vmscan.c 47 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725
  1. /*
  2. * linux/mm/vmscan.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. *
  6. * Swap reorganised 29.12.95, Stephen Tweedie.
  7. * kswapd added: 7.1.96 sct
  8. * Removed kswapd_ctl limits, and swap out as many pages as needed
  9. * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  10. * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  11. * Multiqueue VM started 5.8.00, Rik van Riel.
  12. */
  13. #include <linux/mm.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/kernel_stat.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/init.h>
  20. #include <linux/highmem.h>
  21. #include <linux/vmstat.h>
  22. #include <linux/file.h>
  23. #include <linux/writeback.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/buffer_head.h> /* for try_to_release_page(),
  26. buffer_heads_over_limit */
  27. #include <linux/mm_inline.h>
  28. #include <linux/pagevec.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/rmap.h>
  31. #include <linux/topology.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/notifier.h>
  35. #include <linux/rwsem.h>
  36. #include <linux/delay.h>
  37. #include <linux/kthread.h>
  38. #include <linux/freezer.h>
  39. #include <asm/tlbflush.h>
  40. #include <asm/div64.h>
  41. #include <linux/swapops.h>
  42. #include "internal.h"
  43. struct scan_control {
  44. /* Incremented by the number of inactive pages that were scanned */
  45. unsigned long nr_scanned;
  46. /* This context's GFP mask */
  47. gfp_t gfp_mask;
  48. int may_writepage;
  49. /* Can pages be swapped as part of reclaim? */
  50. int may_swap;
  51. /* This context's SWAP_CLUSTER_MAX. If freeing memory for
  52. * suspend, we effectively ignore SWAP_CLUSTER_MAX.
  53. * In this context, it doesn't matter that we scan the
  54. * whole list at once. */
  55. int swap_cluster_max;
  56. int swappiness;
  57. int all_unreclaimable;
  58. };
  59. /*
  60. * The list of shrinker callbacks used by to apply pressure to
  61. * ageable caches.
  62. */
  63. struct shrinker {
  64. shrinker_t shrinker;
  65. struct list_head list;
  66. int seeks; /* seeks to recreate an obj */
  67. long nr; /* objs pending delete */
  68. };
  69. #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
  70. #ifdef ARCH_HAS_PREFETCH
  71. #define prefetch_prev_lru_page(_page, _base, _field) \
  72. do { \
  73. if ((_page)->lru.prev != _base) { \
  74. struct page *prev; \
  75. \
  76. prev = lru_to_page(&(_page->lru)); \
  77. prefetch(&prev->_field); \
  78. } \
  79. } while (0)
  80. #else
  81. #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
  82. #endif
  83. #ifdef ARCH_HAS_PREFETCHW
  84. #define prefetchw_prev_lru_page(_page, _base, _field) \
  85. do { \
  86. if ((_page)->lru.prev != _base) { \
  87. struct page *prev; \
  88. \
  89. prev = lru_to_page(&(_page->lru)); \
  90. prefetchw(&prev->_field); \
  91. } \
  92. } while (0)
  93. #else
  94. #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
  95. #endif
  96. /*
  97. * From 0 .. 100. Higher means more swappy.
  98. */
  99. int vm_swappiness = 60;
  100. long vm_total_pages; /* The total number of pages which the VM controls */
  101. static LIST_HEAD(shrinker_list);
  102. static DECLARE_RWSEM(shrinker_rwsem);
  103. /*
  104. * Add a shrinker callback to be called from the vm
  105. */
  106. struct shrinker *set_shrinker(int seeks, shrinker_t theshrinker)
  107. {
  108. struct shrinker *shrinker;
  109. shrinker = kmalloc(sizeof(*shrinker), GFP_KERNEL);
  110. if (shrinker) {
  111. shrinker->shrinker = theshrinker;
  112. shrinker->seeks = seeks;
  113. shrinker->nr = 0;
  114. down_write(&shrinker_rwsem);
  115. list_add_tail(&shrinker->list, &shrinker_list);
  116. up_write(&shrinker_rwsem);
  117. }
  118. return shrinker;
  119. }
  120. EXPORT_SYMBOL(set_shrinker);
  121. /*
  122. * Remove one
  123. */
  124. void remove_shrinker(struct shrinker *shrinker)
  125. {
  126. down_write(&shrinker_rwsem);
  127. list_del(&shrinker->list);
  128. up_write(&shrinker_rwsem);
  129. kfree(shrinker);
  130. }
  131. EXPORT_SYMBOL(remove_shrinker);
  132. #define SHRINK_BATCH 128
  133. /*
  134. * Call the shrink functions to age shrinkable caches
  135. *
  136. * Here we assume it costs one seek to replace a lru page and that it also
  137. * takes a seek to recreate a cache object. With this in mind we age equal
  138. * percentages of the lru and ageable caches. This should balance the seeks
  139. * generated by these structures.
  140. *
  141. * If the vm encounted mapped pages on the LRU it increase the pressure on
  142. * slab to avoid swapping.
  143. *
  144. * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
  145. *
  146. * `lru_pages' represents the number of on-LRU pages in all the zones which
  147. * are eligible for the caller's allocation attempt. It is used for balancing
  148. * slab reclaim versus page reclaim.
  149. *
  150. * Returns the number of slab objects which we shrunk.
  151. */
  152. unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
  153. unsigned long lru_pages)
  154. {
  155. struct shrinker *shrinker;
  156. unsigned long ret = 0;
  157. if (scanned == 0)
  158. scanned = SWAP_CLUSTER_MAX;
  159. if (!down_read_trylock(&shrinker_rwsem))
  160. return 1; /* Assume we'll be able to shrink next time */
  161. list_for_each_entry(shrinker, &shrinker_list, list) {
  162. unsigned long long delta;
  163. unsigned long total_scan;
  164. unsigned long max_pass = (*shrinker->shrinker)(0, gfp_mask);
  165. delta = (4 * scanned) / shrinker->seeks;
  166. delta *= max_pass;
  167. do_div(delta, lru_pages + 1);
  168. shrinker->nr += delta;
  169. if (shrinker->nr < 0) {
  170. printk(KERN_ERR "%s: nr=%ld\n",
  171. __FUNCTION__, shrinker->nr);
  172. shrinker->nr = max_pass;
  173. }
  174. /*
  175. * Avoid risking looping forever due to too large nr value:
  176. * never try to free more than twice the estimate number of
  177. * freeable entries.
  178. */
  179. if (shrinker->nr > max_pass * 2)
  180. shrinker->nr = max_pass * 2;
  181. total_scan = shrinker->nr;
  182. shrinker->nr = 0;
  183. while (total_scan >= SHRINK_BATCH) {
  184. long this_scan = SHRINK_BATCH;
  185. int shrink_ret;
  186. int nr_before;
  187. nr_before = (*shrinker->shrinker)(0, gfp_mask);
  188. shrink_ret = (*shrinker->shrinker)(this_scan, gfp_mask);
  189. if (shrink_ret == -1)
  190. break;
  191. if (shrink_ret < nr_before)
  192. ret += nr_before - shrink_ret;
  193. count_vm_events(SLABS_SCANNED, this_scan);
  194. total_scan -= this_scan;
  195. cond_resched();
  196. }
  197. shrinker->nr += total_scan;
  198. }
  199. up_read(&shrinker_rwsem);
  200. return ret;
  201. }
  202. /* Called without lock on whether page is mapped, so answer is unstable */
  203. static inline int page_mapping_inuse(struct page *page)
  204. {
  205. struct address_space *mapping;
  206. /* Page is in somebody's page tables. */
  207. if (page_mapped(page))
  208. return 1;
  209. /* Be more reluctant to reclaim swapcache than pagecache */
  210. if (PageSwapCache(page))
  211. return 1;
  212. mapping = page_mapping(page);
  213. if (!mapping)
  214. return 0;
  215. /* File is mmap'd by somebody? */
  216. return mapping_mapped(mapping);
  217. }
  218. static inline int is_page_cache_freeable(struct page *page)
  219. {
  220. return page_count(page) - !!PagePrivate(page) == 2;
  221. }
  222. static int may_write_to_queue(struct backing_dev_info *bdi)
  223. {
  224. if (current->flags & PF_SWAPWRITE)
  225. return 1;
  226. if (!bdi_write_congested(bdi))
  227. return 1;
  228. if (bdi == current->backing_dev_info)
  229. return 1;
  230. return 0;
  231. }
  232. /*
  233. * We detected a synchronous write error writing a page out. Probably
  234. * -ENOSPC. We need to propagate that into the address_space for a subsequent
  235. * fsync(), msync() or close().
