123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059 |
- /*
- * kernel/sched.c
- *
- * Kernel scheduler and related syscalls
- *
- * Copyright (C) 1991-2002 Linus Torvalds
- *
- * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
- * make semaphores SMP safe
- * 1998-11-19 Implemented schedule_timeout() and related stuff
- * by Andrea Arcangeli
- * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
- * hybrid priority-list and round-robin design with
- * an array-switch method of distributing timeslices
- * and per-CPU runqueues. Cleanups and useful suggestions
- * by Davide Libenzi, preemptible kernel bits by Robert Love.
- * 2003-09-03 Interactivity tuning by Con Kolivas.
- * 2004-04-02 Scheduler domains code by Nick Piggin
- */
- #include <linux/mm.h>
- #include <linux/module.h>
- #include <linux/nmi.h>
- #include <linux/init.h>
- #include <asm/uaccess.h>
- #include <linux/highmem.h>
- #include <linux/smp_lock.h>
- #include <asm/mmu_context.h>
- #include <linux/interrupt.h>
- #include <linux/capability.h>
- #include <linux/completion.h>
- #include <linux/kernel_stat.h>
- #include <linux/debug_locks.h>
- #include <linux/security.h>
- #include <linux/notifier.h>
- #include <linux/profile.h>
- #include <linux/freezer.h>
- #include <linux/vmalloc.h>
- #include <linux/blkdev.h>
- #include <linux/delay.h>
- #include <linux/smp.h>
- #include <linux/threads.h>
- #include <linux/timer.h>
- #include <linux/rcupdate.h>
- #include <linux/cpu.h>
- #include <linux/cpuset.h>
- #include <linux/percpu.h>
- #include <linux/kthread.h>
- #include <linux/seq_file.h>
- #include <linux/syscalls.h>
- #include <linux/times.h>
- #include <linux/tsacct_kern.h>
- #include <linux/kprobes.h>
- #include <linux/delayacct.h>
- #include <asm/tlb.h>
- #include <asm/unistd.h>
- /*
- * Convert user-nice values [ -20 ... 0 ... 19 ]
- * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
- * and back.
- */
- #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
- #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
- #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
- /*
- * 'User priority' is the nice value converted to something we
- * can work with better when scaling various scheduler parameters,
- * it's a [ 0 ... 39 ] range.
- */
- #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
- #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
- #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
- /*
- * Some helpers for converting nanosecond timing to jiffy resolution
- */
- #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
- #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
- /*
- * These are the 'tuning knobs' of the scheduler:
- *
- * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
- * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
- * Timeslices get refilled after they expire.
- */
- #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
- #define DEF_TIMESLICE (100 * HZ / 1000)
- #define ON_RUNQUEUE_WEIGHT 30
- #define CHILD_PENALTY 95
- #define PARENT_PENALTY 100
- #define EXIT_WEIGHT 3
- #define PRIO_BONUS_RATIO 25
- #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
- #define INTERACTIVE_DELTA 2
- #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
- #define STARVATION_LIMIT (MAX_SLEEP_AVG)
- #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
- /*
- * If a task is 'interactive' then we reinsert it in the active
- * array after it has expired its current timeslice. (it will not
- * continue to run immediately, it will still roundrobin with
- * other interactive tasks.)
- *
- * This part scales the interactivity limit depending on niceness.
- *
- * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
- * Here are a few examples of different nice levels:
- *
- * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
- * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
- * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
- * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
- * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
- *
- * (the X axis represents the possible -5 ... 0 ... +5 dynamic
- * priority range a task can explore, a value of '1' means the
- * task is rated interactive.)
- *
- * Ie. nice +19 tasks can never get 'interactive' enough to be
- * reinserted into the active array. And only heavily CPU-hog nice -20
- * tasks will be expired. Default nice 0 tasks are somewhere between,
- * it takes some effort for them to get interactive, but it's not
- * too hard.
- */
- #define CURRENT_BONUS(p) \
- (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
- MAX_SLEEP_AVG)
- #define GRANULARITY (10 * HZ / 1000 ? : 1)
- #ifdef CONFIG_SMP
- #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
- (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
- num_online_cpus())
- #else
- #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
- (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
- #endif
- #define SCALE(v1,v1_max,v2_max) \
- (v1) * (v2_max) / (v1_max)
- #define DELTA(p) \
- (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
- INTERACTIVE_DELTA)
- #define TASK_INTERACTIVE(p) \
- ((p)->prio <= (p)->static_prio - DELTA(p))
- #define INTERACTIVE_SLEEP(p) \
- (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
- (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
- #define TASK_PREEMPTS_CURR(p, rq) \
- ((p)->prio < (rq)->curr->prio)
- #define SCALE_PRIO(x, prio) \
- max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
- static unsigned int static_prio_timeslice(int static_prio)
- {
- if (static_prio < NICE_TO_PRIO(0))
- return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
- else
- return SCALE_PRIO(DEF_TIMESLICE, static_prio);
- }
- /*
- * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
- * to time slice values: [800ms ... 100ms ... 5ms]
- *
- * The higher a thread's priority, the bigger timeslices
- * it gets during one round of execution. But even the lowest
- * priority thread gets MIN_TIMESLICE worth of execution time.
- */
- static inline unsigned int task_timeslice(struct task_struct *p)
- {
- return static_prio_timeslice(p->static_prio);
- }
- /*
- * These are the runqueue data structures:
- */
- struct prio_array {
- unsigned int nr_active;
- DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
- struct list_head queue[MAX_PRIO];
- };
- /*
- * This is the main, per-CPU runqueue data structure.
- *
- * Locking rule: those places that want to lock multiple runqueues
- * (such as the load balancing or the thread migration code), lock
- * acquire operations must be ordered by ascending &runqueue.
- */
- struct rq {
- spinlock_t lock;
- /*
- * nr_running and cpu_load should be in the same cacheline because
- * remote CPUs use both these fields when doing load calculation.
- */
- unsigned long nr_running;
- unsigned long raw_weighted_load;
- #ifdef CONFIG_SMP
- unsigned long cpu_load[3];
- #endif
- unsigned long long nr_switches;
- /*
- * This is part of a global counter where only the total sum
- * over all CPUs matters. A task can increase this counter on
- * one CPU and if it got migrated afterwards it may decrease
- * it on another CPU. Always updated under the runqueue lock:
- */
- unsigned long nr_uninterruptible;
- unsigned long expired_timestamp;
- /* Cached timestamp set by update_cpu_clock() */
- unsigned long long most_recent_timestamp;
- struct task_struct *curr, *idle;
- unsigned long next_balance;
- struct mm_struct *prev_mm;
- struct prio_array *active, *expired, arrays[2];
- int best_expired_prio;
- atomic_t nr_iowait;
- #ifdef CONFIG_SMP
- struct sched_domain *sd;
- /* For active balancing */
- int active_balance;
- int push_cpu;
- int cpu; /* cpu of this runqueue */
- struct task_struct *migration_thread;
- struct list_head migration_queue;
- #endif
- #ifdef CONFIG_SCHEDSTATS
- /* latency stats */
- struct sched_info rq_sched_info;
- /* sys_sched_yield() stats */
- unsigned long yld_exp_empty;
- unsigned long yld_act_empty;
- unsigned long yld_both_empty;
- unsigned long yld_cnt;
- /* schedule() stats */
- unsigned long sched_switch;
- unsigned long sched_cnt;
- unsigned long sched_goidle;
- /* try_to_wake_up() stats */
- unsigned long ttwu_cnt;
- unsigned long ttwu_local;
- #endif
- struct lock_class_key rq_lock_key;
- };
- static DEFINE_PER_CPU(struct rq, runqueues);
- static inline int cpu_of(struct rq *rq)
- {
- #ifdef CONFIG_SMP
- return rq->cpu;
- #else
- return 0;
- #endif
- }
- /*
- * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
- * See detach_destroy_domains: synchronize_sched for details.
- *
- * The domain tree of any CPU may only be accessed from within
- * preempt-disabled sections.
- */
- #define for_each_domain(cpu, __sd) \
- for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
- #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
- #define this_rq() (&__get_cpu_var(runqueues))
- #define task_rq(p) cpu_rq(task_cpu(p))
- #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
- #ifndef prepare_arch_switch
- # define prepare_arch_switch(next) do { } while (0)
- #endif
- #ifndef finish_arch_switch
- # define finish_arch_switch(prev) do { } while (0)
- #endif
- #ifndef __ARCH_WANT_UNLOCKED_CTXSW
- static inline int task_running(struct rq *rq, struct task_struct *p)
- {
- return rq->curr == p;
- }
- static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
- {
- }
- static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
- {
- #ifdef CONFIG_DEBUG_SPINLOCK
- /* this is a valid case when another task releases the spinlock */
- rq->lock.owner = current;
- #endif
- /*
- * If we are tracking spinlock dependencies then we have to
- * fix up the runqueue lock - which gets 'carried over' from
- * prev into current:
- */
- spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
- spin_unlock_irq(&rq->lock);
- }
- #else /* __ARCH_WANT_UNLOCKED_CTXSW */
- static inline int task_running(struct rq *rq, struct task_struct *p)
- {
- #ifdef CONFIG_SMP
- return p->oncpu;
- #else
- return rq->curr == p;
- #endif
- }
- static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
- {
- #ifdef CONFIG_SMP
- /*
- * We can optimise this out completely for !SMP, because the
- * SMP rebalancing from interrupt is the only thing that cares
- * here.
- */
- next->oncpu = 1;
- #endif
- #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
- spin_unlock_irq(&rq->lock);
- #else
- spin_unlock(&rq->lock);
- #endif
- }
- static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
- {
- #ifdef CONFIG_SMP
- /*
- * After ->oncpu is cleared, the task can be moved to a different CPU.
- * We must ensure this doesn't happen until the switch is completely
- * finished.
- */
- smp_wmb();
- prev->oncpu = 0;
- #endif
- #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
- local_irq_enable();
- #endif
- }
- #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
- /*
- * __task_rq_lock - lock the runqueue a given task resides on.
- * Must be called interrupts disabled.
- */
- static inline struct rq *__task_rq_lock(struct task_struct *p)
- __acquires(rq->lock)
- {
- struct rq *rq;
- repeat_lock_task:
- rq = task_rq(p);
- spin_lock(&rq->lock);
- if (unlikely(rq != task_rq(p))) {
- spin_unlock(&rq->lock);
- goto repeat_lock_task;
- }
- return rq;
- }
- /*
- * task_rq_lock - lock the runqueue a given task resides on and disable
- * interrupts. Note the ordering: we can safely lookup the task_rq without
- * explicitly disabling preemption.
- */
- static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
- __acquires(rq->lock)
- {
- struct rq *rq;
- repeat_lock_task:
- local_irq_save(*flags);
- rq = task_rq(p);
- spin_lock(&rq->lock);
- if (unlikely(rq != task_rq(p))) {
- spin_unlock_irqrestore(&rq->lock, *flags);
- goto repeat_lock_task;
- }
- return rq;
- }
- static inline void __task_rq_unlock(struct rq *rq)
- __releases(rq->lock)
- {
- spin_unlock(&rq->lock);
- }
- static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
- __releases(rq->lock)
- {
- spin_unlock_irqrestore(&rq->lock, *flags);
- }
- #ifdef CONFIG_SCHEDSTATS
- /*
- * bump this up when changing the output format or the meaning of an existing
- * format, so that tools can adapt (or abort)
- */
- #define SCHEDSTAT_VERSION 14
- static int show_schedstat(struct seq_file *seq, void *v)
- {
- int cpu;
- seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
- seq_printf(seq, "timestamp %lu\n", jiffies);
- for_each_online_cpu(cpu) {
- struct rq *rq = cpu_rq(cpu);
- #ifdef CONFIG_SMP
- struct sched_domain *sd;
- int dcnt = 0;
- #endif
- /* runqueue-specific stats */
- seq_printf(seq,
- "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
- cpu, rq->yld_both_empty,
- rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
- rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
- rq->ttwu_cnt, rq->ttwu_local,
- rq->rq_sched_info.cpu_time,
- rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
- seq_printf(seq, "\n");
- #ifdef CONFIG_SMP
- /* domain-specific stats */
- preempt_disable();
- for_each_domain(cpu, sd) {
- enum idle_type itype;
- char mask_str[NR_CPUS];
- cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
- seq_printf(seq, "domain%d %s", dcnt++, mask_str);
- for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
- itype++) {
- seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
- "%lu",
- sd->lb_cnt[itype],
- sd->lb_balanced[itype],
- sd->lb_failed[itype],
- sd->lb_imbalance[itype],
- sd->lb_gained[itype],
- sd->lb_hot_gained[itype],
- sd->lb_nobusyq[itype],
- sd->lb_nobusyg[itype]);
- }
- seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
- " %lu %lu %lu\n",
- sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
- sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
- sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
- sd->ttwu_wake_remote, sd->ttwu_move_affine,
- sd->ttwu_move_balance);
- }
- preempt_enable();
- #endif
- }
- return 0;
- }
- static int schedstat_open(struct inode *inode, struct file *file)
- {
- unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
- char *buf = kmalloc(size, GFP_KERNEL);
- struct seq_file *m;
- int res;
- if (!buf)
- return -ENOMEM;
- res = single_open(file, show_schedstat, NULL);
- if (!res) {
- m = file->private_data;
- m->buf = buf;
- m->size = size;
- } else
- kfree(buf);
- return res;
- }
- const struct file_operations proc_schedstat_operations = {
- .open = schedstat_open,
- .read = seq_read,
- .llseek = seq_lseek,
- .release = single_release,
- };
- /*
- * Expects runqueue lock to be held for atomicity of update
- */
- static inline void
- rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
- {
- if (rq) {
- rq->rq_sched_info.run_delay += delta_jiffies;
- rq->rq_sched_info.pcnt++;
- }
- }
- /*
- * Expects runqueue lock to be held for atomicity of update
- */
- static inline void
- rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
- {
- if (rq)
- rq->rq_sched_info.cpu_time += delta_jiffies;
- }
- # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
- # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
- #else /* !CONFIG_SCHEDSTATS */
- static inline void
- rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
- {}
- static inline void
- rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
- {}
- # define schedstat_inc(rq, field) do { } while (0)
- # define schedstat_add(rq, field, amt) do { } while (0)
- #endif
- /*
- * this_rq_lock - lock this runqueue and disable interrupts.
