sched.c 218 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_event.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/unistd.h>
  67. #include <linux/pagemap.h>
  68. #include <linux/hrtimer.h>
  69. #include <linux/tick.h>
  70. #include <linux/debugfs.h>
  71. #include <linux/ctype.h>
  72. #include <linux/ftrace.h>
  73. #include <linux/slab.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. static inline int rt_policy(int policy)
  113. {
  114. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  115. return 1;
  116. return 0;
  117. }
  118. static inline int task_has_rt_policy(struct task_struct *p)
  119. {
  120. return rt_policy(p->policy);
  121. }
  122. /*
  123. * This is the priority-queue data structure of the RT scheduling class:
  124. */
  125. struct rt_prio_array {
  126. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  127. struct list_head queue[MAX_RT_PRIO];
  128. };
  129. struct rt_bandwidth {
  130. /* nests inside the rq lock: */
  131. raw_spinlock_t rt_runtime_lock;
  132. ktime_t rt_period;
  133. u64 rt_runtime;
  134. struct hrtimer rt_period_timer;
  135. };
  136. static struct rt_bandwidth def_rt_bandwidth;
  137. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  138. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  139. {
  140. struct rt_bandwidth *rt_b =
  141. container_of(timer, struct rt_bandwidth, rt_period_timer);
  142. ktime_t now;
  143. int overrun;
  144. int idle = 0;
  145. for (;;) {
  146. now = hrtimer_cb_get_time(timer);
  147. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  148. if (!overrun)
  149. break;
  150. idle = do_sched_rt_period_timer(rt_b, overrun);
  151. }
  152. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  153. }
  154. static
  155. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  156. {
  157. rt_b->rt_period = ns_to_ktime(period);
  158. rt_b->rt_runtime = runtime;
  159. raw_spin_lock_init(&rt_b->rt_runtime_lock);
  160. hrtimer_init(&rt_b->rt_period_timer,
  161. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  162. rt_b->rt_period_timer.function = sched_rt_period_timer;
  163. }
  164. static inline int rt_bandwidth_enabled(void)
  165. {
  166. return sysctl_sched_rt_runtime >= 0;
  167. }
  168. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  169. {
  170. ktime_t now;
  171. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  172. return;
  173. if (hrtimer_active(&rt_b->rt_period_timer))
  174. return;
  175. raw_spin_lock(&rt_b->rt_runtime_lock);
  176. for (;;) {
  177. unsigned long delta;
  178. ktime_t soft, hard;
  179. if (hrtimer_active(&rt_b->rt_period_timer))
  180. break;
  181. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  182. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  183. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  184. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  185. delta = ktime_to_ns(ktime_sub(hard, soft));
  186. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  187. HRTIMER_MODE_ABS_PINNED, 0);
  188. }
  189. raw_spin_unlock(&rt_b->rt_runtime_lock);
  190. }
  191. #ifdef CONFIG_RT_GROUP_SCHED
  192. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  193. {
  194. hrtimer_cancel(&rt_b->rt_period_timer);
  195. }
  196. #endif
  197. /*
  198. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  199. * detach_destroy_domains and partition_sched_domains.
  200. */
  201. static DEFINE_MUTEX(sched_domains_mutex);
  202. #ifdef CONFIG_CGROUP_SCHED
  203. #include <linux/cgroup.h>
  204. struct cfs_rq;
  205. static LIST_HEAD(task_groups);
  206. /* task group related information */
  207. struct task_group {
  208. struct cgroup_subsys_state css;
  209. #ifdef CONFIG_FAIR_GROUP_SCHED
  210. /* schedulable entities of this group on each cpu */
  211. struct sched_entity **se;
  212. /* runqueue "owned" by this group on each cpu */
  213. struct cfs_rq **cfs_rq;
  214. unsigned long shares;
  215. #endif
  216. #ifdef CONFIG_RT_GROUP_SCHED
  217. struct sched_rt_entity **rt_se;
  218. struct rt_rq **rt_rq;
  219. struct rt_bandwidth rt_bandwidth;
  220. #endif
  221. struct rcu_head rcu;
  222. struct list_head list;
  223. struct task_group *parent;
  224. struct list_head siblings;
  225. struct list_head children;
  226. };
  227. #define root_task_group init_task_group
  228. /* task_group_lock serializes add/remove of task groups and also changes to
  229. * a task group's cpu shares.
  230. */
  231. static DEFINE_SPINLOCK(task_group_lock);
  232. #ifdef CONFIG_FAIR_GROUP_SCHED
  233. #ifdef CONFIG_SMP
  234. static int root_task_group_empty(void)
  235. {
  236. return list_empty(&root_task_group.children);
  237. }
  238. #endif
  239. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  240. /*
  241. * A weight of 0 or 1 can cause arithmetics problems.
  242. * A weight of a cfs_rq is the sum of weights of which entities
  243. * are queued on this cfs_rq, so a weight of a entity should not be
  244. * too large, so as the shares value of a task group.
  245. * (The default weight is 1024 - so there's no practical
  246. * limitation from this.)
  247. */
  248. #define MIN_SHARES 2
  249. #define MAX_SHARES (1UL << 18)
  250. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  251. #endif
  252. /* Default task group.
  253. * Every task in system belong to this group at bootup.
  254. */
  255. struct task_group init_task_group;
  256. /* return group to which a task belongs */
  257. static inline struct task_group *task_group(struct task_struct *p)
  258. {
  259. struct task_group *tg;
  260. #ifdef CONFIG_CGROUP_SCHED
  261. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  262. struct task_group, css);
  263. #else
  264. tg = &init_task_group;
  265. #endif
  266. return tg;
  267. }
  268. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  269. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  270. {
  271. #ifdef CONFIG_FAIR_GROUP_SCHED
  272. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  273. p->se.parent = task_group(p)->se[cpu];
  274. #endif
  275. #ifdef CONFIG_RT_GROUP_SCHED
  276. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  277. p->rt.parent = task_group(p)->rt_se[cpu];
  278. #endif
  279. }
  280. #else
  281. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  282. static inline struct task_group *task_group(struct task_struct *p)
  283. {
  284. return NULL;
  285. }
  286. #endif /* CONFIG_CGROUP_SCHED */
  287. /* CFS-related fields in a runqueue */
  288. struct cfs_rq {
  289. struct load_weight load;
  290. unsigned long nr_running;
  291. u64 exec_clock;
  292. u64 min_vruntime;
  293. struct rb_root tasks_timeline;
  294. struct rb_node *rb_leftmost;
  295. struct list_head tasks;
  296. struct list_head *balance_iterator;
  297. /*
  298. * 'curr' points to currently running entity on this cfs_rq.
  299. * It is set to NULL otherwise (i.e when none are currently running).
  300. */
  301. struct sched_entity *curr, *next, *last;
  302. unsigned int nr_spread_over;
  303. #ifdef CONFIG_FAIR_GROUP_SCHED
  304. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  305. /*
  306. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  307. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  308. * (like users, containers etc.)
  309. *
  310. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  311. * list is used during load balance.
  312. */
  313. struct list_head leaf_cfs_rq_list;
  314. struct task_group *tg; /* group that "owns" this runqueue */
  315. #ifdef CONFIG_SMP
  316. /*
  317. * the part of load.weight contributed by tasks
  318. */
  319. unsigned long task_weight;
  320. /*
  321. * h_load = weight * f(tg)
  322. *
  323. * Where f(tg) is the recursive weight fraction assigned to
  324. * this group.
  325. */
  326. unsigned long h_load;
  327. /*
  328. * this cpu's part of tg->shares
  329. */
  330. unsigned long shares;
  331. /*
  332. * load.weight at the time we set shares
  333. */
  334. unsigned long rq_weight;
  335. #endif
  336. #endif
  337. };
  338. /* Real-Time classes' related field in a runqueue: */
  339. struct rt_rq {
  340. struct rt_prio_array active;
  341. unsigned long rt_nr_running;
  342. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  343. struct {
  344. int curr; /* highest queued rt task prio */
  345. #ifdef CONFIG_SMP
  346. int next; /* next highest */
  347. #endif
  348. } highest_prio;
  349. #endif
  350. #ifdef CONFIG_SMP
  351. unsigned long rt_nr_migratory;
  352. unsigned long rt_nr_total;
  353. int overloaded;
  354. struct plist_head pushable_tasks;
  355. #endif
  356. int rt_throttled;
  357. u64 rt_time;
  358. u64 rt_runtime;
  359. /* Nests inside the rq lock: */
  360. raw_spinlock_t rt_runtime_lock;
  361. #ifdef CONFIG_RT_GROUP_SCHED
  362. unsigned long rt_nr_boosted;
  363. struct rq *rq;
  364. struct list_head leaf_rt_rq_list;
  365. struct task_group *tg;
  366. #endif
  367. };
  368. #ifdef CONFIG_SMP
  369. /*
  370. * We add the notion of a root-domain which will be used to define per-domain
  371. * variables. Each exclusive cpuset essentially defines an island domain by
  372. * fully partitioning the member cpus from any other cpuset. Whenever a new
  373. * exclusive cpuset is created, we also create and attach a new root-domain
  374. * object.
  375. *
  376. */
  377. struct root_domain {
  378. atomic_t refcount;
  379. cpumask_var_t span;
  380. cpumask_var_t online;
  381. /*
  382. * The "RT overload" flag: it gets set if a CPU has more than
  383. * one runnable RT task.
  384. */
  385. cpumask_var_t rto_mask;
  386. atomic_t rto_count;
  387. #ifdef CONFIG_SMP
  388. struct cpupri cpupri;
  389. #endif
  390. };
  391. /*
  392. * By default the system creates a single root-domain with all cpus as
  393. * members (mimicking the global state we have today).
  394. */
  395. static struct root_domain def_root_domain;
  396. #endif
  397. /*
  398. * This is the main, per-CPU runqueue data structure.
  399. *
  400. * Locking rule: those places that want to lock multiple runqueues
  401. * (such as the load balancing or the thread migration code), lock
  402. * acquire operations must be ordered by ascending &runqueue.
  403. */
  404. struct rq {
  405. /* runqueue lock: */
  406. raw_spinlock_t lock;
  407. /*
  408. * nr_running and cpu_load should be in the same cacheline because
  409. * remote CPUs use both these fields when doing load calculation.
  410. */
  411. unsigned long nr_running;
  412. #define CPU_LOAD_IDX_MAX 5
  413. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  414. #ifdef CONFIG_NO_HZ
  415. u64 nohz_stamp;
  416. unsigned char in_nohz_recently;
  417. #endif
  418. unsigned int skip_clock_update;
  419. /* capture load from *all* tasks on this cpu: */
  420. struct load_weight load;
  421. unsigned long nr_load_updates;
  422. u64 nr_switches;
  423. struct cfs_rq cfs;
  424. struct rt_rq rt;
  425. #ifdef CONFIG_FAIR_GROUP_SCHED
  426. /* list of leaf cfs_rq on this cpu: */
  427. struct list_head leaf_cfs_rq_list;
  428. #endif
  429. #ifdef CONFIG_RT_GROUP_SCHED
  430. struct list_head leaf_rt_rq_list;
  431. #endif
  432. /*
  433. * This is part of a global counter where only the total sum
  434. * over all CPUs matters. A task can increase this counter on
  435. * one CPU and if it got migrated afterwards it may decrease
  436. * it on another CPU. Always updated under the runqueue lock:
  437. */
  438. unsigned long nr_uninterruptible;
  439. struct task_struct *curr, *idle;
  440. unsigned long next_balance;
  441. struct mm_struct *prev_mm;
  442. u64 clock;
  443. atomic_t nr_iowait;
  444. #ifdef CONFIG_SMP
  445. struct root_domain *rd;
  446. struct sched_domain *sd;
  447. unsigned char idle_at_tick;
  448. /* For active balancing */
  449. int post_schedule;
  450. int active_balance;
  451. int push_cpu;
  452. /* cpu of this runqueue: */
  453. int cpu;
  454. int online;
  455. unsigned long avg_load_per_task;
  456. struct task_struct *migration_thread;
  457. struct list_head migration_queue;
  458. u64 rt_avg;
  459. u64 age_stamp;
  460. u64 idle_stamp;
  461. u64 avg_idle;
  462. #endif
  463. /* calc_load related fields */
  464. unsigned long calc_load_update;
  465. long calc_load_active;
  466. #ifdef CONFIG_SCHED_HRTICK
  467. #ifdef CONFIG_SMP
  468. int hrtick_csd_pending;
  469. struct call_single_data hrtick_csd;
  470. #endif
  471. struct hrtimer hrtick_timer;
  472. #endif
  473. #ifdef CONFIG_SCHEDSTATS
  474. /* latency stats */
  475. struct sched_info rq_sched_info;
  476. unsigned long long rq_cpu_time;
  477. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  478. /* sys_sched_yield() stats */
  479. unsigned int yld_count;
  480. /* schedule() stats */
  481. unsigned int sched_switch;
  482. unsigned int sched_count;
  483. unsigned int sched_goidle;
  484. /* try_to_wake_up() stats */
  485. unsigned int ttwu_count;
  486. unsigned int ttwu_local;
  487. /* BKL stats */
  488. unsigned int bkl_count;
  489. #endif
  490. };
  491. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  492. static inline
  493. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  494. {
  495. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  496. /*
  497. * A queue event has occurred, and we're going to schedule. In
  498. * this case, we can save a useless back to back clock update.
  499. */
  500. if (test_tsk_need_resched(p))
  501. rq->skip_clock_update = 1;
  502. }
  503. static inline int cpu_of(struct rq *rq)
  504. {
  505. #ifdef CONFIG_SMP
  506. return rq->cpu;
  507. #else
  508. return 0;
  509. #endif
  510. }
  511. #define rcu_dereference_check_sched_domain(p) \
  512. rcu_dereference_check((p), \
  513. rcu_read_lock_sched_held() || \
  514. lockdep_is_held(&sched_domains_mutex))
  515. /*
  516. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  517. * See detach_destroy_domains: synchronize_sched for details.
  518. *
  519. * The domain tree of any CPU may only be accessed from within
  520. * preempt-disabled sections.
  521. */
  522. #define for_each_domain(cpu, __sd) \
  523. for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  524. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  525. #define this_rq() (&__get_cpu_var(runqueues))
  526. #define task_rq(p) cpu_rq(task_cpu(p))
  527. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  528. #define raw_rq() (&__raw_get_cpu_var(runqueues))
  529. inline void update_rq_clock(struct rq *rq)
  530. {
  531. if (!rq->skip_clock_update)
  532. rq->clock = sched_clock_cpu(cpu_of(rq));
  533. }
  534. /*
  535. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  536. */
  537. #ifdef CONFIG_SCHED_DEBUG
  538. # define const_debug __read_mostly
  539. #else
  540. # define const_debug static const
  541. #endif
  542. /**
  543. * runqueue_is_locked
  544. * @cpu: the processor in question.
  545. *
  546. * Returns true if the current cpu runqueue is locked.
  547. * This interface allows printk to be called with the runqueue lock
  548. * held and know whether or not it is OK to wake up the klogd.
  549. */
  550. int runqueue_is_locked(int cpu)
  551. {
  552. return raw_spin_is_locked(&cpu_rq(cpu)->lock);
  553. }
  554. /*
  555. * Debugging: various feature bits
  556. */
  557. #define SCHED_FEAT(name, enabled) \
  558. __SCHED_FEAT_##name ,
  559. enum {
  560. #include "sched_features.h"
  561. };
  562. #undef SCHED_FEAT
  563. #define SCHED_FEAT(name, enabled) \
  564. (1UL << __SCHED_FEAT_##name) * enabled |
  565. const_debug unsigned int sysctl_sched_features =
  566. #include "sched_features.h"
  567. 0;
  568. #undef SCHED_FEAT
  569. #ifdef CONFIG_SCHED_DEBUG
  570. #define SCHED_FEAT(name, enabled) \
  571. #name ,
  572. static __read_mostly char *sched_feat_names[] = {
  573. #include "sched_features.h"
  574. NULL
  575. };
  576. #undef SCHED_FEAT
  577. static int sched_feat_show(struct seq_file *m, void *v)
  578. {
  579. int i;
  580. for (i = 0; sched_feat_names[i]; i++) {
  581. if (!(sysctl_sched_features & (1UL << i)))
  582. seq_puts(m, "NO_");
  583. seq_printf(m, "%s ", sched_feat_names[i]);
  584. }
  585. seq_puts(m, "\n");
  586. return 0;
  587. }
  588. static ssize_t
  589. sched_feat_write(struct file *filp, const char __user *ubuf,
  590. size_t cnt, loff_t *ppos)
  591. {
  592. char buf[64];
  593. char *cmp = buf;
  594. int neg = 0;
  595. int i;
  596. if (cnt > 63)
  597. cnt = 63;
  598. if (copy_from_user(&buf, ubuf, cnt))
  599. return -EFAULT;
  600. buf[cnt] = 0;
  601. if (strncmp(buf, "NO_", 3) == 0) {
  602. neg = 1;
  603. cmp += 3;
  604. }
  605. for (i = 0; sched_feat_names[i]; i++) {
  606. int len = strlen(sched_feat_names[i]);
  607. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  608. if (neg)
  609. sysctl_sched_features &= ~(1UL << i);
  610. else
  611. sysctl_sched_features |= (1UL << i);
  612. break;
  613. }
  614. }
  615. if (!sched_feat_names[i])
  616. return -EINVAL;
  617. *ppos += cnt;
  618. return cnt;
  619. }
  620. static int sched_feat_open(struct inode *inode, struct file *filp)
  621. {
  622. return single_open(filp, sched_feat_show, NULL);
  623. }
  624. static const struct file_operations sched_feat_fops = {
  625. .open = sched_feat_open,
  626. .write = sched_feat_write,
  627. .read = seq_read,
  628. .llseek = seq_lseek,
  629. .release = single_release,
  630. };
  631. static __init int sched_init_debug(void)
  632. {
  633. debugfs_create_file("sched_features", 0644, NULL, NULL,
  634. &sched_feat_fops);
  635. return 0;
  636. }
  637. late_initcall(sched_init_debug);
  638. #endif
  639. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  640. /*
  641. * Number of tasks to iterate in a single balance run.
  642. * Limited because this is done with IRQs disabled.
  643. */
  644. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  645. /*
  646. * ratelimit for updating the group shares.
  647. * default: 0.25ms
  648. */
  649. unsigned int sysctl_sched_shares_ratelimit = 250000;
  650. unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
  651. /*
  652. * Inject some fuzzyness into changing the per-cpu group shares
  653. * this avoids remote rq-locks at the expense of fairness.
  654. * default: 4
  655. */
  656. unsigned int sysctl_sched_shares_thresh = 4;
  657. /*
  658. * period over which we average the RT time consumption, measured
  659. * in ms.
  660. *
  661. * default: 1s
  662. */
  663. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  664. /*
  665. * period over which we measure -rt task cpu usage in us.
  666. * default: 1s
  667. */
  668. unsigned int sysctl_sched_rt_period = 1000000;
  669. static __read_mostly int scheduler_running;
  670. /*
  671. * part of the period that we allow rt tasks to run in us.
  672. * default: 0.95s
  673. */
  674. int sysctl_sched_rt_runtime = 950000;
  675. static inline u64 global_rt_period(void)
  676. {
  677. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  678. }
  679. static inline u64 global_rt_runtime(void)
  680. {
  681. if (sysctl_sched_rt_runtime < 0)
  682. return RUNTIME_INF;
  683. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  684. }
  685. #ifndef prepare_arch_switch
  686. # define prepare_arch_switch(next) do { } while (0)
  687. #endif
  688. #ifndef finish_arch_switch
  689. # define finish_arch_switch(prev) do { } while (0)
  690. #endif
  691. static inline int task_current(struct rq *rq, struct task_struct *p)
  692. {
  693. return rq->curr == p;
  694. }
  695. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  696. static inline int task_running(struct rq *rq, struct task_struct *p)
  697. {
  698. return task_current(rq, p);
  699. }
  700. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  701. {
  702. }
  703. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  704. {
  705. #ifdef CONFIG_DEBUG_SPINLOCK
  706. /* this is a valid case when another task releases the spinlock */
  707. rq->lock.owner = current;
  708. #endif
  709. /*
  710. * If we are tracking spinlock dependencies then we have to
  711. * fix up the runqueue lock - which gets 'carried over' from
  712. * prev into current:
  713. */
  714. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  715. raw_spin_unlock_irq(&rq->lock);
  716. }
  717. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  718. static inline int task_running(struct rq *rq, struct task_struct *p)
  719. {
  720. #ifdef CONFIG_SMP
  721. return p->oncpu;
  722. #else
  723. return task_current(rq, p);
  724. #endif
  725. }
  726. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  727. {
  728. #ifdef CONFIG_SMP
  729. /*
  730. * We can optimise this out completely for !SMP, because the
  731. * SMP rebalancing from interrupt is the only thing that cares
  732. * here.
  733. */
  734. next->oncpu = 1;
  735. #endif
  736. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  737. raw_spin_unlock_irq(&rq->lock);
  738. #else
  739. raw_spin_unlock(&rq->lock);
  740. #endif
  741. }
  742. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  743. {
  744. #ifdef CONFIG_SMP
  745. /*
  746. * After ->oncpu is cleared, the task can be moved to a different CPU.
  747. * We must ensure this doesn't happen until the switch is completely
  748. * finished.
  749. */
  750. smp_wmb();
  751. prev->oncpu = 0;
  752. #endif
  753. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  754. local_irq_enable();
  755. #endif
  756. }
  757. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  758. /*
  759. * Check whether the task is waking, we use this to synchronize ->cpus_allowed
  760. * against ttwu().
  761. */
  762. static inline int task_is_waking(struct task_struct *p)
  763. {
  764. return unlikely(p->state == TASK_WAKING);
  765. }
  766. /*
  767. * __task_rq_lock - lock the runqueue a given task resides on.
  768. * Must be called interrupts disabled.
  769. */
  770. static inline struct rq *__task_rq_lock(struct task_struct *p)
  771. __acquires(rq->lock)
  772. {
  773. struct rq *rq;
  774. for (;;) {
  775. rq = task_rq(p);
  776. raw_spin_lock(&rq->lock);
  777. if (likely(rq == task_rq(p)))
  778. return rq;
  779. raw_spin_unlock(&rq->lock);
  780. }
  781. }
  782. /*
  783. * task_rq_lock - lock the runqueue a given task resides on and disable
  784. * interrupts. Note the ordering: we can safely lookup the task_rq without
  785. * explicitly disabling preemption.
  786. */
  787. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  788. __acquires(rq->lock)
  789. {
  790. struct rq *rq;
  791. for (;;) {
  792. local_irq_save(*flags);
  793. rq = task_rq(p);
  794. raw_spin_lock(&rq->lock);
  795. if (likely(rq == task_rq(p)))
  796. return rq;
  797. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  798. }
  799. }
  800. void task_rq_unlock_wait(struct task_struct *p)
  801. {
  802. struct rq *rq = task_rq(p);
  803. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  804. raw_spin_unlock_wait(&rq->lock);
  805. }
  806. static void __task_rq_unlock(struct rq *rq)
  807. __releases(rq->lock)
  808. {
  809. raw_spin_unlock(&rq->lock);
  810. }
  811. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  812. __releases(rq->lock)
  813. {
  814. raw_spin_unlock_irqrestore(&rq->lock, *flags);
  815. }
  816. /*
  817. * this_rq_lock - lock this runqueue and disable interrupts.
  818. */
  819. static struct rq *this_rq_lock(void)
  820. __acquires(rq->lock)
  821. {
  822. struct rq *rq;
  823. local_irq_disable();
  824. rq = this_rq();
  825. raw_spin_lock(&rq->lock);
  826. return rq;
  827. }
  828. #ifdef CONFIG_SCHED_HRTICK
  829. /*
  830. * Use HR-timers to deliver accurate preemption points.
  831. *
  832. * Its all a bit involved since we cannot program an hrt while holding the
  833. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  834. * reschedule event.
  835. *
  836. * When we get rescheduled we reprogram the hrtick_timer outside of the
  837. * rq->lock.
  838. */
  839. /*
  840. * Use hrtick when:
  841. * - enabled by features
  842. * - hrtimer is actually high res
  843. */
  844. static inline int hrtick_enabled(struct rq *rq)
  845. {
  846. if (!sched_feat(HRTICK))
  847. return 0;
  848. if (!cpu_active(cpu_of(rq)))
  849. return 0;
  850. return hrtimer_is_hres_active(&rq->hrtick_timer);
  851. }
  852. static void hrtick_clear(struct rq *rq)
  853. {
  854. if (hrtimer_active(&rq->hrtick_timer))
  855. hrtimer_cancel(&rq->hrtick_timer);
  856. }
  857. /*
  858. * High-resolution timer tick.
  859. * Runs from hardirq context with interrupts disabled.
  860. */
  861. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  862. {
  863. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  864. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  865. raw_spin_lock(&rq->lock);
  866. update_rq_clock(rq);
  867. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  868. raw_spin_unlock(&rq->lock);
  869. return HRTIMER_NORESTART;
  870. }
  871. #ifdef CONFIG_SMP
  872. /*
  873. * called from hardirq (IPI) context
  874. */
  875. static void __hrtick_start(void *arg)
  876. {
  877. struct rq *rq = arg;
  878. raw_spin_lock(&rq->lock);
  879. hrtimer_restart(&rq->hrtick_timer);
  880. rq->hrtick_csd_pending = 0;
  881. raw_spin_unlock(&rq->lock);
  882. }
  883. /*
  884. * Called to set the hrtick timer state.
  885. *
  886. * called with rq->lock held and irqs disabled
  887. */
  888. static void hrtick_start(struct rq *rq, u64 delay)
  889. {
  890. struct hrtimer *timer = &rq->hrtick_timer;
  891. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  892. hrtimer_set_expires(timer, time);
  893. if (rq == this_rq()) {
  894. hrtimer_restart(timer);
  895. } else if (!rq->hrtick_csd_pending) {
  896. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  897. rq->hrtick_csd_pending = 1;
  898. }
  899. }
  900. static int
  901. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  902. {
  903. int cpu = (int)(long)hcpu;
  904. switch (action) {
  905. case CPU_UP_CANCELED:
  906. case CPU_UP_CANCELED_FROZEN:
  907. case CPU_DOWN_PREPARE:
  908. case CPU_DOWN_PREPARE_FROZEN:
  909. case CPU_DEAD:
  910. case CPU_DEAD_FROZEN:
  911. hrtick_clear(cpu_rq(cpu));
  912. return NOTIFY_OK;
  913. }
  914. return NOTIFY_DONE;
  915. }
  916. static __init void init_hrtick(void)
  917. {
  918. hotcpu_notifier(hotplug_hrtick, 0);
  919. }
  920. #else
  921. /*
  922. * Called to set the hrtick timer state.
  923. *
  924. * called with rq->lock held and irqs disabled
  925. */
  926. static void hrtick_start(struct rq *rq, u64 delay)
  927. {
  928. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  929. HRTIMER_MODE_REL_PINNED, 0);
  930. }
  931. static inline void init_hrtick(void)
  932. {
  933. }
  934. #endif /* CONFIG_SMP */
  935. static void init_rq_hrtick(struct rq *rq)
  936. {
  937. #ifdef CONFIG_SMP
  938. rq->hrtick_csd_pending = 0;
  939. rq->hrtick_csd.flags = 0;
  940. rq->hrtick_csd.func = __hrtick_start;
  941. rq->hrtick_csd.info = rq;
  942. #endif
  943. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  944. rq->hrtick_timer.function = hrtick;
  945. }
  946. #else /* CONFIG_SCHED_HRTICK */
  947. static inline void hrtick_clear(struct rq *rq)
  948. {
  949. }
  950. static inline void init_rq_hrtick(struct rq *rq)
  951. {
  952. }
  953. static inline void init_hrtick(void)
  954. {
  955. }
  956. #endif /* CONFIG_SCHED_HRTICK */
  957. /*
  958. * resched_task - mark a task 'to be rescheduled now'.
  959. *
  960. * On UP this means the setting of the need_resched flag, on SMP it
  961. * might also involve a cross-CPU call to trigger the scheduler on
  962. * the target CPU.
  963. */
  964. #ifdef CONFIG_SMP
  965. #ifndef tsk_is_polling
  966. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  967. #endif
  968. static void resched_task(struct task_struct *p)
  969. {
  970. int cpu;
  971. assert_raw_spin_locked(&task_rq(p)->lock);
  972. if (test_tsk_need_resched(p))
  973. return;
  974. set_tsk_need_resched(p);
  975. cpu = task_cpu(p);
  976. if (cpu == smp_processor_id())
  977. return;
  978. /* NEED_RESCHED must be visible before we test polling */
  979. smp_mb();
  980. if (!tsk_is_polling(p))
  981. smp_send_reschedule(cpu);
  982. }
  983. static void resched_cpu(int cpu)
  984. {
  985. struct rq *rq = cpu_rq(cpu);
  986. unsigned long flags;
  987. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  988. return;
  989. resched_task(cpu_curr(cpu));
  990. raw_spin_unlock_irqrestore(&rq->lock, flags);
  991. }
  992. #ifdef CONFIG_NO_HZ
  993. /*
  994. * When add_timer_on() enqueues a timer into the timer wheel of an
  995. * idle CPU then this timer might expire before the next timer event
  996. * which is scheduled to wake up that CPU. In case of a completely
  997. * idle system the next event might even be infinite time into the
  998. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  999. * leaves the inner idle loop so the newly added timer is taken into
  1000. * account when the CPU goes back to idle and evaluates the timer
  1001. * wheel for the next timer event.
  1002. */
  1003. void wake_up_idle_cpu(int cpu)
  1004. {
  1005. struct rq *rq = cpu_rq(cpu);
  1006. if (cpu == smp_processor_id())
  1007. return;
  1008. /*
  1009. * This is safe, as this function is called with the timer
  1010. * wheel base lock of (cpu) held. When the CPU is on the way
  1011. * to idle and has not yet set rq->curr to idle then it will
  1012. * be serialized on the timer wheel base lock and take the new
  1013. * timer into account automatically.
  1014. */
  1015. if (rq->curr != rq->idle)
  1016. return;
  1017. /*
  1018. * We can set TIF_RESCHED on the idle task of the other CPU
  1019. * lockless. The worst case is that the other CPU runs the
  1020. * idle task through an additional NOOP schedule()
  1021. */
  1022. set_tsk_need_resched(rq->idle);
  1023. /* NEED_RESCHED must be visible before we test polling */
  1024. smp_mb();
  1025. if (!tsk_is_polling(rq->idle))
  1026. smp_send_reschedule(cpu);
  1027. }
  1028. int nohz_ratelimit(int cpu)
  1029. {
  1030. struct rq *rq = cpu_rq(cpu);
  1031. u64 diff = rq->clock - rq->nohz_stamp;
  1032. rq->nohz_stamp = rq->clock;
  1033. return diff < (NSEC_PER_SEC / HZ) >> 1;
  1034. }
  1035. #endif /* CONFIG_NO_HZ */
  1036. static u64 sched_avg_period(void)
  1037. {
  1038. return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
  1039. }
  1040. static void sched_avg_update(struct rq *rq)
  1041. {
  1042. s64 period = sched_avg_period();
  1043. while ((s64)(rq->clock - rq->age_stamp) > period) {
  1044. rq->age_stamp += period;
  1045. rq->rt_avg /= 2;
  1046. }
  1047. }
  1048. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1049. {
  1050. rq->rt_avg += rt_delta;
  1051. sched_avg_update(rq);
  1052. }
  1053. #else /* !CONFIG_SMP */
  1054. static void resched_task(struct task_struct *p)
  1055. {
  1056. assert_raw_spin_locked(&task_rq(p)->lock);
  1057. set_tsk_need_resched(p);
  1058. }
  1059. static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
  1060. {
  1061. }
  1062. #endif /* CONFIG_SMP */
  1063. #if BITS_PER_LONG == 32
  1064. # define WMULT_CONST (~0UL)
  1065. #else
  1066. # define WMULT_CONST (1UL << 32)
  1067. #endif
  1068. #define WMULT_SHIFT 32
  1069. /*
  1070. * Shift right and round:
  1071. */
  1072. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1073. /*
  1074. * delta *= weight / lw
  1075. */
  1076. static unsigned long
  1077. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1078. struct load_weight *lw)
  1079. {
  1080. u64 tmp;
  1081. if (!lw->inv_weight) {
  1082. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1083. lw->inv_weight = 1;
  1084. else
  1085. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1086. / (lw->weight+1);
  1087. }
  1088. tmp = (u64)delta_exec * weight;
  1089. /*
  1090. * Check whether we'd overflow the 64-bit multiplication:
  1091. */
  1092. if (unlikely(tmp > WMULT_CONST))
  1093. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1094. WMULT_SHIFT/2);
  1095. else
  1096. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1097. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1098. }
  1099. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1100. {
  1101. lw->weight += inc;
  1102. lw->inv_weight = 0;
  1103. }
  1104. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1105. {
  1106. lw->weight -= dec;
  1107. lw->inv_weight = 0;
  1108. }
  1109. /*
  1110. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1111. * of tasks with abnormal "nice" values across CPUs the contribution that
  1112. * each task makes to its run queue's load is weighted according to its
  1113. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1114. * scaled version of the new time slice allocation that they receive on time
  1115. * slice expiry etc.