  236. *
  237. * The tricky part is that after writepage we cannot touch the mapping: nothing
  238. * prevents it from being freed up. But we have a ref on the page and once
  239. * that page is locked, the mapping is pinned.
  240. *
  241. * We're allowed to run sleeping lock_page() here because we know the caller has
  242. * __GFP_FS.
  243. */
  244. static void handle_write_error(struct address_space *mapping,
  245. struct page *page, int error)
  246. {
  247. lock_page(page);
  248. if (page_mapping(page) == mapping) {
  249. if (error == -ENOSPC)
  250. set_bit(AS_ENOSPC, &mapping->flags);
  251. else
  252. set_bit(AS_EIO, &mapping->flags);
  253. }
  254. unlock_page(page);
  255. }
  256. /* possible outcome of pageout() */
  257. typedef enum {
  258. /* failed to write page out, page is locked */
  259. PAGE_KEEP,
  260. /* move page to the active list, page is locked */
  261. PAGE_ACTIVATE,
  262. /* page has been sent to the disk successfully, page is unlocked */
  263. PAGE_SUCCESS,
  264. /* page is clean and locked */
  265. PAGE_CLEAN,
  266. } pageout_t;
  267. /*
  268. * pageout is called by shrink_page_list() for each dirty page.
  269. * Calls ->writepage().
  270. */
  271. static pageout_t pageout(struct page *page, struct address_space *mapping)
  272. {
  273. /*
  274. * If the page is dirty, only perform writeback if that write
  275. * will be non-blocking. To prevent this allocation from being
  276. * stalled by pagecache activity. But note that there may be
  277. * stalls if we need to run get_block(). We could test
  278. * PagePrivate for that.
  279. *
  280. * If this process is currently in generic_file_write() against
  281. * this page's queue, we can perform writeback even if that
  282. * will block.
  283. *
  284. * If the page is swapcache, write it back even if that would
  285. * block, for some throttling. This happens by accident, because
  286. * swap_backing_dev_info is bust: it doesn't reflect the
  287. * congestion state of the swapdevs. Easy to fix, if needed.
  288. * See swapfile.c:page_queue_congested().
  289. */
  290. if (!is_page_cache_freeable(page))
  291. return PAGE_KEEP;
  292. if (!mapping) {
  293. /*
  294. * Some data journaling orphaned pages can have
  295. * page->mapping == NULL while being dirty with clean buffers.
  296. */
  297. if (PagePrivate(page)) {
  298. if (try_to_free_buffers(page)) {
  299. ClearPageDirty(page);
  300. printk("%s: orphaned page\n", __FUNCTION__);
  301. return PAGE_CLEAN;
  302. }
  303. }
  304. return PAGE_KEEP;
  305. }
  306. if (mapping->a_ops->writepage == NULL)
  307. return PAGE_ACTIVATE;
  308. if (!may_write_to_queue(mapping->backing_dev_info))
  309. return PAGE_KEEP;
  310. if (clear_page_dirty_for_io(page)) {
  311. int res;
  312. struct writeback_control wbc = {
  313. .sync_mode = WB_SYNC_NONE,
  314. .nr_to_write = SWAP_CLUSTER_MAX,
  315. .range_start = 0,
  316. .range_end = LLONG_MAX,
  317. .nonblocking = 1,
  318. .for_reclaim = 1,
  319. };
  320. SetPageReclaim(page);
  321. res = mapping->a_ops->writepage(page, &wbc);
  322. if (res < 0)
  323. handle_write_error(mapping, page, res);
  324. if (res == AOP_WRITEPAGE_ACTIVATE) {
  325. ClearPageReclaim(page);
  326. return PAGE_ACTIVATE;
  327. }
  328. if (!PageWriteback(page)) {
  329. /* synchronous write or broken a_ops? */
  330. ClearPageReclaim(page);
  331. }
  332. inc_zone_page_state(page, NR_VMSCAN_WRITE);
  333. return PAGE_SUCCESS;
  334. }
  335. return PAGE_CLEAN;
  336. }
  337. /*
  338. * Attempt to detach a locked page from its ->mapping. If it is dirty or if
  339. * someone else has a ref on the page, abort and return 0. If it was
  340. * successfully detached, return 1. Assumes the caller has a single ref on
  341. * this page.
  342. */
  343. int remove_mapping(struct address_space *mapping, struct page *page)
  344. {
  345. BUG_ON(!PageLocked(page));
  346. BUG_ON(mapping != page_mapping(page));
  347. write_lock_irq(&mapping->tree_lock);
  348. /*
  349. * The non racy check for a busy page.
  350. *
  351. * Must be careful with the order of the tests. When someone has
  352. * a ref to the page, it may be possible that they dirty it then
  353. * drop the reference. So if PageDirty is tested before page_count
  354. * here, then the following race may occur:
  355. *
  356. * get_user_pages(&page);
  357. * [user mapping goes away]
  358. * write_to(page);
  359. * !PageDirty(page) [good]
  360. * SetPageDirty(page);
  361. * put_page(page);
  362. * !page_count(page) [good, discard it]
  363. *
  364. * [oops, our write_to data is lost]
  365. *
  366. * Reversing the order of the tests ensures such a situation cannot
  367. * escape unnoticed. The smp_rmb is needed to ensure the page->flags
  368. * load is not satisfied before that of page->_count.
  369. *
  370. * Note that if SetPageDirty is always performed via set_page_dirty,
  371. * and thus under tree_lock, then this ordering is not required.