- */
- static inline struct rq *this_rq_lock(void)
- __acquires(rq->lock)
- {
- struct rq *rq;
- local_irq_disable();
- rq = this_rq();
- spin_lock(&rq->lock);
- return rq;
- }
- #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
- /*
- * Called when a process is dequeued from the active array and given
- * the cpu. We should note that with the exception of interactive
- * tasks, the expired queue will become the active queue after the active
- * queue is empty, without explicitly dequeuing and requeuing tasks in the
- * expired queue. (Interactive tasks may be requeued directly to the
- * active queue, thus delaying tasks in the expired queue from running;
- * see scheduler_tick()).
- *
- * This function is only called from sched_info_arrive(), rather than
- * dequeue_task(). Even though a task may be queued and dequeued multiple
- * times as it is shuffled about, we're really interested in knowing how
- * long it was from the *first* time it was queued to the time that it
- * finally hit a cpu.
- */
- static inline void sched_info_dequeued(struct task_struct *t)
- {
- t->sched_info.last_queued = 0;
- }
- /*
- * Called when a task finally hits the cpu. We can now calculate how
- * long it was waiting to run. We also note when it began so that we
- * can keep stats on how long its timeslice is.
- */
- static void sched_info_arrive(struct task_struct *t)
- {
- unsigned long now = jiffies, delta_jiffies = 0;
- if (t->sched_info.last_queued)
- delta_jiffies = now - t->sched_info.last_queued;
- sched_info_dequeued(t);
- t->sched_info.run_delay += delta_jiffies;
- t->sched_info.last_arrival = now;
- t->sched_info.pcnt++;
- rq_sched_info_arrive(task_rq(t), delta_jiffies);
- }
- /*
- * Called when a process is queued into either the active or expired
- * array. The time is noted and later used to determine how long we
- * had to wait for us to reach the cpu. Since the expired queue will
- * become the active queue after active queue is empty, without dequeuing
- * and requeuing any tasks, we are interested in queuing to either. It
- * is unusual but not impossible for tasks to be dequeued and immediately
- * requeued in the same or another array: this can happen in sched_yield(),
- * set_user_nice(), and even load_balance() as it moves tasks from runqueue
- * to runqueue.
- *
- * This function is only called from enqueue_task(), but also only updates
- * the timestamp if it is already not set. It's assumed that
- * sched_info_dequeued() will clear that stamp when appropriate.
- */
- static inline void sched_info_queued(struct task_struct *t)
- {
- if (unlikely(sched_info_on()))
- if (!t->sched_info.last_queued)
- t->sched_info.last_queued = jiffies;
- }
- /*
- * Called when a process ceases being the active-running process, either
- * voluntarily or involuntarily. Now we can calculate how long we ran.
- */
- static inline void sched_info_depart(struct task_struct *t)
- {
- unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
- t->sched_info.cpu_time += delta_jiffies;
- rq_sched_info_depart(task_rq(t), delta_jiffies);
- }
- /*
- * Called when tasks are switched involuntarily due, typically, to expiring
- * their time slice. (This may also be called when switching to or from
- * the idle task.) We are only called when prev != next.
- */
- static inline void
- __sched_info_switch(struct task_struct *prev, struct task_struct *next)
- {
- struct rq *rq = task_rq(prev);
- /*
- * prev now departs the cpu. It's not interesting to record
- * stats about how efficient we were at scheduling the idle
- * process, however.
- */
- if (prev != rq->idle)
- sched_info_depart(prev);
- if (next != rq->idle)
- sched_info_arrive(next);
- }
- static inline void
- sched_info_switch(struct task_struct *prev, struct task_struct *next)
- {
- if (unlikely(sched_info_on()))
- __sched_info_switch(prev, next);
- }
- #else
- #define sched_info_queued(t) do { } while (0)
- #define sched_info_switch(t, next) do { } while (0)
- #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void dequeue_task(struct task_struct *p, struct prio_array *array)
- {
- array->nr_active--;
- list_del(&p->run_list);
- if (list_empty(array->queue + p->prio))
- __clear_bit(p->prio, array->bitmap);
- }
- static void enqueue_task(struct task_struct *p, struct prio_array *array)
- {
- sched_info_queued(p);
- list_add_tail(&p->run_list, array->queue + p->prio);
- __set_bit(p->prio, array->bitmap);
- array->nr_active++;
- p->array = array;
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static void requeue_task(struct task_struct *p, struct prio_array *array)
- {
- list_move_tail(&p->run_list, array->queue + p->prio);
- }
- static inline void
- enqueue_task_head(struct task_struct *p, struct prio_array *array)
- {
- list_add(&p->run_list, array->queue + p->prio);
- __set_bit(p->prio, array->bitmap);
- array->nr_active++;
- p->array = array;
- }
- /*
- * __normal_prio - return the priority that is based on the static
- * priority but is modified by bonuses/penalties.
- *
- * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
- * into the -5 ... 0 ... +5 bonus/penalty range.
- *
- * We use 25% of the full 0...39 priority range so that:
- *
- * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
- * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
- *
- * Both properties are important to certain workloads.
- */
- static inline int __normal_prio(struct task_struct *p)
- {
- int bonus, prio;
- bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
- prio = p->static_prio - bonus;
- if (prio < MAX_RT_PRIO)
- prio = MAX_RT_PRIO;
- if (prio > MAX_PRIO-1)
- prio = MAX_PRIO-1;
- return prio;
- }
- /*
- * To aid in avoiding the subversion of "niceness" due to uneven distribution
- * of tasks with abnormal "nice" values across CPUs the contribution that
- * each task makes to its run queue's load is weighted according to its
- * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
- * scaled version of the new time slice allocation that they receive on time
- * slice expiry etc.
- */
- /*
- * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
- * If static_prio_timeslice() is ever changed to break this assumption then
- * this code will need modification
- */
- #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
- #define LOAD_WEIGHT(lp) \
- (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
- #define PRIO_TO_LOAD_WEIGHT(prio) \
- LOAD_WEIGHT(static_prio_timeslice(prio))
- #define RTPRIO_TO_LOAD_WEIGHT(rp) \
- (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
- static void set_load_weight(struct task_struct *p)
- {
- if (has_rt_policy(p)) {
- #ifdef CONFIG_SMP
- if (p == task_rq(p)->migration_thread)
- /*
- * The migration thread does the actual balancing.
- * Giving its load any weight will skew balancing
- * adversely.
- */
- p->load_weight = 0;
- else
- #endif
- p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
- } else
- p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
- }
- static inline void
- inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
- {
- rq->raw_weighted_load += p->load_weight;
- }
- static inline void
- dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
- {
- rq->raw_weighted_load -= p->load_weight;
- }
- static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
- {
- rq->nr_running++;
- inc_raw_weighted_load(rq, p);
- }
- static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
- {
- rq->nr_running--;
- dec_raw_weighted_load(rq, p);
- }
- /*
- * Calculate the expected normal priority: i.e. priority
- * without taking RT-inheritance into account. Might be
- * boosted by interactivity modifiers. Changes upon fork,
- * setprio syscalls, and whenever the interactivity
- * estimator recalculates.
- */
- static inline int normal_prio(struct task_struct *p)
- {
- int prio;
- if (has_rt_policy(p))
- prio = MAX_RT_PRIO-1 - p->rt_priority;
- else
- prio = __normal_prio(p);
- return prio;
- }
- /*
- * Calculate the current priority, i.e. the priority
- * taken into account by the scheduler. This value might
- * be boosted by RT tasks, or might be boosted by
- * interactivity modifiers. Will be RT if the task got
- * RT-boosted. If not then it returns p->normal_prio.
- */
- static int effective_prio(struct task_struct *p)
- {
- p->normal_prio = normal_prio(p);
- /*
- * If we are RT tasks or we were boosted to RT priority,
- * keep the priority unchanged. Otherwise, update priority
- * to the normal priority:
- */
- if (!rt_prio(p->prio))
- return p->normal_prio;
- return p->prio;
- }
- /*
- * __activate_task - move a task to the runqueue.
- */
- static void __activate_task(struct task_struct *p, struct rq *rq)
- {
- struct prio_array *target = rq->active;
- if (batch_task(p))
- target = rq->expired;
- enqueue_task(p, target);
- inc_nr_running(p, rq);
- }
- /*
- * __activate_idle_task - move idle task to the _front_ of runqueue.
- */
- static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
- {
- enqueue_task_head(p, rq->active);
- inc_nr_running(p, rq);
- }
- /*
- * Recalculate p->normal_prio and p->prio after having slept,
- * updating the sleep-average too:
- */
- static int recalc_task_prio(struct task_struct *p, unsigned long long now)
- {
- /* Caller must always ensure 'now >= p->timestamp' */
- unsigned long sleep_time = now - p->timestamp;
- if (batch_task(p))
- sleep_time = 0;
- if (likely(sleep_time > 0)) {
- /*
- * This ceiling is set to the lowest priority that would allow
- * a task to be reinserted into the active array on timeslice
- * completion.
- */
- unsigned long ceiling = INTERACTIVE_SLEEP(p);
- if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
- /*
- * Prevents user tasks from achieving best priority
- * with one single large enough sleep.
- */
- p->sleep_avg = ceiling;
- /*
- * Using INTERACTIVE_SLEEP() as a ceiling places a
- * nice(0) task 1ms sleep away from promotion, and
- * gives it 700ms to round-robin with no chance of
- * being demoted. This is more than generous, so
- * mark this sleep as non-interactive to prevent the
- * on-runqueue bonus logic from intervening should
- * this task not receive cpu immediately.
- */
- p->sleep_type = SLEEP_NONINTERACTIVE;
- } else {
- /*
- * Tasks waking from uninterruptible sleep are
- * limited in their sleep_avg rise as they
- * are likely to be waiting on I/O
- */
- if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
- if (p->sleep_avg >= ceiling)
- sleep_time = 0;
- else if (p->sleep_avg + sleep_time >=
- ceiling) {
- p->sleep_avg = ceiling;
- sleep_time = 0;
- }
- }
- /*
- * This code gives a bonus to interactive tasks.
- *
- * The boost works by updating the 'average sleep time'
- * value here, based on ->timestamp. The more time a
- * task spends sleeping, the higher the average gets -
- * and the higher the priority boost gets as well.
- */
- p->sleep_avg += sleep_time;
- }
- if (p->sleep_avg > NS_MAX_SLEEP_AVG)
- p->sleep_avg = NS_MAX_SLEEP_AVG;
- }
- return effective_prio(p);
- }
- /*
- * activate_task - move a task to the runqueue and do priority recalculation
- *
- * Update all the scheduling statistics stuff. (sleep average
- * calculation, priority modifiers, etc.)
- */
- static void activate_task(struct task_struct *p, struct rq *rq, int local)
- {
- unsigned long long now;
- if (rt_task(p))
- goto out;
- now = sched_clock();
- #ifdef CONFIG_SMP
- if (!local) {
- /* Compensate for drifting sched_clock */
- struct rq *this_rq = this_rq();
- now = (now - this_rq->most_recent_timestamp)
- + rq->most_recent_timestamp;
- }
- #endif
- /*
- * Sleep time is in units of nanosecs, so shift by 20 to get a
- * milliseconds-range estimation of the amount of time that the task
- * spent sleeping:
- */
- if (unlikely(prof_on == SLEEP_PROFILING)) {
- if (p->state == TASK_UNINTERRUPTIBLE)
- profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
- (now - p->timestamp) >> 20);
- }
- p->prio = recalc_task_prio(p, now);
- /*
- * This checks to make sure it's not an uninterruptible task
- * that is now waking up.
- */
- if (p->sleep_type == SLEEP_NORMAL) {
- /*
- * Tasks which were woken up by interrupts (ie. hw events)
- * are most likely of interactive nature. So we give them
- * the credit of extending their sleep time to the period
- * of time they spend on the runqueue, waiting for execution
- * on a CPU, first time around:
- */
- if (in_interrupt())
- p->sleep_type = SLEEP_INTERRUPTED;
- else {
- /*
- * Normal first-time wakeups get a credit too for
- * on-runqueue time, but it will be weighted down:
- */
- p->sleep_type = SLEEP_INTERACTIVE;
- }
- }
- p->timestamp = now;
- out:
- __activate_task(p, rq);
- }
- /*
- * deactivate_task - remove a task from the runqueue.
- */
- static void deactivate_task(struct task_struct *p, struct rq *rq)
- {
- dec_nr_running(p, rq);
- dequeue_task(p, p->array);
- p->array = NULL;
- }
- /*
- * resched_task - mark a task 'to be rescheduled now'.
- *
- * On UP this means the setting of the need_resched flag, on SMP it
- * might also involve a cross-CPU call to trigger the scheduler on
- * the target CPU.
- */
- #ifdef CONFIG_SMP
- #ifndef tsk_is_polling
- #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
- #endif
- static void resched_task(struct task_struct *p)
- {
- int cpu;
- assert_spin_locked(&task_rq(p)->lock);
- if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
- return;
- set_tsk_thread_flag(p, TIF_NEED_RESCHED);
- cpu = task_cpu(p);
- if (cpu == smp_processor_id())
- return;
- /* NEED_RESCHED must be visible before we test polling */
- smp_mb();
- if (!tsk_is_polling(p))
- smp_send_reschedule(cpu);
- }
- #else
- static inline void resched_task(struct task_struct *p)
- {
- assert_spin_locked(&task_rq(p)->lock);
- set_tsk_need_resched(p);
- }
- #endif
- /**
- * task_curr - is this task currently executing on a CPU?
- * @p: the task in question.
