360. * ARMv6 and above have extended page tables.
  361. */
  362. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  363. /*
  364. * Mark cache clean areas and XIP ROM read only
  365. * from SVC mode and no access from userspace.
  366. */
  367. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  368. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  369. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  370. #ifdef CONFIG_SMP
  371. /*
  372. * Mark memory with the "shared" attribute for SMP systems
  373. */
  374. user_pgprot |= L_PTE_SHARED;
  375. kern_pgprot |= L_PTE_SHARED;
  376. vecs_pgprot |= L_PTE_SHARED;
  377. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  378. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  379. #endif
  380. }
  381. /*
  382. * Non-cacheable Normal - intended for memory areas that must
  383. * not cause dirty cache line writebacks when used
  384. */
  385. if (cpu_arch >= CPU_ARCH_ARMv6) {
  386. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  387. /* Non-cacheable Normal is XCB = 001 */
  388. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  389. PMD_SECT_BUFFERED;
  390. } else {
  391. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  392. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  393. PMD_SECT_TEX(1);
  394. }
  395. } else {
  396. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  397. }
  398. for (i = 0; i < 16; i++) {
  399. unsigned long v = pgprot_val(protection_map[i]);
  400. protection_map[i] = __pgprot(v | user_pgprot);
  401. }
  402. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  403. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  404. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  405. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  406. L_PTE_DIRTY | L_PTE_WRITE |
  407. L_PTE_EXEC | kern_pgprot);
  408. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  409. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  410. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  411. mem_types[MT_ROM].prot_sect |= cp->pmd;
  412. switch (cp->pmd) {
  413. case PMD_SECT_WT:
  414. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  415. break;
  416. case PMD_SECT_WB:
  417. case PMD_SECT_WBWA:
  418. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  419. break;
  420. }
  421. printk("Memory policy: ECC %sabled, Data cache %s\n",
  422. ecc_mask ? "en" : "dis", cp->policy);
  423. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  424. struct mem_type *t = &mem_types[i];
  425. if (t->prot_l1)
  426. t->prot_l1 |= PMD_DOMAIN(t->domain);
  427. if (t->prot_sect)
  428. t->prot_sect |= PMD_DOMAIN(t->domain);
  429. }
  430. }
  431. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  432. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  433. unsigned long end, unsigned long pfn,
  434. const struct mem_type *type)
  435. {
  436. pte_t *pte;
  437. if (pmd_none(*pmd)) {
  438. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  439. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  440. }
  441. pte = pte_offset_kernel(pmd, addr);
  442. do {
  443. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  444. pfn++;
  445. } while (pte++, addr += PAGE_SIZE, addr != end);
  446. }
  447. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  448. unsigned long end, unsigned long phys,
  449. const struct mem_type *type)
  450. {
  451. pmd_t *pmd = pmd_offset(pgd, addr);
  452. /*
  453. * Try a section mapping - end, addr and phys must all be aligned
  454. * to a section boundary. Note that PMDs refer to the individual
  455. * L1 entries, whereas PGDs refer to a group of L1 entries making
  456. * up one logical pointer to an L2 table.
  457. */
  458. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  459. pmd_t *p = pmd;
  460. if (addr & SECTION_SIZE)
  461. pmd++;
  462. do {
  463. *pmd = __pmd(phys | type->prot_sect);
  464. phys += SECTION_SIZE;
  465. } while (pmd++, addr += SECTION_SIZE, addr != end);
  466. flush_pmd_entry(p);
  467. } else {
  468. /*
  469. * No need to loop; pte's aren't interested in the
  470. * individual L1 entries.
  471. */
  472. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  473. }
  474. }
  475. static void __init create_36bit_mapping(struct map_desc *md,
  476. const struct mem_type *type)
  477. {
  478. unsigned long phys, addr, length, end;
  479. pgd_t *pgd;
  480. addr = md->virtual;
  481. phys = (unsigned long)__pfn_to_phys(md->pfn);
  482. length = PAGE_ALIGN(md->length);
  483. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  484. printk(KERN_ERR "MM: CPU does not support supersection "
  485. "mapping for 0x%08llx at 0x%08lx\n",
  486. __pfn_to_phys((u64)md->pfn), addr);
  487. return;
  488. }
  489. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  490. * Since domain assignments can in fact be arbitrary, the
  491. * 'domain == 0' check below is required to insure that ARMv6
  492. * supersections are only allocated for domain 0 regardless
  493. * of the actual domain assignments in use.