  372. */
  373. if (unlikely(page_count(page) != 2))
  374. goto cannot_free;
  375. smp_rmb();
  376. if (unlikely(PageDirty(page)))
  377. goto cannot_free;
  378. if (PageSwapCache(page)) {
  379. swp_entry_t swap = { .val = page_private(page) };
  380. __delete_from_swap_cache(page);
  381. write_unlock_irq(&mapping->tree_lock);
  382. swap_free(swap);
  383. __put_page(page); /* The pagecache ref */
  384. return 1;
  385. }
  386. __remove_from_page_cache(page);
  387. write_unlock_irq(&mapping->tree_lock);
  388. __put_page(page);
  389. return 1;
  390. cannot_free:
  391. write_unlock_irq(&mapping->tree_lock);
  392. return 0;
  393. }
  394. /*
  395. * shrink_page_list() returns the number of reclaimed pages
  396. */
  397. static unsigned long shrink_page_list(struct list_head *page_list,
  398. struct scan_control *sc)
  399. {
  400. LIST_HEAD(ret_pages);
  401. struct pagevec freed_pvec;
  402. int pgactivate = 0;
  403. unsigned long nr_reclaimed = 0;
  404. cond_resched();
  405. pagevec_init(&freed_pvec, 1);
  406. while (!list_empty(page_list)) {
  407. struct address_space *mapping;
  408. struct page *page;
  409. int may_enter_fs;
  410. int referenced;
  411. cond_resched();
  412. page = lru_to_page(page_list);
  413. list_del(&page->lru);
  414. if (TestSetPageLocked(page))
  415. goto keep;
  416. VM_BUG_ON(PageActive(page));
  417. sc->nr_scanned++;
  418. if (!sc->may_swap && page_mapped(page))
  419. goto keep_locked;
  420. /* Double the slab pressure for mapped and swapcache pages */
  421. if (page_mapped(page) || PageSwapCache(page))
  422. sc->nr_scanned++;
  423. if (PageWriteback(page))
  424. goto keep_locked;
  425. referenced = page_referenced(page, 1);
  426. /* In active use or really unfreeable? Activate it. */
  427. if (referenced && page_mapping_inuse(page))
  428. goto activate_locked;
  429. #ifdef CONFIG_SWAP
  430. /*
  431. * Anonymous process memory has backing store?
  432. * Try to allocate it some swap space here.
  433. */
  434. if (PageAnon(page) && !PageSwapCache(page))
  435. if (!add_to_swap(page, GFP_ATOMIC))
  436. goto activate_locked;
  437. #endif /* CONFIG_SWAP */
  438. mapping = page_mapping(page);
  439. may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
  440. (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
  441. /*
  442. * The page is mapped into the page tables of one or more
  443. * processes. Try to unmap it here.
  444. */
  445. if (page_mapped(page) && mapping) {
  446. switch (try_to_unmap(page, 0)) {
  447. case SWAP_FAIL:
  448. goto activate_locked;
  449. case SWAP_AGAIN:
  450. goto keep_locked;
  451. case SWAP_SUCCESS:
  452. ; /* try to free the page below */
  453. }
  454. }
  455. if (PageDirty(page)) {
  456. if (referenced)
  457. goto keep_locked;
  458. if (!may_enter_fs)
  459. goto keep_locked;
  460. if (!sc->may_writepage)
  461. goto keep_locked;
  462. /* Page is dirty, try to write it out here */
  463. switch(pageout(page, mapping)) {
  464. case PAGE_KEEP:
  465. goto keep_locked;
  466. case PAGE_ACTIVATE:
  467. goto activate_locked;
  468. case PAGE_SUCCESS:
  469. if (PageWriteback(page) || PageDirty(page))
  470. goto keep;
  471. /*
  472. * A synchronous write - probably a ramdisk. Go
  473. * ahead and try to reclaim the page.
  474. */
  475. if (TestSetPageLocked(page))
  476. goto keep;
  477. if (PageDirty(page) || PageWriteback(page))
  478. goto keep_locked;
  479. mapping = page_mapping(page);
  480. case PAGE_CLEAN:
  481. ; /* try to free the page below */
  482. }
  483. }
  484. /*
  485. * If the page has buffers, try to free the buffer mappings
  486. * associated with this page. If we succeed we try to free
  487. * the page as well.
  488. *
  489. * We do this even if the page is PageDirty().
  490. * try_to_release_page() does not perform I/O, but it is
  491. * possible for a page to have PageDirty set, but it is actually
  492. * clean (all its buffers are clean). This happens if the
  493. * buffers were written out directly, with submit_bh(). ext3
  494. * will do this, as well as the blockdev mapping.
  495. * try_to_release_page() will discover that cleanness and will
  496. * drop the buffers and mark the page clean - it can be freed.
  497. *
  498. * Rarely, pages can have buffers and no ->mapping. These are
  499. * the pages which were not successfully invalidated in
  500. * truncate_complete_page(). We try to drop those buffers here
  501. * and if that worked, and the page is no longer mapped into
  502. * process address space (page_count == 1) it can be freed.
  503. * Otherwise, leave the page on the LRU so it is swappable.
  504. */
  505. if (PagePrivate(page)) {
  506. if (!try_to_release_page(page, sc->gfp_mask))
  507. goto activate_locked;
  508. if (!mapping && page_count(page) == 1)
  509. goto free_it;
  510. }
  511. if (!mapping || !remove_mapping(mapping, page))
  512. goto keep_locked;
  513. free_it:
  514. unlock_page(page);
  515. nr_reclaimed++;
  516. if (!pagevec_add(&freed_pvec, page))
  517. __pagevec_release_nonlru(&freed_pvec);
  518. continue;
  519. activate_locked:
  520. SetPageActive(page);
  521. pgactivate++;
  522. keep_locked:
  523. unlock_page(page);
  524. keep:
  525. list_add(&page->lru, &ret_pages);
  526. VM_BUG_ON(PageLRU(page));
  527. }
  528. list_splice(&ret_pages, page_list);
  529. if (pagevec_count(&freed_pvec))
  530. __pagevec_release_nonlru(&freed_pvec);
  531. count_vm_events(PGACTIVATE, pgactivate);
  532. return nr_reclaimed;
  533. }
  534. /*
  535. * zone->lru_lock is heavily contended. Some of the functions that
  536. * shrink the lists perform better by taking out a batch of pages
  537. * and working on them outside the LRU lock.
  538. *
  539. * For pagecache intensive workloads, this function is the hottest
  540. * spot in the kernel (apart from copy_*_user functions).
  541. *
  542. * Appropriate locks must be held before calling this function.
  543. *
  544. * @nr_to_scan: The number of pages to look through on the list.
  545. * @src: The LRU list to pull pages off.
  546. * @dst: The temp list to put pages on to.
  547. * @scanned: The number of pages that were scanned.
  548. *
  549. * returns how many pages were moved onto *@dst.
  550. */
  551. static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
  552. struct list_head *src, struct list_head *dst,
  553. unsigned long *scanned)
  554. {
  555. unsigned long nr_taken = 0;
  556. struct page *page;
  557. unsigned long scan;
  558. for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
  559. struct list_head *target;
  560. page = lru_to_page(src);
  561. prefetchw_prev_lru_page(page, src, flags);
  562. VM_BUG_ON(!PageLRU(page));
  563. list_del(&page->lru);
  564. target = src;
  565. if (likely(get_page_unless_zero(page))) {
  566. /*
  567. * Be careful not to clear PageLRU until after we're
  568. * sure the page is not being freed elsewhere -- the
  569. * page release code relies on it.
  570. */
  571. ClearPageLRU(page);
  572. target = dst;
  573. nr_taken++;
  574. } /* else it is being freed elsewhere */
  575. list_add(&page->lru, target);
  576. }
  577. *scanned = scan;
  578. return nr_taken;
  579. }
  580. /*
  581. * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
  582. * of reclaimed pages
  583. */
  584. static unsigned long shrink_inactive_list(unsigned long max_scan,
  585. struct zone *zone, struct scan_control *sc)
  586. {
  587. LIST_HEAD(page_list);
  588. struct pagevec pvec;
  589. unsigned long nr_scanned = 0;
  590. unsigned long nr_reclaimed = 0;
  591. pagevec_init(&pvec, 1);
  592. lru_add_drain();
  593. spin_lock_irq(&zone->lru_lock);
  594. do {
  595. struct page *page;
  596. unsigned long nr_taken;
  597. unsigned long nr_scan;
  598. unsigned long nr_freed;
  599. nr_taken = isolate_lru_pages(sc->swap_cluster_max,
  600. &zone->inactive_list,
  601. &page_list, &nr_scan);
  602. zone->nr_inactive -= nr_taken;
  603. zone->pages_scanned += nr_scan;
  604. spin_unlock_irq(&zone->lru_lock);
  605. nr_scanned += nr_scan;
  606. nr_freed = shrink_page_list(&page_list, sc);
  607. nr_reclaimed += nr_freed;
  608. local_irq_disable();
  609. if (current_is_kswapd()) {
  610. __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
  611. __count_vm_events(KSWAPD_STEAL, nr_freed);
  612. } else
  613. __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
  614. __count_zone_vm_events(PGSTEAL, zone, nr_freed);
  615. if (nr_taken == 0)
  616. goto done;
  617. spin_lock(&zone->lru_lock);
  618. /*
  619. * Put back any unfreeable pages.