- */
- inline int task_curr(const struct task_struct *p)
- {
- return cpu_curr(task_cpu(p)) == p;
- }
- /* Used instead of source_load when we know the type == 0 */
- unsigned long weighted_cpuload(const int cpu)
- {
- return cpu_rq(cpu)->raw_weighted_load;
- }
- #ifdef CONFIG_SMP
- struct migration_req {
- struct list_head list;
- struct task_struct *task;
- int dest_cpu;
- struct completion done;
- };
- /*
- * The task's runqueue lock must be held.
- * Returns true if you have to wait for migration thread.
- */
- static int
- migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
- {
- struct rq *rq = task_rq(p);
- /*
- * If the task is not on a runqueue (and not running), then
- * it is sufficient to simply update the task's cpu field.
- */
- if (!p->array && !task_running(rq, p)) {
- set_task_cpu(p, dest_cpu);
- return 0;
- }
- init_completion(&req->done);
- req->task = p;
- req->dest_cpu = dest_cpu;
- list_add(&req->list, &rq->migration_queue);
- return 1;
- }
- /*
- * wait_task_inactive - wait for a thread to unschedule.
- *
- * The caller must ensure that the task *will* unschedule sometime soon,
- * else this function might spin for a *long* time. This function can't
- * be called with interrupts off, or it may introduce deadlock with
- * smp_call_function() if an IPI is sent by the same process we are
- * waiting to become inactive.
- */
- void wait_task_inactive(struct task_struct *p)
- {
- unsigned long flags;
- struct rq *rq;
- int preempted;
- repeat:
- rq = task_rq_lock(p, &flags);
- /* Must be off runqueue entirely, not preempted. */
- if (unlikely(p->array || task_running(rq, p))) {
- /* If it's preempted, we yield. It could be a while. */
- preempted = !task_running(rq, p);
- task_rq_unlock(rq, &flags);
- cpu_relax();
- if (preempted)
- yield();
- goto repeat;
- }
- task_rq_unlock(rq, &flags);
- }
- /***
- * kick_process - kick a running thread to enter/exit the kernel
- * @p: the to-be-kicked thread
- *
- * Cause a process which is running on another CPU to enter
- * kernel-mode, without any delay. (to get signals handled.)
- *
- * NOTE: this function doesnt have to take the runqueue lock,
- * because all it wants to ensure is that the remote task enters
- * the kernel. If the IPI races and the task has been migrated
- * to another CPU then no harm is done and the purpose has been
- * achieved as well.
- */
- void kick_process(struct task_struct *p)
- {
- int cpu;
- preempt_disable();
- cpu = task_cpu(p);
- if ((cpu != smp_processor_id()) && task_curr(p))
- smp_send_reschedule(cpu);
- preempt_enable();
- }
- /*
- * Return a low guess at the load of a migration-source cpu weighted
- * according to the scheduling class and "nice" value.
- *
- * We want to under-estimate the load of migration sources, to
- * balance conservatively.
- */
- static inline unsigned long source_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- if (type == 0)
- return rq->raw_weighted_load;
- return min(rq->cpu_load[type-1], rq->raw_weighted_load);
- }
- /*
- * Return a high guess at the load of a migration-target cpu weighted
- * according to the scheduling class and "nice" value.
- */
- static inline unsigned long target_load(int cpu, int type)
- {
- struct rq *rq = cpu_rq(cpu);
- if (type == 0)
- return rq->raw_weighted_load;
- return max(rq->cpu_load[type-1], rq->raw_weighted_load);
- }
- /*
- * Return the average load per task on the cpu's run queue
- */
- static inline unsigned long cpu_avg_load_per_task(int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long n = rq->nr_running;
- return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
- }
- /*
- * find_idlest_group finds and returns the least busy CPU group within the
- * domain.
- */
- static struct sched_group *
- find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
- {
- struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
- unsigned long min_load = ULONG_MAX, this_load = 0;
- int load_idx = sd->forkexec_idx;
- int imbalance = 100 + (sd->imbalance_pct-100)/2;
- do {
- unsigned long load, avg_load;
- int local_group;
- int i;
- /* Skip over this group if it has no CPUs allowed */
- if (!cpus_intersects(group->cpumask, p->cpus_allowed))
- goto nextgroup;
- local_group = cpu_isset(this_cpu, group->cpumask);
- /* Tally up the load of all CPUs in the group */
- avg_load = 0;
- for_each_cpu_mask(i, group->cpumask) {
- /* Bias balancing toward cpus of our domain */
- if (local_group)
- load = source_load(i, load_idx);
- else
- load = target_load(i, load_idx);
- avg_load += load;
- }
- /* Adjust by relative CPU power of the group */
- avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
- if (local_group) {
- this_load = avg_load;
- this = group;
- } else if (avg_load < min_load) {
- min_load = avg_load;
- idlest = group;
- }
- nextgroup:
- group = group->next;
- } while (group != sd->groups);
- if (!idlest || 100*this_load < imbalance*min_load)
- return NULL;
- return idlest;
- }
- /*
- * find_idlest_cpu - find the idlest cpu among the cpus in group.
- */
- static int
- find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
- {
- cpumask_t tmp;
- unsigned long load, min_load = ULONG_MAX;
- int idlest = -1;
- int i;
- /* Traverse only the allowed CPUs */
- cpus_and(tmp, group->cpumask, p->cpus_allowed);
- for_each_cpu_mask(i, tmp) {
- load = weighted_cpuload(i);
- if (load < min_load || (load == min_load && i == this_cpu)) {
- min_load = load;
- idlest = i;
- }
- }
- return idlest;
- }
- /*
- * sched_balance_self: balance the current task (running on cpu) in domains
- * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
- * SD_BALANCE_EXEC.
- *
- * Balance, ie. select the least loaded group.
- *
- * Returns the target CPU number, or the same CPU if no balancing is needed.
- *
- * preempt must be disabled.
- */
- static int sched_balance_self(int cpu, int flag)
- {
- struct task_struct *t = current;
- struct sched_domain *tmp, *sd = NULL;
- for_each_domain(cpu, tmp) {
- /*
- * If power savings logic is enabled for a domain, stop there.
- */
- if (tmp->flags & SD_POWERSAVINGS_BALANCE)
- break;
- if (tmp->flags & flag)
- sd = tmp;
- }
- while (sd) {
- cpumask_t span;
- struct sched_group *group;
- int new_cpu, weight;
- if (!(sd->flags & flag)) {
- sd = sd->child;
- continue;
- }
- span = sd->span;
- group = find_idlest_group(sd, t, cpu);
- if (!group) {
- sd = sd->child;
- continue;
- }
- new_cpu = find_idlest_cpu(group, t, cpu);
- if (new_cpu == -1 || new_cpu == cpu) {
- /* Now try balancing at a lower domain level of cpu */
- sd = sd->child;
- continue;
- }
- /* Now try balancing at a lower domain level of new_cpu */
- cpu = new_cpu;
- sd = NULL;
- weight = cpus_weight(span);
- for_each_domain(cpu, tmp) {
- if (weight <= cpus_weight(tmp->span))
- break;
- if (tmp->flags & flag)
- sd = tmp;
- }
- /* while loop will break here if sd == NULL */
- }
- return cpu;
- }
- #endif /* CONFIG_SMP */
- /*
- * wake_idle() will wake a task on an idle cpu if task->cpu is
- * not idle and an idle cpu is available. The span of cpus to
- * search starts with cpus closest then further out as needed,
- * so we always favor a closer, idle cpu.
- *
- * Returns the CPU we should wake onto.
- */
- #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
- static int wake_idle(int cpu, struct task_struct *p)
- {
- cpumask_t tmp;
- struct sched_domain *sd;
- int i;
- if (idle_cpu(cpu))
- return cpu;
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_IDLE) {
- cpus_and(tmp, sd->span, p->cpus_allowed);
- for_each_cpu_mask(i, tmp) {
- if (idle_cpu(i))
- return i;
- }
- }
- else
- break;
- }
- return cpu;
- }
- #else
- static inline int wake_idle(int cpu, struct task_struct *p)
- {
- return cpu;
- }
- #endif
- /***
- * try_to_wake_up - wake up a thread
- * @p: the to-be-woken-up thread
- * @state: the mask of task states that can be woken
- * @sync: do a synchronous wakeup?
- *
- * Put it on the run-queue if it's not already there. The "current"
- * thread is always on the run-queue (except when the actual
- * re-schedule is in progress), and as such you're allowed to do
- * the simpler "current->state = TASK_RUNNING" to mark yourself
- * runnable without the overhead of this.
- *
- * returns failure only if the task is already active.
- */
- static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
- {
- int cpu, this_cpu, success = 0;
- unsigned long flags;
- long old_state;
- struct rq *rq;
- #ifdef CONFIG_SMP
- struct sched_domain *sd, *this_sd = NULL;
- unsigned long load, this_load;
- int new_cpu;
- #endif
- rq = task_rq_lock(p, &flags);
- old_state = p->state;
- if (!(old_state & state))
- goto out;
- if (p->array)
- goto out_running;
- cpu = task_cpu(p);
- this_cpu = smp_processor_id();
- #ifdef CONFIG_SMP
- if (unlikely(task_running(rq, p)))
- goto out_activate;
- new_cpu = cpu;
- schedstat_inc(rq, ttwu_cnt);
- if (cpu == this_cpu) {
- schedstat_inc(rq, ttwu_local);
- goto out_set_cpu;
- }
- for_each_domain(this_cpu, sd) {
- if (cpu_isset(cpu, sd->span)) {
- schedstat_inc(sd, ttwu_wake_remote);
- this_sd = sd;
- break;
- }
- }
- if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
- goto out_set_cpu;
- /*
- * Check for affine wakeup and passive balancing possibilities.
- */
- if (this_sd) {
- int idx = this_sd->wake_idx;
- unsigned int imbalance;
- imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
- load = source_load(cpu, idx);
- this_load = target_load(this_cpu, idx);
- new_cpu = this_cpu; /* Wake to this CPU if we can */
- if (this_sd->flags & SD_WAKE_AFFINE) {
- unsigned long tl = this_load;
- unsigned long tl_per_task;
- tl_per_task = cpu_avg_load_per_task(this_cpu);
- /*
- * If sync wakeup then subtract the (maximum possible)
- * effect of the currently running task from the load
- * of the current CPU:
- */
- if (sync)
- tl -= current->load_weight;
- if ((tl <= load &&
- tl + target_load(cpu, idx) <= tl_per_task) ||
- 100*(tl + p->load_weight) <= imbalance*load) {
- /*
- * This domain has SD_WAKE_AFFINE and
- * p is cache cold in this domain, and
- * there is no bad imbalance.
- */
- schedstat_inc(this_sd, ttwu_move_affine);
- goto out_set_cpu;
- }
- }
- /*
- * Start passive balancing when half the imbalance_pct
- * limit is reached.
- */
- if (this_sd->flags & SD_WAKE_BALANCE) {
- if (imbalance*this_load <= 100*load) {
- schedstat_inc(this_sd, ttwu_move_balance);
- goto out_set_cpu;
- }
- }
- }
- new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
- out_set_cpu:
- new_cpu = wake_idle(new_cpu, p);
- if (new_cpu != cpu) {
- set_task_cpu(p, new_cpu);
- task_rq_unlock(rq, &flags);
- /* might preempt at this point */
- rq = task_rq_lock(p, &flags);
- old_state = p->state;
- if (!(old_state & state))
- goto out;
- if (p->array)
- goto out_running;
- this_cpu = smp_processor_id();
- cpu = task_cpu(p);
- }
- out_activate:
- #endif /* CONFIG_SMP */
- if (old_state == TASK_UNINTERRUPTIBLE) {
- rq->nr_uninterruptible--;
- /*
- * Tasks on involuntary sleep don't earn
- * sleep_avg beyond just interactive state.
- */
- p->sleep_type = SLEEP_NONINTERACTIVE;
- } else
- /*
- * Tasks that have marked their sleep as noninteractive get
- * woken up with their sleep average not weighted in an
- * interactive way.
- */
- if (old_state & TASK_NONINTERACTIVE)
- p->sleep_type = SLEEP_NONINTERACTIVE;
- activate_task(p, rq, cpu == this_cpu);
- /*
- * Sync wakeups (i.e. those types of wakeups where the waker
- * has indicated that it will leave the CPU in short order)
- * don't trigger a preemption, if the woken up task will run on
- * this cpu. (in this case the 'I will reschedule' promise of
- * the waker guarantees that the freshly woken up task is going
- * to be considered on this CPU.)
- */
- if (!sync || cpu != this_cpu) {
- if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
- }
- success = 1;
- out_running:
- p->state = TASK_RUNNING;
- out:
- task_rq_unlock(rq, &flags);
- return success;
- }
- int fastcall wake_up_process(struct task_struct *p)
- {
- return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
- TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
- }
- EXPORT_SYMBOL(wake_up_process);
- int fastcall wake_up_state(struct task_struct *p, unsigned int state)
- {
- return try_to_wake_up(p, state, 0);
- }
- static void task_running_tick(struct rq *rq, struct task_struct *p);
- /*
- * Perform scheduler related setup for a newly forked process p.
- * p is forked by current.
- */
- void fastcall sched_fork(struct task_struct *p, int clone_flags)
- {
- int cpu = get_cpu();
- #ifdef CONFIG_SMP
- cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
- #endif
- set_task_cpu(p, cpu);
- /*
- * We mark the process as running here, but have not actually
- * inserted it onto the runqueue yet. This guarantees that
- * nobody will actually run it, and a signal or other external
- * event cannot wake it up and insert it on the runqueue either.
- */
- p->state = TASK_RUNNING;
- /*
- * Make sure we do not leak PI boosting priority to the child:
- */
- p->prio = current->normal_prio;
- INIT_LIST_HEAD(&p->run_list);
- p->array = NULL;
- #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
- if (unlikely(sched_info_on()))
- memset(&p->sched_info, 0, sizeof(p->sched_info));
- #endif
- #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
- p->oncpu = 0;
- #endif
- #ifdef CONFIG_PREEMPT
- /* Want to start with kernel preemption disabled. */
- task_thread_info(p)->preempt_count = 1;
- #endif
- /*
- * Share the timeslice between parent and child, thus the
- * total amount of pending timeslices in the system doesn't change,
- * resulting in more scheduling fairness.