  1116. */
  1117. #define WEIGHT_IDLEPRIO 3
  1118. #define WMULT_IDLEPRIO 1431655765
  1119. /*
  1120. * Nice levels are multiplicative, with a gentle 10% change for every
  1121. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1122. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1123. * that remained on nice 0.
  1124. *
  1125. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1126. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1127. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1128. * If a task goes up by ~10% and another task goes down by ~10% then
  1129. * the relative distance between them is ~25%.)
  1130. */
  1131. static const int prio_to_weight[40] = {
  1132. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1133. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1134. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1135. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1136. /* 0 */ 1024, 820, 655, 526, 423,
  1137. /* 5 */ 335, 272, 215, 172, 137,
  1138. /* 10 */ 110, 87, 70, 56, 45,
  1139. /* 15 */ 36, 29, 23, 18, 15,
  1140. };
  1141. /*
  1142. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1143. *
  1144. * In cases where the weight does not change often, we can use the
  1145. * precalculated inverse to speed up arithmetics by turning divisions
  1146. * into multiplications:
  1147. */
  1148. static const u32 prio_to_wmult[40] = {
  1149. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1150. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1151. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1152. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1153. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1154. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1155. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1156. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1157. };
  1158. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1159. enum cpuacct_stat_index {
  1160. CPUACCT_STAT_USER, /* ... user mode */
  1161. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1162. CPUACCT_STAT_NSTATS,
  1163. };
  1164. #ifdef CONFIG_CGROUP_CPUACCT
  1165. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1166. static void cpuacct_update_stats(struct task_struct *tsk,
  1167. enum cpuacct_stat_index idx, cputime_t val);
  1168. #else
  1169. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1170. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1171. enum cpuacct_stat_index idx, cputime_t val) {}
  1172. #endif
  1173. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1174. {
  1175. update_load_add(&rq->load, load);
  1176. }
  1177. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1178. {
  1179. update_load_sub(&rq->load, load);
  1180. }
  1181. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1182. typedef int (*tg_visitor)(struct task_group *, void *);
  1183. /*
  1184. * Iterate the full tree, calling @down when first entering a node and @up when
  1185. * leaving it for the final time.
  1186. */
  1187. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1188. {
  1189. struct task_group *parent, *child;
  1190. int ret;
  1191. rcu_read_lock();
  1192. parent = &root_task_group;
  1193. down:
  1194. ret = (*down)(parent, data);
  1195. if (ret)
  1196. goto out_unlock;
  1197. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1198. parent = child;
  1199. goto down;
  1200. up:
  1201. continue;
  1202. }
  1203. ret = (*up)(parent, data);
  1204. if (ret)
  1205. goto out_unlock;
  1206. child = parent;
  1207. parent = parent->parent;
  1208. if (parent)
  1209. goto up;
  1210. out_unlock:
  1211. rcu_read_unlock();
  1212. return ret;
  1213. }
  1214. static int tg_nop(struct task_group *tg, void *data)
  1215. {
  1216. return 0;
  1217. }
  1218. #endif
  1219. #ifdef CONFIG_SMP
  1220. /* Used instead of source_load when we know the type == 0 */
  1221. static unsigned long weighted_cpuload(const int cpu)
  1222. {
  1223. return cpu_rq(cpu)->load.weight;
  1224. }
  1225. /*
  1226. * Return a low guess at the load of a migration-source cpu weighted
  1227. * according to the scheduling class and "nice" value.
  1228. *
  1229. * We want to under-estimate the load of migration sources, to
  1230. * balance conservatively.
  1231. */
  1232. static unsigned long source_load(int cpu, int type)
  1233. {
  1234. struct rq *rq = cpu_rq(cpu);
  1235. unsigned long total = weighted_cpuload(cpu);
  1236. if (type == 0 || !sched_feat(LB_BIAS))
  1237. return total;
  1238. return min(rq->cpu_load[type-1], total);
  1239. }
  1240. /*
  1241. * Return a high guess at the load of a migration-target cpu weighted
  1242. * according to the scheduling class and "nice" value.
  1243. */
  1244. static unsigned long target_load(int cpu, int type)
  1245. {
  1246. struct rq *rq = cpu_rq(cpu);
  1247. unsigned long total = weighted_cpuload(cpu);
  1248. if (type == 0 || !sched_feat(LB_BIAS))
  1249. return total;
  1250. return max(rq->cpu_load[type-1], total);
  1251. }
  1252. static struct sched_group *group_of(int cpu)
  1253. {
  1254. struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
  1255. if (!sd)
  1256. return NULL;
  1257. return sd->groups;
  1258. }
  1259. static unsigned long power_of(int cpu)
  1260. {
  1261. struct sched_group *group = group_of(cpu);
  1262. if (!group)
  1263. return SCHED_LOAD_SCALE;
  1264. return group->cpu_power;
  1265. }
  1266. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1267. static unsigned long cpu_avg_load_per_task(int cpu)
  1268. {
  1269. struct rq *rq = cpu_rq(cpu);
  1270. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1271. if (nr_running)
  1272. rq->avg_load_per_task = rq->load.weight / nr_running;
  1273. else
  1274. rq->avg_load_per_task = 0;
  1275. return rq->avg_load_per_task;
  1276. }
  1277. #ifdef CONFIG_FAIR_GROUP_SCHED
  1278. static __read_mostly unsigned long __percpu *update_shares_data;
  1279. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1280. /*
  1281. * Calculate and set the cpu's group shares.
  1282. */
  1283. static void update_group_shares_cpu(struct task_group *tg, int cpu,
  1284. unsigned long sd_shares,
  1285. unsigned long sd_rq_weight,
  1286. unsigned long *usd_rq_weight)
  1287. {
  1288. unsigned long shares, rq_weight;
  1289. int boost = 0;
  1290. rq_weight = usd_rq_weight[cpu];
  1291. if (!rq_weight) {
  1292. boost = 1;
  1293. rq_weight = NICE_0_LOAD;
  1294. }
  1295. /*
  1296. * \Sum_j shares_j * rq_weight_i
  1297. * shares_i = -----------------------------
  1298. * \Sum_j rq_weight_j
  1299. */
  1300. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1301. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1302. if (abs(shares - tg->se[cpu]->load.weight) >
  1303. sysctl_sched_shares_thresh) {
  1304. struct rq *rq = cpu_rq(cpu);
  1305. unsigned long flags;
  1306. raw_spin_lock_irqsave(&rq->lock, flags);
  1307. tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
  1308. tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
  1309. __set_se_shares(tg->se[cpu], shares);
  1310. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1311. }
  1312. }
  1313. /*
  1314. * Re-compute the task group their per cpu shares over the given domain.
  1315. * This needs to be done in a bottom-up fashion because the rq weight of a
  1316. * parent group depends on the shares of its child groups.
  1317. */
  1318. static int tg_shares_up(struct task_group *tg, void *data)
  1319. {
  1320. unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
  1321. unsigned long *usd_rq_weight;
  1322. struct sched_domain *sd = data;
  1323. unsigned long flags;
  1324. int i;
  1325. if (!tg->se[0])
  1326. return 0;
  1327. local_irq_save(flags);
  1328. usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
  1329. for_each_cpu(i, sched_domain_span(sd)) {
  1330. weight = tg->cfs_rq[i]->load.weight;
  1331. usd_rq_weight[i] = weight;
  1332. rq_weight += weight;
  1333. /*
  1334. * If there are currently no tasks on the cpu pretend there
  1335. * is one of average load so that when a new task gets to
  1336. * run here it will not get delayed by group starvation.
  1337. */
  1338. if (!weight)
  1339. weight = NICE_0_LOAD;
  1340. sum_weight += weight;
  1341. shares += tg->cfs_rq[i]->shares;
  1342. }
  1343. if (!rq_weight)
  1344. rq_weight = sum_weight;
  1345. if ((!shares && rq_weight) || shares > tg->shares)
  1346. shares = tg->shares;
  1347. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1348. shares = tg->shares;
  1349. for_each_cpu(i, sched_domain_span(sd))
  1350. update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
  1351. local_irq_restore(flags);
  1352. return 0;
  1353. }
  1354. /*
  1355. * Compute the cpu's hierarchical load factor for each task group.
  1356. * This needs to be done in a top-down fashion because the load of a child
  1357. * group is a fraction of its parents load.
  1358. */
  1359. static int tg_load_down(struct task_group *tg, void *data)
  1360. {
  1361. unsigned long load;
  1362. long cpu = (long)data;
  1363. if (!tg->parent) {
  1364. load = cpu_rq(cpu)->load.weight;
  1365. } else {
  1366. load = tg->parent->cfs_rq[cpu]->h_load;
  1367. load *= tg->cfs_rq[cpu]->shares;
  1368. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1369. }
  1370. tg->cfs_rq[cpu]->h_load = load;
  1371. return 0;
  1372. }
  1373. static void update_shares(struct sched_domain *sd)
  1374. {
  1375. s64 elapsed;
  1376. u64 now;
  1377. if (root_task_group_empty())
  1378. return;
  1379. now = cpu_clock(raw_smp_processor_id());
  1380. elapsed = now - sd->last_update;
  1381. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1382. sd->last_update = now;
  1383. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1384. }
  1385. }
  1386. static void update_h_load(long cpu)
  1387. {
  1388. if (root_task_group_empty())
  1389. return;
  1390. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1391. }
  1392. #else
  1393. static inline void update_shares(struct sched_domain *sd)
  1394. {
  1395. }
  1396. #endif
  1397. #ifdef CONFIG_PREEMPT
  1398. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  1399. /*
  1400. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1401. * way at the expense of forcing extra atomic operations in all
  1402. * invocations. This assures that the double_lock is acquired using the
  1403. * same underlying policy as the spinlock_t on this architecture, which
  1404. * reduces latency compared to the unfair variant below. However, it
  1405. * also adds more overhead and therefore may reduce throughput.
  1406. */
  1407. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1408. __releases(this_rq->lock)
  1409. __acquires(busiest->lock)
  1410. __acquires(this_rq->lock)
  1411. {
  1412. raw_spin_unlock(&this_rq->lock);
  1413. double_rq_lock(this_rq, busiest);
  1414. return 1;
  1415. }
  1416. #else
  1417. /*
  1418. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1419. * latency by eliminating extra atomic operations when the locks are
  1420. * already in proper order on entry. This favors lower cpu-ids and will
  1421. * grant the double lock to lower cpus over higher ids under contention,
  1422. * regardless of entry order into the function.
  1423. */
  1424. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1425. __releases(this_rq->lock)
  1426. __acquires(busiest->lock)
  1427. __acquires(this_rq->lock)
  1428. {
  1429. int ret = 0;
  1430. if (unlikely(!raw_spin_trylock(&busiest->lock))) {
  1431. if (busiest < this_rq) {
  1432. raw_spin_unlock(&this_rq->lock);
  1433. raw_spin_lock(&busiest->lock);
  1434. raw_spin_lock_nested(&this_rq->lock,
  1435. SINGLE_DEPTH_NESTING);
  1436. ret = 1;
  1437. } else
  1438. raw_spin_lock_nested(&busiest->lock,
  1439. SINGLE_DEPTH_NESTING);
  1440. }
  1441. return ret;
  1442. }
  1443. #endif /* CONFIG_PREEMPT */
  1444. /*
  1445. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1446. */
  1447. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1448. {
  1449. if (unlikely(!irqs_disabled())) {
  1450. /* printk() doesn't work good under rq->lock */
  1451. raw_spin_unlock(&this_rq->lock);
  1452. BUG_ON(1);
  1453. }
  1454. return _double_lock_balance(this_rq, busiest);
  1455. }
  1456. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1457. __releases(busiest->lock)
  1458. {
  1459. raw_spin_unlock(&busiest->lock);
  1460. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1461. }
  1462. /*
  1463. * double_rq_lock - safely lock two runqueues
  1464. *
  1465. * Note this does not disable interrupts like task_rq_lock,
  1466. * you need to do so manually before calling.
  1467. */
  1468. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1469. __acquires(rq1->lock)
  1470. __acquires(rq2->lock)
  1471. {
  1472. BUG_ON(!irqs_disabled());
  1473. if (rq1 == rq2) {
  1474. raw_spin_lock(&rq1->lock);
  1475. __acquire(rq2->lock); /* Fake it out ;) */
  1476. } else {
  1477. if (rq1 < rq2) {
  1478. raw_spin_lock(&rq1->lock);
  1479. raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  1480. } else {
  1481. raw_spin_lock(&rq2->lock);
  1482. raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  1483. }
  1484. }
  1485. }
  1486. /*
  1487. * double_rq_unlock - safely unlock two runqueues
  1488. *
  1489. * Note this does not restore interrupts like task_rq_unlock,
  1490. * you need to do so manually after calling.
  1491. */
  1492. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1493. __releases(rq1->lock)
  1494. __releases(rq2->lock)
  1495. {
  1496. raw_spin_unlock(&rq1->lock);
  1497. if (rq1 != rq2)
  1498. raw_spin_unlock(&rq2->lock);
  1499. else
  1500. __release(rq2->lock);
  1501. }
  1502. #endif
  1503. #ifdef CONFIG_FAIR_GROUP_SCHED
  1504. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1505. {
  1506. #ifdef CONFIG_SMP
  1507. cfs_rq->shares = shares;
  1508. #endif
  1509. }
  1510. #endif
  1511. static void calc_load_account_idle(struct rq *this_rq);
  1512. static void update_sysctl(void);
  1513. static int get_update_sysctl_factor(void);
  1514. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1515. {
  1516. set_task_rq(p, cpu);
  1517. #ifdef CONFIG_SMP
  1518. /*
  1519. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1520. * successfuly executed on another CPU. We must ensure that updates of
  1521. * per-task data have been completed by this moment.
  1522. */
  1523. smp_wmb();
  1524. task_thread_info(p)->cpu = cpu;
  1525. #endif
  1526. }
  1527. static const struct sched_class rt_sched_class;
  1528. #define sched_class_highest (&rt_sched_class)
  1529. #define for_each_class(class) \
  1530. for (class = sched_class_highest; class; class = class->next)
  1531. #include "sched_stats.h"
  1532. static void inc_nr_running(struct rq *rq)
  1533. {
  1534. rq->nr_running++;
  1535. }
  1536. static void dec_nr_running(struct rq *rq)
  1537. {
  1538. rq->nr_running--;
  1539. }
  1540. static void set_load_weight(struct task_struct *p)
  1541. {
  1542. if (task_has_rt_policy(p)) {
  1543. p->se.load.weight = prio_to_weight[0] * 2;
  1544. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1545. return;
  1546. }
  1547. /*
  1548. * SCHED_IDLE tasks get minimal weight:
  1549. */
  1550. if (p->policy == SCHED_IDLE) {
  1551. p->se.load.weight = WEIGHT_IDLEPRIO;
  1552. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1553. return;
  1554. }
  1555. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1556. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1557. }
  1558. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  1559. {
  1560. update_rq_clock(rq);
  1561. sched_info_queued(p);
  1562. p->sched_class->enqueue_task(rq, p, flags);
  1563. p->se.on_rq = 1;
  1564. }
  1565. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  1566. {
  1567. update_rq_clock(rq);
  1568. sched_info_dequeued(p);
  1569. p->sched_class->dequeue_task(rq, p, flags);
  1570. p->se.on_rq = 0;
  1571. }
  1572. /*
  1573. * activate_task - move a task to the runqueue.
  1574. */
  1575. static void activate_task(struct rq *rq, struct task_struct *p, int flags)
  1576. {
  1577. if (task_contributes_to_load(p))
  1578. rq->nr_uninterruptible--;
  1579. enqueue_task(rq, p, flags);
  1580. inc_nr_running(rq);
  1581. }
  1582. /*
  1583. * deactivate_task - remove a task from the runqueue.
  1584. */
  1585. static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  1586. {
  1587. if (task_contributes_to_load(p))
  1588. rq->nr_uninterruptible++;
  1589. dequeue_task(rq, p, flags);
  1590. dec_nr_running(rq);
  1591. }
  1592. #include "sched_idletask.c"
  1593. #include "sched_fair.c"
  1594. #include "sched_rt.c"
  1595. #ifdef CONFIG_SCHED_DEBUG
  1596. # include "sched_debug.c"
  1597. #endif
  1598. /*
  1599. * __normal_prio - return the priority that is based on the static prio
  1600. */
  1601. static inline int __normal_prio(struct task_struct *p)
  1602. {
  1603. return p->static_prio;
  1604. }
  1605. /*
  1606. * Calculate the expected normal priority: i.e. priority
  1607. * without taking RT-inheritance into account. Might be
  1608. * boosted by interactivity modifiers. Changes upon fork,
  1609. * setprio syscalls, and whenever the interactivity
  1610. * estimator recalculates.
  1611. */
  1612. static inline int normal_prio(struct task_struct *p)
  1613. {
  1614. int prio;
  1615. if (task_has_rt_policy(p))
  1616. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1617. else
  1618. prio = __normal_prio(p);
  1619. return prio;
  1620. }
  1621. /*
  1622. * Calculate the current priority, i.e. the priority
  1623. * taken into account by the scheduler. This value might
  1624. * be boosted by RT tasks, or might be boosted by
  1625. * interactivity modifiers. Will be RT if the task got
  1626. * RT-boosted. If not then it returns p->normal_prio.
  1627. */
  1628. static int effective_prio(struct task_struct *p)
  1629. {
  1630. p->normal_prio = normal_prio(p);
  1631. /*
  1632. * If we are RT tasks or we were boosted to RT priority,
  1633. * keep the priority unchanged. Otherwise, update priority
  1634. * to the normal priority:
  1635. */
  1636. if (!rt_prio(p->prio))
  1637. return p->normal_prio;
  1638. return p->prio;
  1639. }
  1640. /**
  1641. * task_curr - is this task currently executing on a CPU?
  1642. * @p: the task in question.
  1643. */
  1644. inline int task_curr(const struct task_struct *p)
  1645. {
  1646. return cpu_curr(task_cpu(p)) == p;
  1647. }
  1648. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1649. const struct sched_class *prev_class,
  1650. int oldprio, int running)
  1651. {
  1652. if (prev_class != p->sched_class) {
  1653. if (prev_class->switched_from)
  1654. prev_class->switched_from(rq, p, running);
  1655. p->sched_class->switched_to(rq, p, running);
  1656. } else
  1657. p->sched_class->prio_changed(rq, p, oldprio, running);
  1658. }
  1659. #ifdef CONFIG_SMP
  1660. /*
  1661. * Is this task likely cache-hot:
  1662. */
  1663. static int
  1664. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1665. {
  1666. s64 delta;
  1667. if (p->sched_class != &fair_sched_class)
  1668. return 0;
  1669. /*
  1670. * Buddy candidates are cache hot:
  1671. */
  1672. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  1673. (&p->se == cfs_rq_of(&p->se)->next ||
  1674. &p->se == cfs_rq_of(&p->se)->last))
  1675. return 1;
  1676. if (sysctl_sched_migration_cost == -1)
  1677. return 1;
  1678. if (sysctl_sched_migration_cost == 0)
  1679. return 0;
  1680. delta = now - p->se.exec_start;
  1681. return delta < (s64)sysctl_sched_migration_cost;
  1682. }
  1683. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1684. {
  1685. #ifdef CONFIG_SCHED_DEBUG
  1686. /*
  1687. * We should never call set_task_cpu() on a blocked task,
  1688. * ttwu() will sort out the placement.
  1689. */
  1690. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1691. !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
  1692. #endif
  1693. trace_sched_migrate_task(p, new_cpu);
  1694. if (task_cpu(p) != new_cpu) {
  1695. p->se.nr_migrations++;
  1696. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
  1697. }
  1698. __set_task_cpu(p, new_cpu);
  1699. }
  1700. struct migration_req {
  1701. struct list_head list;
  1702. struct task_struct *task;
  1703. int dest_cpu;
  1704. struct completion done;
  1705. };
  1706. /*
  1707. * The task's runqueue lock must be held.
  1708. * Returns true if you have to wait for migration thread.
  1709. */
  1710. static int
  1711. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1712. {
  1713. struct rq *rq = task_rq(p);
  1714. /*
  1715. * If the task is not on a runqueue (and not running), then
  1716. * the next wake-up will properly place the task.
  1717. */
  1718. if (!p->se.on_rq && !task_running(rq, p))
  1719. return 0;
  1720. init_completion(&req->done);
  1721. req->task = p;
  1722. req->dest_cpu = dest_cpu;
  1723. list_add(&req->list, &rq->migration_queue);
  1724. return 1;
  1725. }
  1726. /*
  1727. * wait_task_context_switch - wait for a thread to complete at least one
  1728. * context switch.
  1729. *
  1730. * @p must not be current.
  1731. */
  1732. void wait_task_context_switch(struct task_struct *p)
  1733. {
  1734. unsigned long nvcsw, nivcsw, flags;
  1735. int running;
  1736. struct rq *rq;
  1737. nvcsw = p->nvcsw;
  1738. nivcsw = p->nivcsw;
  1739. for (;;) {
  1740. /*
  1741. * The runqueue is assigned before the actual context
  1742. * switch. We need to take the runqueue lock.
  1743. *
  1744. * We could check initially without the lock but it is
  1745. * very likely that we need to take the lock in every
  1746. * iteration.
  1747. */
  1748. rq = task_rq_lock(p, &flags);
  1749. running = task_running(rq, p);
  1750. task_rq_unlock(rq, &flags);
  1751. if (likely(!running))
  1752. break;
  1753. /*
  1754. * The switch count is incremented before the actual
  1755. * context switch. We thus wait for two switches to be
  1756. * sure at least one completed.
  1757. */
  1758. if ((p->nvcsw - nvcsw) > 1)
  1759. break;
  1760. if ((p->nivcsw - nivcsw) > 1)
  1761. break;
  1762. cpu_relax();
  1763. }
  1764. }
  1765. /*
  1766. * wait_task_inactive - wait for a thread to unschedule.
  1767. *
  1768. * If @match_state is nonzero, it's the @p->state value just checked and
  1769. * not expected to change. If it changes, i.e. @p might have woken up,
  1770. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1771. * we return a positive number (its total switch count). If a second call
  1772. * a short while later returns the same number, the caller can be sure that
  1773. * @p has remained unscheduled the whole time.
  1774. *
  1775. * The caller must ensure that the task *will* unschedule sometime soon,
  1776. * else this function might spin for a *long* time. This function can't
  1777. * be called with interrupts off, or it may introduce deadlock with
  1778. * smp_call_function() if an IPI is sent by the same process we are
  1779. * waiting to become inactive.
  1780. */
  1781. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1782. {
  1783. unsigned long flags;
  1784. int running, on_rq;
  1785. unsigned long ncsw;
  1786. struct rq *rq;
  1787. for (;;) {
  1788. /*
  1789. * We do the initial early heuristics without holding
  1790. * any task-queue locks at all. We'll only try to get
  1791. * the runqueue lock when things look like they will
  1792. * work out!
  1793. */
  1794. rq = task_rq(p);
  1795. /*
  1796. * If the task is actively running on another CPU
  1797. * still, just relax and busy-wait without holding
  1798. * any locks.
  1799. *
  1800. * NOTE! Since we don't hold any locks, it's not
  1801. * even sure that "rq" stays as the right runqueue!
  1802. * But we don't care, since "task_running()" will
  1803. * return false if the runqueue has changed and p
  1804. * is actually now running somewhere else!
  1805. */
  1806. while (task_running(rq, p)) {
  1807. if (match_state && unlikely(p->state != match_state))
  1808. return 0;
  1809. cpu_relax();
  1810. }
  1811. /*
  1812. * Ok, time to look more closely! We need the rq
  1813. * lock now, to be *sure*. If we're wrong, we'll
  1814. * just go back and repeat.
  1815. */
  1816. rq = task_rq_lock(p, &flags);
  1817. trace_sched_wait_task(p);
  1818. running = task_running(rq, p);
  1819. on_rq = p->se.on_rq;
  1820. ncsw = 0;
  1821. if (!match_state || p->state == match_state)
  1822. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1823. task_rq_unlock(rq, &flags);
  1824. /*
  1825. * If it changed from the expected state, bail out now.
  1826. */
  1827. if (unlikely(!ncsw))
  1828. break;
  1829. /*
  1830. * Was it really running after all now that we
  1831. * checked with the proper locks actually held?
  1832. *
  1833. * Oops. Go back and try again..
  1834. */
  1835. if (unlikely(running)) {
  1836. cpu_relax();
  1837. continue;
  1838. }
  1839. /*
  1840. * It's not enough that it's not actively running,
  1841. * it must be off the runqueue _entirely_, and not
  1842. * preempted!
  1843. *
  1844. * So if it was still runnable (but just not actively
  1845. * running right now), it's preempted, and we should
  1846. * yield - it could be a while.
  1847. */
  1848. if (unlikely(on_rq)) {
  1849. schedule_timeout_uninterruptible(1);
  1850. continue;
  1851. }
  1852. /*
  1853. * Ahh, all good. It wasn't running, and it wasn't
  1854. * runnable, which means that it will never become
  1855. * running in the future either. We're all done!
  1856. */
  1857. break;
  1858. }
  1859. return ncsw;
  1860. }
  1861. /***
  1862. * kick_process - kick a running thread to enter/exit the kernel
  1863. * @p: the to-be-kicked thread
  1864. *
  1865. * Cause a process which is running on another CPU to enter
  1866. * kernel-mode, without any delay. (to get signals handled.)
  1867. *
  1868. * NOTE: this function doesnt have to take the runqueue lock,
  1869. * because all it wants to ensure is that the remote task enters
  1870. * the kernel. If the IPI races and the task has been migrated
  1871. * to another CPU then no harm is done and the purpose has been
  1872. * achieved as well.
  1873. */
  1874. void kick_process(struct task_struct *p)
  1875. {
  1876. int cpu;
  1877. preempt_disable();
  1878. cpu = task_cpu(p);
  1879. if ((cpu != smp_processor_id()) && task_curr(p))
  1880. smp_send_reschedule(cpu);
  1881. preempt_enable();
  1882. }
  1883. EXPORT_SYMBOL_GPL(kick_process);
  1884. #endif /* CONFIG_SMP */
  1885. /**
  1886. * task_oncpu_function_call - call a function on the cpu on which a task runs
  1887. * @p: the task to evaluate
  1888. * @func: the function to be called
  1889. * @info: the function call argument
  1890. *
  1891. * Calls the function @func when the task is currently running. This might
  1892. * be on the current CPU, which just calls the function directly
  1893. */
  1894. void task_oncpu_function_call(struct task_struct *p,
  1895. void (*func) (void *info), void *info)
  1896. {
  1897. int cpu;
  1898. preempt_disable();
  1899. cpu = task_cpu(p);
  1900. if (task_curr(p))
  1901. smp_call_function_single(cpu, func, info, 1);
  1902. preempt_enable();
  1903. }
  1904. #ifdef CONFIG_SMP
  1905. /*
  1906. * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
  1907. */
  1908. static int select_fallback_rq(int cpu, struct task_struct *p)
  1909. {
  1910. int dest_cpu;
  1911. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
  1912. /* Look for allowed, online CPU in same node. */
  1913. for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
  1914. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  1915. return dest_cpu;
  1916. /* Any allowed, online CPU? */
  1917. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
  1918. if (dest_cpu < nr_cpu_ids)
  1919. return dest_cpu;
  1920. /* No more Mr. Nice Guy. */
  1921. if (unlikely(dest_cpu >= nr_cpu_ids)) {
  1922. dest_cpu = cpuset_cpus_allowed_fallback(p);
  1923. /*
  1924. * Don't tell them about moving exiting tasks or
  1925. * kernel threads (both mm NULL), since they never
  1926. * leave kernel.
  1927. */
  1928. if (p->mm && printk_ratelimit()) {
  1929. printk(KERN_INFO "process %d (%s) no "
  1930. "longer affine to cpu%d\n",
  1931. task_pid_nr(p), p->comm, cpu);
  1932. }
  1933. }
  1934. return dest_cpu;
  1935. }
  1936. /*
  1937. * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
  1938. */
  1939. static inline
  1940. int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
  1941. {
  1942. int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
  1943. /*
  1944. * In order not to call set_task_cpu() on a blocking task we need
  1945. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1946. * cpu.
  1947. *
  1948. * Since this is common to all placement strategies, this lives here.
  1949. *
  1950. * [ this allows ->select_task() to simply return task_cpu(p) and
  1951. * not worry about this generic constraint ]
  1952. */
  1953. if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
  1954. !cpu_online(cpu)))
  1955. cpu = select_fallback_rq(task_cpu(p), p);
  1956. return cpu;
  1957. }
  1958. static void update_avg(u64 *avg, u64 sample)
  1959. {
  1960. s64 diff = sample - *avg;
  1961. *avg += diff >> 3;
  1962. }
  1963. #endif
  1964. /***
  1965. * try_to_wake_up - wake up a thread
  1966. * @p: the to-be-woken-up thread
  1967. * @state: the mask of task states that can be woken
  1968. * @sync: do a synchronous wakeup?
  1969. *
  1970. * Put it on the run-queue if it's not already there. The "current"
  1971. * thread is always on the run-queue (except when the actual
  1972. * re-schedule is in progress), and as such you're allowed to do
  1973. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1974. * runnable without the overhead of this.
  1975. *
  1976. * returns failure only if the task is already active.
  1977. */
  1978. static int try_to_wake_up(struct task_struct *p, unsigned int state,
  1979. int wake_flags)
  1980. {
  1981. int cpu, orig_cpu, this_cpu, success = 0;
  1982. unsigned long flags;
  1983. unsigned long en_flags = ENQUEUE_WAKEUP;
  1984. struct rq *rq;
  1985. this_cpu = get_cpu();
  1986. smp_wmb();
  1987. rq = task_rq_lock(p, &flags);
  1988. if (!(p->state & state))
  1989. goto out;
  1990. if (p->se.on_rq)
  1991. goto out_running;
  1992. cpu = task_cpu(p);
  1993. orig_cpu = cpu;
  1994. #ifdef CONFIG_SMP
  1995. if (unlikely(task_running(rq, p)))
  1996. goto out_activate;
  1997. /*
  1998. * In order to handle concurrent wakeups and release the rq->lock
  1999. * we put the task in TASK_WAKING state.
  2000. *
  2001. * First fix up the nr_uninterruptible count:
  2002. */
  2003. if (task_contributes_to_load(p)) {
  2004. if (likely(cpu_online(orig_cpu)))
  2005. rq->nr_uninterruptible--;
  2006. else
  2007. this_rq()->nr_uninterruptible--;
  2008. }
  2009. p->state = TASK_WAKING;
  2010. if (p->sched_class->task_waking) {
  2011. p->sched_class->task_waking(rq, p);
  2012. en_flags |= ENQUEUE_WAKING;
  2013. }
  2014. cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
  2015. if (cpu != orig_cpu)
  2016. set_task_cpu(p, cpu);
  2017. __task_rq_unlock(rq);
  2018. rq = cpu_rq(cpu);
  2019. raw_spin_lock(&rq->lock);
  2020. /*
  2021. * We migrated the task without holding either rq->lock, however
  2022. * since the task is not on the task list itself, nobody else
  2023. * will try and migrate the task, hence the rq should match the
  2024. * cpu we just moved it to.
  2025. */
  2026. WARN_ON(task_cpu(p) != cpu);
  2027. WARN_ON(p->state != TASK_WAKING);
  2028. #ifdef CONFIG_SCHEDSTATS
  2029. schedstat_inc(rq, ttwu_count);
  2030. if (cpu == this_cpu)
  2031. schedstat_inc(rq, ttwu_local);
  2032. else {
  2033. struct sched_domain *sd;
  2034. for_each_domain(this_cpu, sd) {
  2035. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2036. schedstat_inc(sd, ttwu_wake_remote);
  2037. break;
  2038. }
  2039. }
  2040. }
  2041. #endif /* CONFIG_SCHEDSTATS */
  2042. out_activate:
  2043. #endif /* CONFIG_SMP */
  2044. schedstat_inc(p, se.statistics.nr_wakeups);
  2045. if (wake_flags & WF_SYNC)
  2046. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  2047. if (orig_cpu != cpu)
  2048. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  2049. if (cpu == this_cpu)
  2050. schedstat_inc(p, se.statistics.nr_wakeups_local);
  2051. else
  2052. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  2053. activate_task(rq, p, en_flags);
  2054. success = 1;
  2055. out_running:
  2056. trace_sched_wakeup(p, success);
  2057. check_preempt_curr(rq, p, wake_flags);
  2058. p->state = TASK_RUNNING;
  2059. #ifdef CONFIG_SMP
  2060. if (p->sched_class->task_woken)
  2061. p->sched_class->task_woken(rq, p);
  2062. if (unlikely(rq->idle_stamp)) {
  2063. u64 delta = rq->clock - rq->idle_stamp;
  2064. u64 max = 2*sysctl_sched_migration_cost;
  2065. if (delta > max)
  2066. rq->avg_idle = max;
  2067. else
  2068. update_avg(&rq->avg_idle, delta);
  2069. rq->idle_stamp = 0;
  2070. }
  2071. #endif
  2072. out:
  2073. task_rq_unlock(rq, &flags);
  2074. put_cpu();
  2075. return success;
  2076. }
  2077. /**
  2078. * wake_up_process - Wake up a specific process
  2079. * @p: The process to be woken up.