  620. */
  621. while (!list_empty(&page_list)) {
  622. page = lru_to_page(&page_list);
  623. VM_BUG_ON(PageLRU(page));
  624. SetPageLRU(page);
  625. list_del(&page->lru);
  626. if (PageActive(page))
  627. add_page_to_active_list(zone, page);
  628. else
  629. add_page_to_inactive_list(zone, page);
  630. if (!pagevec_add(&pvec, page)) {
  631. spin_unlock_irq(&zone->lru_lock);
  632. __pagevec_release(&pvec);
  633. spin_lock_irq(&zone->lru_lock);
  634. }
  635. }
  636. } while (nr_scanned < max_scan);
  637. spin_unlock(&zone->lru_lock);
  638. done:
  639. local_irq_enable();
  640. pagevec_release(&pvec);
  641. return nr_reclaimed;
  642. }
  643. /*
  644. * We are about to scan this zone at a certain priority level. If that priority
  645. * level is smaller (ie: more urgent) than the previous priority, then note
  646. * that priority level within the zone. This is done so that when the next
  647. * process comes in to scan this zone, it will immediately start out at this
  648. * priority level rather than having to build up its own scanning priority.
  649. * Here, this priority affects only the reclaim-mapped threshold.
  650. */
  651. static inline void note_zone_scanning_priority(struct zone *zone, int priority)
  652. {
  653. if (priority < zone->prev_priority)
  654. zone->prev_priority = priority;
  655. }
  656. static inline int zone_is_near_oom(struct zone *zone)
  657. {
  658. return zone->pages_scanned >= (zone->nr_active + zone->nr_inactive)*3;
  659. }
  660. /*
  661. * This moves pages from the active list to the inactive list.
  662. *
  663. * We move them the other way if the page is referenced by one or more
  664. * processes, from rmap.
  665. *
  666. * If the pages are mostly unmapped, the processing is fast and it is
  667. * appropriate to hold zone->lru_lock across the whole operation. But if
  668. * the pages are mapped, the processing is slow (page_referenced()) so we
  669. * should drop zone->lru_lock around each page. It's impossible to balance
  670. * this, so instead we remove the pages from the LRU while processing them.
  671. * It is safe to rely on PG_active against the non-LRU pages in here because
  672. * nobody will play with that bit on a non-LRU page.
  673. *
  674. * The downside is that we have to touch page->_count against each page.
  675. * But we had to alter page->flags anyway.
  676. */
  677. static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
  678. struct scan_control *sc, int priority)
  679. {
  680. unsigned long pgmoved;
  681. int pgdeactivate = 0;
  682. unsigned long pgscanned;
  683. LIST_HEAD(l_hold); /* The pages which were snipped off */
  684. LIST_HEAD(l_inactive); /* Pages to go onto the inactive_list */
  685. LIST_HEAD(l_active); /* Pages to go onto the active_list */
  686. struct page *page;
  687. struct pagevec pvec;
  688. int reclaim_mapped = 0;
  689. if (sc->may_swap) {
  690. long mapped_ratio;
  691. long distress;
  692. long swap_tendency;
  693. if (zone_is_near_oom(zone))
  694. goto force_reclaim_mapped;
  695. /*
  696. * `distress' is a measure of how much trouble we're having
  697. * reclaiming pages. 0 -> no problems. 100 -> great trouble.
  698. */
  699. distress = 100 >> min(zone->prev_priority, priority);
  700. /*
  701. * The point of this algorithm is to decide when to start
  702. * reclaiming mapped memory instead of just pagecache. Work out
  703. * how much memory
  704. * is mapped.
  705. */
  706. mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
  707. global_page_state(NR_ANON_PAGES)) * 100) /
  708. vm_total_pages;
  709. /*
  710. * Now decide how much we really want to unmap some pages. The
  711. * mapped ratio is downgraded - just because there's a lot of
  712. * mapped memory doesn't necessarily mean that page reclaim
  713. * isn't succeeding.
  714. *
  715. * The distress ratio is important - we don't want to start
  716. * going oom.
  717. *
  718. * A 100% value of vm_swappiness overrides this algorithm
  719. * altogether.
  720. */
  721. swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
  722. /*
  723. * Now use this metric to decide whether to start moving mapped
  724. * memory onto the inactive list.
  725. */
  726. if (swap_tendency >= 100)
  727. force_reclaim_mapped:
  728. reclaim_mapped = 1;
  729. }
  730. lru_add_drain();
  731. spin_lock_irq(&zone->lru_lock);
  732. pgmoved = isolate_lru_pages(nr_pages, &zone->active_list,
  733. &l_hold, &pgscanned);
  734. zone->pages_scanned += pgscanned;
  735. zone->nr_active -= pgmoved;
  736. spin_unlock_irq(&zone->lru_lock);
  737. while (!list_empty(&l_hold)) {
  738. cond_resched();
  739. page = lru_to_page(&l_hold);
  740. list_del(&page->lru);
  741. if (page_mapped(page)) {
  742. if (!reclaim_mapped ||
  743. (total_swap_pages == 0 && PageAnon(page)) ||
  744. page_referenced(page, 0)) {
  745. list_add(&page->lru, &l_active);
  746. continue;
  747. }
  748. }
  749. list_add(&page->lru, &l_inactive);
  750. }
  751. pagevec_init(&pvec, 1);
  752. pgmoved = 0;
  753. spin_lock_irq(&zone->lru_lock);
  754. while (!list_empty(&l_inactive)) {
  755. page = lru_to_page(&l_inactive);
  756. prefetchw_prev_lru_page(page, &l_inactive, flags);
  757. VM_BUG_ON(PageLRU(page));
  758. SetPageLRU(page);
  759. VM_BUG_ON(!PageActive(page));
  760. ClearPageActive(page);
  761. list_move(&page->lru, &zone->inactive_list);
  762. pgmoved++;
  763. if (!pagevec_add(&pvec, page)) {
  764. zone->nr_inactive += pgmoved;
  765. spin_unlock_irq(&zone->lru_lock);
  766. pgdeactivate += pgmoved;
  767. pgmoved = 0;
  768. if (buffer_heads_over_limit)
  769. pagevec_strip(&pvec);
  770. __pagevec_release(&pvec);
  771. spin_lock_irq(&zone->lru_lock);
  772. }
  773. }
  774. zone->nr_inactive += pgmoved;
  775. pgdeactivate += pgmoved;
  776. if (buffer_heads_over_limit) {
  777. spin_unlock_irq(&zone->lru_lock);
  778. pagevec_strip(&pvec);
  779. spin_lock_irq(&zone->lru_lock);
  780. }
  781. pgmoved = 0;
  782. while (!list_empty(&l_active)) {
  783. page = lru_to_page(&l_active);
  784. prefetchw_prev_lru_page(page, &l_active, flags);
  785. VM_BUG_ON(PageLRU(page));
  786. SetPageLRU(page);
  787. VM_BUG_ON(!PageActive(page));
  788. list_move(&page->lru, &zone->active_list);
  789. pgmoved++;
  790. if (!pagevec_add(&pvec, page)) {
  791. zone->nr_active += pgmoved;
  792. pgmoved = 0;
  793. spin_unlock_irq(&zone->lru_lock);
  794. __pagevec_release(&pvec);
  795. spin_lock_irq(&zone->lru_lock);
  796. }
  797. }
  798. zone->nr_active += pgmoved;
  799. __count_zone_vm_events(PGREFILL, zone, pgscanned);
  800. __count_vm_events(PGDEACTIVATE, pgdeactivate);
  801. spin_unlock_irq(&zone->lru_lock);
  802. pagevec_release(&pvec);
  803. }
  804. /*
  805. * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
  806. */
  807. static unsigned long shrink_zone(int priority, struct zone *zone,
  808. struct scan_control *sc)
  809. {
  810. unsigned long nr_active;
  811. unsigned long nr_inactive;
  812. unsigned long nr_to_scan;
  813. unsigned long nr_reclaimed = 0;
  814. atomic_inc(&zone->reclaim_in_progress);
  815. /*
  816. * Add one to `nr_to_scan' just to make sure that the kernel will
  817. * slowly sift through the active list.