- */
- local_irq_disable();
- p->time_slice = (current->time_slice + 1) >> 1;
- /*
- * The remainder of the first timeslice might be recovered by
- * the parent if the child exits early enough.
- */
- p->first_time_slice = 1;
- current->time_slice >>= 1;
- p->timestamp = sched_clock();
- if (unlikely(!current->time_slice)) {
- /*
- * This case is rare, it happens when the parent has only
- * a single jiffy left from its timeslice. Taking the
- * runqueue lock is not a problem.
- */
- current->time_slice = 1;
- task_running_tick(cpu_rq(cpu), current);
- }
- local_irq_enable();
- put_cpu();
- }
- /*
- * wake_up_new_task - wake up a newly created task for the first time.
- *
- * This function will do some initial scheduler statistics housekeeping
- * that must be done for every newly created context, then puts the task
- * on the runqueue and wakes it.
- */
- void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
- {
- struct rq *rq, *this_rq;
- unsigned long flags;
- int this_cpu, cpu;
- rq = task_rq_lock(p, &flags);
- BUG_ON(p->state != TASK_RUNNING);
- this_cpu = smp_processor_id();
- cpu = task_cpu(p);
- /*
- * We decrease the sleep average of forking parents
- * and children as well, to keep max-interactive tasks
- * from forking tasks that are max-interactive. The parent
- * (current) is done further down, under its lock.
- */
- p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
- CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
- p->prio = effective_prio(p);
- if (likely(cpu == this_cpu)) {
- if (!(clone_flags & CLONE_VM)) {
- /*
- * The VM isn't cloned, so we're in a good position to
- * do child-runs-first in anticipation of an exec. This
- * usually avoids a lot of COW overhead.
- */
- if (unlikely(!current->array))
- __activate_task(p, rq);
- else {
- p->prio = current->prio;
- p->normal_prio = current->normal_prio;
- list_add_tail(&p->run_list, ¤t->run_list);
- p->array = current->array;
- p->array->nr_active++;
- inc_nr_running(p, rq);
- }
- set_need_resched();
- } else
- /* Run child last */
- __activate_task(p, rq);
- /*
- * We skip the following code due to cpu == this_cpu
- *
- * task_rq_unlock(rq, &flags);
- * this_rq = task_rq_lock(current, &flags);
- */
- this_rq = rq;
- } else {
- this_rq = cpu_rq(this_cpu);
- /*
- * Not the local CPU - must adjust timestamp. This should
- * get optimised away in the !CONFIG_SMP case.
- */
- p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
- + rq->most_recent_timestamp;
- __activate_task(p, rq);
- if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
- /*
- * Parent and child are on different CPUs, now get the
- * parent runqueue to update the parent's ->sleep_avg:
- */
- task_rq_unlock(rq, &flags);
- this_rq = task_rq_lock(current, &flags);
- }
- current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
- PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
- task_rq_unlock(this_rq, &flags);
- }
- /*
- * Potentially available exiting-child timeslices are
- * retrieved here - this way the parent does not get
- * penalized for creating too many threads.
- *
- * (this cannot be used to 'generate' timeslices
- * artificially, because any timeslice recovered here
- * was given away by the parent in the first place.)
- */
- void fastcall sched_exit(struct task_struct *p)
- {
- unsigned long flags;
- struct rq *rq;
- /*
- * If the child was a (relative-) CPU hog then decrease
- * the sleep_avg of the parent as well.
- */
- rq = task_rq_lock(p->parent, &flags);
- if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
- p->parent->time_slice += p->time_slice;
- if (unlikely(p->parent->time_slice > task_timeslice(p)))
- p->parent->time_slice = task_timeslice(p);
- }
- if (p->sleep_avg < p->parent->sleep_avg)
- p->parent->sleep_avg = p->parent->sleep_avg /
- (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
- (EXIT_WEIGHT + 1);
- task_rq_unlock(rq, &flags);
- }
- /**
- * prepare_task_switch - prepare to switch tasks
- * @rq: the runqueue preparing to switch
- * @next: the task we are going to switch to.
- *
- * This is called with the rq lock held and interrupts off. It must
- * be paired with a subsequent finish_task_switch after the context
- * switch.
- *
- * prepare_task_switch sets up locking and calls architecture specific
- * hooks.
- */
- static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
- {
- prepare_lock_switch(rq, next);
- prepare_arch_switch(next);
- }
- /**
- * finish_task_switch - clean up after a task-switch
- * @rq: runqueue associated with task-switch
- * @prev: the thread we just switched away from.
- *
- * finish_task_switch must be called after the context switch, paired
- * with a prepare_task_switch call before the context switch.
- * finish_task_switch will reconcile locking set up by prepare_task_switch,
- * and do any other architecture-specific cleanup actions.
- *
- * Note that we may have delayed dropping an mm in context_switch(). If
- * so, we finish that here outside of the runqueue lock. (Doing it
- * with the lock held can cause deadlocks; see schedule() for
- * details.)
- */
- static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
- __releases(rq->lock)
- {
- struct mm_struct *mm = rq->prev_mm;
- long prev_state;
- rq->prev_mm = NULL;
- /*
- * A task struct has one reference for the use as "current".
- * If a task dies, then it sets TASK_DEAD in tsk->state and calls
- * schedule one last time. The schedule call will never return, and
- * the scheduled task must drop that reference.
- * The test for TASK_DEAD must occur while the runqueue locks are
- * still held, otherwise prev could be scheduled on another cpu, die
- * there before we look at prev->state, and then the reference would
- * be dropped twice.
- * Manfred Spraul <manfred@colorfullife.com>
- */
- prev_state = prev->state;
- finish_arch_switch(prev);
- finish_lock_switch(rq, prev);
- if (mm)
- mmdrop(mm);
- if (unlikely(prev_state == TASK_DEAD)) {
- /*
- * Remove function-return probe instances associated with this
- * task and put them back on the free list.
- */
- kprobe_flush_task(prev);
- put_task_struct(prev);
- }
- }
- /**
- * schedule_tail - first thing a freshly forked thread must call.
- * @prev: the thread we just switched away from.
- */
- asmlinkage void schedule_tail(struct task_struct *prev)
- __releases(rq->lock)
- {
- struct rq *rq = this_rq();
- finish_task_switch(rq, prev);
- #ifdef __ARCH_WANT_UNLOCKED_CTXSW
- /* In this case, finish_task_switch does not reenable preemption */
- preempt_enable();
- #endif
- if (current->set_child_tid)
- put_user(current->pid, current->set_child_tid);
- }
- /*
- * context_switch - switch to the new MM and the new
- * thread's register state.
- */
- static inline struct task_struct *
- context_switch(struct rq *rq, struct task_struct *prev,
- struct task_struct *next)
- {
- struct mm_struct *mm = next->mm;
- struct mm_struct *oldmm = prev->active_mm;
- if (!mm) {
- next->active_mm = oldmm;
- atomic_inc(&oldmm->mm_count);
- enter_lazy_tlb(oldmm, next);
- } else
- switch_mm(oldmm, mm, next);
- if (!prev->mm) {
- prev->active_mm = NULL;
- WARN_ON(rq->prev_mm);
- rq->prev_mm = oldmm;
- }
- /*
- * Since the runqueue lock will be released by the next
- * task (which is an invalid locking op but in the case
- * of the scheduler it's an obvious special-case), so we
- * do an early lockdep release here:
- */
- #ifndef __ARCH_WANT_UNLOCKED_CTXSW
- spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
- #endif
- /* Here we just switch the register state and the stack. */
- switch_to(prev, next, prev);
- return prev;
- }
- /*
- * nr_running, nr_uninterruptible and nr_context_switches:
- *
- * externally visible scheduler statistics: current number of runnable
- * threads, current number of uninterruptible-sleeping threads, total
- * number of context switches performed since bootup.
- */
- unsigned long nr_running(void)
- {
- unsigned long i, sum = 0;
- for_each_online_cpu(i)
- sum += cpu_rq(i)->nr_running;
- return sum;
- }
- unsigned long nr_uninterruptible(void)
- {
- unsigned long i, sum = 0;
- for_each_possible_cpu(i)
- sum += cpu_rq(i)->nr_uninterruptible;
- /*
- * Since we read the counters lockless, it might be slightly
- * inaccurate. Do not allow it to go below zero though:
- */
- if (unlikely((long)sum < 0))
- sum = 0;
- return sum;
- }
- unsigned long long nr_context_switches(void)
- {
- int i;
- unsigned long long sum = 0;
- for_each_possible_cpu(i)
- sum += cpu_rq(i)->nr_switches;
- return sum;
- }
- unsigned long nr_iowait(void)
- {
- unsigned long i, sum = 0;
- for_each_possible_cpu(i)
- sum += atomic_read(&cpu_rq(i)->nr_iowait);
- return sum;
- }
- unsigned long nr_active(void)
- {
- unsigned long i, running = 0, uninterruptible = 0;
- for_each_online_cpu(i) {
- running += cpu_rq(i)->nr_running;
- uninterruptible += cpu_rq(i)->nr_uninterruptible;
- }
- if (unlikely((long)uninterruptible < 0))
- uninterruptible = 0;
- return running + uninterruptible;
- }
- #ifdef CONFIG_SMP
- /*
- * Is this task likely cache-hot:
- */
- static inline int
- task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
- {
- return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
- }
- /*
- * double_rq_lock - safely lock two runqueues
- *
- * Note this does not disable interrupts like task_rq_lock,
- * you need to do so manually before calling.
- */
- static void double_rq_lock(struct rq *rq1, struct rq *rq2)
- __acquires(rq1->lock)
- __acquires(rq2->lock)
- {
- BUG_ON(!irqs_disabled());
- if (rq1 == rq2) {
- spin_lock(&rq1->lock);
- __acquire(rq2->lock); /* Fake it out ;) */
- } else {
- if (rq1 < rq2) {
- spin_lock(&rq1->lock);
- spin_lock(&rq2->lock);
- } else {
- spin_lock(&rq2->lock);
- spin_lock(&rq1->lock);
- }
- }
- }
- /*
- * double_rq_unlock - safely unlock two runqueues
- *
- * Note this does not restore interrupts like task_rq_unlock,
- * you need to do so manually after calling.
- */
- static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
- __releases(rq1->lock)
- __releases(rq2->lock)
- {
- spin_unlock(&rq1->lock);
- if (rq1 != rq2)
- spin_unlock(&rq2->lock);
- else
- __release(rq2->lock);
- }
- /*
- * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
- */
- static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
- __releases(this_rq->lock)
- __acquires(busiest->lock)
- __acquires(this_rq->lock)
- {
- if (unlikely(!irqs_disabled())) {
- /* printk() doesn't work good under rq->lock */
- spin_unlock(&this_rq->lock);
- BUG_ON(1);
- }
- if (unlikely(!spin_trylock(&busiest->lock))) {
- if (busiest < this_rq) {
- spin_unlock(&this_rq->lock);
- spin_lock(&busiest->lock);
- spin_lock(&this_rq->lock);
- } else
- spin_lock(&busiest->lock);
- }
- }
- /*
- * If dest_cpu is allowed for this process, migrate the task to it.
- * This is accomplished by forcing the cpu_allowed mask to only
- * allow dest_cpu, which will force the cpu onto dest_cpu. Then
- * the cpu_allowed mask is restored.
- */
- static void sched_migrate_task(struct task_struct *p, int dest_cpu)
- {
- struct migration_req req;
- unsigned long flags;
- struct rq *rq;
- rq = task_rq_lock(p, &flags);
- if (!cpu_isset(dest_cpu, p->cpus_allowed)
- || unlikely(cpu_is_offline(dest_cpu)))
- goto out;
- /* force the process onto the specified CPU */
- if (migrate_task(p, dest_cpu, &req)) {
- /* Need to wait for migration thread (might exit: take ref). */
- struct task_struct *mt = rq->migration_thread;
- get_task_struct(mt);
- task_rq_unlock(rq, &flags);
- wake_up_process(mt);
- put_task_struct(mt);
- wait_for_completion(&req.done);
- return;
- }
- out:
- task_rq_unlock(rq, &flags);
- }
- /*
- * sched_exec - execve() is a valuable balancing opportunity, because at
- * this point the task has the smallest effective memory and cache footprint.
- */
- void sched_exec(void)
- {
- int new_cpu, this_cpu = get_cpu();
- new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
- put_cpu();
- if (new_cpu != this_cpu)
- sched_migrate_task(current, new_cpu);
- }
- /*
- * pull_task - move a task from a remote runqueue to the local runqueue.
- * Both runqueues must be locked.
- */
- static void pull_task(struct rq *src_rq, struct prio_array *src_array,
- struct task_struct *p, struct rq *this_rq,
- struct prio_array *this_array, int this_cpu)
- {
- dequeue_task(p, src_array);
- dec_nr_running(p, src_rq);
- set_task_cpu(p, this_cpu);
- inc_nr_running(p, this_rq);
- enqueue_task(p, this_array);
- p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
- + this_rq->most_recent_timestamp;
- /*
- * Note that idle threads have a prio of MAX_PRIO, for this test
- * to be always true for them.
- */
- if (TASK_PREEMPTS_CURR(p, this_rq))
- resched_task(this_rq->curr);
- }
- /*
- * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
- */
- static
- int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
- struct sched_domain *sd, enum idle_type idle,
- int *all_pinned)
- {
- /*
- * We do not migrate tasks that are:
- * 1) running (obviously), or
- * 2) cannot be migrated to this CPU due to cpus_allowed, or
- * 3) are cache-hot on their current CPU.
- */
- if (!cpu_isset(this_cpu, p->cpus_allowed))
- return 0;
- *all_pinned = 0;
- if (task_running(rq, p))
- return 0;
- /*
- * Aggressive migration if:
- * 1) task is cache cold, or
- * 2) too many balance attempts have failed.