  494. */
  495. if (type->domain) {
  496. printk(KERN_ERR "MM: invalid domain in supersection "
  497. "mapping for 0x%08llx at 0x%08lx\n",
  498. __pfn_to_phys((u64)md->pfn), addr);
  499. return;
  500. }
  501. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  502. printk(KERN_ERR "MM: cannot create mapping for "
  503. "0x%08llx at 0x%08lx invalid alignment\n",
  504. __pfn_to_phys((u64)md->pfn), addr);
  505. return;
  506. }
  507. /*
  508. * Shift bits [35:32] of address into bits [23:20] of PMD
  509. * (See ARMv6 spec).
  510. */
  511. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  512. pgd = pgd_offset_k(addr);
  513. end = addr + length;
  514. do {
  515. pmd_t *pmd = pmd_offset(pgd, addr);
  516. int i;
  517. for (i = 0; i < 16; i++)
  518. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  519. addr += SUPERSECTION_SIZE;
  520. phys += SUPERSECTION_SIZE;
  521. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  522. } while (addr != end);
  523. }
  524. /*
  525. * Create the page directory entries and any necessary
  526. * page tables for the mapping specified by `md'. We
  527. * are able to cope here with varying sizes and address
  528. * offsets, and we take full advantage of sections and
  529. * supersections.
  530. */
  531. void __init create_mapping(struct map_desc *md)
  532. {
  533. unsigned long phys, addr, length, end;
  534. const struct mem_type *type;
  535. pgd_t *pgd;
  536. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  537. printk(KERN_WARNING "BUG: not creating mapping for "
  538. "0x%08llx at 0x%08lx in user region\n",
  539. __pfn_to_phys((u64)md->pfn), md->virtual);
  540. return;
  541. }
  542. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  543. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  544. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  545. "overlaps vmalloc space\n",
  546. __pfn_to_phys((u64)md->pfn), md->virtual);
  547. }
  548. type = &mem_types[md->type];
  549. /*
  550. * Catch 36-bit addresses
  551. */
  552. if (md->pfn >= 0x100000) {
  553. create_36bit_mapping(md, type);
  554. return;
  555. }
  556. addr = md->virtual & PAGE_MASK;
  557. phys = (unsigned long)__pfn_to_phys(md->pfn);
  558. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  559. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  560. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  561. "be mapped using pages, ignoring.\n",
  562. __pfn_to_phys(md->pfn), addr);
  563. return;
  564. }
  565. pgd = pgd_offset_k(addr);
  566. end = addr + length;
  567. do {
  568. unsigned long next = pgd_addr_end(addr, end);
  569. alloc_init_section(pgd, addr, next, phys, type);
  570. phys += next - addr;
  571. addr = next;
  572. } while (pgd++, addr != end);
  573. }
  574. /*
  575. * Create the architecture specific mappings
  576. */
  577. void __init iotable_init(struct map_desc *io_desc, int nr)
  578. {
  579. int i;
  580. for (i = 0; i < nr; i++)
  581. create_mapping(io_desc + i);
  582. }
  583. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  584. /*
  585. * vmalloc=size forces the vmalloc area to be exactly 'size'
  586. * bytes. This can be used to increase (or decrease) the vmalloc
  587. * area - the default is 128m.
  588. */
  589. static void __init early_vmalloc(char **arg)
  590. {
  591. vmalloc_reserve = memparse(*arg, arg);
  592. if (vmalloc_reserve < SZ_16M) {
  593. vmalloc_reserve = SZ_16M;
  594. printk(KERN_WARNING
  595. "vmalloc area too small, limiting to %luMB\n",
  596. vmalloc_reserve >> 20);
  597. }
  598. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  599. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  600. printk(KERN_WARNING
  601. "vmalloc area is too big, limiting to %luMB\n",
  602. vmalloc_reserve >> 20);
  603. }
  604. }
  605. __early_param("vmalloc=", early_vmalloc);
  606. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  607. static void __init sanity_check_meminfo(void)
  608. {
  609. int i, j;
  610. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  611. struct membank *bank = &meminfo.bank[j];
  612. *bank = meminfo.bank[i];
  613. #ifdef CONFIG_HIGHMEM
  614. /*
  615. * Split those memory banks which are partially overlapping
  616. * the vmalloc area greatly simplifying things later.
  617. */
  618. if (__va(bank->start) < VMALLOC_MIN &&
  619. bank->size > VMALLOC_MIN - __va(bank->start)) {
  620. if (meminfo.nr_banks >= NR_BANKS) {
  621. printk(KERN_CRIT "NR_BANKS too low, "
  622. "ignoring high memory\n");
  623. } else if (cache_is_vipt_aliasing()) {
  624. printk(KERN_CRIT "HIGHMEM is not yet supported "
  625. "with VIPT aliasing cache, "
  626. "ignoring high memory\n");
  627. } else {
  628. memmove(bank + 1, bank,
  629. (meminfo.nr_banks - i) * sizeof(*bank));
  630. meminfo.nr_banks++;
  631. i++;
  632. bank[1].size -= VMALLOC_MIN - __va(bank->start);
  633. bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
  634. j++;
  635. }
  636. bank->size = VMALLOC_MIN - __va(bank->start);
  637. }
  638. #else
  639. /*
  640. * Check whether this memory bank would entirely overlap
  641. * the vmalloc area.