  818. */
  819. zone->nr_scan_active += (zone->nr_active >> priority) + 1;
  820. nr_active = zone->nr_scan_active;
  821. if (nr_active >= sc->swap_cluster_max)
  822. zone->nr_scan_active = 0;
  823. else
  824. nr_active = 0;
  825. zone->nr_scan_inactive += (zone->nr_inactive >> priority) + 1;
  826. nr_inactive = zone->nr_scan_inactive;
  827. if (nr_inactive >= sc->swap_cluster_max)
  828. zone->nr_scan_inactive = 0;
  829. else
  830. nr_inactive = 0;
  831. while (nr_active || nr_inactive) {
  832. if (nr_active) {
  833. nr_to_scan = min(nr_active,
  834. (unsigned long)sc->swap_cluster_max);
  835. nr_active -= nr_to_scan;
  836. shrink_active_list(nr_to_scan, zone, sc, priority);
  837. }
  838. if (nr_inactive) {
  839. nr_to_scan = min(nr_inactive,
  840. (unsigned long)sc->swap_cluster_max);
  841. nr_inactive -= nr_to_scan;
  842. nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
  843. sc);
  844. }
  845. }
  846. throttle_vm_writeout();
  847. atomic_dec(&zone->reclaim_in_progress);
  848. return nr_reclaimed;
  849. }
  850. /*
  851. * This is the direct reclaim path, for page-allocating processes. We only
  852. * try to reclaim pages from zones which will satisfy the caller's allocation
  853. * request.
  854. *
  855. * We reclaim from a zone even if that zone is over pages_high. Because:
  856. * a) The caller may be trying to free *extra* pages to satisfy a higher-order
  857. * allocation or
  858. * b) The zones may be over pages_high but they must go *over* pages_high to
  859. * satisfy the `incremental min' zone defense algorithm.
  860. *
  861. * Returns the number of reclaimed pages.
  862. *
  863. * If a zone is deemed to be full of pinned pages then just give it a light
  864. * scan then give up on it.
  865. */
  866. static unsigned long shrink_zones(int priority, struct zone **zones,
  867. struct scan_control *sc)
  868. {
  869. unsigned long nr_reclaimed = 0;
  870. int i;
  871. sc->all_unreclaimable = 1;
  872. for (i = 0; zones[i] != NULL; i++) {
  873. struct zone *zone = zones[i];
  874. if (!populated_zone(zone))
  875. continue;
  876. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  877. continue;
  878. note_zone_scanning_priority(zone, priority);
  879. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  880. continue; /* Let kswapd poll it */
  881. sc->all_unreclaimable = 0;
  882. nr_reclaimed += shrink_zone(priority, zone, sc);
  883. }
  884. return nr_reclaimed;
  885. }
  886. /*
  887. * This is the main entry point to direct page reclaim.
  888. *
  889. * If a full scan of the inactive list fails to free enough memory then we
  890. * are "out of memory" and something needs to be killed.
  891. *
  892. * If the caller is !__GFP_FS then the probability of a failure is reasonably
  893. * high - the zone may be full of dirty or under-writeback pages, which this
  894. * caller can't do much about. We kick pdflush and take explicit naps in the
  895. * hope that some of these pages can be written. But if the allocating task
  896. * holds filesystem locks which prevent writeout this might not work, and the
  897. * allocation attempt will fail.
  898. */
  899. unsigned long try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
  900. {
  901. int priority;
  902. int ret = 0;
  903. unsigned long total_scanned = 0;
  904. unsigned long nr_reclaimed = 0;
  905. struct reclaim_state *reclaim_state = current->reclaim_state;
  906. unsigned long lru_pages = 0;
  907. int i;
  908. struct scan_control sc = {
  909. .gfp_mask = gfp_mask,
  910. .may_writepage = !laptop_mode,
  911. .swap_cluster_max = SWAP_CLUSTER_MAX,
  912. .may_swap = 1,
  913. .swappiness = vm_swappiness,
  914. };
  915. count_vm_event(ALLOCSTALL);
  916. for (i = 0; zones[i] != NULL; i++) {
  917. struct zone *zone = zones[i];
  918. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  919. continue;
  920. lru_pages += zone->nr_active + zone->nr_inactive;
  921. }
  922. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  923. sc.nr_scanned = 0;
  924. if (!priority)
  925. disable_swap_token();
  926. nr_reclaimed += shrink_zones(priority, zones, &sc);
  927. shrink_slab(sc.nr_scanned, gfp_mask, lru_pages);
  928. if (reclaim_state) {
  929. nr_reclaimed += reclaim_state->reclaimed_slab;
  930. reclaim_state->reclaimed_slab = 0;
  931. }
  932. total_scanned += sc.nr_scanned;
  933. if (nr_reclaimed >= sc.swap_cluster_max) {
  934. ret = 1;
  935. goto out;
  936. }
  937. /*
  938. * Try to write back as many pages as we just scanned. This
  939. * tends to cause slow streaming writers to write data to the
  940. * disk smoothly, at the dirtying rate, which is nice. But
  941. * that's undesirable in laptop mode, where we *want* lumpy
  942. * writeout. So in laptop mode, write out the whole world.
  943. */
  944. if (total_scanned > sc.swap_cluster_max +
  945. sc.swap_cluster_max / 2) {
  946. wakeup_pdflush(laptop_mode ? 0 : total_scanned);
  947. sc.may_writepage = 1;
  948. }
  949. /* Take a nap, wait for some writeback to complete */
  950. if (sc.nr_scanned && priority < DEF_PRIORITY - 2)
  951. congestion_wait(WRITE, HZ/10);
  952. }
  953. /* top priority shrink_caches still had more to do? don't OOM, then */
  954. if (!sc.all_unreclaimable)
  955. ret = 1;
  956. out:
  957. /*
  958. * Now that we've scanned all the zones at this priority level, note
  959. * that level within the zone so that the next thread which performs
  960. * scanning of this zone will immediately start out at this priority
  961. * level. This affects only the decision whether or not to bring
  962. * mapped pages onto the inactive list.