- */
- if (sd->nr_balance_failed > sd->cache_nice_tries) {
- #ifdef CONFIG_SCHEDSTATS
- if (task_hot(p, rq->most_recent_timestamp, sd))
- schedstat_inc(sd, lb_hot_gained[idle]);
- #endif
- return 1;
- }
- if (task_hot(p, rq->most_recent_timestamp, sd))
- return 0;
- return 1;
- }
- #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
- /*
- * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
- * load from busiest to this_rq, as part of a balancing operation within
- * "domain". Returns the number of tasks moved.
- *
- * Called with both runqueues locked.
- */
- static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_nr_move, unsigned long max_load_move,
- struct sched_domain *sd, enum idle_type idle,
- int *all_pinned)
- {
- int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
- best_prio_seen, skip_for_load;
- struct prio_array *array, *dst_array;
- struct list_head *head, *curr;
- struct task_struct *tmp;
- long rem_load_move;
- if (max_nr_move == 0 || max_load_move == 0)
- goto out;
- rem_load_move = max_load_move;
- pinned = 1;
- this_best_prio = rq_best_prio(this_rq);
- best_prio = rq_best_prio(busiest);
- /*
- * Enable handling of the case where there is more than one task
- * with the best priority. If the current running task is one
- * of those with prio==best_prio we know it won't be moved
- * and therefore it's safe to override the skip (based on load) of
- * any task we find with that prio.
- */
- best_prio_seen = best_prio == busiest->curr->prio;
- /*
- * We first consider expired tasks. Those will likely not be
- * executed in the near future, and they are most likely to
- * be cache-cold, thus switching CPUs has the least effect
- * on them.
- */
- if (busiest->expired->nr_active) {
- array = busiest->expired;
- dst_array = this_rq->expired;
- } else {
- array = busiest->active;
- dst_array = this_rq->active;
- }
- new_array:
- /* Start searching at priority 0: */
- idx = 0;
- skip_bitmap:
- if (!idx)
- idx = sched_find_first_bit(array->bitmap);
- else
- idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
- if (idx >= MAX_PRIO) {
- if (array == busiest->expired && busiest->active->nr_active) {
- array = busiest->active;
- dst_array = this_rq->active;
- goto new_array;
- }
- goto out;
- }
- head = array->queue + idx;
- curr = head->prev;
- skip_queue:
- tmp = list_entry(curr, struct task_struct, run_list);
- curr = curr->prev;
- /*
- * To help distribute high priority tasks accross CPUs we don't
- * skip a task if it will be the highest priority task (i.e. smallest
- * prio value) on its new queue regardless of its load weight
- */
- skip_for_load = tmp->load_weight > rem_load_move;
- if (skip_for_load && idx < this_best_prio)
- skip_for_load = !best_prio_seen && idx == best_prio;
- if (skip_for_load ||
- !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
- best_prio_seen |= idx == best_prio;
- if (curr != head)
- goto skip_queue;
- idx++;
- goto skip_bitmap;
- }
- pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
- pulled++;
- rem_load_move -= tmp->load_weight;
- /*
- * We only want to steal up to the prescribed number of tasks
- * and the prescribed amount of weighted load.
- */
- if (pulled < max_nr_move && rem_load_move > 0) {
- if (idx < this_best_prio)
- this_best_prio = idx;
- if (curr != head)
- goto skip_queue;
- idx++;
- goto skip_bitmap;
- }
- out:
- /*
- * Right now, this is the only place pull_task() is called,
- * so we can safely collect pull_task() stats here rather than
- * inside pull_task().
- */
- schedstat_add(sd, lb_gained[idle], pulled);
- if (all_pinned)
- *all_pinned = pinned;
- return pulled;
- }
- /*
- * find_busiest_group finds and returns the busiest CPU group within the
- * domain. It calculates and returns the amount of weighted load which
- * should be moved to restore balance via the imbalance parameter.
- */
- static struct sched_group *
- find_busiest_group(struct sched_domain *sd, int this_cpu,
- unsigned long *imbalance, enum idle_type idle, int *sd_idle,
- cpumask_t *cpus, int *balance)
- {
- struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
- unsigned long max_load, avg_load, total_load, this_load, total_pwr;
- unsigned long max_pull;
- unsigned long busiest_load_per_task, busiest_nr_running;
- unsigned long this_load_per_task, this_nr_running;
- int load_idx;
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- int power_savings_balance = 1;
- unsigned long leader_nr_running = 0, min_load_per_task = 0;
- unsigned long min_nr_running = ULONG_MAX;
- struct sched_group *group_min = NULL, *group_leader = NULL;
- #endif
- max_load = this_load = total_load = total_pwr = 0;
- busiest_load_per_task = busiest_nr_running = 0;
- this_load_per_task = this_nr_running = 0;
- if (idle == NOT_IDLE)
- load_idx = sd->busy_idx;
- else if (idle == NEWLY_IDLE)
- load_idx = sd->newidle_idx;
- else
- load_idx = sd->idle_idx;
- do {
- unsigned long load, group_capacity;
- int local_group;
- int i;
- unsigned int balance_cpu = -1, first_idle_cpu = 0;
- unsigned long sum_nr_running, sum_weighted_load;
- local_group = cpu_isset(this_cpu, group->cpumask);
- if (local_group)
- balance_cpu = first_cpu(group->cpumask);
- /* Tally up the load of all CPUs in the group */
- sum_weighted_load = sum_nr_running = avg_load = 0;
- for_each_cpu_mask(i, group->cpumask) {
- struct rq *rq;
- if (!cpu_isset(i, *cpus))
- continue;
- rq = cpu_rq(i);
- if (*sd_idle && !idle_cpu(i))
- *sd_idle = 0;
- /* Bias balancing toward cpus of our domain */
- if (local_group) {
- if (idle_cpu(i) && !first_idle_cpu) {
- first_idle_cpu = 1;
- balance_cpu = i;
- }
- load = target_load(i, load_idx);
- } else
- load = source_load(i, load_idx);
- avg_load += load;
- sum_nr_running += rq->nr_running;
- sum_weighted_load += rq->raw_weighted_load;
- }
- /*
- * First idle cpu or the first cpu(busiest) in this sched group
- * is eligible for doing load balancing at this and above
- * domains.
- */
- if (local_group && balance_cpu != this_cpu && balance) {
- *balance = 0;
- goto ret;
- }
- total_load += avg_load;
- total_pwr += group->cpu_power;
- /* Adjust by relative CPU power of the group */
- avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
- group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
- if (local_group) {
- this_load = avg_load;
- this = group;
- this_nr_running = sum_nr_running;
- this_load_per_task = sum_weighted_load;
- } else if (avg_load > max_load &&
- sum_nr_running > group_capacity) {
- max_load = avg_load;
- busiest = group;
- busiest_nr_running = sum_nr_running;
- busiest_load_per_task = sum_weighted_load;
- }
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- /*
- * Busy processors will not participate in power savings
- * balance.
- */
- if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
- goto group_next;
- /*
- * If the local group is idle or completely loaded
- * no need to do power savings balance at this domain
- */
- if (local_group && (this_nr_running >= group_capacity ||
- !this_nr_running))
- power_savings_balance = 0;
- /*
- * If a group is already running at full capacity or idle,
- * don't include that group in power savings calculations
- */
- if (!power_savings_balance || sum_nr_running >= group_capacity
- || !sum_nr_running)
- goto group_next;
- /*
- * Calculate the group which has the least non-idle load.
- * This is the group from where we need to pick up the load
- * for saving power
- */
- if ((sum_nr_running < min_nr_running) ||
- (sum_nr_running == min_nr_running &&
- first_cpu(group->cpumask) <
- first_cpu(group_min->cpumask))) {
- group_min = group;
- min_nr_running = sum_nr_running;
- min_load_per_task = sum_weighted_load /
- sum_nr_running;
- }
- /*
- * Calculate the group which is almost near its
- * capacity but still has some space to pick up some load
- * from other group and save more power
- */
- if (sum_nr_running <= group_capacity - 1) {
- if (sum_nr_running > leader_nr_running ||
- (sum_nr_running == leader_nr_running &&
- first_cpu(group->cpumask) >
- first_cpu(group_leader->cpumask))) {
- group_leader = group;
- leader_nr_running = sum_nr_running;
- }
- }
- group_next:
- #endif
- group = group->next;
- } while (group != sd->groups);
- if (!busiest || this_load >= max_load || busiest_nr_running == 0)
- goto out_balanced;
- avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
- if (this_load >= avg_load ||
- 100*max_load <= sd->imbalance_pct*this_load)
- goto out_balanced;
- busiest_load_per_task /= busiest_nr_running;
- /*
- * We're trying to get all the cpus to the average_load, so we don't
- * want to push ourselves above the average load, nor do we wish to
- * reduce the max loaded cpu below the average load, as either of these
- * actions would just result in more rebalancing later, and ping-pong
- * tasks around. Thus we look for the minimum possible imbalance.
- * Negative imbalances (*we* are more loaded than anyone else) will
- * be counted as no imbalance for these purposes -- we can't fix that
- * by pulling tasks to us. Be careful of negative numbers as they'll
- * appear as very large values with unsigned longs.
- */
- if (max_load <= busiest_load_per_task)
- goto out_balanced;
- /*
- * In the presence of smp nice balancing, certain scenarios can have
- * max load less than avg load(as we skip the groups at or below
- * its cpu_power, while calculating max_load..)
- */
- if (max_load < avg_load) {
- *imbalance = 0;
- goto small_imbalance;
- }
- /* Don't want to pull so many tasks that a group would go idle */
- max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
- /* How much load to actually move to equalise the imbalance */
- *imbalance = min(max_pull * busiest->cpu_power,
- (avg_load - this_load) * this->cpu_power)
- / SCHED_LOAD_SCALE;
- /*
- * if *imbalance is less than the average load per runnable task
- * there is no gaurantee that any tasks will be moved so we'll have
- * a think about bumping its value to force at least one task to be
- * moved
- */
- if (*imbalance < busiest_load_per_task) {
- unsigned long tmp, pwr_now, pwr_move;
- unsigned int imbn;
- small_imbalance:
- pwr_move = pwr_now = 0;
- imbn = 2;
- if (this_nr_running) {
- this_load_per_task /= this_nr_running;
- if (busiest_load_per_task > this_load_per_task)
- imbn = 1;
- } else
- this_load_per_task = SCHED_LOAD_SCALE;
- if (max_load - this_load >= busiest_load_per_task * imbn) {
- *imbalance = busiest_load_per_task;
- return busiest;
- }
- /*
- * OK, we don't have enough imbalance to justify moving tasks,
- * however we may be able to increase total CPU power used by
- * moving them.
- */
- pwr_now += busiest->cpu_power *
- min(busiest_load_per_task, max_load);
- pwr_now += this->cpu_power *
- min(this_load_per_task, this_load);
- pwr_now /= SCHED_LOAD_SCALE;
- /* Amount of load we'd subtract */
- tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
- busiest->cpu_power;
- if (max_load > tmp)
- pwr_move += busiest->cpu_power *
- min(busiest_load_per_task, max_load - tmp);
- /* Amount of load we'd add */
- if (max_load * busiest->cpu_power <
- busiest_load_per_task * SCHED_LOAD_SCALE)
- tmp = max_load * busiest->cpu_power / this->cpu_power;
- else
- tmp = busiest_load_per_task * SCHED_LOAD_SCALE /
- this->cpu_power;
- pwr_move += this->cpu_power *
- min(this_load_per_task, this_load + tmp);
- pwr_move /= SCHED_LOAD_SCALE;
- /* Move if we gain throughput */
- if (pwr_move <= pwr_now)
- goto out_balanced;
- *imbalance = busiest_load_per_task;
- }
- return busiest;
- out_balanced:
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
- goto ret;
- if (this == group_leader && group_leader != group_min) {
- *imbalance = min_load_per_task;
- return group_min;
- }
- #endif
- ret:
- *imbalance = 0;
- return NULL;
- }
- /*
- * find_busiest_queue - find the busiest runqueue among the cpus in group.
- */
- static struct rq *
- find_busiest_queue(struct sched_group *group, enum idle_type idle,
- unsigned long imbalance, cpumask_t *cpus)
- {
- struct rq *busiest = NULL, *rq;
- unsigned long max_load = 0;
- int i;
- for_each_cpu_mask(i, group->cpumask) {
- if (!cpu_isset(i, *cpus))
- continue;
- rq = cpu_rq(i);
- if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
- continue;
- if (rq->raw_weighted_load > max_load) {
- max_load = rq->raw_weighted_load;
- busiest = rq;
- }
- }
- return busiest;
- }
- /*
- * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
- * so long as it is large enough.
- */
- #define MAX_PINNED_INTERVAL 512
- static inline unsigned long minus_1_or_zero(unsigned long n)
- {
- return n > 0 ? n - 1 : 0;
- }
- /*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- */
- static int load_balance(int this_cpu, struct rq *this_rq,
- struct sched_domain *sd, enum idle_type idle,
- int *balance)
- {
- int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
- struct sched_group *group;
- unsigned long imbalance;
- struct rq *busiest;
- cpumask_t cpus = CPU_MASK_ALL;
- unsigned long flags;
- /*
- * When power savings policy is enabled for the parent domain, idle
- * sibling can pick up load irrespective of busy siblings. In this case,
- * let the state of idle sibling percolate up as IDLE, instead of
- * portraying it as NOT_IDLE.
- */
- if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- sd_idle = 1;
- schedstat_inc(sd, lb_cnt[idle]);
- redo:
- group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
- &cpus, balance);
- if (*balance == 0)
- goto out_balanced;
- if (!group) {
- schedstat_inc(sd, lb_nobusyg[idle]);
- goto out_balanced;
- }
- busiest = find_busiest_queue(group, idle, imbalance, &cpus);
- if (!busiest) {
- schedstat_inc(sd, lb_nobusyq[idle]);
- goto out_balanced;
- }
- BUG_ON(busiest == this_rq);
- schedstat_add(sd, lb_imbalance[idle], imbalance);
- nr_moved = 0;
- if (busiest->nr_running > 1) {
- /*
- * Attempt to move tasks. If find_busiest_group has found
- * an imbalance but busiest->nr_running <= 1, the group is
- * still unbalanced. nr_moved simply stays zero, so it is
- * correctly treated as an imbalance.