  2080. *
  2081. * Attempt to wake up the nominated process and move it to the set of runnable
  2082. * processes. Returns 1 if the process was woken up, 0 if it was already
  2083. * running.
  2084. *
  2085. * It may be assumed that this function implies a write memory barrier before
  2086. * changing the task state if and only if any tasks are woken up.
  2087. */
  2088. int wake_up_process(struct task_struct *p)
  2089. {
  2090. return try_to_wake_up(p, TASK_ALL, 0);
  2091. }
  2092. EXPORT_SYMBOL(wake_up_process);
  2093. int wake_up_state(struct task_struct *p, unsigned int state)
  2094. {
  2095. return try_to_wake_up(p, state, 0);
  2096. }
  2097. /*
  2098. * Perform scheduler related setup for a newly forked process p.
  2099. * p is forked by current.
  2100. *
  2101. * __sched_fork() is basic setup used by init_idle() too:
  2102. */
  2103. static void __sched_fork(struct task_struct *p)
  2104. {
  2105. p->se.exec_start = 0;
  2106. p->se.sum_exec_runtime = 0;
  2107. p->se.prev_sum_exec_runtime = 0;
  2108. p->se.nr_migrations = 0;
  2109. #ifdef CONFIG_SCHEDSTATS
  2110. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  2111. #endif
  2112. INIT_LIST_HEAD(&p->rt.run_list);
  2113. p->se.on_rq = 0;
  2114. INIT_LIST_HEAD(&p->se.group_node);
  2115. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2116. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2117. #endif
  2118. }
  2119. /*
  2120. * fork()/clone()-time setup:
  2121. */
  2122. void sched_fork(struct task_struct *p, int clone_flags)
  2123. {
  2124. int cpu = get_cpu();
  2125. __sched_fork(p);
  2126. /*
  2127. * We mark the process as running here. This guarantees that
  2128. * nobody will actually run it, and a signal or other external
  2129. * event cannot wake it up and insert it on the runqueue either.
  2130. */
  2131. p->state = TASK_RUNNING;
  2132. /*
  2133. * Revert to default priority/policy on fork if requested.
  2134. */
  2135. if (unlikely(p->sched_reset_on_fork)) {
  2136. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
  2137. p->policy = SCHED_NORMAL;
  2138. p->normal_prio = p->static_prio;
  2139. }
  2140. if (PRIO_TO_NICE(p->static_prio) < 0) {
  2141. p->static_prio = NICE_TO_PRIO(0);
  2142. p->normal_prio = p->static_prio;
  2143. set_load_weight(p);
  2144. }
  2145. /*
  2146. * We don't need the reset flag anymore after the fork. It has
  2147. * fulfilled its duty:
  2148. */
  2149. p->sched_reset_on_fork = 0;
  2150. }
  2151. /*
  2152. * Make sure we do not leak PI boosting priority to the child.
  2153. */
  2154. p->prio = current->normal_prio;
  2155. if (!rt_prio(p->prio))
  2156. p->sched_class = &fair_sched_class;
  2157. if (p->sched_class->task_fork)
  2158. p->sched_class->task_fork(p);
  2159. set_task_cpu(p, cpu);
  2160. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2161. if (likely(sched_info_on()))
  2162. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2163. #endif
  2164. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2165. p->oncpu = 0;
  2166. #endif
  2167. #ifdef CONFIG_PREEMPT
  2168. /* Want to start with kernel preemption disabled. */
  2169. task_thread_info(p)->preempt_count = 1;
  2170. #endif
  2171. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2172. put_cpu();
  2173. }
  2174. /*
  2175. * wake_up_new_task - wake up a newly created task for the first time.
  2176. *
  2177. * This function will do some initial scheduler statistics housekeeping
  2178. * that must be done for every newly created context, then puts the task
  2179. * on the runqueue and wakes it.
  2180. */
  2181. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2182. {
  2183. unsigned long flags;
  2184. struct rq *rq;
  2185. int cpu __maybe_unused = get_cpu();
  2186. #ifdef CONFIG_SMP
  2187. rq = task_rq_lock(p, &flags);
  2188. p->state = TASK_WAKING;
  2189. /*
  2190. * Fork balancing, do it here and not earlier because:
  2191. * - cpus_allowed can change in the fork path
  2192. * - any previously selected cpu might disappear through hotplug
  2193. *
  2194. * We set TASK_WAKING so that select_task_rq() can drop rq->lock
  2195. * without people poking at ->cpus_allowed.
  2196. */
  2197. cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
  2198. set_task_cpu(p, cpu);
  2199. p->state = TASK_RUNNING;
  2200. task_rq_unlock(rq, &flags);
  2201. #endif
  2202. rq = task_rq_lock(p, &flags);
  2203. activate_task(rq, p, 0);
  2204. trace_sched_wakeup_new(p, 1);
  2205. check_preempt_curr(rq, p, WF_FORK);
  2206. #ifdef CONFIG_SMP
  2207. if (p->sched_class->task_woken)
  2208. p->sched_class->task_woken(rq, p);
  2209. #endif
  2210. task_rq_unlock(rq, &flags);
  2211. put_cpu();
  2212. }
  2213. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2214. /**
  2215. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2216. * @notifier: notifier struct to register
  2217. */
  2218. void preempt_notifier_register(struct preempt_notifier *notifier)
  2219. {
  2220. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2221. }
  2222. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2223. /**
  2224. * preempt_notifier_unregister - no longer interested in preemption notifications
  2225. * @notifier: notifier struct to unregister
  2226. *
  2227. * This is safe to call from within a preemption notifier.
  2228. */
  2229. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2230. {
  2231. hlist_del(&notifier->link);
  2232. }
  2233. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2234. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2235. {
  2236. struct preempt_notifier *notifier;
  2237. struct hlist_node *node;
  2238. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2239. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2240. }
  2241. static void
  2242. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2243. struct task_struct *next)
  2244. {
  2245. struct preempt_notifier *notifier;
  2246. struct hlist_node *node;
  2247. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2248. notifier->ops->sched_out(notifier, next);
  2249. }
  2250. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2251. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2252. {
  2253. }
  2254. static void
  2255. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2256. struct task_struct *next)
  2257. {
  2258. }
  2259. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2260. /**
  2261. * prepare_task_switch - prepare to switch tasks
  2262. * @rq: the runqueue preparing to switch
  2263. * @prev: the current task that is being switched out
  2264. * @next: the task we are going to switch to.
  2265. *
  2266. * This is called with the rq lock held and interrupts off. It must
  2267. * be paired with a subsequent finish_task_switch after the context
  2268. * switch.
  2269. *
  2270. * prepare_task_switch sets up locking and calls architecture specific
  2271. * hooks.
  2272. */
  2273. static inline void
  2274. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2275. struct task_struct *next)
  2276. {
  2277. fire_sched_out_preempt_notifiers(prev, next);
  2278. prepare_lock_switch(rq, next);
  2279. prepare_arch_switch(next);
  2280. }
  2281. /**
  2282. * finish_task_switch - clean up after a task-switch
  2283. * @rq: runqueue associated with task-switch
  2284. * @prev: the thread we just switched away from.
  2285. *
  2286. * finish_task_switch must be called after the context switch, paired
  2287. * with a prepare_task_switch call before the context switch.
  2288. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2289. * and do any other architecture-specific cleanup actions.
  2290. *
  2291. * Note that we may have delayed dropping an mm in context_switch(). If
  2292. * so, we finish that here outside of the runqueue lock. (Doing it
  2293. * with the lock held can cause deadlocks; see schedule() for
  2294. * details.)
  2295. */
  2296. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2297. __releases(rq->lock)
  2298. {
  2299. struct mm_struct *mm = rq->prev_mm;
  2300. long prev_state;
  2301. rq->prev_mm = NULL;
  2302. /*
  2303. * A task struct has one reference for the use as "current".
  2304. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2305. * schedule one last time. The schedule call will never return, and
  2306. * the scheduled task must drop that reference.
  2307. * The test for TASK_DEAD must occur while the runqueue locks are
  2308. * still held, otherwise prev could be scheduled on another cpu, die
  2309. * there before we look at prev->state, and then the reference would
  2310. * be dropped twice.
  2311. * Manfred Spraul <manfred@colorfullife.com>
  2312. */
  2313. prev_state = prev->state;
  2314. finish_arch_switch(prev);
  2315. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2316. local_irq_disable();
  2317. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2318. perf_event_task_sched_in(current);
  2319. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  2320. local_irq_enable();
  2321. #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
  2322. finish_lock_switch(rq, prev);
  2323. fire_sched_in_preempt_notifiers(current);
  2324. if (mm)
  2325. mmdrop(mm);
  2326. if (unlikely(prev_state == TASK_DEAD)) {
  2327. /*
  2328. * Remove function-return probe instances associated with this
  2329. * task and put them back on the free list.
  2330. */
  2331. kprobe_flush_task(prev);
  2332. put_task_struct(prev);
  2333. }
  2334. }
  2335. #ifdef CONFIG_SMP
  2336. /* assumes rq->lock is held */
  2337. static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
  2338. {
  2339. if (prev->sched_class->pre_schedule)
  2340. prev->sched_class->pre_schedule(rq, prev);
  2341. }
  2342. /* rq->lock is NOT held, but preemption is disabled */
  2343. static inline void post_schedule(struct rq *rq)
  2344. {
  2345. if (rq->post_schedule) {
  2346. unsigned long flags;
  2347. raw_spin_lock_irqsave(&rq->lock, flags);
  2348. if (rq->curr->sched_class->post_schedule)
  2349. rq->curr->sched_class->post_schedule(rq);
  2350. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2351. rq->post_schedule = 0;
  2352. }
  2353. }
  2354. #else
  2355. static inline void pre_schedule(struct rq *rq, struct task_struct *p)
  2356. {
  2357. }
  2358. static inline void post_schedule(struct rq *rq)
  2359. {
  2360. }
  2361. #endif
  2362. /**
  2363. * schedule_tail - first thing a freshly forked thread must call.
  2364. * @prev: the thread we just switched away from.
  2365. */
  2366. asmlinkage void schedule_tail(struct task_struct *prev)
  2367. __releases(rq->lock)
  2368. {
  2369. struct rq *rq = this_rq();
  2370. finish_task_switch(rq, prev);
  2371. /*
  2372. * FIXME: do we need to worry about rq being invalidated by the
  2373. * task_switch?
  2374. */
  2375. post_schedule(rq);
  2376. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2377. /* In this case, finish_task_switch does not reenable preemption */
  2378. preempt_enable();
  2379. #endif
  2380. if (current->set_child_tid)
  2381. put_user(task_pid_vnr(current), current->set_child_tid);
  2382. }
  2383. /*
  2384. * context_switch - switch to the new MM and the new
  2385. * thread's register state.
  2386. */
  2387. static inline void
  2388. context_switch(struct rq *rq, struct task_struct *prev,
  2389. struct task_struct *next)
  2390. {
  2391. struct mm_struct *mm, *oldmm;
  2392. prepare_task_switch(rq, prev, next);
  2393. trace_sched_switch(prev, next);
  2394. mm = next->mm;
  2395. oldmm = prev->active_mm;
  2396. /*
  2397. * For paravirt, this is coupled with an exit in switch_to to
  2398. * combine the page table reload and the switch backend into
  2399. * one hypercall.
  2400. */
  2401. arch_start_context_switch(prev);
  2402. if (likely(!mm)) {
  2403. next->active_mm = oldmm;
  2404. atomic_inc(&oldmm->mm_count);
  2405. enter_lazy_tlb(oldmm, next);
  2406. } else
  2407. switch_mm(oldmm, mm, next);
  2408. if (likely(!prev->mm)) {
  2409. prev->active_mm = NULL;
  2410. rq->prev_mm = oldmm;
  2411. }
  2412. /*
  2413. * Since the runqueue lock will be released by the next
  2414. * task (which is an invalid locking op but in the case
  2415. * of the scheduler it's an obvious special-case), so we
  2416. * do an early lockdep release here:
  2417. */
  2418. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2419. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2420. #endif
  2421. /* Here we just switch the register state and the stack. */
  2422. switch_to(prev, next, prev);
  2423. barrier();
  2424. /*
  2425. * this_rq must be evaluated again because prev may have moved
  2426. * CPUs since it called schedule(), thus the 'rq' on its stack
  2427. * frame will be invalid.
  2428. */
  2429. finish_task_switch(this_rq(), prev);
  2430. }
  2431. /*
  2432. * nr_running, nr_uninterruptible and nr_context_switches:
  2433. *
  2434. * externally visible scheduler statistics: current number of runnable
  2435. * threads, current number of uninterruptible-sleeping threads, total
  2436. * number of context switches performed since bootup.
  2437. */
  2438. unsigned long nr_running(void)
  2439. {
  2440. unsigned long i, sum = 0;
  2441. for_each_online_cpu(i)
  2442. sum += cpu_rq(i)->nr_running;
  2443. return sum;
  2444. }
  2445. unsigned long nr_uninterruptible(void)
  2446. {
  2447. unsigned long i, sum = 0;
  2448. for_each_possible_cpu(i)
  2449. sum += cpu_rq(i)->nr_uninterruptible;
  2450. /*
  2451. * Since we read the counters lockless, it might be slightly
  2452. * inaccurate. Do not allow it to go below zero though:
  2453. */
  2454. if (unlikely((long)sum < 0))
  2455. sum = 0;
  2456. return sum;
  2457. }
  2458. unsigned long long nr_context_switches(void)
  2459. {
  2460. int i;
  2461. unsigned long long sum = 0;
  2462. for_each_possible_cpu(i)
  2463. sum += cpu_rq(i)->nr_switches;
  2464. return sum;
  2465. }
  2466. unsigned long nr_iowait(void)
  2467. {
  2468. unsigned long i, sum = 0;
  2469. for_each_possible_cpu(i)
  2470. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2471. return sum;
  2472. }
  2473. unsigned long nr_iowait_cpu(void)
  2474. {
  2475. struct rq *this = this_rq();
  2476. return atomic_read(&this->nr_iowait);
  2477. }
  2478. unsigned long this_cpu_load(void)
  2479. {
  2480. struct rq *this = this_rq();
  2481. return this->cpu_load[0];
  2482. }
  2483. /* Variables and functions for calc_load */
  2484. static atomic_long_t calc_load_tasks;
  2485. static unsigned long calc_load_update;
  2486. unsigned long avenrun[3];
  2487. EXPORT_SYMBOL(avenrun);
  2488. static long calc_load_fold_active(struct rq *this_rq)
  2489. {
  2490. long nr_active, delta = 0;
  2491. nr_active = this_rq->nr_running;
  2492. nr_active += (long) this_rq->nr_uninterruptible;
  2493. if (nr_active != this_rq->calc_load_active) {
  2494. delta = nr_active - this_rq->calc_load_active;
  2495. this_rq->calc_load_active = nr_active;
  2496. }
  2497. return delta;
  2498. }
  2499. #ifdef CONFIG_NO_HZ
  2500. /*
  2501. * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
  2502. *
  2503. * When making the ILB scale, we should try to pull this in as well.
  2504. */
  2505. static atomic_long_t calc_load_tasks_idle;
  2506. static void calc_load_account_idle(struct rq *this_rq)
  2507. {
  2508. long delta;
  2509. delta = calc_load_fold_active(this_rq);
  2510. if (delta)
  2511. atomic_long_add(delta, &calc_load_tasks_idle);
  2512. }
  2513. static long calc_load_fold_idle(void)
  2514. {
  2515. long delta = 0;
  2516. /*
  2517. * Its got a race, we don't care...
  2518. */
  2519. if (atomic_long_read(&calc_load_tasks_idle))
  2520. delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
  2521. return delta;
  2522. }
  2523. #else
  2524. static void calc_load_account_idle(struct rq *this_rq)
  2525. {
  2526. }
  2527. static inline long calc_load_fold_idle(void)
  2528. {
  2529. return 0;
  2530. }
  2531. #endif
  2532. /**
  2533. * get_avenrun - get the load average array
  2534. * @loads: pointer to dest load array
  2535. * @offset: offset to add
  2536. * @shift: shift count to shift the result left
  2537. *
  2538. * These values are estimates at best, so no need for locking.
  2539. */
  2540. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2541. {
  2542. loads[0] = (avenrun[0] + offset) << shift;
  2543. loads[1] = (avenrun[1] + offset) << shift;
  2544. loads[2] = (avenrun[2] + offset) << shift;
  2545. }
  2546. static unsigned long
  2547. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2548. {
  2549. load *= exp;
  2550. load += active * (FIXED_1 - exp);
  2551. return load >> FSHIFT;
  2552. }
  2553. /*
  2554. * calc_load - update the avenrun load estimates 10 ticks after the
  2555. * CPUs have updated calc_load_tasks.
  2556. */
  2557. void calc_global_load(void)
  2558. {
  2559. unsigned long upd = calc_load_update + 10;
  2560. long active;
  2561. if (time_before(jiffies, upd))
  2562. return;
  2563. active = atomic_long_read(&calc_load_tasks);
  2564. active = active > 0 ? active * FIXED_1 : 0;
  2565. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2566. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2567. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2568. calc_load_update += LOAD_FREQ;
  2569. }
  2570. /*
  2571. * Called from update_cpu_load() to periodically update this CPU's
  2572. * active count.
  2573. */
  2574. static void calc_load_account_active(struct rq *this_rq)
  2575. {
  2576. long delta;
  2577. if (time_before(jiffies, this_rq->calc_load_update))
  2578. return;
  2579. delta = calc_load_fold_active(this_rq);
  2580. delta += calc_load_fold_idle();
  2581. if (delta)
  2582. atomic_long_add(delta, &calc_load_tasks);
  2583. this_rq->calc_load_update += LOAD_FREQ;
  2584. }
  2585. /*
  2586. * Update rq->cpu_load[] statistics. This function is usually called every
  2587. * scheduler tick (TICK_NSEC).
  2588. */
  2589. static void update_cpu_load(struct rq *this_rq)
  2590. {
  2591. unsigned long this_load = this_rq->load.weight;
  2592. int i, scale;
  2593. this_rq->nr_load_updates++;
  2594. /* Update our load: */
  2595. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2596. unsigned long old_load, new_load;
  2597. /* scale is effectively 1 << i now, and >> i divides by scale */
  2598. old_load = this_rq->cpu_load[i];
  2599. new_load = this_load;
  2600. /*
  2601. * Round up the averaging division if load is increasing. This
  2602. * prevents us from getting stuck on 9 if the load is 10, for
  2603. * example.
  2604. */
  2605. if (new_load > old_load)
  2606. new_load += scale-1;
  2607. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2608. }
  2609. calc_load_account_active(this_rq);
  2610. }
  2611. #ifdef CONFIG_SMP
  2612. /*
  2613. * sched_exec - execve() is a valuable balancing opportunity, because at
  2614. * this point the task has the smallest effective memory and cache footprint.
  2615. */
  2616. void sched_exec(void)
  2617. {
  2618. struct task_struct *p = current;
  2619. struct migration_req req;
  2620. unsigned long flags;
  2621. struct rq *rq;
  2622. int dest_cpu;
  2623. rq = task_rq_lock(p, &flags);
  2624. dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
  2625. if (dest_cpu == smp_processor_id())
  2626. goto unlock;
  2627. /*
  2628. * select_task_rq() can race against ->cpus_allowed
  2629. */
  2630. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
  2631. likely(cpu_active(dest_cpu)) &&
  2632. migrate_task(p, dest_cpu, &req)) {
  2633. /* Need to wait for migration thread (might exit: take ref). */
  2634. struct task_struct *mt = rq->migration_thread;
  2635. get_task_struct(mt);
  2636. task_rq_unlock(rq, &flags);
  2637. wake_up_process(mt);
  2638. put_task_struct(mt);
  2639. wait_for_completion(&req.done);
  2640. return;
  2641. }
  2642. unlock:
  2643. task_rq_unlock(rq, &flags);
  2644. }
  2645. #endif
  2646. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2647. EXPORT_PER_CPU_SYMBOL(kstat);
  2648. /*
  2649. * Return any ns on the sched_clock that have not yet been accounted in
  2650. * @p in case that task is currently running.
  2651. *
  2652. * Called with task_rq_lock() held on @rq.
  2653. */
  2654. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2655. {
  2656. u64 ns = 0;
  2657. if (task_current(rq, p)) {
  2658. update_rq_clock(rq);
  2659. ns = rq->clock - p->se.exec_start;
  2660. if ((s64)ns < 0)
  2661. ns = 0;
  2662. }
  2663. return ns;
  2664. }
  2665. unsigned long long task_delta_exec(struct task_struct *p)
  2666. {
  2667. unsigned long flags;
  2668. struct rq *rq;
  2669. u64 ns = 0;
  2670. rq = task_rq_lock(p, &flags);
  2671. ns = do_task_delta_exec(p, rq);
  2672. task_rq_unlock(rq, &flags);
  2673. return ns;
  2674. }
  2675. /*
  2676. * Return accounted runtime for the task.
  2677. * In case the task is currently running, return the runtime plus current's
  2678. * pending runtime that have not been accounted yet.
  2679. */
  2680. unsigned long long task_sched_runtime(struct task_struct *p)
  2681. {
  2682. unsigned long flags;
  2683. struct rq *rq;
  2684. u64 ns = 0;
  2685. rq = task_rq_lock(p, &flags);
  2686. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2687. task_rq_unlock(rq, &flags);
  2688. return ns;
  2689. }
  2690. /*
  2691. * Return sum_exec_runtime for the thread group.
  2692. * In case the task is currently running, return the sum plus current's
  2693. * pending runtime that have not been accounted yet.
  2694. *
  2695. * Note that the thread group might have other running tasks as well,
  2696. * so the return value not includes other pending runtime that other
  2697. * running tasks might have.
  2698. */
  2699. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  2700. {
  2701. struct task_cputime totals;
  2702. unsigned long flags;
  2703. struct rq *rq;
  2704. u64 ns;
  2705. rq = task_rq_lock(p, &flags);
  2706. thread_group_cputime(p, &totals);
  2707. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  2708. task_rq_unlock(rq, &flags);
  2709. return ns;
  2710. }
  2711. /*
  2712. * Account user cpu time to a process.
  2713. * @p: the process that the cpu time gets accounted to
  2714. * @cputime: the cpu time spent in user space since the last update
  2715. * @cputime_scaled: cputime scaled by cpu frequency
  2716. */
  2717. void account_user_time(struct task_struct *p, cputime_t cputime,
  2718. cputime_t cputime_scaled)
  2719. {
  2720. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2721. cputime64_t tmp;
  2722. /* Add user time to process. */
  2723. p->utime = cputime_add(p->utime, cputime);
  2724. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2725. account_group_user_time(p, cputime);
  2726. /* Add user time to cpustat. */
  2727. tmp = cputime_to_cputime64(cputime);
  2728. if (TASK_NICE(p) > 0)
  2729. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2730. else
  2731. cpustat->user = cputime64_add(cpustat->user, tmp);
  2732. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  2733. /* Account for user time used */
  2734. acct_update_integrals(p);
  2735. }
  2736. /*
  2737. * Account guest cpu time to a process.
  2738. * @p: the process that the cpu time gets accounted to
  2739. * @cputime: the cpu time spent in virtual machine since the last update
  2740. * @cputime_scaled: cputime scaled by cpu frequency
  2741. */
  2742. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  2743. cputime_t cputime_scaled)
  2744. {
  2745. cputime64_t tmp;
  2746. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2747. tmp = cputime_to_cputime64(cputime);
  2748. /* Add guest time to process. */
  2749. p->utime = cputime_add(p->utime, cputime);
  2750. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  2751. account_group_user_time(p, cputime);
  2752. p->gtime = cputime_add(p->gtime, cputime);
  2753. /* Add guest time to cpustat. */
  2754. if (TASK_NICE(p) > 0) {
  2755. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2756. cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
  2757. } else {
  2758. cpustat->user = cputime64_add(cpustat->user, tmp);
  2759. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  2760. }
  2761. }
  2762. /*
  2763. * Account system cpu time to a process.
  2764. * @p: the process that the cpu time gets accounted to
  2765. * @hardirq_offset: the offset to subtract from hardirq_count()
  2766. * @cputime: the cpu time spent in kernel space since the last update
  2767. * @cputime_scaled: cputime scaled by cpu frequency
  2768. */
  2769. void account_system_time(struct task_struct *p, int hardirq_offset,
  2770. cputime_t cputime, cputime_t cputime_scaled)
  2771. {
  2772. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2773. cputime64_t tmp;
  2774. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  2775. account_guest_time(p, cputime, cputime_scaled);
  2776. return;
  2777. }
  2778. /* Add system time to process. */
  2779. p->stime = cputime_add(p->stime, cputime);
  2780. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  2781. account_group_system_time(p, cputime);
  2782. /* Add system time to cpustat. */
  2783. tmp = cputime_to_cputime64(cputime);
  2784. if (hardirq_count() - hardirq_offset)
  2785. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2786. else if (softirq_count())
  2787. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2788. else
  2789. cpustat->system = cputime64_add(cpustat->system, tmp);
  2790. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  2791. /* Account for system time used */
  2792. acct_update_integrals(p);
  2793. }
  2794. /*
  2795. * Account for involuntary wait time.
  2796. * @steal: the cpu time spent in involuntary wait
  2797. */
  2798. void account_steal_time(cputime_t cputime)
  2799. {
  2800. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2801. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2802. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  2803. }
  2804. /*
  2805. * Account for idle time.
  2806. * @cputime: the cpu time spent in idle wait
  2807. */
  2808. void account_idle_time(cputime_t cputime)
  2809. {
  2810. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2811. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  2812. struct rq *rq = this_rq();
  2813. if (atomic_read(&rq->nr_iowait) > 0)
  2814. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  2815. else
  2816. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  2817. }
  2818. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  2819. /*
  2820. * Account a single tick of cpu time.
  2821. * @p: the process that the cpu time gets accounted to
  2822. * @user_tick: indicates if the tick is a user or a system tick
  2823. */
  2824. void account_process_tick(struct task_struct *p, int user_tick)
  2825. {
  2826. cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
  2827. struct rq *rq = this_rq();
  2828. if (user_tick)
  2829. account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
  2830. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  2831. account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
  2832. one_jiffy_scaled);
  2833. else
  2834. account_idle_time(cputime_one_jiffy);
  2835. }
  2836. /*
  2837. * Account multiple ticks of steal time.
  2838. * @p: the process from which the cpu time has been stolen
  2839. * @ticks: number of stolen ticks
  2840. */
  2841. void account_steal_ticks(unsigned long ticks)
  2842. {
  2843. account_steal_time(jiffies_to_cputime(ticks));
  2844. }
  2845. /*
  2846. * Account multiple ticks of idle time.
  2847. * @ticks: number of stolen ticks
  2848. */
  2849. void account_idle_ticks(unsigned long ticks)
  2850. {
  2851. account_idle_time(jiffies_to_cputime(ticks));
  2852. }
  2853. #endif
  2854. /*
  2855. * Use precise platform statistics if available:
  2856. */
  2857. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  2858. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2859. {
  2860. *ut = p->utime;
  2861. *st = p->stime;
  2862. }
  2863. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2864. {
  2865. struct task_cputime cputime;
  2866. thread_group_cputime(p, &cputime);
  2867. *ut = cputime.utime;
  2868. *st = cputime.stime;
  2869. }
  2870. #else
  2871. #ifndef nsecs_to_cputime
  2872. # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
  2873. #endif
  2874. void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2875. {
  2876. cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
  2877. /*
  2878. * Use CFS's precise accounting:
  2879. */
  2880. rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
  2881. if (total) {
  2882. u64 temp;
  2883. temp = (u64)(rtime * utime);
  2884. do_div(temp, total);
  2885. utime = (cputime_t)temp;
  2886. } else
  2887. utime = rtime;
  2888. /*
  2889. * Compare with previous values, to keep monotonicity:
  2890. */
  2891. p->prev_utime = max(p->prev_utime, utime);
  2892. p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
  2893. *ut = p->prev_utime;
  2894. *st = p->prev_stime;
  2895. }
  2896. /*
  2897. * Must be called with siglock held.
  2898. */
  2899. void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
  2900. {
  2901. struct signal_struct *sig = p->signal;
  2902. struct task_cputime cputime;
  2903. cputime_t rtime, utime, total;
  2904. thread_group_cputime(p, &cputime);
  2905. total = cputime_add(cputime.utime, cputime.stime);
  2906. rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
  2907. if (total) {
  2908. u64 temp;
  2909. temp = (u64)(rtime * cputime.utime);
  2910. do_div(temp, total);
  2911. utime = (cputime_t)temp;
  2912. } else
  2913. utime = rtime;
  2914. sig->prev_utime = max(sig->prev_utime, utime);
  2915. sig->prev_stime = max(sig->prev_stime,
  2916. cputime_sub(rtime, sig->prev_utime));
  2917. *ut = sig->prev_utime;
  2918. *st = sig->prev_stime;
  2919. }
  2920. #endif
  2921. /*
  2922. * This function gets called by the timer code, with HZ frequency.
  2923. * We call it with interrupts disabled.
  2924. *
  2925. * It also gets called by the fork code, when changing the parent's
  2926. * timeslices.
  2927. */
  2928. void scheduler_tick(void)
  2929. {
  2930. int cpu = smp_processor_id();
  2931. struct rq *rq = cpu_rq(cpu);
  2932. struct task_struct *curr = rq->curr;
  2933. sched_clock_tick();
  2934. raw_spin_lock(&rq->lock);
  2935. update_rq_clock(rq);
  2936. update_cpu_load(rq);
  2937. curr->sched_class->task_tick(rq, curr, 0);
  2938. raw_spin_unlock(&rq->lock);
  2939. perf_event_task_tick(curr);
  2940. #ifdef CONFIG_SMP
  2941. rq->idle_at_tick = idle_cpu(cpu);
  2942. trigger_load_balance(rq, cpu);
  2943. #endif
  2944. }
  2945. notrace unsigned long get_parent_ip(unsigned long addr)
  2946. {
  2947. if (in_lock_functions(addr)) {
  2948. addr = CALLER_ADDR2;
  2949. if (in_lock_functions(addr))
  2950. addr = CALLER_ADDR3;
  2951. }
  2952. return addr;
  2953. }
  2954. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2955. defined(CONFIG_PREEMPT_TRACER))
  2956. void __kprobes add_preempt_count(int val)
  2957. {
  2958. #ifdef CONFIG_DEBUG_PREEMPT
  2959. /*
  2960. * Underflow?
  2961. */
  2962. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2963. return;
  2964. #endif
  2965. preempt_count() += val;
  2966. #ifdef CONFIG_DEBUG_PREEMPT
  2967. /*
  2968. * Spinlock count overflowing soon?
  2969. */
  2970. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2971. PREEMPT_MASK - 10);
  2972. #endif
  2973. if (preempt_count() == val)
  2974. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2975. }
  2976. EXPORT_SYMBOL(add_preempt_count);
  2977. void __kprobes sub_preempt_count(int val)
  2978. {
  2979. #ifdef CONFIG_DEBUG_PREEMPT
  2980. /*
  2981. * Underflow?
  2982. */
  2983. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2984. return;
  2985. /*
  2986. * Is the spinlock portion underflowing?
  2987. */
  2988. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2989. !(preempt_count() & PREEMPT_MASK)))
  2990. return;
  2991. #endif
  2992. if (preempt_count() == val)
  2993. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2994. preempt_count() -= val;
  2995. }
  2996. EXPORT_SYMBOL(sub_preempt_count);
  2997. #endif
  2998. /*
  2999. * Print scheduling while atomic bug:
  3000. */
  3001. static noinline void __schedule_bug(struct task_struct *prev)
  3002. {
  3003. struct pt_regs *regs = get_irq_regs();
  3004. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  3005. prev->comm, prev->pid, preempt_count());
  3006. debug_show_held_locks(prev);
  3007. print_modules();
  3008. if (irqs_disabled())
  3009. print_irqtrace_events(prev);
  3010. if (regs)
  3011. show_regs(regs);
  3012. else
  3013. dump_stack();
  3014. }
  3015. /*
  3016. * Various schedule()-time debugging checks and statistics:
  3017. */
  3018. static inline void schedule_debug(struct task_struct *prev)
  3019. {
  3020. /*
  3021. * Test if we are atomic. Since do_exit() needs to call into
  3022. * schedule() atomically, we ignore that path for now.
  3023. * Otherwise, whine if we are scheduling when we should not be.