  963. */
  964. if (priority < 0)
  965. priority = 0;
  966. for (i = 0; zones[i] != 0; i++) {
  967. struct zone *zone = zones[i];
  968. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  969. continue;
  970. zone->prev_priority = priority;
  971. }
  972. return ret;
  973. }
  974. /*
  975. * For kswapd, balance_pgdat() will work across all this node's zones until
  976. * they are all at pages_high.
  977. *
  978. * Returns the number of pages which were actually freed.
  979. *
  980. * There is special handling here for zones which are full of pinned pages.
  981. * This can happen if the pages are all mlocked, or if they are all used by
  982. * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
  983. * What we do is to detect the case where all pages in the zone have been
  984. * scanned twice and there has been zero successful reclaim. Mark the zone as
  985. * dead and from now on, only perform a short scan. Basically we're polling
  986. * the zone for when the problem goes away.
  987. *
  988. * kswapd scans the zones in the highmem->normal->dma direction. It skips
  989. * zones which have free_pages > pages_high, but once a zone is found to have
  990. * free_pages <= pages_high, we scan that zone and the lower zones regardless
  991. * of the number of free pages in the lower zones. This interoperates with
  992. * the page allocator fallback scheme to ensure that aging of pages is balanced
  993. * across the zones.
  994. */
  995. static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
  996. {
  997. int all_zones_ok;
  998. int priority;
  999. int i;
  1000. unsigned long total_scanned;
  1001. unsigned long nr_reclaimed;
  1002. struct reclaim_state *reclaim_state = current->reclaim_state;
  1003. struct scan_control sc = {
  1004. .gfp_mask = GFP_KERNEL,
  1005. .may_swap = 1,
  1006. .swap_cluster_max = SWAP_CLUSTER_MAX,
  1007. .swappiness = vm_swappiness,
  1008. };
  1009. /*
  1010. * temp_priority is used to remember the scanning priority at which
  1011. * this zone was successfully refilled to free_pages == pages_high.
  1012. */
  1013. int temp_priority[MAX_NR_ZONES];
  1014. loop_again:
  1015. total_scanned = 0;
  1016. nr_reclaimed = 0;
  1017. sc.may_writepage = !laptop_mode;
  1018. count_vm_event(PAGEOUTRUN);
  1019. for (i = 0; i < pgdat->nr_zones; i++)
  1020. temp_priority[i] = DEF_PRIORITY;
  1021. for (priority = DEF_PRIORITY; priority >= 0; priority--) {
  1022. int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
  1023. unsigned long lru_pages = 0;
  1024. /* The swap token gets in the way of swapout... */
  1025. if (!priority)
  1026. disable_swap_token();
  1027. all_zones_ok = 1;
  1028. /*
  1029. * Scan in the highmem->dma direction for the highest
  1030. * zone which needs scanning
  1031. */
  1032. for (i = pgdat->nr_zones - 1; i >= 0; i--) {
  1033. struct zone *zone = pgdat->node_zones + i;
  1034. if (!populated_zone(zone))
  1035. continue;
  1036. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  1037. continue;
  1038. if (!zone_watermark_ok(zone, order, zone->pages_high,
  1039. 0, 0)) {
  1040. end_zone = i;
  1041. break;
  1042. }
  1043. }
  1044. if (i < 0)
  1045. goto out;
  1046. for (i = 0; i <= end_zone; i++) {
  1047. struct zone *zone = pgdat->node_zones + i;
  1048. lru_pages += zone->nr_active + zone->nr_inactive;
  1049. }
  1050. /*
  1051. * Now scan the zone in the dma->highmem direction, stopping
  1052. * at the last zone which needs scanning.
  1053. *
  1054. * We do this because the page allocator works in the opposite
  1055. * direction. This prevents the page allocator from allocating
  1056. * pages behind kswapd's direction of progress, which would
  1057. * cause too much scanning of the lower zones.
  1058. */
  1059. for (i = 0; i <= end_zone; i++) {
  1060. struct zone *zone = pgdat->node_zones + i;
  1061. int nr_slab;
  1062. if (!populated_zone(zone))
  1063. continue;
  1064. if (zone->all_unreclaimable && priority != DEF_PRIORITY)
  1065. continue;
  1066. if (!zone_watermark_ok(zone, order, zone->pages_high,
  1067. end_zone, 0))
  1068. all_zones_ok = 0;
  1069. temp_priority[i] = priority;
  1070. sc.nr_scanned = 0;
  1071. note_zone_scanning_priority(zone, priority);
  1072. nr_reclaimed += shrink_zone(priority, zone, &sc);
  1073. reclaim_state->reclaimed_slab = 0;
  1074. nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
  1075. lru_pages);
  1076. nr_reclaimed += reclaim_state->reclaimed_slab;
  1077. total_scanned += sc.nr_scanned;
  1078. if (zone->all_unreclaimable)
  1079. continue;
  1080. if (nr_slab == 0 && zone->pages_scanned >=
  1081. (zone->nr_active + zone->nr_inactive) * 6)
  1082. zone->all_unreclaimable = 1;
  1083. /*
  1084. * If we've done a decent amount of scanning and
  1085. * the reclaim ratio is low, start doing writepage
  1086. * even in laptop mode
  1087. */
  1088. if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
  1089. total_scanned > nr_reclaimed + nr_reclaimed / 2)
  1090. sc.may_writepage = 1;
  1091. }
  1092. if (all_zones_ok)
  1093. break; /* kswapd: all done */
  1094. /*
  1095. * OK, kswapd is getting into trouble. Take a nap, then take
  1096. * another pass across the zones.
  1097. */
  1098. if (total_scanned && priority < DEF_PRIORITY - 2)
  1099. congestion_wait(WRITE, HZ/10);
  1100. /*
  1101. * We do this so kswapd doesn't build up large priorities for
  1102. * example when it is freeing in parallel with allocators. It
  1103. * matches the direct reclaim path behaviour in terms of impact
  1104. * on zone->*_priority.
  1105. */
  1106. if (nr_reclaimed >= SWAP_CLUSTER_MAX)
  1107. break;
  1108. }
  1109. out:
  1110. /*
  1111. * Note within each zone the priority level at which this zone was
  1112. * brought into a happy state. So that the next thread which scans this
  1113. * zone will start out at that priority level.
  1114. */
  1115. for (i = 0; i < pgdat->nr_zones; i++) {
  1116. struct zone *zone = pgdat->node_zones + i;
  1117. zone->prev_priority = temp_priority[i];
  1118. }
  1119. if (!all_zones_ok) {
  1120. cond_resched();
  1121. try_to_freeze();
  1122. goto loop_again;
  1123. }
  1124. return nr_reclaimed;
  1125. }
  1126. /*
  1127. * The background pageout daemon, started as a kernel thread
  1128. * from the init process.
  1129. *
  1130. * This basically trickles out pages so that we have _some_
  1131. * free memory available even if there is no other activity
  1132. * that frees anything up. This is needed for things like routing
  1133. * etc, where we otherwise might have all activity going on in
  1134. * asynchronous contexts that cannot page things out.
  1135. *
  1136. * If there are applications that are active memory-allocators
  1137. * (most normal use), this basically shouldn't matter.