  642. */
  643. if (__va(bank->start) >= VMALLOC_MIN ||
  644. __va(bank->start) < (void *)PAGE_OFFSET) {
  645. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  646. "(vmalloc region overlap).\n",
  647. bank->start, bank->start + bank->size - 1);
  648. continue;
  649. }
  650. /*
  651. * Check whether this memory bank would partially overlap
  652. * the vmalloc area.
  653. */
  654. if (__va(bank->start + bank->size) > VMALLOC_MIN ||
  655. __va(bank->start + bank->size) < __va(bank->start)) {
  656. unsigned long newsize = VMALLOC_MIN - __va(bank->start);
  657. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  658. "to -%.8lx (vmalloc region overlap).\n",
  659. bank->start, bank->start + bank->size - 1,
  660. bank->start + newsize - 1);
  661. bank->size = newsize;
  662. }
  663. #endif
  664. j++;
  665. }
  666. meminfo.nr_banks = j;
  667. }
  668. static inline void prepare_page_table(void)
  669. {
  670. unsigned long addr;
  671. /*
  672. * Clear out all the mappings below the kernel image.
  673. */
  674. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  675. pmd_clear(pmd_off_k(addr));
  676. #ifdef CONFIG_XIP_KERNEL
  677. /* The XIP kernel is mapped in the module area -- skip over it */
  678. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  679. #endif
  680. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  681. pmd_clear(pmd_off_k(addr));
  682. /*
  683. * Clear out all the kernel space mappings, except for the first
  684. * memory bank, up to the end of the vmalloc region.
  685. */
  686. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  687. addr < VMALLOC_END; addr += PGDIR_SIZE)
  688. pmd_clear(pmd_off_k(addr));
  689. }
  690. /*
  691. * Reserve the various regions of node 0
  692. */
  693. void __init reserve_node_zero(pg_data_t *pgdat)
  694. {
  695. unsigned long res_size = 0;
  696. /*
  697. * Register the kernel text and data with bootmem.
  698. * Note that this can only be in node 0.
  699. */
  700. #ifdef CONFIG_XIP_KERNEL
  701. reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
  702. BOOTMEM_DEFAULT);
  703. #else
  704. reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
  705. BOOTMEM_DEFAULT);
  706. #endif
  707. /*
  708. * Reserve the page tables. These are already in use,
  709. * and can only be in node 0.
  710. */
  711. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  712. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  713. /*
  714. * Hmm... This should go elsewhere, but we really really need to
  715. * stop things allocating the low memory; ideally we need a better
  716. * implementation of GFP_DMA which does not assume that DMA-able
  717. * memory starts at zero.
  718. */
  719. if (machine_is_integrator() || machine_is_cintegrator())
  720. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  721. /*
  722. * These should likewise go elsewhere. They pre-reserve the
  723. * screen memory region at the start of main system memory.
  724. */
  725. if (machine_is_edb7211())
  726. res_size = 0x00020000;
  727. if (machine_is_p720t())
  728. res_size = 0x00014000;
  729. /* H1940 and RX3715 need to reserve this for suspend */
  730. if (machine_is_h1940() || machine_is_rx3715()) {
  731. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  732. BOOTMEM_DEFAULT);
  733. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  734. BOOTMEM_DEFAULT);
  735. }
  736. if (machine_is_palmld() || machine_is_palmtx()) {
  737. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  738. BOOTMEM_EXCLUSIVE);
  739. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  740. BOOTMEM_EXCLUSIVE);
  741. }
  742. if (machine_is_palmt5())
  743. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  744. BOOTMEM_EXCLUSIVE);
  745. /*
  746. * U300 - This platform family can share physical memory
  747. * between two ARM cpus, one running Linux and the other
  748. * running another OS.
  749. */
  750. if (machine_is_u300()) {
  751. #ifdef CONFIG_MACH_U300_SINGLE_RAM
  752. #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
  753. CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
  754. res_size = 0x00100000;
  755. #endif
  756. #endif
  757. }
  758. #ifdef CONFIG_SA1111
  759. /*
  760. * Because of the SA1111 DMA bug, we want to preserve our
  761. * precious DMA-able memory...