  3024. */
  3025. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  3026. __schedule_bug(prev);
  3027. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  3028. schedstat_inc(this_rq(), sched_count);
  3029. #ifdef CONFIG_SCHEDSTATS
  3030. if (unlikely(prev->lock_depth >= 0)) {
  3031. schedstat_inc(this_rq(), bkl_count);
  3032. schedstat_inc(prev, sched_info.bkl_count);
  3033. }
  3034. #endif
  3035. }
  3036. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  3037. {
  3038. if (prev->se.on_rq)
  3039. update_rq_clock(rq);
  3040. rq->skip_clock_update = 0;
  3041. prev->sched_class->put_prev_task(rq, prev);
  3042. }
  3043. /*
  3044. * Pick up the highest-prio task:
  3045. */
  3046. static inline struct task_struct *
  3047. pick_next_task(struct rq *rq)
  3048. {
  3049. const struct sched_class *class;
  3050. struct task_struct *p;
  3051. /*
  3052. * Optimization: we know that if all tasks are in
  3053. * the fair class we can call that function directly:
  3054. */
  3055. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  3056. p = fair_sched_class.pick_next_task(rq);
  3057. if (likely(p))
  3058. return p;
  3059. }
  3060. class = sched_class_highest;
  3061. for ( ; ; ) {
  3062. p = class->pick_next_task(rq);
  3063. if (p)
  3064. return p;
  3065. /*
  3066. * Will never be NULL as the idle class always
  3067. * returns a non-NULL p:
  3068. */
  3069. class = class->next;
  3070. }
  3071. }
  3072. /*
  3073. * schedule() is the main scheduler function.
  3074. */
  3075. asmlinkage void __sched schedule(void)
  3076. {
  3077. struct task_struct *prev, *next;
  3078. unsigned long *switch_count;
  3079. struct rq *rq;
  3080. int cpu;
  3081. need_resched:
  3082. preempt_disable();
  3083. cpu = smp_processor_id();
  3084. rq = cpu_rq(cpu);
  3085. rcu_sched_qs(cpu);
  3086. prev = rq->curr;
  3087. switch_count = &prev->nivcsw;
  3088. release_kernel_lock(prev);
  3089. need_resched_nonpreemptible:
  3090. schedule_debug(prev);
  3091. if (sched_feat(HRTICK))
  3092. hrtick_clear(rq);
  3093. raw_spin_lock_irq(&rq->lock);
  3094. clear_tsk_need_resched(prev);
  3095. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  3096. if (unlikely(signal_pending_state(prev->state, prev)))
  3097. prev->state = TASK_RUNNING;
  3098. else
  3099. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  3100. switch_count = &prev->nvcsw;
  3101. }
  3102. pre_schedule(rq, prev);
  3103. if (unlikely(!rq->nr_running))
  3104. idle_balance(cpu, rq);
  3105. put_prev_task(rq, prev);
  3106. next = pick_next_task(rq);
  3107. if (likely(prev != next)) {
  3108. sched_info_switch(prev, next);
  3109. perf_event_task_sched_out(prev, next);
  3110. rq->nr_switches++;
  3111. rq->curr = next;
  3112. ++*switch_count;
  3113. context_switch(rq, prev, next); /* unlocks the rq */
  3114. /*
  3115. * the context switch might have flipped the stack from under
  3116. * us, hence refresh the local variables.
  3117. */
  3118. cpu = smp_processor_id();
  3119. rq = cpu_rq(cpu);
  3120. } else
  3121. raw_spin_unlock_irq(&rq->lock);
  3122. post_schedule(rq);
  3123. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  3124. prev = rq->curr;
  3125. switch_count = &prev->nivcsw;
  3126. goto need_resched_nonpreemptible;
  3127. }
  3128. preempt_enable_no_resched();
  3129. if (need_resched())
  3130. goto need_resched;
  3131. }
  3132. EXPORT_SYMBOL(schedule);
  3133. #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
  3134. /*
  3135. * Look out! "owner" is an entirely speculative pointer
  3136. * access and not reliable.
  3137. */
  3138. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  3139. {
  3140. unsigned int cpu;
  3141. struct rq *rq;
  3142. if (!sched_feat(OWNER_SPIN))
  3143. return 0;
  3144. #ifdef CONFIG_DEBUG_PAGEALLOC
  3145. /*
  3146. * Need to access the cpu field knowing that
  3147. * DEBUG_PAGEALLOC could have unmapped it if
  3148. * the mutex owner just released it and exited.
  3149. */
  3150. if (probe_kernel_address(&owner->cpu, cpu))
  3151. goto out;
  3152. #else
  3153. cpu = owner->cpu;
  3154. #endif
  3155. /*
  3156. * Even if the access succeeded (likely case),
  3157. * the cpu field may no longer be valid.
  3158. */
  3159. if (cpu >= nr_cpumask_bits)
  3160. goto out;
  3161. /*
  3162. * We need to validate that we can do a
  3163. * get_cpu() and that we have the percpu area.
  3164. */
  3165. if (!cpu_online(cpu))
  3166. goto out;
  3167. rq = cpu_rq(cpu);
  3168. for (;;) {
  3169. /*
  3170. * Owner changed, break to re-assess state.
  3171. */
  3172. if (lock->owner != owner)
  3173. break;
  3174. /*
  3175. * Is that owner really running on that cpu?
  3176. */
  3177. if (task_thread_info(rq->curr) != owner || need_resched())
  3178. return 0;
  3179. cpu_relax();
  3180. }
  3181. out:
  3182. return 1;
  3183. }
  3184. #endif
  3185. #ifdef CONFIG_PREEMPT
  3186. /*
  3187. * this is the entry point to schedule() from in-kernel preemption
  3188. * off of preempt_enable. Kernel preemptions off return from interrupt
  3189. * occur there and call schedule directly.
  3190. */
  3191. asmlinkage void __sched preempt_schedule(void)
  3192. {
  3193. struct thread_info *ti = current_thread_info();
  3194. /*
  3195. * If there is a non-zero preempt_count or interrupts are disabled,
  3196. * we do not want to preempt the current task. Just return..
  3197. */
  3198. if (likely(ti->preempt_count || irqs_disabled()))
  3199. return;
  3200. do {
  3201. add_preempt_count(PREEMPT_ACTIVE);
  3202. schedule();
  3203. sub_preempt_count(PREEMPT_ACTIVE);
  3204. /*
  3205. * Check again in case we missed a preemption opportunity
  3206. * between schedule and now.
  3207. */
  3208. barrier();
  3209. } while (need_resched());
  3210. }
  3211. EXPORT_SYMBOL(preempt_schedule);
  3212. /*
  3213. * this is the entry point to schedule() from kernel preemption
  3214. * off of irq context.
  3215. * Note, that this is called and return with irqs disabled. This will
  3216. * protect us against recursive calling from irq.
  3217. */
  3218. asmlinkage void __sched preempt_schedule_irq(void)
  3219. {
  3220. struct thread_info *ti = current_thread_info();
  3221. /* Catch callers which need to be fixed */
  3222. BUG_ON(ti->preempt_count || !irqs_disabled());
  3223. do {
  3224. add_preempt_count(PREEMPT_ACTIVE);
  3225. local_irq_enable();
  3226. schedule();
  3227. local_irq_disable();
  3228. sub_preempt_count(PREEMPT_ACTIVE);
  3229. /*
  3230. * Check again in case we missed a preemption opportunity
  3231. * between schedule and now.
  3232. */
  3233. barrier();
  3234. } while (need_resched());
  3235. }
  3236. #endif /* CONFIG_PREEMPT */
  3237. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  3238. void *key)
  3239. {
  3240. return try_to_wake_up(curr->private, mode, wake_flags);
  3241. }
  3242. EXPORT_SYMBOL(default_wake_function);
  3243. /*
  3244. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3245. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3246. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3247. *
  3248. * There are circumstances in which we can try to wake a task which has already
  3249. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3250. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3251. */
  3252. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3253. int nr_exclusive, int wake_flags, void *key)
  3254. {
  3255. wait_queue_t *curr, *next;
  3256. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  3257. unsigned flags = curr->flags;
  3258. if (curr->func(curr, mode, wake_flags, key) &&
  3259. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3260. break;
  3261. }
  3262. }
  3263. /**
  3264. * __wake_up - wake up threads blocked on a waitqueue.
  3265. * @q: the waitqueue
  3266. * @mode: which threads
  3267. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3268. * @key: is directly passed to the wakeup function
  3269. *
  3270. * It may be assumed that this function implies a write memory barrier before
  3271. * changing the task state if and only if any tasks are woken up.
  3272. */
  3273. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  3274. int nr_exclusive, void *key)
  3275. {
  3276. unsigned long flags;
  3277. spin_lock_irqsave(&q->lock, flags);
  3278. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3279. spin_unlock_irqrestore(&q->lock, flags);
  3280. }
  3281. EXPORT_SYMBOL(__wake_up);
  3282. /*
  3283. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3284. */
  3285. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3286. {
  3287. __wake_up_common(q, mode, 1, 0, NULL);
  3288. }
  3289. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  3290. {
  3291. __wake_up_common(q, mode, 1, 0, key);
  3292. }
  3293. /**
  3294. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  3295. * @q: the waitqueue
  3296. * @mode: which threads
  3297. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3298. * @key: opaque value to be passed to wakeup targets
  3299. *
  3300. * The sync wakeup differs that the waker knows that it will schedule
  3301. * away soon, so while the target thread will be woken up, it will not
  3302. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3303. * with each other. This can prevent needless bouncing between CPUs.
  3304. *
  3305. * On UP it can prevent extra preemption.
  3306. *
  3307. * It may be assumed that this function implies a write memory barrier before
  3308. * changing the task state if and only if any tasks are woken up.
  3309. */
  3310. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  3311. int nr_exclusive, void *key)
  3312. {
  3313. unsigned long flags;
  3314. int wake_flags = WF_SYNC;
  3315. if (unlikely(!q))
  3316. return;
  3317. if (unlikely(!nr_exclusive))
  3318. wake_flags = 0;
  3319. spin_lock_irqsave(&q->lock, flags);
  3320. __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
  3321. spin_unlock_irqrestore(&q->lock, flags);
  3322. }
  3323. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  3324. /*
  3325. * __wake_up_sync - see __wake_up_sync_key()
  3326. */
  3327. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3328. {
  3329. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  3330. }
  3331. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3332. /**
  3333. * complete: - signals a single thread waiting on this completion
  3334. * @x: holds the state of this particular completion
  3335. *
  3336. * This will wake up a single thread waiting on this completion. Threads will be
  3337. * awakened in the same order in which they were queued.
  3338. *
  3339. * See also complete_all(), wait_for_completion() and related routines.
  3340. *
  3341. * It may be assumed that this function implies a write memory barrier before
  3342. * changing the task state if and only if any tasks are woken up.
  3343. */
  3344. void complete(struct completion *x)
  3345. {
  3346. unsigned long flags;
  3347. spin_lock_irqsave(&x->wait.lock, flags);
  3348. x->done++;
  3349. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  3350. spin_unlock_irqrestore(&x->wait.lock, flags);
  3351. }
  3352. EXPORT_SYMBOL(complete);
  3353. /**
  3354. * complete_all: - signals all threads waiting on this completion
  3355. * @x: holds the state of this particular completion
  3356. *
  3357. * This will wake up all threads waiting on this particular completion event.
  3358. *
  3359. * It may be assumed that this function implies a write memory barrier before
  3360. * changing the task state if and only if any tasks are woken up.
  3361. */
  3362. void complete_all(struct completion *x)
  3363. {
  3364. unsigned long flags;
  3365. spin_lock_irqsave(&x->wait.lock, flags);
  3366. x->done += UINT_MAX/2;
  3367. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  3368. spin_unlock_irqrestore(&x->wait.lock, flags);
  3369. }
  3370. EXPORT_SYMBOL(complete_all);
  3371. static inline long __sched
  3372. do_wait_for_common(struct completion *x, long timeout, int state)
  3373. {
  3374. if (!x->done) {
  3375. DECLARE_WAITQUEUE(wait, current);
  3376. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3377. __add_wait_queue_tail(&x->wait, &wait);
  3378. do {
  3379. if (signal_pending_state(state, current)) {
  3380. timeout = -ERESTARTSYS;
  3381. break;
  3382. }
  3383. __set_current_state(state);
  3384. spin_unlock_irq(&x->wait.lock);
  3385. timeout = schedule_timeout(timeout);
  3386. spin_lock_irq(&x->wait.lock);
  3387. } while (!x->done && timeout);
  3388. __remove_wait_queue(&x->wait, &wait);
  3389. if (!x->done)
  3390. return timeout;
  3391. }
  3392. x->done--;
  3393. return timeout ?: 1;
  3394. }
  3395. static long __sched
  3396. wait_for_common(struct completion *x, long timeout, int state)
  3397. {
  3398. might_sleep();
  3399. spin_lock_irq(&x->wait.lock);
  3400. timeout = do_wait_for_common(x, timeout, state);
  3401. spin_unlock_irq(&x->wait.lock);
  3402. return timeout;
  3403. }
  3404. /**
  3405. * wait_for_completion: - waits for completion of a task
  3406. * @x: holds the state of this particular completion
  3407. *
  3408. * This waits to be signaled for completion of a specific task. It is NOT
  3409. * interruptible and there is no timeout.
  3410. *
  3411. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  3412. * and interrupt capability. Also see complete().
  3413. */
  3414. void __sched wait_for_completion(struct completion *x)
  3415. {
  3416. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  3417. }
  3418. EXPORT_SYMBOL(wait_for_completion);
  3419. /**
  3420. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  3421. * @x: holds the state of this particular completion
  3422. * @timeout: timeout value in jiffies
  3423. *
  3424. * This waits for either a completion of a specific task to be signaled or for a
  3425. * specified timeout to expire. The timeout is in jiffies. It is not
  3426. * interruptible.
  3427. */
  3428. unsigned long __sched
  3429. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3430. {
  3431. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  3432. }
  3433. EXPORT_SYMBOL(wait_for_completion_timeout);
  3434. /**
  3435. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  3436. * @x: holds the state of this particular completion
  3437. *
  3438. * This waits for completion of a specific task to be signaled. It is
  3439. * interruptible.
  3440. */
  3441. int __sched wait_for_completion_interruptible(struct completion *x)
  3442. {
  3443. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  3444. if (t == -ERESTARTSYS)
  3445. return t;
  3446. return 0;
  3447. }
  3448. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3449. /**
  3450. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  3451. * @x: holds the state of this particular completion
  3452. * @timeout: timeout value in jiffies
  3453. *
  3454. * This waits for either a completion of a specific task to be signaled or for a
  3455. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  3456. */
  3457. unsigned long __sched
  3458. wait_for_completion_interruptible_timeout(struct completion *x,
  3459. unsigned long timeout)
  3460. {
  3461. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  3462. }
  3463. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3464. /**
  3465. * wait_for_completion_killable: - waits for completion of a task (killable)
  3466. * @x: holds the state of this particular completion
  3467. *
  3468. * This waits to be signaled for completion of a specific task. It can be
  3469. * interrupted by a kill signal.
  3470. */
  3471. int __sched wait_for_completion_killable(struct completion *x)
  3472. {
  3473. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  3474. if (t == -ERESTARTSYS)
  3475. return t;
  3476. return 0;
  3477. }
  3478. EXPORT_SYMBOL(wait_for_completion_killable);
  3479. /**
  3480. * try_wait_for_completion - try to decrement a completion without blocking
  3481. * @x: completion structure
  3482. *
  3483. * Returns: 0 if a decrement cannot be done without blocking
  3484. * 1 if a decrement succeeded.
  3485. *
  3486. * If a completion is being used as a counting completion,
  3487. * attempt to decrement the counter without blocking. This
  3488. * enables us to avoid waiting if the resource the completion
  3489. * is protecting is not available.
  3490. */
  3491. bool try_wait_for_completion(struct completion *x)
  3492. {
  3493. unsigned long flags;
  3494. int ret = 1;
  3495. spin_lock_irqsave(&x->wait.lock, flags);
  3496. if (!x->done)
  3497. ret = 0;
  3498. else
  3499. x->done--;
  3500. spin_unlock_irqrestore(&x->wait.lock, flags);
  3501. return ret;
  3502. }
  3503. EXPORT_SYMBOL(try_wait_for_completion);
  3504. /**
  3505. * completion_done - Test to see if a completion has any waiters
  3506. * @x: completion structure
  3507. *
  3508. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  3509. * 1 if there are no waiters.
  3510. *
  3511. */
  3512. bool completion_done(struct completion *x)
  3513. {
  3514. unsigned long flags;
  3515. int ret = 1;
  3516. spin_lock_irqsave(&x->wait.lock, flags);
  3517. if (!x->done)
  3518. ret = 0;
  3519. spin_unlock_irqrestore(&x->wait.lock, flags);
  3520. return ret;
  3521. }
  3522. EXPORT_SYMBOL(completion_done);
  3523. static long __sched
  3524. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  3525. {
  3526. unsigned long flags;
  3527. wait_queue_t wait;
  3528. init_waitqueue_entry(&wait, current);
  3529. __set_current_state(state);
  3530. spin_lock_irqsave(&q->lock, flags);
  3531. __add_wait_queue(q, &wait);
  3532. spin_unlock(&q->lock);
  3533. timeout = schedule_timeout(timeout);
  3534. spin_lock_irq(&q->lock);
  3535. __remove_wait_queue(q, &wait);
  3536. spin_unlock_irqrestore(&q->lock, flags);
  3537. return timeout;
  3538. }
  3539. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  3540. {
  3541. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3542. }
  3543. EXPORT_SYMBOL(interruptible_sleep_on);
  3544. long __sched
  3545. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3546. {
  3547. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  3548. }
  3549. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3550. void __sched sleep_on(wait_queue_head_t *q)
  3551. {
  3552. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  3553. }
  3554. EXPORT_SYMBOL(sleep_on);
  3555. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3556. {
  3557. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  3558. }
  3559. EXPORT_SYMBOL(sleep_on_timeout);
  3560. #ifdef CONFIG_RT_MUTEXES
  3561. /*
  3562. * rt_mutex_setprio - set the current priority of a task
  3563. * @p: task
  3564. * @prio: prio value (kernel-internal form)
  3565. *
  3566. * This function changes the 'effective' priority of a task. It does
  3567. * not touch ->normal_prio like __setscheduler().
  3568. *
  3569. * Used by the rt_mutex code to implement priority inheritance logic.
  3570. */
  3571. void rt_mutex_setprio(struct task_struct *p, int prio)
  3572. {
  3573. unsigned long flags;
  3574. int oldprio, on_rq, running;
  3575. struct rq *rq;
  3576. const struct sched_class *prev_class;
  3577. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3578. rq = task_rq_lock(p, &flags);
  3579. oldprio = p->prio;
  3580. prev_class = p->sched_class;
  3581. on_rq = p->se.on_rq;
  3582. running = task_current(rq, p);
  3583. if (on_rq)
  3584. dequeue_task(rq, p, 0);
  3585. if (running)
  3586. p->sched_class->put_prev_task(rq, p);
  3587. if (rt_prio(prio))
  3588. p->sched_class = &rt_sched_class;
  3589. else
  3590. p->sched_class = &fair_sched_class;
  3591. p->prio = prio;
  3592. if (running)
  3593. p->sched_class->set_curr_task(rq);
  3594. if (on_rq) {
  3595. enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
  3596. check_class_changed(rq, p, prev_class, oldprio, running);
  3597. }
  3598. task_rq_unlock(rq, &flags);
  3599. }
  3600. #endif
  3601. void set_user_nice(struct task_struct *p, long nice)
  3602. {
  3603. int old_prio, delta, on_rq;
  3604. unsigned long flags;
  3605. struct rq *rq;
  3606. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3607. return;
  3608. /*
  3609. * We have to be careful, if called from sys_setpriority(),
  3610. * the task might be in the middle of scheduling on another CPU.
  3611. */
  3612. rq = task_rq_lock(p, &flags);
  3613. /*
  3614. * The RT priorities are set via sched_setscheduler(), but we still
  3615. * allow the 'normal' nice value to be set - but as expected
  3616. * it wont have any effect on scheduling until the task is
  3617. * SCHED_FIFO/SCHED_RR:
  3618. */
  3619. if (task_has_rt_policy(p)) {
  3620. p->static_prio = NICE_TO_PRIO(nice);
  3621. goto out_unlock;
  3622. }
  3623. on_rq = p->se.on_rq;
  3624. if (on_rq)
  3625. dequeue_task(rq, p, 0);
  3626. p->static_prio = NICE_TO_PRIO(nice);
  3627. set_load_weight(p);
  3628. old_prio = p->prio;
  3629. p->prio = effective_prio(p);
  3630. delta = p->prio - old_prio;
  3631. if (on_rq) {
  3632. enqueue_task(rq, p, 0);
  3633. /*
  3634. * If the task increased its priority or is running and
  3635. * lowered its priority, then reschedule its CPU:
  3636. */
  3637. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3638. resched_task(rq->curr);
  3639. }
  3640. out_unlock:
  3641. task_rq_unlock(rq, &flags);
  3642. }
  3643. EXPORT_SYMBOL(set_user_nice);
  3644. /*
  3645. * can_nice - check if a task can reduce its nice value
  3646. * @p: task
  3647. * @nice: nice value
  3648. */
  3649. int can_nice(const struct task_struct *p, const int nice)
  3650. {
  3651. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3652. int nice_rlim = 20 - nice;
  3653. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3654. capable(CAP_SYS_NICE));
  3655. }
  3656. #ifdef __ARCH_WANT_SYS_NICE
  3657. /*
  3658. * sys_nice - change the priority of the current process.
  3659. * @increment: priority increment
  3660. *
  3661. * sys_setpriority is a more generic, but much slower function that
  3662. * does similar things.
  3663. */
  3664. SYSCALL_DEFINE1(nice, int, increment)
  3665. {
  3666. long nice, retval;
  3667. /*
  3668. * Setpriority might change our priority at the same moment.
  3669. * We don't have to worry. Conceptually one call occurs first
  3670. * and we have a single winner.
  3671. */
  3672. if (increment < -40)
  3673. increment = -40;
  3674. if (increment > 40)
  3675. increment = 40;
  3676. nice = TASK_NICE(current) + increment;
  3677. if (nice < -20)
  3678. nice = -20;
  3679. if (nice > 19)
  3680. nice = 19;
  3681. if (increment < 0 && !can_nice(current, nice))
  3682. return -EPERM;
  3683. retval = security_task_setnice(current, nice);
  3684. if (retval)
  3685. return retval;
  3686. set_user_nice(current, nice);
  3687. return 0;
  3688. }
  3689. #endif
  3690. /**
  3691. * task_prio - return the priority value of a given task.
  3692. * @p: the task in question.
  3693. *
  3694. * This is the priority value as seen by users in /proc.
  3695. * RT tasks are offset by -200. Normal tasks are centered
  3696. * around 0, value goes from -16 to +15.
  3697. */
  3698. int task_prio(const struct task_struct *p)
  3699. {
  3700. return p->prio - MAX_RT_PRIO;
  3701. }
  3702. /**
  3703. * task_nice - return the nice value of a given task.
  3704. * @p: the task in question.
  3705. */
  3706. int task_nice(const struct task_struct *p)
  3707. {
  3708. return TASK_NICE(p);
  3709. }
  3710. EXPORT_SYMBOL(task_nice);
  3711. /**
  3712. * idle_cpu - is a given cpu idle currently?
  3713. * @cpu: the processor in question.
  3714. */
  3715. int idle_cpu(int cpu)
  3716. {
  3717. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3718. }
  3719. /**
  3720. * idle_task - return the idle task for a given cpu.
  3721. * @cpu: the processor in question.
  3722. */
  3723. struct task_struct *idle_task(int cpu)
  3724. {
  3725. return cpu_rq(cpu)->idle;
  3726. }
  3727. /**
  3728. * find_process_by_pid - find a process with a matching PID value.
  3729. * @pid: the pid in question.
  3730. */
  3731. static struct task_struct *find_process_by_pid(pid_t pid)
  3732. {
  3733. return pid ? find_task_by_vpid(pid) : current;
  3734. }
  3735. /* Actually do priority change: must hold rq lock. */
  3736. static void
  3737. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3738. {
  3739. BUG_ON(p->se.on_rq);
  3740. p->policy = policy;
  3741. p->rt_priority = prio;
  3742. p->normal_prio = normal_prio(p);
  3743. /* we are holding p->pi_lock already */
  3744. p->prio = rt_mutex_getprio(p);
  3745. if (rt_prio(p->prio))
  3746. p->sched_class = &rt_sched_class;
  3747. else
  3748. p->sched_class = &fair_sched_class;
  3749. set_load_weight(p);
  3750. }
  3751. /*
  3752. * check the target process has a UID that matches the current process's
  3753. */
  3754. static bool check_same_owner(struct task_struct *p)
  3755. {
  3756. const struct cred *cred = current_cred(), *pcred;
  3757. bool match;
  3758. rcu_read_lock();
  3759. pcred = __task_cred(p);
  3760. match = (cred->euid == pcred->euid ||
  3761. cred->euid == pcred->uid);
  3762. rcu_read_unlock();
  3763. return match;
  3764. }
  3765. static int __sched_setscheduler(struct task_struct *p, int policy,
  3766. struct sched_param *param, bool user)
  3767. {
  3768. int retval, oldprio, oldpolicy = -1, on_rq, running;
  3769. unsigned long flags;
  3770. const struct sched_class *prev_class;
  3771. struct rq *rq;
  3772. int reset_on_fork;
  3773. /* may grab non-irq protected spin_locks */
  3774. BUG_ON(in_interrupt());
  3775. recheck:
  3776. /* double check policy once rq lock held */
  3777. if (policy < 0) {
  3778. reset_on_fork = p->sched_reset_on_fork;
  3779. policy = oldpolicy = p->policy;
  3780. } else {
  3781. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  3782. policy &= ~SCHED_RESET_ON_FORK;
  3783. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3784. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3785. policy != SCHED_IDLE)
  3786. return -EINVAL;
  3787. }
  3788. /*
  3789. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3790. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3791. * SCHED_BATCH and SCHED_IDLE is 0.
  3792. */
  3793. if (param->sched_priority < 0 ||
  3794. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3795. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3796. return -EINVAL;
  3797. if (rt_policy(policy) != (param->sched_priority != 0))
  3798. return -EINVAL;
  3799. /*
  3800. * Allow unprivileged RT tasks to decrease priority:
  3801. */
  3802. if (user && !capable(CAP_SYS_NICE)) {
  3803. if (rt_policy(policy)) {
  3804. unsigned long rlim_rtprio;
  3805. if (!lock_task_sighand(p, &flags))
  3806. return -ESRCH;
  3807. rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
  3808. unlock_task_sighand(p, &flags);
  3809. /* can't set/change the rt policy */
  3810. if (policy != p->policy && !rlim_rtprio)
  3811. return -EPERM;
  3812. /* can't increase priority */
  3813. if (param->sched_priority > p->rt_priority &&
  3814. param->sched_priority > rlim_rtprio)
  3815. return -EPERM;
  3816. }
  3817. /*
  3818. * Like positive nice levels, dont allow tasks to
  3819. * move out of SCHED_IDLE either:
  3820. */
  3821. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3822. return -EPERM;
  3823. /* can't change other user's priorities */
  3824. if (!check_same_owner(p))
  3825. return -EPERM;
  3826. /* Normal users shall not reset the sched_reset_on_fork flag */
  3827. if (p->sched_reset_on_fork && !reset_on_fork)
  3828. return -EPERM;
  3829. }
  3830. if (user) {
  3831. #ifdef CONFIG_RT_GROUP_SCHED
  3832. /*
  3833. * Do not allow realtime tasks into groups that have no runtime
  3834. * assigned.
  3835. */
  3836. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3837. task_group(p)->rt_bandwidth.rt_runtime == 0)
  3838. return -EPERM;
  3839. #endif
  3840. retval = security_task_setscheduler(p, policy, param);
  3841. if (retval)
  3842. return retval;
  3843. }
  3844. /*
  3845. * make sure no PI-waiters arrive (or leave) while we are
  3846. * changing the priority of the task:
  3847. */
  3848. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3849. /*
  3850. * To be able to change p->policy safely, the apropriate
  3851. * runqueue lock must be held.
  3852. */
  3853. rq = __task_rq_lock(p);
  3854. /* recheck policy now with rq lock held */
  3855. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3856. policy = oldpolicy = -1;
  3857. __task_rq_unlock(rq);
  3858. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3859. goto recheck;
  3860. }
  3861. on_rq = p->se.on_rq;
  3862. running = task_current(rq, p);
  3863. if (on_rq)
  3864. deactivate_task(rq, p, 0);
  3865. if (running)
  3866. p->sched_class->put_prev_task(rq, p);
  3867. p->sched_reset_on_fork = reset_on_fork;
  3868. oldprio = p->prio;
  3869. prev_class = p->sched_class;
  3870. __setscheduler(rq, p, policy, param->sched_priority);
  3871. if (running)
  3872. p->sched_class->set_curr_task(rq);
  3873. if (on_rq) {
  3874. activate_task(rq, p, 0);
  3875. check_class_changed(rq, p, prev_class, oldprio, running);
  3876. }
  3877. __task_rq_unlock(rq);
  3878. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3879. rt_mutex_adjust_pi(p);
  3880. return 0;
  3881. }
  3882. /**
  3883. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3884. * @p: the task in question.
  3885. * @policy: new policy.
  3886. * @param: structure containing the new RT priority.
  3887. *
  3888. * NOTE that the task may be already dead.
  3889. */
  3890. int sched_setscheduler(struct task_struct *p, int policy,
  3891. struct sched_param *param)
  3892. {
  3893. return __sched_setscheduler(p, policy, param, true);
  3894. }
  3895. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3896. /**
  3897. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3898. * @p: the task in question.
  3899. * @policy: new policy.
  3900. * @param: structure containing the new RT priority.
  3901. *
  3902. * Just like sched_setscheduler, only don't bother checking if the
  3903. * current context has permission. For example, this is needed in
  3904. * stop_machine(): we create temporary high priority worker threads,
  3905. * but our caller might not have that capability.
  3906. */
  3907. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3908. struct sched_param *param)
  3909. {
  3910. return __sched_setscheduler(p, policy, param, false);
  3911. }
  3912. static int
  3913. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3914. {
  3915. struct sched_param lparam;
  3916. struct task_struct *p;
  3917. int retval;
  3918. if (!param || pid < 0)
  3919. return -EINVAL;
  3920. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3921. return -EFAULT;
  3922. rcu_read_lock();
  3923. retval = -ESRCH;
  3924. p = find_process_by_pid(pid);
  3925. if (p != NULL)
  3926. retval = sched_setscheduler(p, policy, &lparam);
  3927. rcu_read_unlock();
  3928. return retval;
  3929. }
  3930. /**
  3931. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3932. * @pid: the pid in question.
  3933. * @policy: new policy.
  3934. * @param: structure containing the new RT priority.
  3935. */
  3936. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3937. struct sched_param __user *, param)
  3938. {
  3939. /* negative values for policy are not valid */
  3940. if (policy < 0)
  3941. return -EINVAL;
  3942. return do_sched_setscheduler(pid, policy, param);
  3943. }
  3944. /**
  3945. * sys_sched_setparam - set/change the RT priority of a thread
  3946. * @pid: the pid in question.
  3947. * @param: structure containing the new RT priority.
  3948. */
  3949. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3950. {
  3951. return do_sched_setscheduler(pid, -1, param);
  3952. }
  3953. /**
  3954. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3955. * @pid: the pid in question.
  3956. */
  3957. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3958. {
  3959. struct task_struct *p;
  3960. int retval;
  3961. if (pid < 0)
  3962. return -EINVAL;
  3963. retval = -ESRCH;
  3964. rcu_read_lock();
  3965. p = find_process_by_pid(pid);
  3966. if (p) {
  3967. retval = security_task_getscheduler(p);
  3968. if (!retval)
  3969. retval = p->policy
  3970. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3971. }
  3972. rcu_read_unlock();
  3973. return retval;
  3974. }
  3975. /**
  3976. * sys_sched_getparam - get the RT priority of a thread
  3977. * @pid: the pid in question.
  3978. * @param: structure containing the RT priority.
  3979. */
  3980. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3981. {
  3982. struct sched_param lp;
  3983. struct task_struct *p;
  3984. int retval;
  3985. if (!param || pid < 0)
  3986. return -EINVAL;
  3987. rcu_read_lock();
  3988. p = find_process_by_pid(pid);
  3989. retval = -ESRCH;
  3990. if (!p)
  3991. goto out_unlock;
  3992. retval = security_task_getscheduler(p);
  3993. if (retval)
  3994. goto out_unlock;
  3995. lp.sched_priority = p->rt_priority;
  3996. rcu_read_unlock();
  3997. /*
  3998. * This one might sleep, we cannot do it with a spinlock held ...