  1138. */
  1139. static int kswapd(void *p)
  1140. {
  1141. unsigned long order;
  1142. pg_data_t *pgdat = (pg_data_t*)p;
  1143. struct task_struct *tsk = current;
  1144. DEFINE_WAIT(wait);
  1145. struct reclaim_state reclaim_state = {
  1146. .reclaimed_slab = 0,
  1147. };
  1148. cpumask_t cpumask;
  1149. cpumask = node_to_cpumask(pgdat->node_id);
  1150. if (!cpus_empty(cpumask))
  1151. set_cpus_allowed(tsk, cpumask);
  1152. current->reclaim_state = &reclaim_state;
  1153. /*
  1154. * Tell the memory management that we're a "memory allocator",
  1155. * and that if we need more memory we should get access to it
  1156. * regardless (see "__alloc_pages()"). "kswapd" should
  1157. * never get caught in the normal page freeing logic.
  1158. *
  1159. * (Kswapd normally doesn't need memory anyway, but sometimes
  1160. * you need a small amount of memory in order to be able to
  1161. * page out something else, and this flag essentially protects
  1162. * us from recursively trying to free more memory as we're
  1163. * trying to free the first piece of memory in the first place).
  1164. */
  1165. tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
  1166. order = 0;
  1167. for ( ; ; ) {
  1168. unsigned long new_order;
  1169. try_to_freeze();
  1170. prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
  1171. new_order = pgdat->kswapd_max_order;
  1172. pgdat->kswapd_max_order = 0;
  1173. if (order < new_order) {
  1174. /*
  1175. * Don't sleep if someone wants a larger 'order'
  1176. * allocation
  1177. */
  1178. order = new_order;
  1179. } else {
  1180. schedule();
  1181. order = pgdat->kswapd_max_order;
  1182. }
  1183. finish_wait(&pgdat->kswapd_wait, &wait);
  1184. balance_pgdat(pgdat, order);
  1185. }
  1186. return 0;
  1187. }
  1188. /*
  1189. * A zone is low on free memory, so wake its kswapd task to service it.
  1190. */
  1191. void wakeup_kswapd(struct zone *zone, int order)
  1192. {
  1193. pg_data_t *pgdat;
  1194. if (!populated_zone(zone))
  1195. return;
  1196. pgdat = zone->zone_pgdat;
  1197. if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
  1198. return;
  1199. if (pgdat->kswapd_max_order < order)
  1200. pgdat->kswapd_max_order = order;
  1201. if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
  1202. return;
  1203. if (!waitqueue_active(&pgdat->kswapd_wait))
  1204. return;
  1205. wake_up_interruptible(&pgdat->kswapd_wait);
  1206. }
  1207. #ifdef CONFIG_PM
  1208. /*
  1209. * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
  1210. * from LRU lists system-wide, for given pass and priority, and returns the
  1211. * number of reclaimed pages
  1212. *
  1213. * For pass > 3 we also try to shrink the LRU lists that contain a few pages
  1214. */
  1215. static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
  1216. int pass, struct scan_control *sc)
  1217. {
  1218. struct zone *zone;
  1219. unsigned long nr_to_scan, ret = 0;
  1220. for_each_zone(zone) {
  1221. if (!populated_zone(zone))
  1222. continue;
  1223. if (zone->all_unreclaimable && prio != DEF_PRIORITY)
  1224. continue;
  1225. /* For pass = 0 we don't shrink the active list */
  1226. if (pass > 0) {
  1227. zone->nr_scan_active += (zone->nr_active >> prio) + 1;
  1228. if (zone->nr_scan_active >= nr_pages || pass > 3) {
  1229. zone->nr_scan_active = 0;
  1230. nr_to_scan = min(nr_pages, zone->nr_active);
  1231. shrink_active_list(nr_to_scan, zone, sc, prio);
  1232. }
  1233. }
  1234. zone->nr_scan_inactive += (zone->nr_inactive >> prio) + 1;
  1235. if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
  1236. zone->nr_scan_inactive = 0;
  1237. nr_to_scan = min(nr_pages, zone->nr_inactive);
  1238. ret += shrink_inactive_list(nr_to_scan, zone, sc);
  1239. if (ret >= nr_pages)
  1240. return ret;
  1241. }
  1242. }
  1243. return ret;
  1244. }
  1245. static unsigned long count_lru_pages(void)
  1246. {
  1247. struct zone *zone;
  1248. unsigned long ret = 0;
  1249. for_each_zone(zone)
  1250. ret += zone->nr_active + zone->nr_inactive;
  1251. return ret;
  1252. }
  1253. /*
  1254. * Try to free `nr_pages' of memory, system-wide, and return the number of
  1255. * freed pages.
  1256. *
  1257. * Rather than trying to age LRUs the aim is to preserve the overall
  1258. * LRU order by reclaiming preferentially
  1259. * inactive > active > active referenced > active mapped
  1260. */
  1261. unsigned long shrink_all_memory(unsigned long nr_pages)
  1262. {
  1263. unsigned long lru_pages, nr_slab;
  1264. unsigned long ret = 0;
  1265. int pass;
  1266. struct reclaim_state reclaim_state;
  1267. struct scan_control sc = {
  1268. .gfp_mask = GFP_KERNEL,
  1269. .may_swap = 0,
  1270. .swap_cluster_max = nr_pages,
  1271. .may_writepage = 1,
  1272. .swappiness = vm_swappiness,
  1273. };
  1274. current->reclaim_state = &reclaim_state;
  1275. lru_pages = count_lru_pages();
  1276. nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
  1277. /* If slab caches are huge, it's better to hit them first */
  1278. while (nr_slab >= lru_pages) {
  1279. reclaim_state.reclaimed_slab = 0;
  1280. shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
  1281. if (!reclaim_state.reclaimed_slab)
  1282. break;
  1283. ret += reclaim_state.reclaimed_slab;
  1284. if (ret >= nr_pages)
  1285. goto out;
  1286. nr_slab -= reclaim_state.reclaimed_slab;
  1287. }
  1288. /*
  1289. * We try to shrink LRUs in 5 passes:
  1290. * 0 = Reclaim from inactive_list only
  1291. * 1 = Reclaim from active list but don't reclaim mapped
  1292. * 2 = 2nd pass of type 1
  1293. * 3 = Reclaim mapped (normal reclaim)
  1294. * 4 = 2nd pass of type 3
  1295. */
  1296. for (pass = 0; pass < 5; pass++) {
  1297. int prio;
  1298. /* Force reclaiming mapped pages in the passes #3 and #4 */
  1299. if (pass > 2) {
  1300. sc.may_swap = 1;
  1301. sc.swappiness = 100;
  1302. }
  1303. for (prio = DEF_PRIORITY; prio >= 0; prio--) {
  1304. unsigned long nr_to_scan = nr_pages - ret;
  1305. sc.nr_scanned = 0;
  1306. ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
  1307. if (ret >= nr_pages)
  1308. goto out;
  1309. reclaim_state.reclaimed_slab = 0;
  1310. shrink_slab(sc.nr_scanned, sc.gfp_mask,
  1311. count_lru_pages());
  1312. ret += reclaim_state.reclaimed_slab;
  1313. if (ret >= nr_pages)
  1314. goto out;
  1315. if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
  1316. congestion_wait(WRITE, HZ / 10);
  1317. }
  1318. }
  1319. /*
  1320. * If ret = 0, we could not shrink LRUs, but there may be something
  1321. * in slab caches
  1322. */
  1323. if (!ret) {
  1324. do {
  1325. reclaim_state.reclaimed_slab = 0;
  1326. shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
  1327. ret += reclaim_state.reclaimed_slab;
  1328. } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
  1329. }
  1330. out:
  1331. current->reclaim_state = NULL;
  1332. return ret;
  1333. }
  1334. #endif
  1335. /* It's optimal to keep kswapds on the same CPUs as their memory, but
  1336. not required for correctness. So if the last cpu in a node goes
  1337. away, we get changed to run anywhere: as the first one comes back,
  1338. restore their cpu bindings. */
  1339. static int __devinit cpu_callback(struct notifier_block *nfb,
  1340. unsigned long action, void *hcpu)
  1341. {
  1342. pg_data_t *pgdat;
  1343. cpumask_t mask;
  1344. if (action == CPU_ONLINE) {
  1345. for_each_online_pgdat(pgdat) {
  1346. mask = node_to_cpumask(pgdat->node_id);
  1347. if (any_online_cpu(mask) != NR_CPUS)
  1348. /* One of our CPUs online: restore mask */
  1349. set_cpus_allowed(pgdat->kswapd, mask);
  1350. }
  1351. }
  1352. return NOTIFY_OK;
  1353. }
  1354. /*
  1355. * This kswapd start function will be called by init and node-hot-add.