  762. */
  763. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  764. #endif
  765. if (res_size)
  766. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  767. BOOTMEM_DEFAULT);
  768. }
  769. /*
  770. * Set up device the mappings. Since we clear out the page tables for all
  771. * mappings above VMALLOC_END, we will remove any debug device mappings.
  772. * This means you have to be careful how you debug this function, or any
  773. * called function. This means you can't use any function or debugging
  774. * method which may touch any device, otherwise the kernel _will_ crash.
  775. */
  776. static void __init devicemaps_init(struct machine_desc *mdesc)
  777. {
  778. struct map_desc map;
  779. unsigned long addr;
  780. void *vectors;
  781. /*
  782. * Allocate the vector page early.
  783. */
  784. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  785. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  786. pmd_clear(pmd_off_k(addr));
  787. /*
  788. * Map the kernel if it is XIP.
  789. * It is always first in the modulearea.
  790. */
  791. #ifdef CONFIG_XIP_KERNEL
  792. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  793. map.virtual = MODULES_VADDR;
  794. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  795. map.type = MT_ROM;
  796. create_mapping(&map);
  797. #endif
  798. /*
  799. * Map the cache flushing regions.
  800. */
  801. #ifdef FLUSH_BASE
  802. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  803. map.virtual = FLUSH_BASE;
  804. map.length = SZ_1M;
  805. map.type = MT_CACHECLEAN;
  806. create_mapping(&map);
  807. #endif
  808. #ifdef FLUSH_BASE_MINICACHE
  809. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  810. map.virtual = FLUSH_BASE_MINICACHE;
  811. map.length = SZ_1M;
  812. map.type = MT_MINICLEAN;
  813. create_mapping(&map);
  814. #endif
  815. /*
  816. * Create a mapping for the machine vectors at the high-vectors
  817. * location (0xffff0000). If we aren't using high-vectors, also
  818. * create a mapping at the low-vectors virtual address.
  819. */
  820. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  821. map.virtual = 0xffff0000;
  822. map.length = PAGE_SIZE;
  823. map.type = MT_HIGH_VECTORS;
  824. create_mapping(&map);
  825. if (!vectors_high()) {
  826. map.virtual = 0;
  827. map.type = MT_LOW_VECTORS;
  828. create_mapping(&map);
  829. }
  830. /*
  831. * Ask the machine support to map in the statically mapped devices.
  832. */
  833. if (mdesc->map_io)
  834. mdesc->map_io();
  835. /*
  836. * Finally flush the caches and tlb to ensure that we're in a
  837. * consistent state wrt the writebuffer. This also ensures that
  838. * any write-allocated cache lines in the vector page are written
  839. * back. After this point, we can start to touch devices again.
  840. */
  841. local_flush_tlb_all();
  842. flush_cache_all();
  843. }
  844. static void __init kmap_init(void)
  845. {
  846. #ifdef CONFIG_HIGHMEM
  847. pmd_t *pmd = pmd_off_k(PKMAP_BASE);
  848. pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  849. BUG_ON(!pmd_none(*pmd) || !pte);
  850. __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
  851. pkmap_page_table = pte + PTRS_PER_PTE;
  852. #endif
  853. }
  854. /*
  855. * paging_init() sets up the page tables, initialises the zone memory
  856. * maps, and sets up the zero page, bad page and bad page tables.
  857. */
  858. void __init paging_init(struct machine_desc *mdesc)
  859. {
  860. void *zero_page;
  861. build_mem_type_table();
  862. sanity_check_meminfo();
  863. prepare_page_table();
  864. bootmem_init();
  865. devicemaps_init(mdesc);
  866. kmap_init();
  867. top_pmd = pmd_off_k(0xffff0000);
  868. /*
  869. * allocate the zero page. Note that this always succeeds and
  870. * returns a zeroed result.
  871. */
  872. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  873. empty_zero_page = virt_to_page(zero_page);
  874. flush_dcache_page(empty_zero_page);
  875. }
  876. /*
  877. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  878. * the user-mode pages. This will then ensure that we have predictable
  879. * results when turning the mmu off
  880. */
  881. void setup_mm_for_reboot(char mode)
  882. {
  883. unsigned long base_pmdval;
  884. pgd_t *pgd;
  885. int i;
  886. if (current->mm && current->mm->pgd)
  887. pgd = current->mm->pgd;
  888. else
  889. pgd = init_mm.pgd;
  890. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  891. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  892. base_pmdval |= PMD_BIT4;
  893. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  894. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  895. pmd_t *pmd;
  896. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  897. pmd[0] = __pmd(pmdval);
  898. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  899. flush_pmd_entry(pmd);
  900. }
  901. }