  3999. */
  4000. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  4001. return retval;
  4002. out_unlock:
  4003. rcu_read_unlock();
  4004. return retval;
  4005. }
  4006. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  4007. {
  4008. cpumask_var_t cpus_allowed, new_mask;
  4009. struct task_struct *p;
  4010. int retval;
  4011. get_online_cpus();
  4012. rcu_read_lock();
  4013. p = find_process_by_pid(pid);
  4014. if (!p) {
  4015. rcu_read_unlock();
  4016. put_online_cpus();
  4017. return -ESRCH;
  4018. }
  4019. /* Prevent p going away */
  4020. get_task_struct(p);
  4021. rcu_read_unlock();
  4022. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  4023. retval = -ENOMEM;
  4024. goto out_put_task;
  4025. }
  4026. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  4027. retval = -ENOMEM;
  4028. goto out_free_cpus_allowed;
  4029. }
  4030. retval = -EPERM;
  4031. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  4032. goto out_unlock;
  4033. retval = security_task_setscheduler(p, 0, NULL);
  4034. if (retval)
  4035. goto out_unlock;
  4036. cpuset_cpus_allowed(p, cpus_allowed);
  4037. cpumask_and(new_mask, in_mask, cpus_allowed);
  4038. again:
  4039. retval = set_cpus_allowed_ptr(p, new_mask);
  4040. if (!retval) {
  4041. cpuset_cpus_allowed(p, cpus_allowed);
  4042. if (!cpumask_subset(new_mask, cpus_allowed)) {
  4043. /*
  4044. * We must have raced with a concurrent cpuset
  4045. * update. Just reset the cpus_allowed to the
  4046. * cpuset's cpus_allowed
  4047. */
  4048. cpumask_copy(new_mask, cpus_allowed);
  4049. goto again;
  4050. }
  4051. }
  4052. out_unlock:
  4053. free_cpumask_var(new_mask);
  4054. out_free_cpus_allowed:
  4055. free_cpumask_var(cpus_allowed);
  4056. out_put_task:
  4057. put_task_struct(p);
  4058. put_online_cpus();
  4059. return retval;
  4060. }
  4061. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  4062. struct cpumask *new_mask)
  4063. {
  4064. if (len < cpumask_size())
  4065. cpumask_clear(new_mask);
  4066. else if (len > cpumask_size())
  4067. len = cpumask_size();
  4068. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  4069. }
  4070. /**
  4071. * sys_sched_setaffinity - set the cpu affinity of a process
  4072. * @pid: pid of the process
  4073. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4074. * @user_mask_ptr: user-space pointer to the new cpu mask
  4075. */
  4076. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  4077. unsigned long __user *, user_mask_ptr)
  4078. {
  4079. cpumask_var_t new_mask;
  4080. int retval;
  4081. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  4082. return -ENOMEM;
  4083. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  4084. if (retval == 0)
  4085. retval = sched_setaffinity(pid, new_mask);
  4086. free_cpumask_var(new_mask);
  4087. return retval;
  4088. }
  4089. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  4090. {
  4091. struct task_struct *p;
  4092. unsigned long flags;
  4093. struct rq *rq;
  4094. int retval;
  4095. get_online_cpus();
  4096. rcu_read_lock();
  4097. retval = -ESRCH;
  4098. p = find_process_by_pid(pid);
  4099. if (!p)
  4100. goto out_unlock;
  4101. retval = security_task_getscheduler(p);
  4102. if (retval)
  4103. goto out_unlock;
  4104. rq = task_rq_lock(p, &flags);
  4105. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  4106. task_rq_unlock(rq, &flags);
  4107. out_unlock:
  4108. rcu_read_unlock();
  4109. put_online_cpus();
  4110. return retval;
  4111. }
  4112. /**
  4113. * sys_sched_getaffinity - get the cpu affinity of a process
  4114. * @pid: pid of the process
  4115. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  4116. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  4117. */
  4118. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  4119. unsigned long __user *, user_mask_ptr)
  4120. {
  4121. int ret;
  4122. cpumask_var_t mask;
  4123. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4124. return -EINVAL;
  4125. if (len & (sizeof(unsigned long)-1))
  4126. return -EINVAL;
  4127. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4128. return -ENOMEM;
  4129. ret = sched_getaffinity(pid, mask);
  4130. if (ret == 0) {
  4131. size_t retlen = min_t(size_t, len, cpumask_size());
  4132. if (copy_to_user(user_mask_ptr, mask, retlen))
  4133. ret = -EFAULT;
  4134. else
  4135. ret = retlen;
  4136. }
  4137. free_cpumask_var(mask);
  4138. return ret;
  4139. }
  4140. /**
  4141. * sys_sched_yield - yield the current processor to other threads.
  4142. *
  4143. * This function yields the current CPU to other tasks. If there are no
  4144. * other threads running on this CPU then this function will return.
  4145. */
  4146. SYSCALL_DEFINE0(sched_yield)
  4147. {
  4148. struct rq *rq = this_rq_lock();
  4149. schedstat_inc(rq, yld_count);
  4150. current->sched_class->yield_task(rq);
  4151. /*
  4152. * Since we are going to call schedule() anyway, there's
  4153. * no need to preempt or enable interrupts:
  4154. */
  4155. __release(rq->lock);
  4156. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4157. do_raw_spin_unlock(&rq->lock);
  4158. preempt_enable_no_resched();
  4159. schedule();
  4160. return 0;
  4161. }
  4162. static inline int should_resched(void)
  4163. {
  4164. return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
  4165. }
  4166. static void __cond_resched(void)
  4167. {
  4168. add_preempt_count(PREEMPT_ACTIVE);
  4169. schedule();
  4170. sub_preempt_count(PREEMPT_ACTIVE);
  4171. }
  4172. int __sched _cond_resched(void)
  4173. {
  4174. if (should_resched()) {
  4175. __cond_resched();
  4176. return 1;
  4177. }
  4178. return 0;
  4179. }
  4180. EXPORT_SYMBOL(_cond_resched);
  4181. /*
  4182. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4183. * call schedule, and on return reacquire the lock.
  4184. *
  4185. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4186. * operations here to prevent schedule() from being called twice (once via
  4187. * spin_unlock(), once by hand).
  4188. */
  4189. int __cond_resched_lock(spinlock_t *lock)
  4190. {
  4191. int resched = should_resched();
  4192. int ret = 0;
  4193. lockdep_assert_held(lock);
  4194. if (spin_needbreak(lock) || resched) {
  4195. spin_unlock(lock);
  4196. if (resched)
  4197. __cond_resched();
  4198. else
  4199. cpu_relax();
  4200. ret = 1;
  4201. spin_lock(lock);
  4202. }
  4203. return ret;
  4204. }
  4205. EXPORT_SYMBOL(__cond_resched_lock);
  4206. int __sched __cond_resched_softirq(void)
  4207. {
  4208. BUG_ON(!in_softirq());
  4209. if (should_resched()) {
  4210. local_bh_enable();
  4211. __cond_resched();
  4212. local_bh_disable();
  4213. return 1;
  4214. }
  4215. return 0;
  4216. }
  4217. EXPORT_SYMBOL(__cond_resched_softirq);
  4218. /**
  4219. * yield - yield the current processor to other threads.
  4220. *
  4221. * This is a shortcut for kernel-space yielding - it marks the
  4222. * thread runnable and calls sys_sched_yield().
  4223. */
  4224. void __sched yield(void)
  4225. {
  4226. set_current_state(TASK_RUNNING);
  4227. sys_sched_yield();
  4228. }
  4229. EXPORT_SYMBOL(yield);
  4230. /*
  4231. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4232. * that process accounting knows that this is a task in IO wait state.
  4233. */
  4234. void __sched io_schedule(void)
  4235. {
  4236. struct rq *rq = raw_rq();
  4237. delayacct_blkio_start();
  4238. atomic_inc(&rq->nr_iowait);
  4239. current->in_iowait = 1;
  4240. schedule();
  4241. current->in_iowait = 0;
  4242. atomic_dec(&rq->nr_iowait);
  4243. delayacct_blkio_end();
  4244. }
  4245. EXPORT_SYMBOL(io_schedule);
  4246. long __sched io_schedule_timeout(long timeout)
  4247. {
  4248. struct rq *rq = raw_rq();
  4249. long ret;
  4250. delayacct_blkio_start();
  4251. atomic_inc(&rq->nr_iowait);
  4252. current->in_iowait = 1;
  4253. ret = schedule_timeout(timeout);
  4254. current->in_iowait = 0;
  4255. atomic_dec(&rq->nr_iowait);
  4256. delayacct_blkio_end();
  4257. return ret;
  4258. }
  4259. /**
  4260. * sys_sched_get_priority_max - return maximum RT priority.
  4261. * @policy: scheduling class.
  4262. *
  4263. * this syscall returns the maximum rt_priority that can be used
  4264. * by a given scheduling class.
  4265. */
  4266. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4267. {
  4268. int ret = -EINVAL;
  4269. switch (policy) {
  4270. case SCHED_FIFO:
  4271. case SCHED_RR:
  4272. ret = MAX_USER_RT_PRIO-1;
  4273. break;
  4274. case SCHED_NORMAL:
  4275. case SCHED_BATCH:
  4276. case SCHED_IDLE:
  4277. ret = 0;
  4278. break;
  4279. }
  4280. return ret;
  4281. }
  4282. /**
  4283. * sys_sched_get_priority_min - return minimum RT priority.
  4284. * @policy: scheduling class.
  4285. *
  4286. * this syscall returns the minimum rt_priority that can be used
  4287. * by a given scheduling class.
  4288. */
  4289. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4290. {
  4291. int ret = -EINVAL;
  4292. switch (policy) {
  4293. case SCHED_FIFO:
  4294. case SCHED_RR:
  4295. ret = 1;
  4296. break;
  4297. case SCHED_NORMAL:
  4298. case SCHED_BATCH:
  4299. case SCHED_IDLE:
  4300. ret = 0;
  4301. }
  4302. return ret;
  4303. }
  4304. /**
  4305. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4306. * @pid: pid of the process.
  4307. * @interval: userspace pointer to the timeslice value.
  4308. *
  4309. * this syscall writes the default timeslice value of a given process
  4310. * into the user-space timespec buffer. A value of '0' means infinity.
  4311. */
  4312. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4313. struct timespec __user *, interval)
  4314. {
  4315. struct task_struct *p;
  4316. unsigned int time_slice;
  4317. unsigned long flags;
  4318. struct rq *rq;
  4319. int retval;
  4320. struct timespec t;
  4321. if (pid < 0)
  4322. return -EINVAL;
  4323. retval = -ESRCH;
  4324. rcu_read_lock();
  4325. p = find_process_by_pid(pid);
  4326. if (!p)
  4327. goto out_unlock;
  4328. retval = security_task_getscheduler(p);
  4329. if (retval)
  4330. goto out_unlock;
  4331. rq = task_rq_lock(p, &flags);
  4332. time_slice = p->sched_class->get_rr_interval(rq, p);
  4333. task_rq_unlock(rq, &flags);
  4334. rcu_read_unlock();
  4335. jiffies_to_timespec(time_slice, &t);
  4336. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4337. return retval;
  4338. out_unlock:
  4339. rcu_read_unlock();
  4340. return retval;
  4341. }
  4342. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4343. void sched_show_task(struct task_struct *p)
  4344. {
  4345. unsigned long free = 0;
  4346. unsigned state;
  4347. state = p->state ? __ffs(p->state) + 1 : 0;
  4348. printk(KERN_INFO "%-13.13s %c", p->comm,
  4349. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4350. #if BITS_PER_LONG == 32
  4351. if (state == TASK_RUNNING)
  4352. printk(KERN_CONT " running ");
  4353. else
  4354. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4355. #else
  4356. if (state == TASK_RUNNING)
  4357. printk(KERN_CONT " running task ");
  4358. else
  4359. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4360. #endif
  4361. #ifdef CONFIG_DEBUG_STACK_USAGE
  4362. free = stack_not_used(p);
  4363. #endif
  4364. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4365. task_pid_nr(p), task_pid_nr(p->real_parent),
  4366. (unsigned long)task_thread_info(p)->flags);
  4367. show_stack(p, NULL);
  4368. }
  4369. void show_state_filter(unsigned long state_filter)
  4370. {
  4371. struct task_struct *g, *p;
  4372. #if BITS_PER_LONG == 32
  4373. printk(KERN_INFO
  4374. " task PC stack pid father\n");
  4375. #else
  4376. printk(KERN_INFO
  4377. " task PC stack pid father\n");
  4378. #endif
  4379. read_lock(&tasklist_lock);
  4380. do_each_thread(g, p) {
  4381. /*
  4382. * reset the NMI-timeout, listing all files on a slow
  4383. * console might take alot of time:
  4384. */
  4385. touch_nmi_watchdog();
  4386. if (!state_filter || (p->state & state_filter))
  4387. sched_show_task(p);
  4388. } while_each_thread(g, p);
  4389. touch_all_softlockup_watchdogs();
  4390. #ifdef CONFIG_SCHED_DEBUG
  4391. sysrq_sched_debug_show();
  4392. #endif
  4393. read_unlock(&tasklist_lock);
  4394. /*
  4395. * Only show locks if all tasks are dumped:
  4396. */
  4397. if (!state_filter)
  4398. debug_show_all_locks();
  4399. }
  4400. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4401. {
  4402. idle->sched_class = &idle_sched_class;
  4403. }
  4404. /**
  4405. * init_idle - set up an idle thread for a given CPU
  4406. * @idle: task in question
  4407. * @cpu: cpu the idle task belongs to
  4408. *
  4409. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4410. * flag, to make booting more robust.
  4411. */
  4412. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4413. {
  4414. struct rq *rq = cpu_rq(cpu);
  4415. unsigned long flags;
  4416. raw_spin_lock_irqsave(&rq->lock, flags);
  4417. __sched_fork(idle);
  4418. idle->state = TASK_RUNNING;
  4419. idle->se.exec_start = sched_clock();
  4420. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  4421. __set_task_cpu(idle, cpu);
  4422. rq->curr = rq->idle = idle;
  4423. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4424. idle->oncpu = 1;
  4425. #endif
  4426. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4427. /* Set the preempt count _outside_ the spinlocks! */
  4428. #if defined(CONFIG_PREEMPT)
  4429. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4430. #else
  4431. task_thread_info(idle)->preempt_count = 0;
  4432. #endif
  4433. /*
  4434. * The idle tasks have their own, simple scheduling class:
  4435. */
  4436. idle->sched_class = &idle_sched_class;
  4437. ftrace_graph_init_task(idle);
  4438. }
  4439. /*
  4440. * In a system that switches off the HZ timer nohz_cpu_mask
  4441. * indicates which cpus entered this state. This is used
  4442. * in the rcu update to wait only for active cpus. For system
  4443. * which do not switch off the HZ timer nohz_cpu_mask should
  4444. * always be CPU_BITS_NONE.
  4445. */
  4446. cpumask_var_t nohz_cpu_mask;
  4447. /*
  4448. * Increase the granularity value when there are more CPUs,
  4449. * because with more CPUs the 'effective latency' as visible
  4450. * to users decreases. But the relationship is not linear,
  4451. * so pick a second-best guess by going with the log2 of the
  4452. * number of CPUs.
  4453. *
  4454. * This idea comes from the SD scheduler of Con Kolivas:
  4455. */
  4456. static int get_update_sysctl_factor(void)
  4457. {
  4458. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  4459. unsigned int factor;
  4460. switch (sysctl_sched_tunable_scaling) {
  4461. case SCHED_TUNABLESCALING_NONE:
  4462. factor = 1;
  4463. break;
  4464. case SCHED_TUNABLESCALING_LINEAR:
  4465. factor = cpus;
  4466. break;
  4467. case SCHED_TUNABLESCALING_LOG:
  4468. default:
  4469. factor = 1 + ilog2(cpus);
  4470. break;
  4471. }
  4472. return factor;
  4473. }
  4474. static void update_sysctl(void)
  4475. {
  4476. unsigned int factor = get_update_sysctl_factor();
  4477. #define SET_SYSCTL(name) \
  4478. (sysctl_##name = (factor) * normalized_sysctl_##name)
  4479. SET_SYSCTL(sched_min_granularity);
  4480. SET_SYSCTL(sched_latency);
  4481. SET_SYSCTL(sched_wakeup_granularity);
  4482. SET_SYSCTL(sched_shares_ratelimit);
  4483. #undef SET_SYSCTL
  4484. }
  4485. static inline void sched_init_granularity(void)
  4486. {
  4487. update_sysctl();
  4488. }
  4489. #ifdef CONFIG_SMP
  4490. /*
  4491. * This is how migration works:
  4492. *
  4493. * 1) we queue a struct migration_req structure in the source CPU's
  4494. * runqueue and wake up that CPU's migration thread.
  4495. * 2) we down() the locked semaphore => thread blocks.
  4496. * 3) migration thread wakes up (implicitly it forces the migrated
  4497. * thread off the CPU)
  4498. * 4) it gets the migration request and checks whether the migrated
  4499. * task is still in the wrong runqueue.
  4500. * 5) if it's in the wrong runqueue then the migration thread removes
  4501. * it and puts it into the right queue.
  4502. * 6) migration thread up()s the semaphore.
  4503. * 7) we wake up and the migration is done.
  4504. */
  4505. /*
  4506. * Change a given task's CPU affinity. Migrate the thread to a
  4507. * proper CPU and schedule it away if the CPU it's executing on
  4508. * is removed from the allowed bitmask.
  4509. *
  4510. * NOTE: the caller must have a valid reference to the task, the
  4511. * task must not exit() & deallocate itself prematurely. The
  4512. * call is not atomic; no spinlocks may be held.
  4513. */
  4514. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  4515. {
  4516. struct migration_req req;
  4517. unsigned long flags;
  4518. struct rq *rq;
  4519. int ret = 0;
  4520. /*
  4521. * Serialize against TASK_WAKING so that ttwu() and wunt() can
  4522. * drop the rq->lock and still rely on ->cpus_allowed.
  4523. */
  4524. again:
  4525. while (task_is_waking(p))
  4526. cpu_relax();
  4527. rq = task_rq_lock(p, &flags);
  4528. if (task_is_waking(p)) {
  4529. task_rq_unlock(rq, &flags);
  4530. goto again;
  4531. }
  4532. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  4533. ret = -EINVAL;
  4534. goto out;
  4535. }
  4536. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  4537. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  4538. ret = -EINVAL;
  4539. goto out;
  4540. }
  4541. if (p->sched_class->set_cpus_allowed)
  4542. p->sched_class->set_cpus_allowed(p, new_mask);
  4543. else {
  4544. cpumask_copy(&p->cpus_allowed, new_mask);
  4545. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  4546. }
  4547. /* Can the task run on the task's current CPU? If so, we're done */
  4548. if (cpumask_test_cpu(task_cpu(p), new_mask))
  4549. goto out;
  4550. if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
  4551. /* Need help from migration thread: drop lock and wait. */
  4552. struct task_struct *mt = rq->migration_thread;
  4553. get_task_struct(mt);
  4554. task_rq_unlock(rq, &flags);
  4555. wake_up_process(mt);
  4556. put_task_struct(mt);
  4557. wait_for_completion(&req.done);
  4558. tlb_migrate_finish(p->mm);
  4559. return 0;
  4560. }
  4561. out:
  4562. task_rq_unlock(rq, &flags);
  4563. return ret;
  4564. }
  4565. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  4566. /*
  4567. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4568. * this because either it can't run here any more (set_cpus_allowed()
  4569. * away from this CPU, or CPU going down), or because we're
  4570. * attempting to rebalance this task on exec (sched_exec).
  4571. *
  4572. * So we race with normal scheduler movements, but that's OK, as long
  4573. * as the task is no longer on this CPU.
  4574. *
  4575. * Returns non-zero if task was successfully migrated.
  4576. */
  4577. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4578. {
  4579. struct rq *rq_dest, *rq_src;
  4580. int ret = 0;
  4581. if (unlikely(!cpu_active(dest_cpu)))
  4582. return ret;
  4583. rq_src = cpu_rq(src_cpu);
  4584. rq_dest = cpu_rq(dest_cpu);
  4585. double_rq_lock(rq_src, rq_dest);
  4586. /* Already moved. */
  4587. if (task_cpu(p) != src_cpu)
  4588. goto done;
  4589. /* Affinity changed (again). */
  4590. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  4591. goto fail;
  4592. /*
  4593. * If we're not on a rq, the next wake-up will ensure we're
  4594. * placed properly.
  4595. */
  4596. if (p->se.on_rq) {
  4597. deactivate_task(rq_src, p, 0);
  4598. set_task_cpu(p, dest_cpu);
  4599. activate_task(rq_dest, p, 0);
  4600. check_preempt_curr(rq_dest, p, 0);
  4601. }
  4602. done:
  4603. ret = 1;
  4604. fail:
  4605. double_rq_unlock(rq_src, rq_dest);
  4606. return ret;
  4607. }
  4608. #define RCU_MIGRATION_IDLE 0
  4609. #define RCU_MIGRATION_NEED_QS 1
  4610. #define RCU_MIGRATION_GOT_QS 2
  4611. #define RCU_MIGRATION_MUST_SYNC 3
  4612. /*
  4613. * migration_thread - this is a highprio system thread that performs
  4614. * thread migration by bumping thread off CPU then 'pushing' onto
  4615. * another runqueue.
  4616. */
  4617. static int migration_thread(void *data)
  4618. {
  4619. int badcpu;
  4620. int cpu = (long)data;
  4621. struct rq *rq;
  4622. rq = cpu_rq(cpu);
  4623. BUG_ON(rq->migration_thread != current);
  4624. set_current_state(TASK_INTERRUPTIBLE);
  4625. while (!kthread_should_stop()) {
  4626. struct migration_req *req;
  4627. struct list_head *head;
  4628. raw_spin_lock_irq(&rq->lock);
  4629. if (cpu_is_offline(cpu)) {
  4630. raw_spin_unlock_irq(&rq->lock);
  4631. break;
  4632. }
  4633. if (rq->active_balance) {
  4634. active_load_balance(rq, cpu);
  4635. rq->active_balance = 0;
  4636. }
  4637. head = &rq->migration_queue;
  4638. if (list_empty(head)) {
  4639. raw_spin_unlock_irq(&rq->lock);
  4640. schedule();
  4641. set_current_state(TASK_INTERRUPTIBLE);
  4642. continue;
  4643. }
  4644. req = list_entry(head->next, struct migration_req, list);
  4645. list_del_init(head->next);
  4646. if (req->task != NULL) {
  4647. raw_spin_unlock(&rq->lock);
  4648. __migrate_task(req->task, cpu, req->dest_cpu);
  4649. } else if (likely(cpu == (badcpu = smp_processor_id()))) {
  4650. req->dest_cpu = RCU_MIGRATION_GOT_QS;
  4651. raw_spin_unlock(&rq->lock);
  4652. } else {
  4653. req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
  4654. raw_spin_unlock(&rq->lock);
  4655. WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
  4656. }
  4657. local_irq_enable();
  4658. complete(&req->done);
  4659. }
  4660. __set_current_state(TASK_RUNNING);
  4661. return 0;
  4662. }
  4663. #ifdef CONFIG_HOTPLUG_CPU
  4664. /*
  4665. * Figure out where task on dead CPU should go, use force if necessary.
  4666. */
  4667. void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4668. {
  4669. struct rq *rq = cpu_rq(dead_cpu);
  4670. int needs_cpu, uninitialized_var(dest_cpu);
  4671. unsigned long flags;
  4672. local_irq_save(flags);
  4673. raw_spin_lock(&rq->lock);
  4674. needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
  4675. if (needs_cpu)
  4676. dest_cpu = select_fallback_rq(dead_cpu, p);
  4677. raw_spin_unlock(&rq->lock);
  4678. /*
  4679. * It can only fail if we race with set_cpus_allowed(),
  4680. * in the racer should migrate the task anyway.
  4681. */
  4682. if (needs_cpu)
  4683. __migrate_task(p, dead_cpu, dest_cpu);
  4684. local_irq_restore(flags);
  4685. }
  4686. /*
  4687. * While a dead CPU has no uninterruptible tasks queued at this point,
  4688. * it might still have a nonzero ->nr_uninterruptible counter, because
  4689. * for performance reasons the counter is not stricly tracking tasks to
  4690. * their home CPUs. So we just add the counter to another CPU's counter,
  4691. * to keep the global sum constant after CPU-down:
  4692. */
  4693. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4694. {
  4695. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
  4696. unsigned long flags;
  4697. local_irq_save(flags);
  4698. double_rq_lock(rq_src, rq_dest);
  4699. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4700. rq_src->nr_uninterruptible = 0;
  4701. double_rq_unlock(rq_src, rq_dest);
  4702. local_irq_restore(flags);
  4703. }
  4704. /* Run through task list and migrate tasks from the dead cpu. */
  4705. static void migrate_live_tasks(int src_cpu)
  4706. {
  4707. struct task_struct *p, *t;
  4708. read_lock(&tasklist_lock);
  4709. do_each_thread(t, p) {
  4710. if (p == current)
  4711. continue;
  4712. if (task_cpu(p) == src_cpu)
  4713. move_task_off_dead_cpu(src_cpu, p);
  4714. } while_each_thread(t, p);
  4715. read_unlock(&tasklist_lock);
  4716. }
  4717. /*
  4718. * Schedules idle task to be the next runnable task on current CPU.
  4719. * It does so by boosting its priority to highest possible.
  4720. * Used by CPU offline code.
  4721. */
  4722. void sched_idle_next(void)
  4723. {
  4724. int this_cpu = smp_processor_id();
  4725. struct rq *rq = cpu_rq(this_cpu);
  4726. struct task_struct *p = rq->idle;
  4727. unsigned long flags;
  4728. /* cpu has to be offline */
  4729. BUG_ON(cpu_online(this_cpu));
  4730. /*
  4731. * Strictly not necessary since rest of the CPUs are stopped by now
  4732. * and interrupts disabled on the current cpu.
  4733. */
  4734. raw_spin_lock_irqsave(&rq->lock, flags);
  4735. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4736. activate_task(rq, p, 0);
  4737. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4738. }
  4739. /*
  4740. * Ensures that the idle task is using init_mm right before its cpu goes
  4741. * offline.
  4742. */
  4743. void idle_task_exit(void)
  4744. {
  4745. struct mm_struct *mm = current->active_mm;
  4746. BUG_ON(cpu_online(smp_processor_id()));
  4747. if (mm != &init_mm)
  4748. switch_mm(mm, &init_mm, current);
  4749. mmdrop(mm);
  4750. }
  4751. /* called under rq->lock with disabled interrupts */
  4752. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4753. {
  4754. struct rq *rq = cpu_rq(dead_cpu);
  4755. /* Must be exiting, otherwise would be on tasklist. */
  4756. BUG_ON(!p->exit_state);
  4757. /* Cannot have done final schedule yet: would have vanished. */
  4758. BUG_ON(p->state == TASK_DEAD);
  4759. get_task_struct(p);
  4760. /*
  4761. * Drop lock around migration; if someone else moves it,
  4762. * that's OK. No task can be added to this CPU, so iteration is
  4763. * fine.
  4764. */
  4765. raw_spin_unlock_irq(&rq->lock);
  4766. move_task_off_dead_cpu(dead_cpu, p);
  4767. raw_spin_lock_irq(&rq->lock);
  4768. put_task_struct(p);
  4769. }
  4770. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4771. static void migrate_dead_tasks(unsigned int dead_cpu)
  4772. {
  4773. struct rq *rq = cpu_rq(dead_cpu);
  4774. struct task_struct *next;
  4775. for ( ; ; ) {
  4776. if (!rq->nr_running)
  4777. break;
  4778. next = pick_next_task(rq);
  4779. if (!next)
  4780. break;
  4781. next->sched_class->put_prev_task(rq, next);
  4782. migrate_dead(dead_cpu, next);
  4783. }
  4784. }
  4785. /*
  4786. * remove the tasks which were accounted by rq from calc_load_tasks.
  4787. */
  4788. static void calc_global_load_remove(struct rq *rq)
  4789. {
  4790. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  4791. rq->calc_load_active = 0;
  4792. }
  4793. #endif /* CONFIG_HOTPLUG_CPU */
  4794. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4795. static struct ctl_table sd_ctl_dir[] = {
  4796. {
  4797. .procname = "sched_domain",
  4798. .mode = 0555,
  4799. },
  4800. {}
  4801. };
  4802. static struct ctl_table sd_ctl_root[] = {
  4803. {
  4804. .procname = "kernel",
  4805. .mode = 0555,
  4806. .child = sd_ctl_dir,
  4807. },
  4808. {}
  4809. };
  4810. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4811. {
  4812. struct ctl_table *entry =
  4813. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4814. return entry;
  4815. }
  4816. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4817. {
  4818. struct ctl_table *entry;
  4819. /*
  4820. * In the intermediate directories, both the child directory and
  4821. * procname are dynamically allocated and could fail but the mode
  4822. * will always be set. In the lowest directory the names are
  4823. * static strings and all have proc handlers.
  4824. */
  4825. for (entry = *tablep; entry->mode; entry++) {
  4826. if (entry->child)
  4827. sd_free_ctl_entry(&entry->child);
  4828. if (entry->proc_handler == NULL)
  4829. kfree(entry->procname);
  4830. }
  4831. kfree(*tablep);
  4832. *tablep = NULL;
  4833. }
  4834. static void
  4835. set_table_entry(struct ctl_table *entry,
  4836. const char *procname, void *data, int maxlen,
  4837. mode_t mode, proc_handler *proc_handler)
  4838. {
  4839. entry->procname = procname;
  4840. entry->data = data;
  4841. entry->maxlen = maxlen;
  4842. entry->mode = mode;
  4843. entry->proc_handler = proc_handler;
  4844. }
  4845. static struct ctl_table *
  4846. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4847. {
  4848. struct ctl_table *table = sd_alloc_ctl_entry(13);
  4849. if (table == NULL)
  4850. return NULL;
  4851. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4852. sizeof(long), 0644, proc_doulongvec_minmax);
  4853. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4854. sizeof(long), 0644, proc_doulongvec_minmax);
  4855. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4856. sizeof(int), 0644, proc_dointvec_minmax);
  4857. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4858. sizeof(int), 0644, proc_dointvec_minmax);
  4859. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4860. sizeof(int), 0644, proc_dointvec_minmax);
  4861. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4862. sizeof(int), 0644, proc_dointvec_minmax);
  4863. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4864. sizeof(int), 0644, proc_dointvec_minmax);
  4865. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4866. sizeof(int), 0644, proc_dointvec_minmax);
  4867. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4868. sizeof(int), 0644, proc_dointvec_minmax);
  4869. set_table_entry(&table[9], "cache_nice_tries",
  4870. &sd->cache_nice_tries,
  4871. sizeof(int), 0644, proc_dointvec_minmax);
  4872. set_table_entry(&table[10], "flags", &sd->flags,
  4873. sizeof(int), 0644, proc_dointvec_minmax);
  4874. set_table_entry(&table[11], "name", sd->name,
  4875. CORENAME_MAX_SIZE, 0444, proc_dostring);
  4876. /* &table[12] is terminator */
  4877. return table;
  4878. }
  4879. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4880. {
  4881. struct ctl_table *entry, *table;
  4882. struct sched_domain *sd;
  4883. int domain_num = 0, i;
  4884. char buf[32];
  4885. for_each_domain(cpu, sd)
  4886. domain_num++;
  4887. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4888. if (table == NULL)
  4889. return NULL;
  4890. i = 0;
  4891. for_each_domain(cpu, sd) {
  4892. snprintf(buf, 32, "domain%d", i);
  4893. entry->procname = kstrdup(buf, GFP_KERNEL);
  4894. entry->mode = 0555;
  4895. entry->child = sd_alloc_ctl_domain_table(sd);
  4896. entry++;
  4897. i++;
  4898. }
  4899. return table;
  4900. }
  4901. static struct ctl_table_header *sd_sysctl_header;
  4902. static void register_sched_domain_sysctl(void)
  4903. {
  4904. int i, cpu_num = num_possible_cpus();
  4905. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4906. char buf[32];
  4907. WARN_ON(sd_ctl_dir[0].child);
  4908. sd_ctl_dir[0].child = entry;
  4909. if (entry == NULL)
  4910. return;
  4911. for_each_possible_cpu(i) {
  4912. snprintf(buf, 32, "cpu%d", i);
  4913. entry->procname = kstrdup(buf, GFP_KERNEL);
  4914. entry->mode = 0555;
  4915. entry->child = sd_alloc_ctl_cpu_table(i);
  4916. entry++;
  4917. }
  4918. WARN_ON(sd_sysctl_header);
  4919. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4920. }
  4921. /* may be called multiple times per register */
  4922. static void unregister_sched_domain_sysctl(void)
  4923. {
  4924. if (sd_sysctl_header)
  4925. unregister_sysctl_table(sd_sysctl_header);
  4926. sd_sysctl_header = NULL;
  4927. if (sd_ctl_dir[0].child)
  4928. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4929. }
  4930. #else
  4931. static void register_sched_domain_sysctl(void)
  4932. {
  4933. }
  4934. static void unregister_sched_domain_sysctl(void)
  4935. {
  4936. }
  4937. #endif
  4938. static void set_rq_online(struct rq *rq)
  4939. {
  4940. if (!rq->online) {
  4941. const struct sched_class *class;
  4942. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4943. rq->online = 1;
  4944. for_each_class(class) {
  4945. if (class->rq_online)
  4946. class->rq_online(rq);
  4947. }
  4948. }
  4949. }
  4950. static void set_rq_offline(struct rq *rq)
  4951. {
  4952. if (rq->online) {
  4953. const struct sched_class *class;
  4954. for_each_class(class) {
  4955. if (class->rq_offline)
  4956. class->rq_offline(rq);
  4957. }
  4958. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4959. rq->online = 0;
  4960. }
  4961. }
  4962. /*
  4963. * migration_call - callback that gets triggered when a CPU is added.