  1356. * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
  1357. */
  1358. int kswapd_run(int nid)
  1359. {
  1360. pg_data_t *pgdat = NODE_DATA(nid);
  1361. int ret = 0;
  1362. if (pgdat->kswapd)
  1363. return 0;
  1364. pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
  1365. if (IS_ERR(pgdat->kswapd)) {
  1366. /* failure at boot is fatal */
  1367. BUG_ON(system_state == SYSTEM_BOOTING);
  1368. printk("Failed to start kswapd on node %d\n",nid);
  1369. ret = -1;
  1370. }
  1371. return ret;
  1372. }
  1373. static int __init kswapd_init(void)
  1374. {
  1375. int nid;
  1376. swap_setup();
  1377. for_each_online_node(nid)
  1378. kswapd_run(nid);
  1379. hotcpu_notifier(cpu_callback, 0);
  1380. return 0;
  1381. }
  1382. module_init(kswapd_init)
  1383. #ifdef CONFIG_NUMA
  1384. /*
  1385. * Zone reclaim mode
  1386. *
  1387. * If non-zero call zone_reclaim when the number of free pages falls below
  1388. * the watermarks.
  1389. */
  1390. int zone_reclaim_mode __read_mostly;
  1391. #define RECLAIM_OFF 0
  1392. #define RECLAIM_ZONE (1<<0) /* Run shrink_cache on the zone */
  1393. #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
  1394. #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
  1395. /*
  1396. * Priority for ZONE_RECLAIM. This determines the fraction of pages
  1397. * of a node considered for each zone_reclaim. 4 scans 1/16th of
  1398. * a zone.
  1399. */
  1400. #define ZONE_RECLAIM_PRIORITY 4
  1401. /*
  1402. * Percentage of pages in a zone that must be unmapped for zone_reclaim to
  1403. * occur.
  1404. */
  1405. int sysctl_min_unmapped_ratio = 1;
  1406. /*
  1407. * If the number of slab pages in a zone grows beyond this percentage then
  1408. * slab reclaim needs to occur.
  1409. */
  1410. int sysctl_min_slab_ratio = 5;
  1411. /*
  1412. * Try to free up some pages from this zone through reclaim.
  1413. */
  1414. static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  1415. {
  1416. /* Minimum pages needed in order to stay on node */
  1417. const unsigned long nr_pages = 1 << order;
  1418. struct task_struct *p = current;
  1419. struct reclaim_state reclaim_state;
  1420. int priority;
  1421. unsigned long nr_reclaimed = 0;
  1422. struct scan_control sc = {
  1423. .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
  1424. .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
  1425. .swap_cluster_max = max_t(unsigned long, nr_pages,
  1426. SWAP_CLUSTER_MAX),
  1427. .gfp_mask = gfp_mask,
  1428. .swappiness = vm_swappiness,
  1429. };
  1430. unsigned long slab_reclaimable;
  1431. disable_swap_token();
  1432. cond_resched();
  1433. /*
  1434. * We need to be able to allocate from the reserves for RECLAIM_SWAP
  1435. * and we also need to be able to write out pages for RECLAIM_WRITE
  1436. * and RECLAIM_SWAP.
  1437. */
  1438. p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
  1439. reclaim_state.reclaimed_slab = 0;
  1440. p->reclaim_state = &reclaim_state;
  1441. if (zone_page_state(zone, NR_FILE_PAGES) -
  1442. zone_page_state(zone, NR_FILE_MAPPED) >
  1443. zone->min_unmapped_pages) {
  1444. /*
  1445. * Free memory by calling shrink zone with increasing
  1446. * priorities until we have enough memory freed.
  1447. */
  1448. priority = ZONE_RECLAIM_PRIORITY;
  1449. do {
  1450. note_zone_scanning_priority(zone, priority);
  1451. nr_reclaimed += shrink_zone(priority, zone, &sc);
  1452. priority--;
  1453. } while (priority >= 0 && nr_reclaimed < nr_pages);
  1454. }
  1455. slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  1456. if (slab_reclaimable > zone->min_slab_pages) {
  1457. /*
  1458. * shrink_slab() does not currently allow us to determine how
  1459. * many pages were freed in this zone. So we take the current
  1460. * number of slab pages and shake the slab until it is reduced
  1461. * by the same nr_pages that we used for reclaiming unmapped
  1462. * pages.
  1463. *
  1464. * Note that shrink_slab will free memory on all zones and may
  1465. * take a long time.
  1466. */
  1467. while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
  1468. zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
  1469. slab_reclaimable - nr_pages)
  1470. ;
  1471. /*
  1472. * Update nr_reclaimed by the number of slab pages we
  1473. * reclaimed from this zone.
  1474. */
  1475. nr_reclaimed += slab_reclaimable -
  1476. zone_page_state(zone, NR_SLAB_RECLAIMABLE);
  1477. }
  1478. p->reclaim_state = NULL;
  1479. current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
  1480. return nr_reclaimed >= nr_pages;
  1481. }
  1482. int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
  1483. {
  1484. cpumask_t mask;
  1485. int node_id;
  1486. /*
  1487. * Zone reclaim reclaims unmapped file backed pages and
  1488. * slab pages if we are over the defined limits.
  1489. *
  1490. * A small portion of unmapped file backed pages is needed for
  1491. * file I/O otherwise pages read by file I/O will be immediately
  1492. * thrown out if the zone is overallocated. So we do not reclaim
  1493. * if less than a specified percentage of the zone is used by
  1494. * unmapped file backed pages.
  1495. */
  1496. if (zone_page_state(zone, NR_FILE_PAGES) -
  1497. zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
  1498. && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
  1499. <= zone->min_slab_pages)
  1500. return 0;
  1501. /*
  1502. * Avoid concurrent zone reclaims, do not reclaim in a zone that does
  1503. * not have reclaimable pages and if we should not delay the allocation
  1504. * then do not scan.
  1505. */
  1506. if (!(gfp_mask & __GFP_WAIT) ||
  1507. zone->all_unreclaimable ||
  1508. atomic_read(&zone->reclaim_in_progress) > 0 ||
  1509. (current->flags & PF_MEMALLOC))
  1510. return 0;
  1511. /*
  1512. * Only run zone reclaim on the local zone or on zones that do not
  1513. * have associated processors. This will favor the local processor
  1514. * over remote processors and spread off node memory allocations
  1515. * as wide as possible.
  1516. */
  1517. node_id = zone_to_nid(zone);
  1518. mask = node_to_cpumask(node_id);
  1519. if (!cpus_empty(mask) && node_id != numa_node_id())
  1520. return 0;
  1521. return __zone_reclaim(zone, gfp_mask, order);
  1522. }
  1523. #endif