- */
- local_irq_save(flags);
- double_rq_lock(this_rq, busiest);
- nr_moved = move_tasks(this_rq, this_cpu, busiest,
- minus_1_or_zero(busiest->nr_running),
- imbalance, sd, idle, &all_pinned);
- double_rq_unlock(this_rq, busiest);
- local_irq_restore(flags);
- /* All tasks on this runqueue were pinned by CPU affinity */
- if (unlikely(all_pinned)) {
- cpu_clear(cpu_of(busiest), cpus);
- if (!cpus_empty(cpus))
- goto redo;
- goto out_balanced;
- }
- }
- if (!nr_moved) {
- schedstat_inc(sd, lb_failed[idle]);
- sd->nr_balance_failed++;
- if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
- spin_lock_irqsave(&busiest->lock, flags);
- /* don't kick the migration_thread, if the curr
- * task on busiest cpu can't be moved to this_cpu
- */
- if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
- spin_unlock_irqrestore(&busiest->lock, flags);
- all_pinned = 1;
- goto out_one_pinned;
- }
- if (!busiest->active_balance) {
- busiest->active_balance = 1;
- busiest->push_cpu = this_cpu;
- active_balance = 1;
- }
- spin_unlock_irqrestore(&busiest->lock, flags);
- if (active_balance)
- wake_up_process(busiest->migration_thread);
- /*
- * We've kicked active balancing, reset the failure
- * counter.
- */
- sd->nr_balance_failed = sd->cache_nice_tries+1;
- }
- } else
- sd->nr_balance_failed = 0;
- if (likely(!active_balance)) {
- /* We were unbalanced, so reset the balancing interval */
- sd->balance_interval = sd->min_interval;
- } else {
- /*
- * If we've begun active balancing, start to back off. This
- * case may not be covered by the all_pinned logic if there
- * is only 1 task on the busy runqueue (because we don't call
- * move_tasks).
- */
- if (sd->balance_interval < sd->max_interval)
- sd->balance_interval *= 2;
- }
- if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- return -1;
- return nr_moved;
- out_balanced:
- schedstat_inc(sd, lb_balanced[idle]);
- sd->nr_balance_failed = 0;
- out_one_pinned:
- /* tune up the balancing interval */
- if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
- (sd->balance_interval < sd->max_interval))
- sd->balance_interval *= 2;
- if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- return -1;
- return 0;
- }
- /*
- * Check this_cpu to ensure it is balanced within domain. Attempt to move
- * tasks if there is an imbalance.
- *
- * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
- * this_rq is locked.
- */
- static int
- load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
- {
- struct sched_group *group;
- struct rq *busiest = NULL;
- unsigned long imbalance;
- int nr_moved = 0;
- int sd_idle = 0;
- cpumask_t cpus = CPU_MASK_ALL;
- /*
- * When power savings policy is enabled for the parent domain, idle
- * sibling can pick up load irrespective of busy siblings. In this case,
- * let the state of idle sibling percolate up as IDLE, instead of
- * portraying it as NOT_IDLE.
- */
- if (sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- sd_idle = 1;
- schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
- redo:
- group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
- &sd_idle, &cpus, NULL);
- if (!group) {
- schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
- goto out_balanced;
- }
- busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
- &cpus);
- if (!busiest) {
- schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
- goto out_balanced;
- }
- BUG_ON(busiest == this_rq);
- schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
- nr_moved = 0;
- if (busiest->nr_running > 1) {
- /* Attempt to move tasks */
- double_lock_balance(this_rq, busiest);
- nr_moved = move_tasks(this_rq, this_cpu, busiest,
- minus_1_or_zero(busiest->nr_running),
- imbalance, sd, NEWLY_IDLE, NULL);
- spin_unlock(&busiest->lock);
- if (!nr_moved) {
- cpu_clear(cpu_of(busiest), cpus);
- if (!cpus_empty(cpus))
- goto redo;
- }
- }
- if (!nr_moved) {
- schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
- if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- return -1;
- } else
- sd->nr_balance_failed = 0;
- return nr_moved;
- out_balanced:
- schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
- if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
- !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
- return -1;
- sd->nr_balance_failed = 0;
- return 0;
- }
- /*
- * idle_balance is called by schedule() if this_cpu is about to become
- * idle. Attempts to pull tasks from other CPUs.
- */
- static void idle_balance(int this_cpu, struct rq *this_rq)
- {
- struct sched_domain *sd;
- int pulled_task = 0;
- unsigned long next_balance = jiffies + 60 * HZ;
- for_each_domain(this_cpu, sd) {
- if (sd->flags & SD_BALANCE_NEWIDLE) {
- /* If we've pulled tasks over stop searching: */
- pulled_task = load_balance_newidle(this_cpu,
- this_rq, sd);
- if (time_after(next_balance,
- sd->last_balance + sd->balance_interval))
- next_balance = sd->last_balance
- + sd->balance_interval;
- if (pulled_task)
- break;
- }
- }
- if (!pulled_task)
- /*
- * We are going idle. next_balance may be set based on
- * a busy processor. So reset next_balance.
- */
- this_rq->next_balance = next_balance;
- }
- /*
- * active_load_balance is run by migration threads. It pushes running tasks
- * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
- * running on each physical CPU where possible, and avoids physical /
- * logical imbalances.
- *
- * Called with busiest_rq locked.
- */
- static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
- {
- int target_cpu = busiest_rq->push_cpu;
- struct sched_domain *sd;
- struct rq *target_rq;
- /* Is there any task to move? */
- if (busiest_rq->nr_running <= 1)
- return;
- target_rq = cpu_rq(target_cpu);
- /*
- * This condition is "impossible", if it occurs
- * we need to fix it. Originally reported by
- * Bjorn Helgaas on a 128-cpu setup.
- */
- BUG_ON(busiest_rq == target_rq);
- /* move a task from busiest_rq to target_rq */
- double_lock_balance(busiest_rq, target_rq);
- /* Search for an sd spanning us and the target CPU. */
- for_each_domain(target_cpu, sd) {
- if ((sd->flags & SD_LOAD_BALANCE) &&
- cpu_isset(busiest_cpu, sd->span))
- break;
- }
- if (likely(sd)) {
- schedstat_inc(sd, alb_cnt);
- if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
- RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
- NULL))
- schedstat_inc(sd, alb_pushed);
- else
- schedstat_inc(sd, alb_failed);
- }
- spin_unlock(&target_rq->lock);
- }
- static void update_load(struct rq *this_rq)
- {
- unsigned long this_load;
- int i, scale;
- this_load = this_rq->raw_weighted_load;
- /* Update our load: */
- for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
- unsigned long old_load, new_load;
- old_load = this_rq->cpu_load[i];
- new_load = this_load;
- /*
- * Round up the averaging division if load is increasing. This
- * prevents us from getting stuck on 9 if the load is 10, for
- * example.
- */
- if (new_load > old_load)
- new_load += scale-1;
- this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
- }
- }
- /*
- * run_rebalance_domains is triggered when needed from the scheduler tick.
- *
- * It checks each scheduling domain to see if it is due to be balanced,
- * and initiates a balancing operation if so.
- *
- * Balancing parameters are set up in arch_init_sched_domains.
- */
- static DEFINE_SPINLOCK(balancing);
- static void run_rebalance_domains(struct softirq_action *h)
- {
- int this_cpu = smp_processor_id(), balance = 1;
- struct rq *this_rq = cpu_rq(this_cpu);
- unsigned long interval;
- struct sched_domain *sd;
- /*
- * We are idle if there are no processes running. This
- * is valid even if we are the idle process (SMT).
- */
- enum idle_type idle = !this_rq->nr_running ?
- SCHED_IDLE : NOT_IDLE;
- /* Earliest time when we have to call run_rebalance_domains again */
- unsigned long next_balance = jiffies + 60*HZ;
- for_each_domain(this_cpu, sd) {
- if (!(sd->flags & SD_LOAD_BALANCE))
- continue;
- interval = sd->balance_interval;
- if (idle != SCHED_IDLE)
- interval *= sd->busy_factor;
- /* scale ms to jiffies */
- interval = msecs_to_jiffies(interval);
- if (unlikely(!interval))
- interval = 1;
- if (sd->flags & SD_SERIALIZE) {
- if (!spin_trylock(&balancing))
- goto out;
- }
- if (time_after_eq(jiffies, sd->last_balance + interval)) {
- if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
- /*
- * We've pulled tasks over so either we're no
- * longer idle, or one of our SMT siblings is
- * not idle.
- */
- idle = NOT_IDLE;
- }
- sd->last_balance = jiffies;
- }
- if (sd->flags & SD_SERIALIZE)
- spin_unlock(&balancing);
- out:
- if (time_after(next_balance, sd->last_balance + interval))
- next_balance = sd->last_balance + interval;
- /*
- * Stop the load balance at this level. There is another
- * CPU in our sched group which is doing load balancing more
- * actively.
- */
- if (!balance)
- break;
- }
- this_rq->next_balance = next_balance;
- }
- #else
- /*
- * on UP we do not need to balance between CPUs:
- */
- static inline void idle_balance(int cpu, struct rq *rq)
- {
- }
- #endif
- static inline void wake_priority_sleeper(struct rq *rq)
- {
- #ifdef CONFIG_SCHED_SMT
- if (!rq->nr_running)
- return;
- spin_lock(&rq->lock);
- /*
- * If an SMT sibling task has been put to sleep for priority
- * reasons reschedule the idle task to see if it can now run.
- */
- if (rq->nr_running)
- resched_task(rq->idle);
- spin_unlock(&rq->lock);
- #endif
- }
- DEFINE_PER_CPU(struct kernel_stat, kstat);
- EXPORT_PER_CPU_SYMBOL(kstat);
- /*
- * This is called on clock ticks and on context switches.
- * Bank in p->sched_time the ns elapsed since the last tick or switch.
- */
- static inline void
- update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
- {
- p->sched_time += now - p->last_ran;
- p->last_ran = rq->most_recent_timestamp = now;
- }
- /*
- * Return current->sched_time plus any more ns on the sched_clock
- * that have not yet been banked.
- */
- unsigned long long current_sched_time(const struct task_struct *p)
- {
- unsigned long long ns;
- unsigned long flags;
- local_irq_save(flags);
- ns = p->sched_time + sched_clock() - p->last_ran;
- local_irq_restore(flags);
- return ns;
- }
- /*
- * We place interactive tasks back into the active array, if possible.
- *
- * To guarantee that this does not starve expired tasks we ignore the
- * interactivity of a task if the first expired task had to wait more
- * than a 'reasonable' amount of time. This deadline timeout is
- * load-dependent, as the frequency of array switched decreases with
- * increasing number of running tasks. We also ignore the interactivity
- * if a better static_prio task has expired:
- */
- static inline int expired_starving(struct rq *rq)
- {
- if (rq->curr->static_prio > rq->best_expired_prio)
- return 1;
- if (!STARVATION_LIMIT || !rq->expired_timestamp)
- return 0;
- if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
- return 1;
- return 0;
- }
- /*
- * Account user cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in user space since the last update
- */
- void account_user_time(struct task_struct *p, cputime_t cputime)
- {
- struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
- cputime64_t tmp;
- p->utime = cputime_add(p->utime, cputime);
- /* Add user time to cpustat. */
- tmp = cputime_to_cputime64(cputime);
- if (TASK_NICE(p) > 0)
- cpustat->nice = cputime64_add(cpustat->nice, tmp);
- else
- cpustat->user = cputime64_add(cpustat->user, tmp);
- }
- /*
- * Account system cpu time to a process.
- * @p: the process that the cpu time gets accounted to
- * @hardirq_offset: the offset to subtract from hardirq_count()
- * @cputime: the cpu time spent in kernel space since the last update
- */
- void account_system_time(struct task_struct *p, int hardirq_offset,
- cputime_t cputime)
- {
- struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
- struct rq *rq = this_rq();
- cputime64_t tmp;
- p->stime = cputime_add(p->stime, cputime);
- /* Add system time to cpustat. */
- tmp = cputime_to_cputime64(cputime);
- if (hardirq_count() - hardirq_offset)
- cpustat->irq = cputime64_add(cpustat->irq, tmp);
- else if (softirq_count())
- cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
- else if (p != rq->idle)
- cpustat->system = cputime64_add(cpustat->system, tmp);
- else if (atomic_read(&rq->nr_iowait) > 0)
- cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
- else
- cpustat->idle = cputime64_add(cpustat->idle, tmp);
- /* Account for system time used */
- acct_update_integrals(p);
- }
- /*
- * Account for involuntary wait time.
- * @p: the process from which the cpu time has been stolen
- * @steal: the cpu time spent in involuntary wait
- */
- void account_steal_time(struct task_struct *p, cputime_t steal)
- {
- struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
- cputime64_t tmp = cputime_to_cputime64(steal);
- struct rq *rq = this_rq();
- if (p == rq->idle) {
- p->stime = cputime_add(p->stime, steal);
- if (atomic_read(&rq->nr_iowait) > 0)
- cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
- else
- cpustat->idle = cputime64_add(cpustat->idle, tmp);
- } else
- cpustat->steal = cputime64_add(cpustat->steal, tmp);
- }
- static void task_running_tick(struct rq *rq, struct task_struct *p)
- {
- if (p->array != rq->active) {
- /* Task has expired but was not scheduled yet */
- set_tsk_need_resched(p);
- return;
- }
- spin_lock(&rq->lock);
- /*
- * The task was running during this tick - update the
- * time slice counter. Note: we do not update a thread's
- * priority until it either goes to sleep or uses up its
- * timeslice. This makes it possible for interactive tasks
- * to use up their timeslices at their highest priority levels.