  4964. * Here we can start up the necessary migration thread for the new CPU.
  4965. */
  4966. static int __cpuinit
  4967. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4968. {
  4969. struct task_struct *p;
  4970. int cpu = (long)hcpu;
  4971. unsigned long flags;
  4972. struct rq *rq;
  4973. switch (action) {
  4974. case CPU_UP_PREPARE:
  4975. case CPU_UP_PREPARE_FROZEN:
  4976. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4977. if (IS_ERR(p))
  4978. return NOTIFY_BAD;
  4979. kthread_bind(p, cpu);
  4980. /* Must be high prio: stop_machine expects to yield to it. */
  4981. rq = task_rq_lock(p, &flags);
  4982. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4983. task_rq_unlock(rq, &flags);
  4984. get_task_struct(p);
  4985. cpu_rq(cpu)->migration_thread = p;
  4986. rq->calc_load_update = calc_load_update;
  4987. break;
  4988. case CPU_ONLINE:
  4989. case CPU_ONLINE_FROZEN:
  4990. /* Strictly unnecessary, as first user will wake it. */
  4991. wake_up_process(cpu_rq(cpu)->migration_thread);
  4992. /* Update our root-domain */
  4993. rq = cpu_rq(cpu);
  4994. raw_spin_lock_irqsave(&rq->lock, flags);
  4995. if (rq->rd) {
  4996. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4997. set_rq_online(rq);
  4998. }
  4999. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5000. break;
  5001. #ifdef CONFIG_HOTPLUG_CPU
  5002. case CPU_UP_CANCELED:
  5003. case CPU_UP_CANCELED_FROZEN:
  5004. if (!cpu_rq(cpu)->migration_thread)
  5005. break;
  5006. /* Unbind it from offline cpu so it can run. Fall thru. */
  5007. kthread_bind(cpu_rq(cpu)->migration_thread,
  5008. cpumask_any(cpu_online_mask));
  5009. kthread_stop(cpu_rq(cpu)->migration_thread);
  5010. put_task_struct(cpu_rq(cpu)->migration_thread);
  5011. cpu_rq(cpu)->migration_thread = NULL;
  5012. break;
  5013. case CPU_DEAD:
  5014. case CPU_DEAD_FROZEN:
  5015. migrate_live_tasks(cpu);
  5016. rq = cpu_rq(cpu);
  5017. kthread_stop(rq->migration_thread);
  5018. put_task_struct(rq->migration_thread);
  5019. rq->migration_thread = NULL;
  5020. /* Idle task back to normal (off runqueue, low prio) */
  5021. raw_spin_lock_irq(&rq->lock);
  5022. deactivate_task(rq, rq->idle, 0);
  5023. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  5024. rq->idle->sched_class = &idle_sched_class;
  5025. migrate_dead_tasks(cpu);
  5026. raw_spin_unlock_irq(&rq->lock);
  5027. migrate_nr_uninterruptible(rq);
  5028. BUG_ON(rq->nr_running != 0);
  5029. calc_global_load_remove(rq);
  5030. /*
  5031. * No need to migrate the tasks: it was best-effort if
  5032. * they didn't take sched_hotcpu_mutex. Just wake up
  5033. * the requestors.
  5034. */
  5035. raw_spin_lock_irq(&rq->lock);
  5036. while (!list_empty(&rq->migration_queue)) {
  5037. struct migration_req *req;
  5038. req = list_entry(rq->migration_queue.next,
  5039. struct migration_req, list);
  5040. list_del_init(&req->list);
  5041. raw_spin_unlock_irq(&rq->lock);
  5042. complete(&req->done);
  5043. raw_spin_lock_irq(&rq->lock);
  5044. }
  5045. raw_spin_unlock_irq(&rq->lock);
  5046. break;
  5047. case CPU_DYING:
  5048. case CPU_DYING_FROZEN:
  5049. /* Update our root-domain */
  5050. rq = cpu_rq(cpu);
  5051. raw_spin_lock_irqsave(&rq->lock, flags);
  5052. if (rq->rd) {
  5053. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  5054. set_rq_offline(rq);
  5055. }
  5056. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5057. break;
  5058. #endif
  5059. }
  5060. return NOTIFY_OK;
  5061. }
  5062. /*
  5063. * Register at high priority so that task migration (migrate_all_tasks)
  5064. * happens before everything else. This has to be lower priority than
  5065. * the notifier in the perf_event subsystem, though.
  5066. */
  5067. static struct notifier_block __cpuinitdata migration_notifier = {
  5068. .notifier_call = migration_call,
  5069. .priority = 10
  5070. };
  5071. static int __init migration_init(void)
  5072. {
  5073. void *cpu = (void *)(long)smp_processor_id();
  5074. int err;
  5075. /* Start one for the boot CPU: */
  5076. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  5077. BUG_ON(err == NOTIFY_BAD);
  5078. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  5079. register_cpu_notifier(&migration_notifier);
  5080. return 0;
  5081. }
  5082. early_initcall(migration_init);
  5083. #endif
  5084. #ifdef CONFIG_SMP
  5085. #ifdef CONFIG_SCHED_DEBUG
  5086. static __read_mostly int sched_domain_debug_enabled;
  5087. static int __init sched_domain_debug_setup(char *str)
  5088. {
  5089. sched_domain_debug_enabled = 1;
  5090. return 0;
  5091. }
  5092. early_param("sched_debug", sched_domain_debug_setup);
  5093. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  5094. struct cpumask *groupmask)
  5095. {
  5096. struct sched_group *group = sd->groups;
  5097. char str[256];
  5098. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  5099. cpumask_clear(groupmask);
  5100. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  5101. if (!(sd->flags & SD_LOAD_BALANCE)) {
  5102. printk("does not load-balance\n");
  5103. if (sd->parent)
  5104. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  5105. " has parent");
  5106. return -1;
  5107. }
  5108. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  5109. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  5110. printk(KERN_ERR "ERROR: domain->span does not contain "
  5111. "CPU%d\n", cpu);
  5112. }
  5113. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  5114. printk(KERN_ERR "ERROR: domain->groups does not contain"
  5115. " CPU%d\n", cpu);
  5116. }
  5117. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  5118. do {
  5119. if (!group) {
  5120. printk("\n");
  5121. printk(KERN_ERR "ERROR: group is NULL\n");
  5122. break;
  5123. }
  5124. if (!group->cpu_power) {
  5125. printk(KERN_CONT "\n");
  5126. printk(KERN_ERR "ERROR: domain->cpu_power not "
  5127. "set\n");
  5128. break;
  5129. }
  5130. if (!cpumask_weight(sched_group_cpus(group))) {
  5131. printk(KERN_CONT "\n");
  5132. printk(KERN_ERR "ERROR: empty group\n");
  5133. break;
  5134. }
  5135. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  5136. printk(KERN_CONT "\n");
  5137. printk(KERN_ERR "ERROR: repeated CPUs\n");
  5138. break;
  5139. }
  5140. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  5141. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  5142. printk(KERN_CONT " %s", str);
  5143. if (group->cpu_power != SCHED_LOAD_SCALE) {
  5144. printk(KERN_CONT " (cpu_power = %d)",
  5145. group->cpu_power);
  5146. }
  5147. group = group->next;
  5148. } while (group != sd->groups);
  5149. printk(KERN_CONT "\n");
  5150. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  5151. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  5152. if (sd->parent &&
  5153. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  5154. printk(KERN_ERR "ERROR: parent span is not a superset "
  5155. "of domain->span\n");
  5156. return 0;
  5157. }
  5158. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5159. {
  5160. cpumask_var_t groupmask;
  5161. int level = 0;
  5162. if (!sched_domain_debug_enabled)
  5163. return;
  5164. if (!sd) {
  5165. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5166. return;
  5167. }
  5168. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5169. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  5170. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  5171. return;
  5172. }
  5173. for (;;) {
  5174. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  5175. break;
  5176. level++;
  5177. sd = sd->parent;
  5178. if (!sd)
  5179. break;
  5180. }
  5181. free_cpumask_var(groupmask);
  5182. }
  5183. #else /* !CONFIG_SCHED_DEBUG */
  5184. # define sched_domain_debug(sd, cpu) do { } while (0)
  5185. #endif /* CONFIG_SCHED_DEBUG */
  5186. static int sd_degenerate(struct sched_domain *sd)
  5187. {
  5188. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5189. return 1;
  5190. /* Following flags need at least 2 groups */
  5191. if (sd->flags & (SD_LOAD_BALANCE |
  5192. SD_BALANCE_NEWIDLE |
  5193. SD_BALANCE_FORK |
  5194. SD_BALANCE_EXEC |
  5195. SD_SHARE_CPUPOWER |
  5196. SD_SHARE_PKG_RESOURCES)) {
  5197. if (sd->groups != sd->groups->next)
  5198. return 0;
  5199. }
  5200. /* Following flags don't use groups */
  5201. if (sd->flags & (SD_WAKE_AFFINE))
  5202. return 0;
  5203. return 1;
  5204. }
  5205. static int
  5206. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5207. {
  5208. unsigned long cflags = sd->flags, pflags = parent->flags;
  5209. if (sd_degenerate(parent))
  5210. return 1;
  5211. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5212. return 0;
  5213. /* Flags needing groups don't count if only 1 group in parent */
  5214. if (parent->groups == parent->groups->next) {
  5215. pflags &= ~(SD_LOAD_BALANCE |
  5216. SD_BALANCE_NEWIDLE |
  5217. SD_BALANCE_FORK |
  5218. SD_BALANCE_EXEC |
  5219. SD_SHARE_CPUPOWER |
  5220. SD_SHARE_PKG_RESOURCES);
  5221. if (nr_node_ids == 1)
  5222. pflags &= ~SD_SERIALIZE;
  5223. }
  5224. if (~cflags & pflags)
  5225. return 0;
  5226. return 1;
  5227. }
  5228. static void free_rootdomain(struct root_domain *rd)
  5229. {
  5230. synchronize_sched();
  5231. cpupri_cleanup(&rd->cpupri);
  5232. free_cpumask_var(rd->rto_mask);
  5233. free_cpumask_var(rd->online);
  5234. free_cpumask_var(rd->span);
  5235. kfree(rd);
  5236. }
  5237. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5238. {
  5239. struct root_domain *old_rd = NULL;
  5240. unsigned long flags;
  5241. raw_spin_lock_irqsave(&rq->lock, flags);
  5242. if (rq->rd) {
  5243. old_rd = rq->rd;
  5244. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5245. set_rq_offline(rq);
  5246. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5247. /*
  5248. * If we dont want to free the old_rt yet then
  5249. * set old_rd to NULL to skip the freeing later
  5250. * in this function:
  5251. */
  5252. if (!atomic_dec_and_test(&old_rd->refcount))
  5253. old_rd = NULL;
  5254. }
  5255. atomic_inc(&rd->refcount);
  5256. rq->rd = rd;
  5257. cpumask_set_cpu(rq->cpu, rd->span);
  5258. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5259. set_rq_online(rq);
  5260. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5261. if (old_rd)
  5262. free_rootdomain(old_rd);
  5263. }
  5264. static int init_rootdomain(struct root_domain *rd, bool bootmem)
  5265. {
  5266. gfp_t gfp = GFP_KERNEL;
  5267. memset(rd, 0, sizeof(*rd));
  5268. if (bootmem)
  5269. gfp = GFP_NOWAIT;
  5270. if (!alloc_cpumask_var(&rd->span, gfp))
  5271. goto out;
  5272. if (!alloc_cpumask_var(&rd->online, gfp))
  5273. goto free_span;
  5274. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  5275. goto free_online;
  5276. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  5277. goto free_rto_mask;
  5278. return 0;
  5279. free_rto_mask:
  5280. free_cpumask_var(rd->rto_mask);
  5281. free_online:
  5282. free_cpumask_var(rd->online);
  5283. free_span:
  5284. free_cpumask_var(rd->span);
  5285. out:
  5286. return -ENOMEM;
  5287. }
  5288. static void init_defrootdomain(void)
  5289. {
  5290. init_rootdomain(&def_root_domain, true);
  5291. atomic_set(&def_root_domain.refcount, 1);
  5292. }
  5293. static struct root_domain *alloc_rootdomain(void)
  5294. {
  5295. struct root_domain *rd;
  5296. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5297. if (!rd)
  5298. return NULL;
  5299. if (init_rootdomain(rd, false) != 0) {
  5300. kfree(rd);
  5301. return NULL;
  5302. }
  5303. return rd;
  5304. }
  5305. /*
  5306. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5307. * hold the hotplug lock.
  5308. */
  5309. static void
  5310. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5311. {
  5312. struct rq *rq = cpu_rq(cpu);
  5313. struct sched_domain *tmp;
  5314. for (tmp = sd; tmp; tmp = tmp->parent)
  5315. tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
  5316. /* Remove the sched domains which do not contribute to scheduling. */
  5317. for (tmp = sd; tmp; ) {
  5318. struct sched_domain *parent = tmp->parent;
  5319. if (!parent)
  5320. break;
  5321. if (sd_parent_degenerate(tmp, parent)) {
  5322. tmp->parent = parent->parent;
  5323. if (parent->parent)
  5324. parent->parent->child = tmp;
  5325. } else
  5326. tmp = tmp->parent;
  5327. }
  5328. if (sd && sd_degenerate(sd)) {
  5329. sd = sd->parent;
  5330. if (sd)
  5331. sd->child = NULL;
  5332. }
  5333. sched_domain_debug(sd, cpu);
  5334. rq_attach_root(rq, rd);
  5335. rcu_assign_pointer(rq->sd, sd);
  5336. }
  5337. /* cpus with isolated domains */
  5338. static cpumask_var_t cpu_isolated_map;
  5339. /* Setup the mask of cpus configured for isolated domains */
  5340. static int __init isolated_cpu_setup(char *str)
  5341. {
  5342. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5343. cpulist_parse(str, cpu_isolated_map);
  5344. return 1;
  5345. }
  5346. __setup("isolcpus=", isolated_cpu_setup);
  5347. /*
  5348. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  5349. * to a function which identifies what group(along with sched group) a CPU
  5350. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  5351. * (due to the fact that we keep track of groups covered with a struct cpumask).
  5352. *
  5353. * init_sched_build_groups will build a circular linked list of the groups
  5354. * covered by the given span, and will set each group's ->cpumask correctly,
  5355. * and ->cpu_power to 0.
  5356. */
  5357. static void
  5358. init_sched_build_groups(const struct cpumask *span,
  5359. const struct cpumask *cpu_map,
  5360. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  5361. struct sched_group **sg,
  5362. struct cpumask *tmpmask),
  5363. struct cpumask *covered, struct cpumask *tmpmask)
  5364. {
  5365. struct sched_group *first = NULL, *last = NULL;
  5366. int i;
  5367. cpumask_clear(covered);
  5368. for_each_cpu(i, span) {
  5369. struct sched_group *sg;
  5370. int group = group_fn(i, cpu_map, &sg, tmpmask);
  5371. int j;
  5372. if (cpumask_test_cpu(i, covered))
  5373. continue;
  5374. cpumask_clear(sched_group_cpus(sg));
  5375. sg->cpu_power = 0;
  5376. for_each_cpu(j, span) {
  5377. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  5378. continue;
  5379. cpumask_set_cpu(j, covered);
  5380. cpumask_set_cpu(j, sched_group_cpus(sg));
  5381. }
  5382. if (!first)
  5383. first = sg;
  5384. if (last)
  5385. last->next = sg;
  5386. last = sg;
  5387. }
  5388. last->next = first;
  5389. }
  5390. #define SD_NODES_PER_DOMAIN 16
  5391. #ifdef CONFIG_NUMA
  5392. /**
  5393. * find_next_best_node - find the next node to include in a sched_domain
  5394. * @node: node whose sched_domain we're building
  5395. * @used_nodes: nodes already in the sched_domain
  5396. *
  5397. * Find the next node to include in a given scheduling domain. Simply
  5398. * finds the closest node not already in the @used_nodes map.
  5399. *
  5400. * Should use nodemask_t.
  5401. */
  5402. static int find_next_best_node(int node, nodemask_t *used_nodes)
  5403. {
  5404. int i, n, val, min_val, best_node = 0;
  5405. min_val = INT_MAX;
  5406. for (i = 0; i < nr_node_ids; i++) {
  5407. /* Start at @node */
  5408. n = (node + i) % nr_node_ids;
  5409. if (!nr_cpus_node(n))
  5410. continue;
  5411. /* Skip already used nodes */
  5412. if (node_isset(n, *used_nodes))
  5413. continue;
  5414. /* Simple min distance search */
  5415. val = node_distance(node, n);
  5416. if (val < min_val) {
  5417. min_val = val;
  5418. best_node = n;
  5419. }
  5420. }
  5421. node_set(best_node, *used_nodes);
  5422. return best_node;
  5423. }
  5424. /**
  5425. * sched_domain_node_span - get a cpumask for a node's sched_domain
  5426. * @node: node whose cpumask we're constructing
  5427. * @span: resulting cpumask
  5428. *
  5429. * Given a node, construct a good cpumask for its sched_domain to span. It
  5430. * should be one that prevents unnecessary balancing, but also spreads tasks
  5431. * out optimally.
  5432. */
  5433. static void sched_domain_node_span(int node, struct cpumask *span)
  5434. {
  5435. nodemask_t used_nodes;
  5436. int i;
  5437. cpumask_clear(span);
  5438. nodes_clear(used_nodes);
  5439. cpumask_or(span, span, cpumask_of_node(node));
  5440. node_set(node, used_nodes);
  5441. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  5442. int next_node = find_next_best_node(node, &used_nodes);
  5443. cpumask_or(span, span, cpumask_of_node(next_node));
  5444. }
  5445. }
  5446. #endif /* CONFIG_NUMA */
  5447. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  5448. /*
  5449. * The cpus mask in sched_group and sched_domain hangs off the end.
  5450. *
  5451. * ( See the the comments in include/linux/sched.h:struct sched_group
  5452. * and struct sched_domain. )
  5453. */
  5454. struct static_sched_group {
  5455. struct sched_group sg;
  5456. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  5457. };
  5458. struct static_sched_domain {
  5459. struct sched_domain sd;
  5460. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  5461. };
  5462. struct s_data {
  5463. #ifdef CONFIG_NUMA
  5464. int sd_allnodes;
  5465. cpumask_var_t domainspan;
  5466. cpumask_var_t covered;
  5467. cpumask_var_t notcovered;
  5468. #endif
  5469. cpumask_var_t nodemask;
  5470. cpumask_var_t this_sibling_map;
  5471. cpumask_var_t this_core_map;
  5472. cpumask_var_t send_covered;
  5473. cpumask_var_t tmpmask;
  5474. struct sched_group **sched_group_nodes;
  5475. struct root_domain *rd;
  5476. };
  5477. enum s_alloc {
  5478. sa_sched_groups = 0,
  5479. sa_rootdomain,
  5480. sa_tmpmask,
  5481. sa_send_covered,
  5482. sa_this_core_map,
  5483. sa_this_sibling_map,
  5484. sa_nodemask,
  5485. sa_sched_group_nodes,
  5486. #ifdef CONFIG_NUMA
  5487. sa_notcovered,
  5488. sa_covered,
  5489. sa_domainspan,
  5490. #endif
  5491. sa_none,
  5492. };
  5493. /*
  5494. * SMT sched-domains:
  5495. */
  5496. #ifdef CONFIG_SCHED_SMT
  5497. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  5498. static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
  5499. static int
  5500. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  5501. struct sched_group **sg, struct cpumask *unused)
  5502. {
  5503. if (sg)
  5504. *sg = &per_cpu(sched_groups, cpu).sg;
  5505. return cpu;
  5506. }
  5507. #endif /* CONFIG_SCHED_SMT */
  5508. /*
  5509. * multi-core sched-domains:
  5510. */
  5511. #ifdef CONFIG_SCHED_MC
  5512. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  5513. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  5514. #endif /* CONFIG_SCHED_MC */
  5515. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  5516. static int
  5517. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5518. struct sched_group **sg, struct cpumask *mask)
  5519. {
  5520. int group;
  5521. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5522. group = cpumask_first(mask);
  5523. if (sg)
  5524. *sg = &per_cpu(sched_group_core, group).sg;
  5525. return group;
  5526. }
  5527. #elif defined(CONFIG_SCHED_MC)
  5528. static int
  5529. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  5530. struct sched_group **sg, struct cpumask *unused)
  5531. {
  5532. if (sg)
  5533. *sg = &per_cpu(sched_group_core, cpu).sg;
  5534. return cpu;
  5535. }
  5536. #endif
  5537. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  5538. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  5539. static int
  5540. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  5541. struct sched_group **sg, struct cpumask *mask)
  5542. {
  5543. int group;
  5544. #ifdef CONFIG_SCHED_MC
  5545. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  5546. group = cpumask_first(mask);
  5547. #elif defined(CONFIG_SCHED_SMT)
  5548. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  5549. group = cpumask_first(mask);
  5550. #else
  5551. group = cpu;
  5552. #endif
  5553. if (sg)
  5554. *sg = &per_cpu(sched_group_phys, group).sg;
  5555. return group;
  5556. }
  5557. #ifdef CONFIG_NUMA
  5558. /*
  5559. * The init_sched_build_groups can't handle what we want to do with node
  5560. * groups, so roll our own. Now each node has its own list of groups which
  5561. * gets dynamically allocated.
  5562. */
  5563. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  5564. static struct sched_group ***sched_group_nodes_bycpu;
  5565. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  5566. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  5567. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  5568. struct sched_group **sg,
  5569. struct cpumask *nodemask)
  5570. {
  5571. int group;
  5572. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  5573. group = cpumask_first(nodemask);
  5574. if (sg)
  5575. *sg = &per_cpu(sched_group_allnodes, group).sg;
  5576. return group;
  5577. }
  5578. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5579. {
  5580. struct sched_group *sg = group_head;
  5581. int j;
  5582. if (!sg)
  5583. return;
  5584. do {
  5585. for_each_cpu(j, sched_group_cpus(sg)) {
  5586. struct sched_domain *sd;
  5587. sd = &per_cpu(phys_domains, j).sd;
  5588. if (j != group_first_cpu(sd->groups)) {
  5589. /*
  5590. * Only add "power" once for each
  5591. * physical package.
  5592. */
  5593. continue;
  5594. }
  5595. sg->cpu_power += sd->groups->cpu_power;
  5596. }
  5597. sg = sg->next;
  5598. } while (sg != group_head);
  5599. }
  5600. static int build_numa_sched_groups(struct s_data *d,
  5601. const struct cpumask *cpu_map, int num)
  5602. {
  5603. struct sched_domain *sd;
  5604. struct sched_group *sg, *prev;
  5605. int n, j;
  5606. cpumask_clear(d->covered);
  5607. cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
  5608. if (cpumask_empty(d->nodemask)) {
  5609. d->sched_group_nodes[num] = NULL;
  5610. goto out;
  5611. }
  5612. sched_domain_node_span(num, d->domainspan);
  5613. cpumask_and(d->domainspan, d->domainspan, cpu_map);
  5614. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5615. GFP_KERNEL, num);
  5616. if (!sg) {
  5617. printk(KERN_WARNING "Can not alloc domain group for node %d\n",
  5618. num);
  5619. return -ENOMEM;
  5620. }
  5621. d->sched_group_nodes[num] = sg;
  5622. for_each_cpu(j, d->nodemask) {
  5623. sd = &per_cpu(node_domains, j).sd;
  5624. sd->groups = sg;
  5625. }
  5626. sg->cpu_power = 0;
  5627. cpumask_copy(sched_group_cpus(sg), d->nodemask);
  5628. sg->next = sg;
  5629. cpumask_or(d->covered, d->covered, d->nodemask);
  5630. prev = sg;
  5631. for (j = 0; j < nr_node_ids; j++) {
  5632. n = (num + j) % nr_node_ids;
  5633. cpumask_complement(d->notcovered, d->covered);
  5634. cpumask_and(d->tmpmask, d->notcovered, cpu_map);
  5635. cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
  5636. if (cpumask_empty(d->tmpmask))
  5637. break;
  5638. cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
  5639. if (cpumask_empty(d->tmpmask))
  5640. continue;
  5641. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5642. GFP_KERNEL, num);
  5643. if (!sg) {
  5644. printk(KERN_WARNING
  5645. "Can not alloc domain group for node %d\n", j);
  5646. return -ENOMEM;
  5647. }
  5648. sg->cpu_power = 0;
  5649. cpumask_copy(sched_group_cpus(sg), d->tmpmask);
  5650. sg->next = prev->next;
  5651. cpumask_or(d->covered, d->covered, d->tmpmask);
  5652. prev->next = sg;
  5653. prev = sg;
  5654. }
  5655. out:
  5656. return 0;
  5657. }
  5658. #endif /* CONFIG_NUMA */
  5659. #ifdef CONFIG_NUMA
  5660. /* Free memory allocated for various sched_group structures */
  5661. static void free_sched_groups(const struct cpumask *cpu_map,
  5662. struct cpumask *nodemask)
  5663. {
  5664. int cpu, i;
  5665. for_each_cpu(cpu, cpu_map) {
  5666. struct sched_group **sched_group_nodes
  5667. = sched_group_nodes_bycpu[cpu];
  5668. if (!sched_group_nodes)
  5669. continue;
  5670. for (i = 0; i < nr_node_ids; i++) {
  5671. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5672. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  5673. if (cpumask_empty(nodemask))
  5674. continue;
  5675. if (sg == NULL)
  5676. continue;
  5677. sg = sg->next;
  5678. next_sg:
  5679. oldsg = sg;
  5680. sg = sg->next;
  5681. kfree(oldsg);
  5682. if (oldsg != sched_group_nodes[i])
  5683. goto next_sg;
  5684. }
  5685. kfree(sched_group_nodes);
  5686. sched_group_nodes_bycpu[cpu] = NULL;
  5687. }
  5688. }
  5689. #else /* !CONFIG_NUMA */
  5690. static void free_sched_groups(const struct cpumask *cpu_map,
  5691. struct cpumask *nodemask)
  5692. {
  5693. }
  5694. #endif /* CONFIG_NUMA */
  5695. /*
  5696. * Initialize sched groups cpu_power.
  5697. *
  5698. * cpu_power indicates the capacity of sched group, which is used while
  5699. * distributing the load between different sched groups in a sched domain.
  5700. * Typically cpu_power for all the groups in a sched domain will be same unless
  5701. * there are asymmetries in the topology. If there are asymmetries, group
  5702. * having more cpu_power will pickup more load compared to the group having
  5703. * less cpu_power.
  5704. */
  5705. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5706. {
  5707. struct sched_domain *child;
  5708. struct sched_group *group;
  5709. long power;
  5710. int weight;
  5711. WARN_ON(!sd || !sd->groups);
  5712. if (cpu != group_first_cpu(sd->groups))
  5713. return;
  5714. child = sd->child;
  5715. sd->groups->cpu_power = 0;
  5716. if (!child) {
  5717. power = SCHED_LOAD_SCALE;
  5718. weight = cpumask_weight(sched_domain_span(sd));
  5719. /*
  5720. * SMT siblings share the power of a single core.
  5721. * Usually multiple threads get a better yield out of
  5722. * that one core than a single thread would have,
  5723. * reflect that in sd->smt_gain.
  5724. */
  5725. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  5726. power *= sd->smt_gain;
  5727. power /= weight;
  5728. power >>= SCHED_LOAD_SHIFT;
  5729. }
  5730. sd->groups->cpu_power += power;
  5731. return;
  5732. }
  5733. /*
  5734. * Add cpu_power of each child group to this groups cpu_power.
  5735. */
  5736. group = child->groups;
  5737. do {
  5738. sd->groups->cpu_power += group->cpu_power;
  5739. group = group->next;
  5740. } while (group != child->groups);
  5741. }
  5742. /*
  5743. * Initializers for schedule domains
  5744. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5745. */
  5746. #ifdef CONFIG_SCHED_DEBUG
  5747. # define SD_INIT_NAME(sd, type) sd->name = #type
  5748. #else
  5749. # define SD_INIT_NAME(sd, type) do { } while (0)
  5750. #endif
  5751. #define SD_INIT(sd, type) sd_init_##type(sd)
  5752. #define SD_INIT_FUNC(type) \
  5753. static noinline void sd_init_##type(struct sched_domain *sd) \
  5754. { \
  5755. memset(sd, 0, sizeof(*sd)); \
  5756. *sd = SD_##type##_INIT; \
  5757. sd->level = SD_LV_##type; \
  5758. SD_INIT_NAME(sd, type); \
  5759. }
  5760. SD_INIT_FUNC(CPU)
  5761. #ifdef CONFIG_NUMA
  5762. SD_INIT_FUNC(ALLNODES)
  5763. SD_INIT_FUNC(NODE)
  5764. #endif
  5765. #ifdef CONFIG_SCHED_SMT
  5766. SD_INIT_FUNC(SIBLING)
  5767. #endif
  5768. #ifdef CONFIG_SCHED_MC
  5769. SD_INIT_FUNC(MC)
  5770. #endif
  5771. static int default_relax_domain_level = -1;
  5772. static int __init setup_relax_domain_level(char *str)
  5773. {
  5774. unsigned long val;
  5775. val = simple_strtoul(str, NULL, 0);
  5776. if (val < SD_LV_MAX)
  5777. default_relax_domain_level = val;
  5778. return 1;
  5779. }
  5780. __setup("relax_domain_level=", setup_relax_domain_level);
  5781. static void set_domain_attribute(struct sched_domain *sd,
  5782. struct sched_domain_attr *attr)
  5783. {
  5784. int request;
  5785. if (!attr || attr->relax_domain_level < 0) {
  5786. if (default_relax_domain_level < 0)
  5787. return;
  5788. else
  5789. request = default_relax_domain_level;
  5790. } else
  5791. request = attr->relax_domain_level;
  5792. if (request < sd->level) {
  5793. /* turn off idle balance on this domain */
  5794. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5795. } else {
  5796. /* turn on idle balance on this domain */
  5797. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5798. }
  5799. }
  5800. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5801. const struct cpumask *cpu_map)
  5802. {
  5803. switch (what) {
  5804. case sa_sched_groups:
  5805. free_sched_groups(cpu_map, d->tmpmask); /* fall through */
  5806. d->sched_group_nodes = NULL;
  5807. case sa_rootdomain:
  5808. free_rootdomain(d->rd); /* fall through */
  5809. case sa_tmpmask:
  5810. free_cpumask_var(d->tmpmask); /* fall through */
  5811. case sa_send_covered:
  5812. free_cpumask_var(d->send_covered); /* fall through */
  5813. case sa_this_core_map:
  5814. free_cpumask_var(d->this_core_map); /* fall through */
  5815. case sa_this_sibling_map:
  5816. free_cpumask_var(d->this_sibling_map); /* fall through */
  5817. case sa_nodemask:
  5818. free_cpumask_var(d->nodemask); /* fall through */
  5819. case sa_sched_group_nodes:
  5820. #ifdef CONFIG_NUMA
  5821. kfree(d->sched_group_nodes); /* fall through */
  5822. case sa_notcovered:
  5823. free_cpumask_var(d->notcovered); /* fall through */
  5824. case sa_covered:
  5825. free_cpumask_var(d->covered); /* fall through */
  5826. case sa_domainspan:
  5827. free_cpumask_var(d->domainspan); /* fall through */
  5828. #endif
  5829. case sa_none:
  5830. break;
  5831. }
  5832. }
  5833. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5834. const struct cpumask *cpu_map)
  5835. {
  5836. #ifdef CONFIG_NUMA
  5837. if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
  5838. return sa_none;
  5839. if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
  5840. return sa_domainspan;
  5841. if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
  5842. return sa_covered;
  5843. /* Allocate the per-node list of sched groups */
  5844. d->sched_group_nodes = kcalloc(nr_node_ids,
  5845. sizeof(struct sched_group *), GFP_KERNEL);
  5846. if (!d->sched_group_nodes) {
  5847. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5848. return sa_notcovered;
  5849. }
  5850. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
  5851. #endif
  5852. if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
  5853. return sa_sched_group_nodes;
  5854. if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
  5855. return sa_nodemask;
  5856. if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
  5857. return sa_this_sibling_map;
  5858. if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
  5859. return sa_this_core_map;
  5860. if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
  5861. return sa_send_covered;
  5862. d->rd = alloc_rootdomain();
  5863. if (!d->rd) {
  5864. printk(KERN_WARNING "Cannot alloc root domain\n");
  5865. return sa_tmpmask;
  5866. }
  5867. return sa_rootdomain;
  5868. }
  5869. static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
  5870. const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
  5871. {
  5872. struct sched_domain *sd = NULL;
  5873. #ifdef CONFIG_NUMA
  5874. struct sched_domain *parent;
  5875. d->sd_allnodes = 0;
  5876. if (cpumask_weight(cpu_map) >
  5877. SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
  5878. sd = &per_cpu(allnodes_domains, i).sd;
  5879. SD_INIT(sd, ALLNODES);
  5880. set_domain_attribute(sd, attr);
  5881. cpumask_copy(sched_domain_span(sd), cpu_map);
  5882. cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
  5883. d->sd_allnodes = 1;
  5884. }
  5885. parent = sd;
  5886. sd = &per_cpu(node_domains, i).sd;
  5887. SD_INIT(sd, NODE);
  5888. set_domain_attribute(sd, attr);
  5889. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  5890. sd->parent = parent;
  5891. if (parent)
  5892. parent->child = sd;
  5893. cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
  5894. #endif
  5895. return sd;
  5896. }
  5897. static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
  5898. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5899. struct sched_domain *parent, int i)
  5900. {
  5901. struct sched_domain *sd;
  5902. sd = &per_cpu(phys_domains, i).sd;
  5903. SD_INIT(sd, CPU);
  5904. set_domain_attribute(sd, attr);
  5905. cpumask_copy(sched_domain_span(sd), d->nodemask);
  5906. sd->parent = parent;
  5907. if (parent)
  5908. parent->child = sd;
  5909. cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
  5910. return sd;
  5911. }
  5912. static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
  5913. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5914. struct sched_domain *parent, int i)
  5915. {
  5916. struct sched_domain *sd = parent;
  5917. #ifdef CONFIG_SCHED_MC
  5918. sd = &per_cpu(core_domains, i).sd;
  5919. SD_INIT(sd, MC);
  5920. set_domain_attribute(sd, attr);
  5921. cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
  5922. sd->parent = parent;
  5923. parent->child = sd;
  5924. cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
  5925. #endif
  5926. return sd;
  5927. }
  5928. static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
  5929. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5930. struct sched_domain *parent, int i)
  5931. {
  5932. struct sched_domain *sd = parent;
  5933. #ifdef CONFIG_SCHED_SMT
  5934. sd = &per_cpu(cpu_domains, i).sd;
  5935. SD_INIT(sd, SIBLING);
  5936. set_domain_attribute(sd, attr);
  5937. cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
  5938. sd->parent = parent;
  5939. parent->child = sd;
  5940. cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
  5941. #endif
  5942. return sd;
  5943. }
  5944. static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
  5945. const struct cpumask *cpu_map, int cpu)
  5946. {
  5947. switch (l) {
  5948. #ifdef CONFIG_SCHED_SMT
  5949. case SD_LV_SIBLING: /* set up CPU (sibling) groups */
  5950. cpumask_and(d->this_sibling_map, cpu_map,
  5951. topology_thread_cpumask(cpu));
  5952. if (cpu == cpumask_first(d->this_sibling_map))
  5953. init_sched_build_groups(d->this_sibling_map, cpu_map,
  5954. &cpu_to_cpu_group,
  5955. d->send_covered, d->tmpmask);
  5956. break;
  5957. #endif
  5958. #ifdef CONFIG_SCHED_MC
  5959. case SD_LV_MC: /* set up multi-core groups */
  5960. cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
  5961. if (cpu == cpumask_first(d->this_core_map))
  5962. init_sched_build_groups(d->this_core_map, cpu_map,
  5963. &cpu_to_core_group,
  5964. d->send_covered, d->tmpmask);
  5965. break;
  5966. #endif
  5967. case SD_LV_CPU: /* set up physical groups */
  5968. cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
  5969. if (!cpumask_empty(d->nodemask))
  5970. init_sched_build_groups(d->nodemask, cpu_map,
  5971. &cpu_to_phys_group,
  5972. d->send_covered, d->tmpmask);
  5973. break;
  5974. #ifdef CONFIG_NUMA
  5975. case SD_LV_ALLNODES:
  5976. init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
  5977. d->send_covered, d->tmpmask);
  5978. break;
  5979. #endif
  5980. default:
  5981. break;
  5982. }
  5983. }
  5984. /*
  5985. * Build sched domains for a given set of cpus and attach the sched domains
  5986. * to the individual cpus
  5987. */
  5988. static int __build_sched_domains(const struct cpumask *cpu_map,
  5989. struct sched_domain_attr *attr)
  5990. {
  5991. enum s_alloc alloc_state = sa_none;
  5992. struct s_data d;
  5993. struct sched_domain *sd;
  5994. int i;
  5995. #ifdef CONFIG_NUMA
  5996. d.sd_allnodes = 0;
  5997. #endif
  5998. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5999. if (alloc_state != sa_rootdomain)
  6000. goto error;
  6001. alloc_state = sa_sched_groups;
  6002. /*
  6003. * Set up domains for cpus specified by the cpu_map.
  6004. */
  6005. for_each_cpu(i, cpu_map) {
  6006. cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
  6007. cpu_map);
  6008. sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
  6009. sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
  6010. sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
  6011. sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
  6012. }
  6013. for_each_cpu(i, cpu_map) {
  6014. build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
  6015. build_sched_groups(&d, SD_LV_MC, cpu_map, i);
  6016. }
  6017. /* Set up physical groups */
  6018. for (i = 0; i < nr_node_ids; i++)
  6019. build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
  6020. #ifdef CONFIG_NUMA
  6021. /* Set up node groups */
  6022. if (d.sd_allnodes)
  6023. build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
  6024. for (i = 0; i < nr_node_ids; i++)
  6025. if (build_numa_sched_groups(&d, cpu_map, i))
  6026. goto error;
  6027. #endif
  6028. /* Calculate CPU power for physical packages and nodes */
  6029. #ifdef CONFIG_SCHED_SMT
  6030. for_each_cpu(i, cpu_map) {
  6031. sd = &per_cpu(cpu_domains, i).sd;
  6032. init_sched_groups_power(i, sd);
  6033. }
  6034. #endif
  6035. #ifdef CONFIG_SCHED_MC
  6036. for_each_cpu(i, cpu_map) {
  6037. sd = &per_cpu(core_domains, i).sd;
  6038. init_sched_groups_power(i, sd);
  6039. }
  6040. #endif
  6041. for_each_cpu(i, cpu_map) {
  6042. sd = &per_cpu(phys_domains, i).sd;
  6043. init_sched_groups_power(i, sd);
  6044. }
  6045. #ifdef CONFIG_NUMA
  6046. for (i = 0; i < nr_node_ids; i++)
  6047. init_numa_sched_groups_power(d.sched_group_nodes[i]);
  6048. if (d.sd_allnodes) {
  6049. struct sched_group *sg;
  6050. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  6051. d.tmpmask);
  6052. init_numa_sched_groups_power(sg);
  6053. }
  6054. #endif
  6055. /* Attach the domains */
  6056. for_each_cpu(i, cpu_map) {
  6057. #ifdef CONFIG_SCHED_SMT
  6058. sd = &per_cpu(cpu_domains, i).sd;
  6059. #elif defined(CONFIG_SCHED_MC)
  6060. sd = &per_cpu(core_domains, i).sd;
  6061. #else
  6062. sd = &per_cpu(phys_domains, i).sd;
  6063. #endif
  6064. cpu_attach_domain(sd, d.rd, i);
  6065. }
  6066. d.sched_group_nodes = NULL; /* don't free this we still need it */
  6067. __free_domain_allocs(&d, sa_tmpmask, cpu_map);
  6068. return 0;
  6069. error:
  6070. __free_domain_allocs(&d, alloc_state, cpu_map);
  6071. return -ENOMEM;
  6072. }
  6073. static int build_sched_domains(const struct cpumask *cpu_map)
  6074. {
  6075. return __build_sched_domains(cpu_map, NULL);
  6076. }
  6077. static cpumask_var_t *doms_cur; /* current sched domains */
  6078. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6079. static struct sched_domain_attr *dattr_cur;
  6080. /* attribues of custom domains in 'doms_cur' */
  6081. /*
  6082. * Special case: If a kmalloc of a doms_cur partition (array of
  6083. * cpumask) fails, then fallback to a single sched domain,
  6084. * as determined by the single cpumask fallback_doms.
  6085. */
  6086. static cpumask_var_t fallback_doms;
  6087. /*
  6088. * arch_update_cpu_topology lets virtualized architectures update the
  6089. * cpu core maps. It is supposed to return 1 if the topology changed
  6090. * or 0 if it stayed the same.
  6091. */
  6092. int __attribute__((weak)) arch_update_cpu_topology(void)
  6093. {
  6094. return 0;
  6095. }
  6096. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6097. {
  6098. int i;
  6099. cpumask_var_t *doms;
  6100. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6101. if (!doms)
  6102. return NULL;
  6103. for (i = 0; i < ndoms; i++) {
  6104. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6105. free_sched_domains(doms, i);
  6106. return NULL;
  6107. }
  6108. }
  6109. return doms;
  6110. }
  6111. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6112. {
  6113. unsigned int i;
  6114. for (i = 0; i < ndoms; i++)
  6115. free_cpumask_var(doms[i]);
  6116. kfree(doms);
  6117. }
  6118. /*
  6119. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6120. * For now this just excludes isolated cpus, but could be used to
  6121. * exclude other special cases in the future.
  6122. */
  6123. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  6124. {
  6125. int err;
  6126. arch_update_cpu_topology();
  6127. ndoms_cur = 1;
  6128. doms_cur = alloc_sched_domains(ndoms_cur);
  6129. if (!doms_cur)
  6130. doms_cur = &fallback_doms;
  6131. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6132. dattr_cur = NULL;
  6133. err = build_sched_domains(doms_cur[0]);
  6134. register_sched_domain_sysctl();
  6135. return err;
  6136. }
  6137. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  6138. struct cpumask *tmpmask)
  6139. {
  6140. free_sched_groups(cpu_map, tmpmask);
  6141. }
  6142. /*
  6143. * Detach sched domains from a group of cpus specified in cpu_map
  6144. * These cpus will now be attached to the NULL domain
  6145. */
  6146. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6147. {
  6148. /* Save because hotplug lock held. */
  6149. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  6150. int i;
  6151. for_each_cpu(i, cpu_map)
  6152. cpu_attach_domain(NULL, &def_root_domain, i);
  6153. synchronize_sched();
  6154. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  6155. }
  6156. /* handle null as "default" */
  6157. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6158. struct sched_domain_attr *new, int idx_new)
  6159. {
  6160. struct sched_domain_attr tmp;
  6161. /* fast path */
  6162. if (!new && !cur)
  6163. return 1;
  6164. tmp = SD_ATTR_INIT;
  6165. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6166. new ? (new + idx_new) : &tmp,
  6167. sizeof(struct sched_domain_attr));
  6168. }
  6169. /*
  6170. * Partition sched domains as specified by the 'ndoms_new'
  6171. * cpumasks in the array doms_new[] of cpumasks. This compares
  6172. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6173. * It destroys each deleted domain and builds each new domain.
  6174. *
  6175. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6176. * The masks don't intersect (don't overlap.) We should setup one
  6177. * sched domain for each mask. CPUs not in any of the cpumasks will
  6178. * not be load balanced. If the same cpumask appears both in the
  6179. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6180. * it as it is.
  6181. *
  6182. * The passed in 'doms_new' should be allocated using
  6183. * alloc_sched_domains. This routine takes ownership of it and will
  6184. * free_sched_domains it when done with it. If the caller failed the
  6185. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6186. * and partition_sched_domains() will fallback to the single partition
  6187. * 'fallback_doms', it also forces the domains to be rebuilt.
  6188. *
  6189. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6190. * ndoms_new == 0 is a special case for destroying existing domains,
  6191. * and it will not create the default domain.
  6192. *
  6193. * Call with hotplug lock held
  6194. */
  6195. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6196. struct sched_domain_attr *dattr_new)
  6197. {
  6198. int i, j, n;
  6199. int new_topology;
  6200. mutex_lock(&sched_domains_mutex);
  6201. /* always unregister in case we don't destroy any domains */
  6202. unregister_sched_domain_sysctl();
  6203. /* Let architecture update cpu core mappings. */
  6204. new_topology = arch_update_cpu_topology();
  6205. n = doms_new ? ndoms_new : 0;
  6206. /* Destroy deleted domains */
  6207. for (i = 0; i < ndoms_cur; i++) {
  6208. for (j = 0; j < n && !new_topology; j++) {
  6209. if (cpumask_equal(doms_cur[i], doms_new[j])
  6210. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6211. goto match1;
  6212. }
  6213. /* no match - a current sched domain not in new doms_new[] */
  6214. detach_destroy_domains(doms_cur[i]);
  6215. match1:
  6216. ;
  6217. }
  6218. if (doms_new == NULL) {
  6219. ndoms_cur = 0;
  6220. doms_new = &fallback_doms;
  6221. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6222. WARN_ON_ONCE(dattr_new);
  6223. }
  6224. /* Build new domains */
  6225. for (i = 0; i < ndoms_new; i++) {
  6226. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  6227. if (cpumask_equal(doms_new[i], doms_cur[j])
  6228. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6229. goto match2;
  6230. }
  6231. /* no match - add a new doms_new */
  6232. __build_sched_domains(doms_new[i],
  6233. dattr_new ? dattr_new + i : NULL);
  6234. match2:
  6235. ;
  6236. }
  6237. /* Remember the new sched domains */
  6238. if (doms_cur != &fallback_doms)
  6239. free_sched_domains(doms_cur, ndoms_cur);
  6240. kfree(dattr_cur); /* kfree(NULL) is safe */
  6241. doms_cur = doms_new;
  6242. dattr_cur = dattr_new;
  6243. ndoms_cur = ndoms_new;
  6244. register_sched_domain_sysctl();
  6245. mutex_unlock(&sched_domains_mutex);
  6246. }
  6247. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  6248. static void arch_reinit_sched_domains(void)
  6249. {
  6250. get_online_cpus();
  6251. /* Destroy domains first to force the rebuild */
  6252. partition_sched_domains(0, NULL, NULL);
  6253. rebuild_sched_domains();
  6254. put_online_cpus();
  6255. }
  6256. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  6257. {
  6258. unsigned int level = 0;
  6259. if (sscanf(buf, "%u", &level) != 1)
  6260. return -EINVAL;
  6261. /*
  6262. * level is always be positive so don't check for
  6263. * level < POWERSAVINGS_BALANCE_NONE which is 0
  6264. * What happens on 0 or 1 byte write,
  6265. * need to check for count as well?
  6266. */
  6267. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  6268. return -EINVAL;
  6269. if (smt)
  6270. sched_smt_power_savings = level;
  6271. else
  6272. sched_mc_power_savings = level;
  6273. arch_reinit_sched_domains();
  6274. return count;
  6275. }
  6276. #ifdef CONFIG_SCHED_MC
  6277. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  6278. struct sysdev_class_attribute *attr,
  6279. char *page)
  6280. {
  6281. return sprintf(page, "%u\n", sched_mc_power_savings);
  6282. }
  6283. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  6284. struct sysdev_class_attribute *attr,
  6285. const char *buf, size_t count)
  6286. {
  6287. return sched_power_savings_store(buf, count, 0);
  6288. }
  6289. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  6290. sched_mc_power_savings_show,
  6291. sched_mc_power_savings_store);
  6292. #endif
  6293. #ifdef CONFIG_SCHED_SMT
  6294. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  6295. struct sysdev_class_attribute *attr,
  6296. char *page)
  6297. {
  6298. return sprintf(page, "%u\n", sched_smt_power_savings);
  6299. }
  6300. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  6301. struct sysdev_class_attribute *attr,
  6302. const char *buf, size_t count)
  6303. {
  6304. return sched_power_savings_store(buf, count, 1);
  6305. }
  6306. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  6307. sched_smt_power_savings_show,
  6308. sched_smt_power_savings_store);
  6309. #endif
  6310. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  6311. {
  6312. int err = 0;
  6313. #ifdef CONFIG_SCHED_SMT
  6314. if (smt_capable())
  6315. err = sysfs_create_file(&cls->kset.kobj,
  6316. &attr_sched_smt_power_savings.attr);
  6317. #endif
  6318. #ifdef CONFIG_SCHED_MC
  6319. if (!err && mc_capable())
  6320. err = sysfs_create_file(&cls->kset.kobj,
  6321. &attr_sched_mc_power_savings.attr);
  6322. #endif
  6323. return err;
  6324. }
  6325. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  6326. #ifndef CONFIG_CPUSETS
  6327. /*
  6328. * Add online and remove offline CPUs from the scheduler domains.
  6329. * When cpusets are enabled they take over this function.
  6330. */
  6331. static int update_sched_domains(struct notifier_block *nfb,
  6332. unsigned long action, void *hcpu)
  6333. {
  6334. switch (action) {
  6335. case CPU_ONLINE:
  6336. case CPU_ONLINE_FROZEN:
  6337. case CPU_DOWN_PREPARE:
  6338. case CPU_DOWN_PREPARE_FROZEN:
  6339. case CPU_DOWN_FAILED:
  6340. case CPU_DOWN_FAILED_FROZEN:
  6341. partition_sched_domains(1, NULL, NULL);
  6342. return NOTIFY_OK;
  6343. default:
  6344. return NOTIFY_DONE;
  6345. }
  6346. }
  6347. #endif
  6348. static int update_runtime(struct notifier_block *nfb,
  6349. unsigned long action, void *hcpu)
  6350. {
  6351. int cpu = (int)(long)hcpu;
  6352. switch (action) {
  6353. case CPU_DOWN_PREPARE:
  6354. case CPU_DOWN_PREPARE_FROZEN:
  6355. disable_runtime(cpu_rq(cpu));
  6356. return NOTIFY_OK;
  6357. case CPU_DOWN_FAILED:
  6358. case CPU_DOWN_FAILED_FROZEN:
  6359. case CPU_ONLINE:
  6360. case CPU_ONLINE_FROZEN:
  6361. enable_runtime(cpu_rq(cpu));
  6362. return NOTIFY_OK;
  6363. default:
  6364. return NOTIFY_DONE;
  6365. }
  6366. }
  6367. void __init sched_init_smp(void)
  6368. {
  6369. cpumask_var_t non_isolated_cpus;
  6370. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6371. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6372. #if defined(CONFIG_NUMA)
  6373. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  6374. GFP_KERNEL);
  6375. BUG_ON(sched_group_nodes_bycpu == NULL);
  6376. #endif
  6377. get_online_cpus();
  6378. mutex_lock(&sched_domains_mutex);
  6379. arch_init_sched_domains(cpu_active_mask);
  6380. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6381. if (cpumask_empty(non_isolated_cpus))
  6382. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6383. mutex_unlock(&sched_domains_mutex);
  6384. put_online_cpus();
  6385. #ifndef CONFIG_CPUSETS
  6386. /* XXX: Theoretical race here - CPU may be hotplugged now */
  6387. hotcpu_notifier(update_sched_domains, 0);
  6388. #endif
  6389. /* RT runtime code needs to handle some hotplug events */
  6390. hotcpu_notifier(update_runtime, 0);
  6391. init_hrtick();
  6392. /* Move init over to a non-isolated CPU */
  6393. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6394. BUG();
  6395. sched_init_granularity();
  6396. free_cpumask_var(non_isolated_cpus);
  6397. init_sched_rt_class();
  6398. }
  6399. #else
  6400. void __init sched_init_smp(void)
  6401. {
  6402. sched_init_granularity();
  6403. }
  6404. #endif /* CONFIG_SMP */
  6405. const_debug unsigned int sysctl_timer_migration = 1;
  6406. int in_sched_functions(unsigned long addr)
  6407. {
  6408. return in_lock_functions(addr) ||
  6409. (addr >= (unsigned long)__sched_text_start
  6410. && addr < (unsigned long)__sched_text_end);
  6411. }
  6412. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  6413. {
  6414. cfs_rq->tasks_timeline = RB_ROOT;
  6415. INIT_LIST_HEAD(&cfs_rq->tasks);
  6416. #ifdef CONFIG_FAIR_GROUP_SCHED
  6417. cfs_rq->rq = rq;
  6418. #endif
  6419. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  6420. }
  6421. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  6422. {
  6423. struct rt_prio_array *array;
  6424. int i;
  6425. array = &rt_rq->active;
  6426. for (i = 0; i < MAX_RT_PRIO; i++) {
  6427. INIT_LIST_HEAD(array->queue + i);
  6428. __clear_bit(i, array->bitmap);
  6429. }
  6430. /* delimiter for bitsearch: */
  6431. __set_bit(MAX_RT_PRIO, array->bitmap);
  6432. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  6433. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  6434. #ifdef CONFIG_SMP
  6435. rt_rq->highest_prio.next = MAX_RT_PRIO;
  6436. #endif
  6437. #endif
  6438. #ifdef CONFIG_SMP
  6439. rt_rq->rt_nr_migratory = 0;
  6440. rt_rq->overloaded = 0;
  6441. plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
  6442. #endif
  6443. rt_rq->rt_time = 0;
  6444. rt_rq->rt_throttled = 0;
  6445. rt_rq->rt_runtime = 0;
  6446. raw_spin_lock_init(&rt_rq->rt_runtime_lock);
  6447. #ifdef CONFIG_RT_GROUP_SCHED
  6448. rt_rq->rt_nr_boosted = 0;
  6449. rt_rq->rq = rq;
  6450. #endif
  6451. }
  6452. #ifdef CONFIG_FAIR_GROUP_SCHED
  6453. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  6454. struct sched_entity *se, int cpu, int add,
  6455. struct sched_entity *parent)
  6456. {
  6457. struct rq *rq = cpu_rq(cpu);
  6458. tg->cfs_rq[cpu] = cfs_rq;
  6459. init_cfs_rq(cfs_rq, rq);
  6460. cfs_rq->tg = tg;
  6461. if (add)
  6462. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  6463. tg->se[cpu] = se;
  6464. /* se could be NULL for init_task_group */
  6465. if (!se)
  6466. return;
  6467. if (!parent)
  6468. se->cfs_rq = &rq->cfs;
  6469. else
  6470. se->cfs_rq = parent->my_q;
  6471. se->my_q = cfs_rq;
  6472. se->load.weight = tg->shares;
  6473. se->load.inv_weight = 0;
  6474. se->parent = parent;
  6475. }
  6476. #endif
  6477. #ifdef CONFIG_RT_GROUP_SCHED
  6478. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  6479. struct sched_rt_entity *rt_se, int cpu, int add,
  6480. struct sched_rt_entity *parent)
  6481. {
  6482. struct rq *rq = cpu_rq(cpu);
  6483. tg->rt_rq[cpu] = rt_rq;
  6484. init_rt_rq(rt_rq, rq);
  6485. rt_rq->tg = tg;
  6486. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  6487. if (add)
  6488. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  6489. tg->rt_se[cpu] = rt_se;
  6490. if (!rt_se)
  6491. return;
  6492. if (!parent)
  6493. rt_se->rt_rq = &rq->rt;
  6494. else
  6495. rt_se->rt_rq = parent->my_q;
  6496. rt_se->my_q = rt_rq;
  6497. rt_se->parent = parent;
  6498. INIT_LIST_HEAD(&rt_se->run_list);
  6499. }
  6500. #endif
  6501. void __init sched_init(void)
  6502. {
  6503. int i, j;
  6504. unsigned long alloc_size = 0, ptr;
  6505. #ifdef CONFIG_FAIR_GROUP_SCHED
  6506. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6507. #endif
  6508. #ifdef CONFIG_RT_GROUP_SCHED
  6509. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6510. #endif
  6511. #ifdef CONFIG_CPUMASK_OFFSTACK
  6512. alloc_size += num_possible_cpus() * cpumask_size();
  6513. #endif
  6514. if (alloc_size) {
  6515. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6516. #ifdef CONFIG_FAIR_GROUP_SCHED
  6517. init_task_group.se = (struct sched_entity **)ptr;
  6518. ptr += nr_cpu_ids * sizeof(void **);
  6519. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6520. ptr += nr_cpu_ids * sizeof(void **);
  6521. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6522. #ifdef CONFIG_RT_GROUP_SCHED
  6523. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6524. ptr += nr_cpu_ids * sizeof(void **);
  6525. init_task_group.rt_rq = (struct rt_rq **)ptr;
  6526. ptr += nr_cpu_ids * sizeof(void **);
  6527. #endif /* CONFIG_RT_GROUP_SCHED */
  6528. #ifdef CONFIG_CPUMASK_OFFSTACK
  6529. for_each_possible_cpu(i) {
  6530. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  6531. ptr += cpumask_size();
  6532. }
  6533. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6534. }
  6535. #ifdef CONFIG_SMP
  6536. init_defrootdomain();
  6537. #endif
  6538. init_rt_bandwidth(&def_rt_bandwidth,
  6539. global_rt_period(), global_rt_runtime());
  6540. #ifdef CONFIG_RT_GROUP_SCHED
  6541. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  6542. global_rt_period(), global_rt_runtime());
  6543. #endif /* CONFIG_RT_GROUP_SCHED */
  6544. #ifdef CONFIG_CGROUP_SCHED
  6545. list_add(&init_task_group.list, &task_groups);
  6546. INIT_LIST_HEAD(&init_task_group.children);
  6547. #endif /* CONFIG_CGROUP_SCHED */
  6548. #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
  6549. update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
  6550. __alignof__(unsigned long));
  6551. #endif
  6552. for_each_possible_cpu(i) {
  6553. struct rq *rq;
  6554. rq = cpu_rq(i);
  6555. raw_spin_lock_init(&rq->lock);
  6556. rq->nr_running = 0;
  6557. rq->calc_load_active = 0;
  6558. rq->calc_load_update = jiffies + LOAD_FREQ;
  6559. init_cfs_rq(&rq->cfs, rq);
  6560. init_rt_rq(&rq->rt, rq);
  6561. #ifdef CONFIG_FAIR_GROUP_SCHED
  6562. init_task_group.shares = init_task_group_load;
  6563. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6564. #ifdef CONFIG_CGROUP_SCHED
  6565. /*
  6566. * How much cpu bandwidth does init_task_group get?
  6567. *
  6568. * In case of task-groups formed thr' the cgroup filesystem, it
  6569. * gets 100% of the cpu resources in the system. This overall
  6570. * system cpu resource is divided among the tasks of
  6571. * init_task_group and its child task-groups in a fair manner,
  6572. * based on each entity's (task or task-group's) weight
  6573. * (se->load.weight).
  6574. *
  6575. * In other words, if init_task_group has 10 tasks of weight
  6576. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6577. * then A0's share of the cpu resource is:
  6578. *
  6579. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6580. *
  6581. * We achieve this by letting init_task_group's tasks sit
  6582. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  6583. */
  6584. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  6585. #endif
  6586. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6587. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6588. #ifdef CONFIG_RT_GROUP_SCHED
  6589. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  6590. #ifdef CONFIG_CGROUP_SCHED
  6591. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  6592. #endif
  6593. #endif
  6594. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6595. rq->cpu_load[j] = 0;
  6596. #ifdef CONFIG_SMP
  6597. rq->sd = NULL;
  6598. rq->rd = NULL;
  6599. rq->post_schedule = 0;
  6600. rq->active_balance = 0;
  6601. rq->next_balance = jiffies;
  6602. rq->push_cpu = 0;
  6603. rq->cpu = i;
  6604. rq->online = 0;
  6605. rq->migration_thread = NULL;
  6606. rq->idle_stamp = 0;
  6607. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6608. INIT_LIST_HEAD(&rq->migration_queue);
  6609. rq_attach_root(rq, &def_root_domain);
  6610. #endif
  6611. init_rq_hrtick(rq);
  6612. atomic_set(&rq->nr_iowait, 0);
  6613. }
  6614. set_load_weight(&init_task);
  6615. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6616. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6617. #endif
  6618. #ifdef CONFIG_SMP
  6619. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  6620. #endif
  6621. #ifdef CONFIG_RT_MUTEXES
  6622. plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
  6623. #endif
  6624. /*
  6625. * The boot idle thread does lazy MMU switching as well:
  6626. */
  6627. atomic_inc(&init_mm.mm_count);
  6628. enter_lazy_tlb(&init_mm, current);
  6629. /*
  6630. * Make us the idle thread. Technically, schedule() should not be
  6631. * called from this thread, however somewhere below it might be,
  6632. * but because we are the idle thread, we just pick up running again
  6633. * when this runqueue becomes "idle".
  6634. */
  6635. init_idle(current, smp_processor_id());
  6636. calc_load_update = jiffies + LOAD_FREQ;
  6637. /*
  6638. * During early bootup we pretend to be a normal task:
  6639. */
  6640. current->sched_class = &fair_sched_class;
  6641. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  6642. zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  6643. #ifdef CONFIG_SMP
  6644. #ifdef CONFIG_NO_HZ
  6645. zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  6646. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  6647. #endif
  6648. /* May be allocated at isolcpus cmdline parse time */
  6649. if (cpu_isolated_map == NULL)
  6650. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6651. #endif /* SMP */
  6652. perf_event_init();
  6653. scheduler_running = 1;
  6654. }
  6655. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  6656. static inline int preempt_count_equals(int preempt_offset)
  6657. {
  6658. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  6659. return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
  6660. }
  6661. void __might_sleep(const char *file, int line, int preempt_offset)
  6662. {
  6663. #ifdef in_atomic
  6664. static unsigned long prev_jiffy; /* ratelimiting */
  6665. if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
  6666. system_state != SYSTEM_RUNNING || oops_in_progress)
  6667. return;
  6668. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6669. return;
  6670. prev_jiffy = jiffies;
  6671. printk(KERN_ERR
  6672. "BUG: sleeping function called from invalid context at %s:%d\n",
  6673. file, line);
  6674. printk(KERN_ERR
  6675. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6676. in_atomic(), irqs_disabled(),
  6677. current->pid, current->comm);
  6678. debug_show_held_locks(current);
  6679. if (irqs_disabled())
  6680. print_irqtrace_events(current);
  6681. dump_stack();
  6682. #endif
  6683. }
  6684. EXPORT_SYMBOL(__might_sleep);
  6685. #endif
  6686. #ifdef CONFIG_MAGIC_SYSRQ
  6687. static void normalize_task(struct rq *rq, struct task_struct *p)
  6688. {
  6689. int on_rq;
  6690. on_rq = p->se.on_rq;
  6691. if (on_rq)
  6692. deactivate_task(rq, p, 0);
  6693. __setscheduler(rq, p, SCHED_NORMAL, 0);
  6694. if (on_rq) {
  6695. activate_task(rq, p, 0);
  6696. resched_task(rq->curr);
  6697. }
  6698. }
  6699. void normalize_rt_tasks(void)
  6700. {
  6701. struct task_struct *g, *p;
  6702. unsigned long flags;
  6703. struct rq *rq;
  6704. read_lock_irqsave(&tasklist_lock, flags);
  6705. do_each_thread(g, p) {
  6706. /*
  6707. * Only normalize user tasks:
  6708. */
  6709. if (!p->mm)
  6710. continue;
  6711. p->se.exec_start = 0;
  6712. #ifdef CONFIG_SCHEDSTATS
  6713. p->se.statistics.wait_start = 0;
  6714. p->se.statistics.sleep_start = 0;
  6715. p->se.statistics.block_start = 0;
  6716. #endif
  6717. if (!rt_task(p)) {
  6718. /*
  6719. * Renice negative nice level userspace
  6720. * tasks back to 0:
  6721. */
  6722. if (TASK_NICE(p) < 0 && p->mm)
  6723. set_user_nice(p, 0);
  6724. continue;
  6725. }
  6726. raw_spin_lock(&p->pi_lock);
  6727. rq = __task_rq_lock(p);
  6728. normalize_task(rq, p);
  6729. __task_rq_unlock(rq);
  6730. raw_spin_unlock(&p->pi_lock);
  6731. } while_each_thread(g, p);
  6732. read_unlock_irqrestore(&tasklist_lock, flags);
  6733. }
  6734. #endif /* CONFIG_MAGIC_SYSRQ */
  6735. #ifdef CONFIG_IA64
  6736. /*
  6737. * These functions are only useful for the IA64 MCA handling.
  6738. *
  6739. * They can only be called when the whole system has been
  6740. * stopped - every CPU needs to be quiescent, and no scheduling
  6741. * activity can take place. Using them for anything else would
  6742. * be a serious bug, and as a result, they aren't even visible
  6743. * under any other configuration.
  6744. */
  6745. /**
  6746. * curr_task - return the current task for a given cpu.
  6747. * @cpu: the processor in question.
  6748. *
  6749. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6750. */
  6751. struct task_struct *curr_task(int cpu)
  6752. {
  6753. return cpu_curr(cpu);
  6754. }
  6755. /**
  6756. * set_curr_task - set the current task for a given cpu.
  6757. * @cpu: the processor in question.
  6758. * @p: the task pointer to set.
  6759. *
  6760. * Description: This function must only be used when non-maskable interrupts
  6761. * are serviced on a separate stack. It allows the architecture to switch the
  6762. * notion of the current task on a cpu in a non-blocking manner. This function
  6763. * must be called with all CPU's synchronized, and interrupts disabled, the
  6764. * and caller must save the original value of the current task (see
  6765. * curr_task() above) and restore that value before reenabling interrupts and
  6766. * re-starting the system.