- */
- if (rt_task(p)) {
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if ((p->policy == SCHED_RR) && !--p->time_slice) {
- p->time_slice = task_timeslice(p);
- p->first_time_slice = 0;
- set_tsk_need_resched(p);
- /* put it at the end of the queue: */
- requeue_task(p, rq->active);
- }
- goto out_unlock;
- }
- if (!--p->time_slice) {
- dequeue_task(p, rq->active);
- set_tsk_need_resched(p);
- p->prio = effective_prio(p);
- p->time_slice = task_timeslice(p);
- p->first_time_slice = 0;
- if (!rq->expired_timestamp)
- rq->expired_timestamp = jiffies;
- if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
- enqueue_task(p, rq->expired);
- if (p->static_prio < rq->best_expired_prio)
- rq->best_expired_prio = p->static_prio;
- } else
- enqueue_task(p, rq->active);
- } else {
- /*
- * Prevent a too long timeslice allowing a task to monopolize
- * the CPU. We do this by splitting up the timeslice into
- * smaller pieces.
- *
- * Note: this does not mean the task's timeslices expire or
- * get lost in any way, they just might be preempted by
- * another task of equal priority. (one with higher
- * priority would have preempted this task already.) We
- * requeue this task to the end of the list on this priority
- * level, which is in essence a round-robin of tasks with
- * equal priority.
- *
- * This only applies to tasks in the interactive
- * delta range with at least TIMESLICE_GRANULARITY to requeue.
- */
- if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
- p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
- (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
- (p->array == rq->active)) {
- requeue_task(p, rq->active);
- set_tsk_need_resched(p);
- }
- }
- out_unlock:
- spin_unlock(&rq->lock);
- }
- /*
- * This function gets called by the timer code, with HZ frequency.
- * We call it with interrupts disabled.
- *
- * It also gets called by the fork code, when changing the parent's
- * timeslices.
- */
- void scheduler_tick(void)
- {
- unsigned long long now = sched_clock();
- struct task_struct *p = current;
- int cpu = smp_processor_id();
- struct rq *rq = cpu_rq(cpu);
- update_cpu_clock(p, rq, now);
- if (p == rq->idle)
- /* Task on the idle queue */
- wake_priority_sleeper(rq);
- else
- task_running_tick(rq, p);
- #ifdef CONFIG_SMP
- update_load(rq);
- if (time_after_eq(jiffies, rq->next_balance))
- raise_softirq(SCHED_SOFTIRQ);
- #endif
- }
- #ifdef CONFIG_SCHED_SMT
- static inline void wakeup_busy_runqueue(struct rq *rq)
- {
- /* If an SMT runqueue is sleeping due to priority reasons wake it up */
- if (rq->curr == rq->idle && rq->nr_running)
- resched_task(rq->idle);
- }
- /*
- * Called with interrupt disabled and this_rq's runqueue locked.
- */
- static void wake_sleeping_dependent(int this_cpu)
- {
- struct sched_domain *tmp, *sd = NULL;
- int i;
- for_each_domain(this_cpu, tmp) {
- if (tmp->flags & SD_SHARE_CPUPOWER) {
- sd = tmp;
- break;
- }
- }
- if (!sd)
- return;
- for_each_cpu_mask(i, sd->span) {
- struct rq *smt_rq = cpu_rq(i);
- if (i == this_cpu)
- continue;
- if (unlikely(!spin_trylock(&smt_rq->lock)))
- continue;
- wakeup_busy_runqueue(smt_rq);
- spin_unlock(&smt_rq->lock);
- }
- }
- /*
- * number of 'lost' timeslices this task wont be able to fully
- * utilize, if another task runs on a sibling. This models the
- * slowdown effect of other tasks running on siblings:
- */
- static inline unsigned long
- smt_slice(struct task_struct *p, struct sched_domain *sd)
- {
- return p->time_slice * (100 - sd->per_cpu_gain) / 100;
- }
- /*
- * To minimise lock contention and not have to drop this_rq's runlock we only
- * trylock the sibling runqueues and bypass those runqueues if we fail to
- * acquire their lock. As we only trylock the normal locking order does not
- * need to be obeyed.
- */
- static int
- dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
- {
- struct sched_domain *tmp, *sd = NULL;
- int ret = 0, i;
- /* kernel/rt threads do not participate in dependent sleeping */
- if (!p->mm || rt_task(p))
- return 0;
- for_each_domain(this_cpu, tmp) {
- if (tmp->flags & SD_SHARE_CPUPOWER) {
- sd = tmp;
- break;
- }
- }
- if (!sd)
- return 0;
- for_each_cpu_mask(i, sd->span) {
- struct task_struct *smt_curr;
- struct rq *smt_rq;
- if (i == this_cpu)
- continue;
- smt_rq = cpu_rq(i);
- if (unlikely(!spin_trylock(&smt_rq->lock)))
- continue;
- smt_curr = smt_rq->curr;
- if (!smt_curr->mm)
- goto unlock;
- /*
- * If a user task with lower static priority than the
- * running task on the SMT sibling is trying to schedule,
- * delay it till there is proportionately less timeslice
- * left of the sibling task to prevent a lower priority
- * task from using an unfair proportion of the
- * physical cpu's resources. -ck
- */
- if (rt_task(smt_curr)) {
- /*
- * With real time tasks we run non-rt tasks only
- * per_cpu_gain% of the time.
- */
- if ((jiffies % DEF_TIMESLICE) >
- (sd->per_cpu_gain * DEF_TIMESLICE / 100))
- ret = 1;
- } else {
- if (smt_curr->static_prio < p->static_prio &&
- !TASK_PREEMPTS_CURR(p, smt_rq) &&
- smt_slice(smt_curr, sd) > task_timeslice(p))
- ret = 1;
- }
- unlock:
- spin_unlock(&smt_rq->lock);
- }
- return ret;
- }
- #else
- static inline void wake_sleeping_dependent(int this_cpu)
- {
- }
- static inline int
- dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
- {
- return 0;
- }
- #endif
- #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
- void fastcall add_preempt_count(int val)
- {
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
- return;
- preempt_count() += val;
- /*
- * Spinlock count overflowing soon?
- */
- DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
- PREEMPT_MASK - 10);
- }
- EXPORT_SYMBOL(add_preempt_count);
- void fastcall sub_preempt_count(int val)
- {
- /*
- * Underflow?
- */
- if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
- return;
- /*
- * Is the spinlock portion underflowing?
- */
- if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
- !(preempt_count() & PREEMPT_MASK)))
- return;
- preempt_count() -= val;
- }
- EXPORT_SYMBOL(sub_preempt_count);
- #endif
- static inline int interactive_sleep(enum sleep_type sleep_type)
- {
- return (sleep_type == SLEEP_INTERACTIVE ||
- sleep_type == SLEEP_INTERRUPTED);
- }
- /*
- * schedule() is the main scheduler function.
- */
- asmlinkage void __sched schedule(void)
- {
- struct task_struct *prev, *next;
- struct prio_array *array;
- struct list_head *queue;
- unsigned long long now;
- unsigned long run_time;
- int cpu, idx, new_prio;
- long *switch_count;
- struct rq *rq;
- /*
- * Test if we are atomic. Since do_exit() needs to call into
- * schedule() atomically, we ignore that path for now.
- * Otherwise, whine if we are scheduling when we should not be.
- */
- if (unlikely(in_atomic() && !current->exit_state)) {
- printk(KERN_ERR "BUG: scheduling while atomic: "
- "%s/0x%08x/%d\n",
- current->comm, preempt_count(), current->pid);
- debug_show_held_locks(current);
- if (irqs_disabled())
- print_irqtrace_events(current);
- dump_stack();
- }
- profile_hit(SCHED_PROFILING, __builtin_return_address(0));
- need_resched:
- preempt_disable();
- prev = current;
- release_kernel_lock(prev);
- need_resched_nonpreemptible:
- rq = this_rq();
- /*
- * The idle thread is not allowed to schedule!
- * Remove this check after it has been exercised a bit.
- */
- if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
- printk(KERN_ERR "bad: scheduling from the idle thread!\n");
- dump_stack();
- }
- schedstat_inc(rq, sched_cnt);
- now = sched_clock();
- if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
- run_time = now - prev->timestamp;
- if (unlikely((long long)(now - prev->timestamp) < 0))
- run_time = 0;
- } else
- run_time = NS_MAX_SLEEP_AVG;
- /*
- * Tasks charged proportionately less run_time at high sleep_avg to
- * delay them losing their interactive status
- */
- run_time /= (CURRENT_BONUS(prev) ? : 1);
- spin_lock_irq(&rq->lock);
- switch_count = &prev->nivcsw;
- if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
- switch_count = &prev->nvcsw;
- if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
- unlikely(signal_pending(prev))))
- prev->state = TASK_RUNNING;
- else {
- if (prev->state == TASK_UNINTERRUPTIBLE)
- rq->nr_uninterruptible++;
- deactivate_task(prev, rq);
- }
- }
- cpu = smp_processor_id();
- if (unlikely(!rq->nr_running)) {
- idle_balance(cpu, rq);
- if (!rq->nr_running) {
- next = rq->idle;
- rq->expired_timestamp = 0;
- wake_sleeping_dependent(cpu);
- goto switch_tasks;
- }
- }
- array = rq->active;
- if (unlikely(!array->nr_active)) {
- /*
- * Switch the active and expired arrays.
- */
- schedstat_inc(rq, sched_switch);
- rq->active = rq->expired;
- rq->expired = array;
- array = rq->active;
- rq->expired_timestamp = 0;
- rq->best_expired_prio = MAX_PRIO;
- }
- idx = sched_find_first_bit(array->bitmap);
- queue = array->queue + idx;
- next = list_entry(queue->next, struct task_struct, run_list);
- if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
- unsigned long long delta = now - next->timestamp;
- if (unlikely((long long)(now - next->timestamp) < 0))
- delta = 0;
- if (next->sleep_type == SLEEP_INTERACTIVE)
- delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
- array = next->array;
- new_prio = recalc_task_prio(next, next->timestamp + delta);
- if (unlikely(next->prio != new_prio)) {
- dequeue_task(next, array);
- next->prio = new_prio;
- enqueue_task(next, array);
- }
- }
- next->sleep_type = SLEEP_NORMAL;
- if (dependent_sleeper(cpu, rq, next))
- next = rq->idle;
- switch_tasks:
- if (next == rq->idle)
- schedstat_inc(rq, sched_goidle);
- prefetch(next);
- prefetch_stack(next);
- clear_tsk_need_resched(prev);
- rcu_qsctr_inc(task_cpu(prev));
- update_cpu_clock(prev, rq, now);
- prev->sleep_avg -= run_time;
- if ((long)prev->sleep_avg <= 0)
- prev->sleep_avg = 0;
- prev->timestamp = prev->last_ran = now;
- sched_info_switch(prev, next);
- if (likely(prev != next)) {
- next->timestamp = now;
- rq->nr_switches++;
- rq->curr = next;
- ++*switch_count;
- prepare_task_switch(rq, next);
- prev = context_switch(rq, prev, next);
- barrier();
- /*
- * this_rq must be evaluated again because prev may have moved
- * CPUs since it called schedule(), thus the 'rq' on its stack
- * frame will be invalid.
- */
- finish_task_switch(this_rq(), prev);
- } else
- spin_unlock_irq(&rq->lock);
- prev = current;
- if (unlikely(reacquire_kernel_lock(prev) < 0))
- goto need_resched_nonpreemptible;
- preempt_enable_no_resched();
- if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
- goto need_resched;
- }
- EXPORT_SYMBOL(schedule);
- #ifdef CONFIG_PREEMPT
- /*
- * this is the entry point to schedule() from in-kernel preemption
- * off of preempt_enable. Kernel preemptions off return from interrupt
- * occur there and call schedule directly.
- */
- asmlinkage void __sched preempt_schedule(void)
- {
- struct thread_info *ti = current_thread_info();
- #ifdef CONFIG_PREEMPT_BKL
- struct task_struct *task = current;
- int saved_lock_depth;
- #endif
- /*
- * If there is a non-zero preempt_count or interrupts are disabled,
- * we do not want to preempt the current task. Just return..
- */
- if (likely(ti->preempt_count || irqs_disabled()))
- return;
- need_resched:
- add_preempt_count(PREEMPT_ACTIVE);
- /*
- * We keep the big kernel semaphore locked, but we
- * clear ->lock_depth so that schedule() doesnt
- * auto-release the semaphore:
- */
- #ifdef CONFIG_PREEMPT_BKL
- saved_lock_depth = task->lock_depth;
- task->lock_depth = -1;
- #endif
- schedule();
- #ifdef CONFIG_PREEMPT_BKL
- task->lock_depth = saved_lock_depth;
- #endif
- sub_preempt_count(PREEMPT_ACTIVE);
- /* we could miss a preemption opportunity between schedule and now */
- barrier();
- if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
- goto need_resched;
- }
- EXPORT_SYMBOL(preempt_schedule);
- /*
- * this is the entry point to schedule() from kernel preemption
- * off of irq context.
- * Note, that this is called and return with irqs disabled. This will
- * protect us against recursive calling from irq.
- */
- asmlinkage void __sched preempt_schedule_irq(void)
- {
- struct thread_info *ti = current_thread_info();
- #ifdef CONFIG_PREEMPT_BKL
- struct task_struct *task = current;
- int saved_lock_depth;
- #endif
- /* Catch callers which need to be fixed */
- BUG_ON(ti->preempt_count || !irqs_disabled());
- need_resched:
- add_preempt_count(PREEMPT_ACTIVE);
- /*
- * We keep the big kernel semaphore locked, but we
- * clear ->lock_depth so that schedule() doesnt
- * auto-release the semaphore:
- */
- #ifdef CONFIG_PREEMPT_BKL
- saved_lock_depth = task->lock_depth;
- task->lock_depth = -1;
- #endif
- local_irq_enable();
- schedule();
- local_irq_disable();
- #ifdef CONFIG_PREEMPT_BKL
- task->lock_depth = saved_lock_depth;
- #endif
- sub_preempt_count(PREEMPT_ACTIVE);
- /* we could miss a preemption opportunity between schedule and now */
- barrier();
- if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
- goto need_resched;
- }
- #endif /* CONFIG_PREEMPT */
- int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
- void *key)
- {
- return try_to_wake_up(curr->private, mode, sync);
- }
- EXPORT_SYMBOL(default_wake_function);
- /*
- * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
- * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
- * number) then we wake all the non-exclusive tasks and one exclusive task.