  6767. *
  6768. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6769. */
  6770. void set_curr_task(int cpu, struct task_struct *p)
  6771. {
  6772. cpu_curr(cpu) = p;
  6773. }
  6774. #endif
  6775. #ifdef CONFIG_FAIR_GROUP_SCHED
  6776. static void free_fair_sched_group(struct task_group *tg)
  6777. {
  6778. int i;
  6779. for_each_possible_cpu(i) {
  6780. if (tg->cfs_rq)
  6781. kfree(tg->cfs_rq[i]);
  6782. if (tg->se)
  6783. kfree(tg->se[i]);
  6784. }
  6785. kfree(tg->cfs_rq);
  6786. kfree(tg->se);
  6787. }
  6788. static
  6789. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6790. {
  6791. struct cfs_rq *cfs_rq;
  6792. struct sched_entity *se;
  6793. struct rq *rq;
  6794. int i;
  6795. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  6796. if (!tg->cfs_rq)
  6797. goto err;
  6798. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  6799. if (!tg->se)
  6800. goto err;
  6801. tg->shares = NICE_0_LOAD;
  6802. for_each_possible_cpu(i) {
  6803. rq = cpu_rq(i);
  6804. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  6805. GFP_KERNEL, cpu_to_node(i));
  6806. if (!cfs_rq)
  6807. goto err;
  6808. se = kzalloc_node(sizeof(struct sched_entity),
  6809. GFP_KERNEL, cpu_to_node(i));
  6810. if (!se)
  6811. goto err_free_rq;
  6812. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  6813. }
  6814. return 1;
  6815. err_free_rq:
  6816. kfree(cfs_rq);
  6817. err:
  6818. return 0;
  6819. }
  6820. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6821. {
  6822. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  6823. &cpu_rq(cpu)->leaf_cfs_rq_list);
  6824. }
  6825. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6826. {
  6827. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  6828. }
  6829. #else /* !CONFG_FAIR_GROUP_SCHED */
  6830. static inline void free_fair_sched_group(struct task_group *tg)
  6831. {
  6832. }
  6833. static inline
  6834. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  6835. {
  6836. return 1;
  6837. }
  6838. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  6839. {
  6840. }
  6841. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  6842. {
  6843. }
  6844. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6845. #ifdef CONFIG_RT_GROUP_SCHED
  6846. static void free_rt_sched_group(struct task_group *tg)
  6847. {
  6848. int i;
  6849. destroy_rt_bandwidth(&tg->rt_bandwidth);
  6850. for_each_possible_cpu(i) {
  6851. if (tg->rt_rq)
  6852. kfree(tg->rt_rq[i]);
  6853. if (tg->rt_se)
  6854. kfree(tg->rt_se[i]);
  6855. }
  6856. kfree(tg->rt_rq);
  6857. kfree(tg->rt_se);
  6858. }
  6859. static
  6860. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6861. {
  6862. struct rt_rq *rt_rq;
  6863. struct sched_rt_entity *rt_se;
  6864. struct rq *rq;
  6865. int i;
  6866. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  6867. if (!tg->rt_rq)
  6868. goto err;
  6869. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  6870. if (!tg->rt_se)
  6871. goto err;
  6872. init_rt_bandwidth(&tg->rt_bandwidth,
  6873. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  6874. for_each_possible_cpu(i) {
  6875. rq = cpu_rq(i);
  6876. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  6877. GFP_KERNEL, cpu_to_node(i));
  6878. if (!rt_rq)
  6879. goto err;
  6880. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  6881. GFP_KERNEL, cpu_to_node(i));
  6882. if (!rt_se)
  6883. goto err_free_rq;
  6884. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  6885. }
  6886. return 1;
  6887. err_free_rq:
  6888. kfree(rt_rq);
  6889. err:
  6890. return 0;
  6891. }
  6892. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6893. {
  6894. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  6895. &cpu_rq(cpu)->leaf_rt_rq_list);
  6896. }
  6897. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6898. {
  6899. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  6900. }
  6901. #else /* !CONFIG_RT_GROUP_SCHED */
  6902. static inline void free_rt_sched_group(struct task_group *tg)
  6903. {
  6904. }
  6905. static inline
  6906. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  6907. {
  6908. return 1;
  6909. }
  6910. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  6911. {
  6912. }
  6913. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  6914. {
  6915. }
  6916. #endif /* CONFIG_RT_GROUP_SCHED */
  6917. #ifdef CONFIG_CGROUP_SCHED
  6918. static void free_sched_group(struct task_group *tg)
  6919. {
  6920. free_fair_sched_group(tg);
  6921. free_rt_sched_group(tg);
  6922. kfree(tg);
  6923. }
  6924. /* allocate runqueue etc for a new task group */
  6925. struct task_group *sched_create_group(struct task_group *parent)
  6926. {
  6927. struct task_group *tg;
  6928. unsigned long flags;
  6929. int i;
  6930. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6931. if (!tg)
  6932. return ERR_PTR(-ENOMEM);
  6933. if (!alloc_fair_sched_group(tg, parent))
  6934. goto err;
  6935. if (!alloc_rt_sched_group(tg, parent))
  6936. goto err;
  6937. spin_lock_irqsave(&task_group_lock, flags);
  6938. for_each_possible_cpu(i) {
  6939. register_fair_sched_group(tg, i);
  6940. register_rt_sched_group(tg, i);
  6941. }
  6942. list_add_rcu(&tg->list, &task_groups);
  6943. WARN_ON(!parent); /* root should already exist */
  6944. tg->parent = parent;
  6945. INIT_LIST_HEAD(&tg->children);
  6946. list_add_rcu(&tg->siblings, &parent->children);
  6947. spin_unlock_irqrestore(&task_group_lock, flags);
  6948. return tg;
  6949. err:
  6950. free_sched_group(tg);
  6951. return ERR_PTR(-ENOMEM);
  6952. }
  6953. /* rcu callback to free various structures associated with a task group */
  6954. static void free_sched_group_rcu(struct rcu_head *rhp)
  6955. {
  6956. /* now it should be safe to free those cfs_rqs */
  6957. free_sched_group(container_of(rhp, struct task_group, rcu));
  6958. }
  6959. /* Destroy runqueue etc associated with a task group */
  6960. void sched_destroy_group(struct task_group *tg)
  6961. {
  6962. unsigned long flags;
  6963. int i;
  6964. spin_lock_irqsave(&task_group_lock, flags);
  6965. for_each_possible_cpu(i) {
  6966. unregister_fair_sched_group(tg, i);
  6967. unregister_rt_sched_group(tg, i);
  6968. }
  6969. list_del_rcu(&tg->list);
  6970. list_del_rcu(&tg->siblings);
  6971. spin_unlock_irqrestore(&task_group_lock, flags);
  6972. /* wait for possible concurrent references to cfs_rqs complete */
  6973. call_rcu(&tg->rcu, free_sched_group_rcu);
  6974. }
  6975. /* change task's runqueue when it moves between groups.
  6976. * The caller of this function should have put the task in its new group
  6977. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6978. * reflect its new group.
  6979. */
  6980. void sched_move_task(struct task_struct *tsk)
  6981. {
  6982. int on_rq, running;
  6983. unsigned long flags;
  6984. struct rq *rq;
  6985. rq = task_rq_lock(tsk, &flags);
  6986. running = task_current(rq, tsk);
  6987. on_rq = tsk->se.on_rq;
  6988. if (on_rq)
  6989. dequeue_task(rq, tsk, 0);
  6990. if (unlikely(running))
  6991. tsk->sched_class->put_prev_task(rq, tsk);
  6992. set_task_rq(tsk, task_cpu(tsk));
  6993. #ifdef CONFIG_FAIR_GROUP_SCHED
  6994. if (tsk->sched_class->moved_group)
  6995. tsk->sched_class->moved_group(tsk, on_rq);
  6996. #endif
  6997. if (unlikely(running))
  6998. tsk->sched_class->set_curr_task(rq);
  6999. if (on_rq)
  7000. enqueue_task(rq, tsk, 0);
  7001. task_rq_unlock(rq, &flags);
  7002. }
  7003. #endif /* CONFIG_CGROUP_SCHED */
  7004. #ifdef CONFIG_FAIR_GROUP_SCHED
  7005. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  7006. {
  7007. struct cfs_rq *cfs_rq = se->cfs_rq;
  7008. int on_rq;
  7009. on_rq = se->on_rq;
  7010. if (on_rq)
  7011. dequeue_entity(cfs_rq, se, 0);
  7012. se->load.weight = shares;
  7013. se->load.inv_weight = 0;
  7014. if (on_rq)
  7015. enqueue_entity(cfs_rq, se, 0);
  7016. }
  7017. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  7018. {
  7019. struct cfs_rq *cfs_rq = se->cfs_rq;
  7020. struct rq *rq = cfs_rq->rq;
  7021. unsigned long flags;
  7022. raw_spin_lock_irqsave(&rq->lock, flags);
  7023. __set_se_shares(se, shares);
  7024. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7025. }
  7026. static DEFINE_MUTEX(shares_mutex);
  7027. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  7028. {
  7029. int i;
  7030. unsigned long flags;
  7031. /*
  7032. * We can't change the weight of the root cgroup.
  7033. */
  7034. if (!tg->se[0])
  7035. return -EINVAL;
  7036. if (shares < MIN_SHARES)
  7037. shares = MIN_SHARES;
  7038. else if (shares > MAX_SHARES)
  7039. shares = MAX_SHARES;
  7040. mutex_lock(&shares_mutex);
  7041. if (tg->shares == shares)
  7042. goto done;
  7043. spin_lock_irqsave(&task_group_lock, flags);
  7044. for_each_possible_cpu(i)
  7045. unregister_fair_sched_group(tg, i);
  7046. list_del_rcu(&tg->siblings);
  7047. spin_unlock_irqrestore(&task_group_lock, flags);
  7048. /* wait for any ongoing reference to this group to finish */
  7049. synchronize_sched();
  7050. /*
  7051. * Now we are free to modify the group's share on each cpu
  7052. * w/o tripping rebalance_share or load_balance_fair.
  7053. */
  7054. tg->shares = shares;
  7055. for_each_possible_cpu(i) {
  7056. /*
  7057. * force a rebalance
  7058. */
  7059. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  7060. set_se_shares(tg->se[i], shares);
  7061. }
  7062. /*
  7063. * Enable load balance activity on this group, by inserting it back on
  7064. * each cpu's rq->leaf_cfs_rq_list.
  7065. */
  7066. spin_lock_irqsave(&task_group_lock, flags);
  7067. for_each_possible_cpu(i)
  7068. register_fair_sched_group(tg, i);
  7069. list_add_rcu(&tg->siblings, &tg->parent->children);
  7070. spin_unlock_irqrestore(&task_group_lock, flags);
  7071. done:
  7072. mutex_unlock(&shares_mutex);
  7073. return 0;
  7074. }
  7075. unsigned long sched_group_shares(struct task_group *tg)
  7076. {
  7077. return tg->shares;
  7078. }
  7079. #endif
  7080. #ifdef CONFIG_RT_GROUP_SCHED
  7081. /*
  7082. * Ensure that the real time constraints are schedulable.
  7083. */
  7084. static DEFINE_MUTEX(rt_constraints_mutex);
  7085. static unsigned long to_ratio(u64 period, u64 runtime)
  7086. {
  7087. if (runtime == RUNTIME_INF)
  7088. return 1ULL << 20;
  7089. return div64_u64(runtime << 20, period);
  7090. }
  7091. /* Must be called with tasklist_lock held */
  7092. static inline int tg_has_rt_tasks(struct task_group *tg)
  7093. {
  7094. struct task_struct *g, *p;
  7095. do_each_thread(g, p) {
  7096. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  7097. return 1;
  7098. } while_each_thread(g, p);
  7099. return 0;
  7100. }
  7101. struct rt_schedulable_data {
  7102. struct task_group *tg;
  7103. u64 rt_period;
  7104. u64 rt_runtime;
  7105. };
  7106. static int tg_schedulable(struct task_group *tg, void *data)
  7107. {
  7108. struct rt_schedulable_data *d = data;
  7109. struct task_group *child;
  7110. unsigned long total, sum = 0;
  7111. u64 period, runtime;
  7112. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7113. runtime = tg->rt_bandwidth.rt_runtime;
  7114. if (tg == d->tg) {
  7115. period = d->rt_period;
  7116. runtime = d->rt_runtime;
  7117. }
  7118. /*
  7119. * Cannot have more runtime than the period.
  7120. */
  7121. if (runtime > period && runtime != RUNTIME_INF)
  7122. return -EINVAL;
  7123. /*
  7124. * Ensure we don't starve existing RT tasks.
  7125. */
  7126. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  7127. return -EBUSY;
  7128. total = to_ratio(period, runtime);
  7129. /*
  7130. * Nobody can have more than the global setting allows.
  7131. */
  7132. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  7133. return -EINVAL;
  7134. /*
  7135. * The sum of our children's runtime should not exceed our own.
  7136. */
  7137. list_for_each_entry_rcu(child, &tg->children, siblings) {
  7138. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  7139. runtime = child->rt_bandwidth.rt_runtime;
  7140. if (child == d->tg) {
  7141. period = d->rt_period;
  7142. runtime = d->rt_runtime;
  7143. }
  7144. sum += to_ratio(period, runtime);
  7145. }
  7146. if (sum > total)
  7147. return -EINVAL;
  7148. return 0;
  7149. }
  7150. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  7151. {
  7152. struct rt_schedulable_data data = {
  7153. .tg = tg,
  7154. .rt_period = period,
  7155. .rt_runtime = runtime,
  7156. };
  7157. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  7158. }
  7159. static int tg_set_bandwidth(struct task_group *tg,
  7160. u64 rt_period, u64 rt_runtime)
  7161. {
  7162. int i, err = 0;
  7163. mutex_lock(&rt_constraints_mutex);
  7164. read_lock(&tasklist_lock);
  7165. err = __rt_schedulable(tg, rt_period, rt_runtime);
  7166. if (err)
  7167. goto unlock;
  7168. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7169. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  7170. tg->rt_bandwidth.rt_runtime = rt_runtime;
  7171. for_each_possible_cpu(i) {
  7172. struct rt_rq *rt_rq = tg->rt_rq[i];
  7173. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7174. rt_rq->rt_runtime = rt_runtime;
  7175. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7176. }
  7177. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  7178. unlock:
  7179. read_unlock(&tasklist_lock);
  7180. mutex_unlock(&rt_constraints_mutex);
  7181. return err;
  7182. }
  7183. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  7184. {
  7185. u64 rt_runtime, rt_period;
  7186. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7187. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  7188. if (rt_runtime_us < 0)
  7189. rt_runtime = RUNTIME_INF;
  7190. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7191. }
  7192. long sched_group_rt_runtime(struct task_group *tg)
  7193. {
  7194. u64 rt_runtime_us;
  7195. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  7196. return -1;
  7197. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  7198. do_div(rt_runtime_us, NSEC_PER_USEC);
  7199. return rt_runtime_us;
  7200. }
  7201. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  7202. {
  7203. u64 rt_runtime, rt_period;
  7204. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  7205. rt_runtime = tg->rt_bandwidth.rt_runtime;
  7206. if (rt_period == 0)
  7207. return -EINVAL;
  7208. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  7209. }
  7210. long sched_group_rt_period(struct task_group *tg)
  7211. {
  7212. u64 rt_period_us;
  7213. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  7214. do_div(rt_period_us, NSEC_PER_USEC);
  7215. return rt_period_us;
  7216. }
  7217. static int sched_rt_global_constraints(void)
  7218. {
  7219. u64 runtime, period;
  7220. int ret = 0;
  7221. if (sysctl_sched_rt_period <= 0)
  7222. return -EINVAL;
  7223. runtime = global_rt_runtime();
  7224. period = global_rt_period();
  7225. /*
  7226. * Sanity check on the sysctl variables.
  7227. */
  7228. if (runtime > period && runtime != RUNTIME_INF)
  7229. return -EINVAL;
  7230. mutex_lock(&rt_constraints_mutex);
  7231. read_lock(&tasklist_lock);
  7232. ret = __rt_schedulable(NULL, 0, 0);
  7233. read_unlock(&tasklist_lock);
  7234. mutex_unlock(&rt_constraints_mutex);
  7235. return ret;
  7236. }
  7237. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  7238. {
  7239. /* Don't accept realtime tasks when there is no way for them to run */
  7240. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  7241. return 0;
  7242. return 1;
  7243. }
  7244. #else /* !CONFIG_RT_GROUP_SCHED */
  7245. static int sched_rt_global_constraints(void)
  7246. {
  7247. unsigned long flags;
  7248. int i;
  7249. if (sysctl_sched_rt_period <= 0)
  7250. return -EINVAL;
  7251. /*
  7252. * There's always some RT tasks in the root group
  7253. * -- migration, kstopmachine etc..
  7254. */
  7255. if (sysctl_sched_rt_runtime == 0)
  7256. return -EBUSY;
  7257. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  7258. for_each_possible_cpu(i) {
  7259. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  7260. raw_spin_lock(&rt_rq->rt_runtime_lock);
  7261. rt_rq->rt_runtime = global_rt_runtime();
  7262. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  7263. }
  7264. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  7265. return 0;
  7266. }
  7267. #endif /* CONFIG_RT_GROUP_SCHED */
  7268. int sched_rt_handler(struct ctl_table *table, int write,
  7269. void __user *buffer, size_t *lenp,
  7270. loff_t *ppos)
  7271. {
  7272. int ret;
  7273. int old_period, old_runtime;
  7274. static DEFINE_MUTEX(mutex);
  7275. mutex_lock(&mutex);
  7276. old_period = sysctl_sched_rt_period;
  7277. old_runtime = sysctl_sched_rt_runtime;
  7278. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7279. if (!ret && write) {
  7280. ret = sched_rt_global_constraints();
  7281. if (ret) {
  7282. sysctl_sched_rt_period = old_period;
  7283. sysctl_sched_rt_runtime = old_runtime;
  7284. } else {
  7285. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  7286. def_rt_bandwidth.rt_period =
  7287. ns_to_ktime(global_rt_period());
  7288. }
  7289. }
  7290. mutex_unlock(&mutex);
  7291. return ret;
  7292. }
  7293. #ifdef CONFIG_CGROUP_SCHED
  7294. /* return corresponding task_group object of a cgroup */
  7295. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  7296. {
  7297. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  7298. struct task_group, css);
  7299. }
  7300. static struct cgroup_subsys_state *
  7301. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7302. {
  7303. struct task_group *tg, *parent;
  7304. if (!cgrp->parent) {
  7305. /* This is early initialization for the top cgroup */
  7306. return &init_task_group.css;
  7307. }
  7308. parent = cgroup_tg(cgrp->parent);
  7309. tg = sched_create_group(parent);
  7310. if (IS_ERR(tg))
  7311. return ERR_PTR(-ENOMEM);
  7312. return &tg->css;
  7313. }
  7314. static void
  7315. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7316. {
  7317. struct task_group *tg = cgroup_tg(cgrp);
  7318. sched_destroy_group(tg);
  7319. }
  7320. static int
  7321. cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
  7322. {
  7323. #ifdef CONFIG_RT_GROUP_SCHED
  7324. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  7325. return -EINVAL;
  7326. #else
  7327. /* We don't support RT-tasks being in separate groups */
  7328. if (tsk->sched_class != &fair_sched_class)
  7329. return -EINVAL;
  7330. #endif
  7331. return 0;
  7332. }
  7333. static int
  7334. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7335. struct task_struct *tsk, bool threadgroup)
  7336. {
  7337. int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
  7338. if (retval)
  7339. return retval;
  7340. if (threadgroup) {
  7341. struct task_struct *c;
  7342. rcu_read_lock();
  7343. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7344. retval = cpu_cgroup_can_attach_task(cgrp, c);
  7345. if (retval) {
  7346. rcu_read_unlock();
  7347. return retval;
  7348. }
  7349. }
  7350. rcu_read_unlock();
  7351. }
  7352. return 0;
  7353. }
  7354. static void
  7355. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  7356. struct cgroup *old_cont, struct task_struct *tsk,
  7357. bool threadgroup)
  7358. {
  7359. sched_move_task(tsk);
  7360. if (threadgroup) {
  7361. struct task_struct *c;
  7362. rcu_read_lock();
  7363. list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
  7364. sched_move_task(c);
  7365. }
  7366. rcu_read_unlock();
  7367. }
  7368. }
  7369. #ifdef CONFIG_FAIR_GROUP_SCHED
  7370. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  7371. u64 shareval)
  7372. {
  7373. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  7374. }
  7375. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  7376. {
  7377. struct task_group *tg = cgroup_tg(cgrp);
  7378. return (u64) tg->shares;
  7379. }
  7380. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7381. #ifdef CONFIG_RT_GROUP_SCHED
  7382. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  7383. s64 val)
  7384. {
  7385. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  7386. }
  7387. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  7388. {
  7389. return sched_group_rt_runtime(cgroup_tg(cgrp));
  7390. }
  7391. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  7392. u64 rt_period_us)
  7393. {
  7394. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  7395. }
  7396. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  7397. {
  7398. return sched_group_rt_period(cgroup_tg(cgrp));
  7399. }
  7400. #endif /* CONFIG_RT_GROUP_SCHED */
  7401. static struct cftype cpu_files[] = {
  7402. #ifdef CONFIG_FAIR_GROUP_SCHED
  7403. {
  7404. .name = "shares",
  7405. .read_u64 = cpu_shares_read_u64,
  7406. .write_u64 = cpu_shares_write_u64,
  7407. },
  7408. #endif
  7409. #ifdef CONFIG_RT_GROUP_SCHED
  7410. {
  7411. .name = "rt_runtime_us",
  7412. .read_s64 = cpu_rt_runtime_read,
  7413. .write_s64 = cpu_rt_runtime_write,
  7414. },
  7415. {
  7416. .name = "rt_period_us",
  7417. .read_u64 = cpu_rt_period_read_uint,
  7418. .write_u64 = cpu_rt_period_write_uint,
  7419. },
  7420. #endif
  7421. };
  7422. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  7423. {
  7424. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  7425. }
  7426. struct cgroup_subsys cpu_cgroup_subsys = {
  7427. .name = "cpu",
  7428. .create = cpu_cgroup_create,
  7429. .destroy = cpu_cgroup_destroy,
  7430. .can_attach = cpu_cgroup_can_attach,
  7431. .attach = cpu_cgroup_attach,
  7432. .populate = cpu_cgroup_populate,
  7433. .subsys_id = cpu_cgroup_subsys_id,
  7434. .early_init = 1,
  7435. };
  7436. #endif /* CONFIG_CGROUP_SCHED */
  7437. #ifdef CONFIG_CGROUP_CPUACCT
  7438. /*
  7439. * CPU accounting code for task groups.
  7440. *
  7441. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  7442. * (balbir@in.ibm.com).
  7443. */
  7444. /* track cpu usage of a group of tasks and its child groups */
  7445. struct cpuacct {
  7446. struct cgroup_subsys_state css;
  7447. /* cpuusage holds pointer to a u64-type object on every cpu */
  7448. u64 __percpu *cpuusage;
  7449. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  7450. struct cpuacct *parent;
  7451. };
  7452. struct cgroup_subsys cpuacct_subsys;
  7453. /* return cpu accounting group corresponding to this container */
  7454. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  7455. {
  7456. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  7457. struct cpuacct, css);
  7458. }
  7459. /* return cpu accounting group to which this task belongs */
  7460. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  7461. {
  7462. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  7463. struct cpuacct, css);
  7464. }
  7465. /* create a new cpu accounting group */
  7466. static struct cgroup_subsys_state *cpuacct_create(
  7467. struct cgroup_subsys *ss, struct cgroup *cgrp)
  7468. {
  7469. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  7470. int i;
  7471. if (!ca)
  7472. goto out;
  7473. ca->cpuusage = alloc_percpu(u64);
  7474. if (!ca->cpuusage)
  7475. goto out_free_ca;
  7476. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7477. if (percpu_counter_init(&ca->cpustat[i], 0))
  7478. goto out_free_counters;
  7479. if (cgrp->parent)
  7480. ca->parent = cgroup_ca(cgrp->parent);
  7481. return &ca->css;
  7482. out_free_counters:
  7483. while (--i >= 0)
  7484. percpu_counter_destroy(&ca->cpustat[i]);
  7485. free_percpu(ca->cpuusage);
  7486. out_free_ca:
  7487. kfree(ca);
  7488. out:
  7489. return ERR_PTR(-ENOMEM);
  7490. }
  7491. /* destroy an existing cpu accounting group */
  7492. static void
  7493. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7494. {
  7495. struct cpuacct *ca = cgroup_ca(cgrp);
  7496. int i;
  7497. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  7498. percpu_counter_destroy(&ca->cpustat[i]);
  7499. free_percpu(ca->cpuusage);
  7500. kfree(ca);
  7501. }
  7502. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  7503. {
  7504. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7505. u64 data;
  7506. #ifndef CONFIG_64BIT
  7507. /*
  7508. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  7509. */
  7510. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7511. data = *cpuusage;
  7512. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7513. #else
  7514. data = *cpuusage;
  7515. #endif
  7516. return data;
  7517. }
  7518. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  7519. {
  7520. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7521. #ifndef CONFIG_64BIT
  7522. /*
  7523. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  7524. */
  7525. raw_spin_lock_irq(&cpu_rq(cpu)->lock);
  7526. *cpuusage = val;
  7527. raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
  7528. #else
  7529. *cpuusage = val;
  7530. #endif
  7531. }
  7532. /* return total cpu usage (in nanoseconds) of a group */
  7533. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  7534. {
  7535. struct cpuacct *ca = cgroup_ca(cgrp);
  7536. u64 totalcpuusage = 0;
  7537. int i;
  7538. for_each_present_cpu(i)
  7539. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  7540. return totalcpuusage;
  7541. }
  7542. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  7543. u64 reset)
  7544. {
  7545. struct cpuacct *ca = cgroup_ca(cgrp);
  7546. int err = 0;
  7547. int i;
  7548. if (reset) {
  7549. err = -EINVAL;
  7550. goto out;
  7551. }
  7552. for_each_present_cpu(i)
  7553. cpuacct_cpuusage_write(ca, i, 0);
  7554. out:
  7555. return err;
  7556. }
  7557. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  7558. struct seq_file *m)
  7559. {
  7560. struct cpuacct *ca = cgroup_ca(cgroup);
  7561. u64 percpu;
  7562. int i;
  7563. for_each_present_cpu(i) {
  7564. percpu = cpuacct_cpuusage_read(ca, i);
  7565. seq_printf(m, "%llu ", (unsigned long long) percpu);
  7566. }
  7567. seq_printf(m, "\n");
  7568. return 0;
  7569. }
  7570. static const char *cpuacct_stat_desc[] = {
  7571. [CPUACCT_STAT_USER] = "user",
  7572. [CPUACCT_STAT_SYSTEM] = "system",
  7573. };
  7574. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  7575. struct cgroup_map_cb *cb)
  7576. {
  7577. struct cpuacct *ca = cgroup_ca(cgrp);
  7578. int i;
  7579. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  7580. s64 val = percpu_counter_read(&ca->cpustat[i]);
  7581. val = cputime64_to_clock_t(val);
  7582. cb->fill(cb, cpuacct_stat_desc[i], val);
  7583. }
  7584. return 0;
  7585. }
  7586. static struct cftype files[] = {
  7587. {
  7588. .name = "usage",
  7589. .read_u64 = cpuusage_read,
  7590. .write_u64 = cpuusage_write,
  7591. },
  7592. {
  7593. .name = "usage_percpu",
  7594. .read_seq_string = cpuacct_percpu_seq_read,
  7595. },
  7596. {
  7597. .name = "stat",
  7598. .read_map = cpuacct_stats_show,
  7599. },
  7600. };
  7601. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  7602. {
  7603. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  7604. }
  7605. /*
  7606. * charge this task's execution time to its accounting group.
  7607. *
  7608. * called with rq->lock held.
  7609. */
  7610. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  7611. {
  7612. struct cpuacct *ca;
  7613. int cpu;
  7614. if (unlikely(!cpuacct_subsys.active))
  7615. return;
  7616. cpu = task_cpu(tsk);
  7617. rcu_read_lock();
  7618. ca = task_ca(tsk);
  7619. for (; ca; ca = ca->parent) {
  7620. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  7621. *cpuusage += cputime;
  7622. }
  7623. rcu_read_unlock();
  7624. }
  7625. /*
  7626. * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
  7627. * in cputime_t units. As a result, cpuacct_update_stats calls
  7628. * percpu_counter_add with values large enough to always overflow the
  7629. * per cpu batch limit causing bad SMP scalability.
  7630. *
  7631. * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
  7632. * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
  7633. * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
  7634. */
  7635. #ifdef CONFIG_SMP
  7636. #define CPUACCT_BATCH \
  7637. min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
  7638. #else
  7639. #define CPUACCT_BATCH 0
  7640. #endif
  7641. /*
  7642. * Charge the system/user time to the task's accounting group.
  7643. */
  7644. static void cpuacct_update_stats(struct task_struct *tsk,
  7645. enum cpuacct_stat_index idx, cputime_t val)
  7646. {
  7647. struct cpuacct *ca;
  7648. int batch = CPUACCT_BATCH;
  7649. if (unlikely(!cpuacct_subsys.active))
  7650. return;
  7651. rcu_read_lock();
  7652. ca = task_ca(tsk);
  7653. do {
  7654. __percpu_counter_add(&ca->cpustat[idx], val, batch);
  7655. ca = ca->parent;
  7656. } while (ca);
  7657. rcu_read_unlock();
  7658. }
  7659. struct cgroup_subsys cpuacct_subsys = {
  7660. .name = "cpuacct",
  7661. .create = cpuacct_create,
  7662. .destroy = cpuacct_destroy,
  7663. .populate = cpuacct_populate,
  7664. .subsys_id = cpuacct_subsys_id,
  7665. };
  7666. #endif /* CONFIG_CGROUP_CPUACCT */
  7667. #ifndef CONFIG_SMP
  7668. int rcu_expedited_torture_stats(char *page)
  7669. {
  7670. return 0;
  7671. }
  7672. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7673. void synchronize_sched_expedited(void)
  7674. {
  7675. }
  7676. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7677. #else /* #ifndef CONFIG_SMP */
  7678. static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
  7679. static DEFINE_MUTEX(rcu_sched_expedited_mutex);
  7680. #define RCU_EXPEDITED_STATE_POST -2
  7681. #define RCU_EXPEDITED_STATE_IDLE -1
  7682. static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7683. int rcu_expedited_torture_stats(char *page)
  7684. {
  7685. int cnt = 0;
  7686. int cpu;
  7687. cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
  7688. for_each_online_cpu(cpu) {
  7689. cnt += sprintf(&page[cnt], " %d:%d",
  7690. cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
  7691. }
  7692. cnt += sprintf(&page[cnt], "\n");
  7693. return cnt;
  7694. }
  7695. EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
  7696. static long synchronize_sched_expedited_count;
  7697. /*
  7698. * Wait for an rcu-sched grace period to elapse, but use "big hammer"
  7699. * approach to force grace period to end quickly. This consumes
  7700. * significant time on all CPUs, and is thus not recommended for
  7701. * any sort of common-case code.
  7702. *
  7703. * Note that it is illegal to call this function while holding any
  7704. * lock that is acquired by a CPU-hotplug notifier. Failing to
  7705. * observe this restriction will result in deadlock.
  7706. */
  7707. void synchronize_sched_expedited(void)
  7708. {
  7709. int cpu;
  7710. unsigned long flags;
  7711. bool need_full_sync = 0;
  7712. struct rq *rq;
  7713. struct migration_req *req;
  7714. long snap;
  7715. int trycount = 0;
  7716. smp_mb(); /* ensure prior mod happens before capturing snap. */
  7717. snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
  7718. get_online_cpus();
  7719. while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
  7720. put_online_cpus();
  7721. if (trycount++ < 10)
  7722. udelay(trycount * num_online_cpus());
  7723. else {
  7724. synchronize_sched();
  7725. return;
  7726. }
  7727. if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
  7728. smp_mb(); /* ensure test happens before caller kfree */
  7729. return;
  7730. }
  7731. get_online_cpus();
  7732. }
  7733. rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
  7734. for_each_online_cpu(cpu) {
  7735. rq = cpu_rq(cpu);
  7736. req = &per_cpu(rcu_migration_req, cpu);
  7737. init_completion(&req->done);
  7738. req->task = NULL;
  7739. req->dest_cpu = RCU_MIGRATION_NEED_QS;
  7740. raw_spin_lock_irqsave(&rq->lock, flags);
  7741. list_add(&req->list, &rq->migration_queue);
  7742. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7743. wake_up_process(rq->migration_thread);
  7744. }
  7745. for_each_online_cpu(cpu) {
  7746. rcu_expedited_state = cpu;
  7747. req = &per_cpu(rcu_migration_req, cpu);
  7748. rq = cpu_rq(cpu);
  7749. wait_for_completion(&req->done);
  7750. raw_spin_lock_irqsave(&rq->lock, flags);
  7751. if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
  7752. need_full_sync = 1;
  7753. req->dest_cpu = RCU_MIGRATION_IDLE;
  7754. raw_spin_unlock_irqrestore(&rq->lock, flags);
  7755. }
  7756. rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
  7757. synchronize_sched_expedited_count++;
  7758. mutex_unlock(&rcu_sched_expedited_mutex);
  7759. put_online_cpus();
  7760. if (need_full_sync)
  7761. synchronize_sched();
  7762. }
  7763. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  7764. #endif /* #else #ifndef CONFIG_SMP */