- *
- * There are circumstances in which we can try to wake a task which has already
- * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
- * zero in this (rare) case, and we handle it by continuing to scan the queue.
- */
- static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
- int nr_exclusive, int sync, void *key)
- {
- struct list_head *tmp, *next;
- list_for_each_safe(tmp, next, &q->task_list) {
- wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
- unsigned flags = curr->flags;
- if (curr->func(curr, mode, sync, key) &&
- (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
- break;
- }
- }
- /**
- * __wake_up - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- * @key: is directly passed to the wakeup function
- */
- void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
- int nr_exclusive, void *key)
- {
- unsigned long flags;
- spin_lock_irqsave(&q->lock, flags);
- __wake_up_common(q, mode, nr_exclusive, 0, key);
- spin_unlock_irqrestore(&q->lock, flags);
- }
- EXPORT_SYMBOL(__wake_up);
- /*
- * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
- */
- void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
- {
- __wake_up_common(q, mode, 1, 0, NULL);
- }
- /**
- * __wake_up_sync - wake up threads blocked on a waitqueue.
- * @q: the waitqueue
- * @mode: which threads
- * @nr_exclusive: how many wake-one or wake-many threads to wake up
- *
- * The sync wakeup differs that the waker knows that it will schedule
- * away soon, so while the target thread will be woken up, it will not
- * be migrated to another CPU - ie. the two threads are 'synchronized'
- * with each other. This can prevent needless bouncing between CPUs.
- *
- * On UP it can prevent extra preemption.
- */
- void fastcall
- __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
- {
- unsigned long flags;
- int sync = 1;
- if (unlikely(!q))
- return;
- if (unlikely(!nr_exclusive))
- sync = 0;
- spin_lock_irqsave(&q->lock, flags);
- __wake_up_common(q, mode, nr_exclusive, sync, NULL);
- spin_unlock_irqrestore(&q->lock, flags);
- }
- EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
- void fastcall complete(struct completion *x)
- {
- unsigned long flags;
- spin_lock_irqsave(&x->wait.lock, flags);
- x->done++;
- __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
- 1, 0, NULL);
- spin_unlock_irqrestore(&x->wait.lock, flags);
- }
- EXPORT_SYMBOL(complete);
- void fastcall complete_all(struct completion *x)
- {
- unsigned long flags;
- spin_lock_irqsave(&x->wait.lock, flags);
- x->done += UINT_MAX/2;
- __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
- 0, 0, NULL);
- spin_unlock_irqrestore(&x->wait.lock, flags);
- }
- EXPORT_SYMBOL(complete_all);
- void fastcall __sched wait_for_completion(struct completion *x)
- {
- might_sleep();
- spin_lock_irq(&x->wait.lock);
- if (!x->done) {
- DECLARE_WAITQUEUE(wait, current);
- wait.flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue_tail(&x->wait, &wait);
- do {
- __set_current_state(TASK_UNINTERRUPTIBLE);
- spin_unlock_irq(&x->wait.lock);
- schedule();
- spin_lock_irq(&x->wait.lock);
- } while (!x->done);
- __remove_wait_queue(&x->wait, &wait);
- }
- x->done--;
- spin_unlock_irq(&x->wait.lock);
- }
- EXPORT_SYMBOL(wait_for_completion);
- unsigned long fastcall __sched
- wait_for_completion_timeout(struct completion *x, unsigned long timeout)
- {
- might_sleep();
- spin_lock_irq(&x->wait.lock);
- if (!x->done) {
- DECLARE_WAITQUEUE(wait, current);
- wait.flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue_tail(&x->wait, &wait);
- do {
- __set_current_state(TASK_UNINTERRUPTIBLE);
- spin_unlock_irq(&x->wait.lock);
- timeout = schedule_timeout(timeout);
- spin_lock_irq(&x->wait.lock);
- if (!timeout) {
- __remove_wait_queue(&x->wait, &wait);
- goto out;
- }
- } while (!x->done);
- __remove_wait_queue(&x->wait, &wait);
- }
- x->done--;
- out:
- spin_unlock_irq(&x->wait.lock);
- return timeout;
- }
- EXPORT_SYMBOL(wait_for_completion_timeout);
- int fastcall __sched wait_for_completion_interruptible(struct completion *x)
- {
- int ret = 0;
- might_sleep();
- spin_lock_irq(&x->wait.lock);
- if (!x->done) {
- DECLARE_WAITQUEUE(wait, current);
- wait.flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue_tail(&x->wait, &wait);
- do {
- if (signal_pending(current)) {
- ret = -ERESTARTSYS;
- __remove_wait_queue(&x->wait, &wait);
- goto out;
- }
- __set_current_state(TASK_INTERRUPTIBLE);
- spin_unlock_irq(&x->wait.lock);
- schedule();
- spin_lock_irq(&x->wait.lock);
- } while (!x->done);
- __remove_wait_queue(&x->wait, &wait);
- }
- x->done--;
- out:
- spin_unlock_irq(&x->wait.lock);
- return ret;
- }
- EXPORT_SYMBOL(wait_for_completion_interruptible);
- unsigned long fastcall __sched
- wait_for_completion_interruptible_timeout(struct completion *x,
- unsigned long timeout)
- {
- might_sleep();
- spin_lock_irq(&x->wait.lock);
- if (!x->done) {
- DECLARE_WAITQUEUE(wait, current);
- wait.flags |= WQ_FLAG_EXCLUSIVE;
- __add_wait_queue_tail(&x->wait, &wait);
- do {
- if (signal_pending(current)) {
- timeout = -ERESTARTSYS;
- __remove_wait_queue(&x->wait, &wait);
- goto out;
- }
- __set_current_state(TASK_INTERRUPTIBLE);
- spin_unlock_irq(&x->wait.lock);
- timeout = schedule_timeout(timeout);
- spin_lock_irq(&x->wait.lock);
- if (!timeout) {
- __remove_wait_queue(&x->wait, &wait);
- goto out;
- }
- } while (!x->done);
- __remove_wait_queue(&x->wait, &wait);
- }
- x->done--;
- out:
- spin_unlock_irq(&x->wait.lock);
- return timeout;
- }
- EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
- #define SLEEP_ON_VAR \
- unsigned long flags; \
- wait_queue_t wait; \
- init_waitqueue_entry(&wait, current);
- #define SLEEP_ON_HEAD \
- spin_lock_irqsave(&q->lock,flags); \
- __add_wait_queue(q, &wait); \
- spin_unlock(&q->lock);
- #define SLEEP_ON_TAIL \
- spin_lock_irq(&q->lock); \
- __remove_wait_queue(q, &wait); \
- spin_unlock_irqrestore(&q->lock, flags);
- void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
- {
- SLEEP_ON_VAR
- current->state = TASK_INTERRUPTIBLE;
- SLEEP_ON_HEAD
- schedule();
- SLEEP_ON_TAIL
- }
- EXPORT_SYMBOL(interruptible_sleep_on);
- long fastcall __sched
- interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
- {
- SLEEP_ON_VAR
- current->state = TASK_INTERRUPTIBLE;
- SLEEP_ON_HEAD
- timeout = schedule_timeout(timeout);
- SLEEP_ON_TAIL
- return timeout;
- }
- EXPORT_SYMBOL(interruptible_sleep_on_timeout);
- void fastcall __sched sleep_on(wait_queue_head_t *q)
- {
- SLEEP_ON_VAR
- current->state = TASK_UNINTERRUPTIBLE;
- SLEEP_ON_HEAD
- schedule();
- SLEEP_ON_TAIL
- }
- EXPORT_SYMBOL(sleep_on);
- long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
- {
- SLEEP_ON_VAR
- current->state = TASK_UNINTERRUPTIBLE;
- SLEEP_ON_HEAD
- timeout = schedule_timeout(timeout);
- SLEEP_ON_TAIL
- return timeout;
- }
- EXPORT_SYMBOL(sleep_on_timeout);
- #ifdef CONFIG_RT_MUTEXES
- /*
- * rt_mutex_setprio - set the current priority of a task
- * @p: task
- * @prio: prio value (kernel-internal form)
- *
- * This function changes the 'effective' priority of a task. It does
- * not touch ->normal_prio like __setscheduler().
- *
- * Used by the rt_mutex code to implement priority inheritance logic.
- */
- void rt_mutex_setprio(struct task_struct *p, int prio)
- {
- struct prio_array *array;
- unsigned long flags;
- struct rq *rq;
- int oldprio;
- BUG_ON(prio < 0 || prio > MAX_PRIO);
- rq = task_rq_lock(p, &flags);
- oldprio = p->prio;
- array = p->array;
- if (array)
- dequeue_task(p, array);
- p->prio = prio;
- if (array) {
- /*
- * If changing to an RT priority then queue it
- * in the active array!
- */
- if (rt_task(p))
- array = rq->active;
- enqueue_task(p, array);
- /*
- * Reschedule if we are currently running on this runqueue and
- * our priority decreased, or if we are not currently running on
- * this runqueue and our priority is higher than the current's
- */
- if (task_running(rq, p)) {
- if (p->prio > oldprio)
- resched_task(rq->curr);
- } else if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
- }
- task_rq_unlock(rq, &flags);
- }
- #endif
- void set_user_nice(struct task_struct *p, long nice)
- {
- struct prio_array *array;
- int old_prio, delta;
- unsigned long flags;
- struct rq *rq;
- if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
- return;
- /*
- * We have to be careful, if called from sys_setpriority(),
- * the task might be in the middle of scheduling on another CPU.
- */
- rq = task_rq_lock(p, &flags);
- /*
- * The RT priorities are set via sched_setscheduler(), but we still
- * allow the 'normal' nice value to be set - but as expected
- * it wont have any effect on scheduling until the task is
- * not SCHED_NORMAL/SCHED_BATCH:
- */
- if (has_rt_policy(p)) {
- p->static_prio = NICE_TO_PRIO(nice);
- goto out_unlock;
- }
- array = p->array;
- if (array) {
- dequeue_task(p, array);
- dec_raw_weighted_load(rq, p);
- }
- p->static_prio = NICE_TO_PRIO(nice);
- set_load_weight(p);
- old_prio = p->prio;
- p->prio = effective_prio(p);
- delta = p->prio - old_prio;
- if (array) {
- enqueue_task(p, array);
- inc_raw_weighted_load(rq, p);
- /*
- * If the task increased its priority or is running and
- * lowered its priority, then reschedule its CPU:
- */
- if (delta < 0 || (delta > 0 && task_running(rq, p)))
- resched_task(rq->curr);
- }
- out_unlock:
- task_rq_unlock(rq, &flags);
- }
- EXPORT_SYMBOL(set_user_nice);
- /*
- * can_nice - check if a task can reduce its nice value
- * @p: task
- * @nice: nice value
- */
- int can_nice(const struct task_struct *p, const int nice)
- {
- /* convert nice value [19,-20] to rlimit style value [1,40] */
- int nice_rlim = 20 - nice;
- return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
- capable(CAP_SYS_NICE));
- }
- #ifdef __ARCH_WANT_SYS_NICE
- /*
- * sys_nice - change the priority of the current process.
- * @increment: priority increment
- *
- * sys_setpriority is a more generic, but much slower function that
- * does similar things.
- */
- asmlinkage long sys_nice(int increment)
- {
- long nice, retval;
- /*
- * Setpriority might change our priority at the same moment.
- * We don't have to worry. Conceptually one call occurs first
- * and we have a single winner.
- */
- if (increment < -40)
- increment = -40;
- if (increment > 40)
- increment = 40;
- nice = PRIO_TO_NICE(current->static_prio) + increment;
- if (nice < -20)
- nice = -20;
- if (nice > 19)
- nice = 19;
- if (increment < 0 && !can_nice(current, nice))
- return -EPERM;
- retval = security_task_setnice(current, nice);
- if (retval)
- return retval;
- set_user_nice(current, nice);
- return 0;
- }
- #endif
- /**
- * task_prio - return the priority value of a given task.
- * @p: the task in question.
- *
- * This is the priority value as seen by users in /proc.
- * RT tasks are offset by -200. Normal tasks are centered
- * around 0, value goes from -16 to +15.
- */
- int task_prio(const struct task_struct *p)
- {
- return p->prio - MAX_RT_PRIO;
- }
- /**
- * task_nice - return the nice value of a given task.
- * @p: the task in question.
- */
- int task_nice(const struct task_struct *p)
- {
- return TASK_NICE(p);
- }
- EXPORT_SYMBOL_GPL(task_nice);
- /**
- * idle_cpu - is a given cpu idle currently?
- * @cpu: the processor in question.
- */
- int idle_cpu(int cpu)
- {
- return cpu_curr(cpu) == cpu_rq(cpu)->idle;
- }
- /**
- * idle_task - return the idle task for a given cpu.
- * @cpu: the processor in question.
- */
- struct task_struct *idle_task(int cpu)
- {
- return cpu_rq(cpu)->idle;
- }
- /**
- * find_process_by_pid - find a process with a matching PID value.
- * @pid: the pid in question.
- */
- static inline struct task_struct *find_process_by_pid(pid_t pid)
- {
- return pid ? find_task_by_pid(pid) : current;
- }
- /* Actually do priority change: must hold rq lock. */
- static void __setscheduler(struct task_struct *p, int policy, int prio)
- {
- BUG_ON(p->array);
- p->policy = policy;
- p->rt_priority = prio;
- p->normal_prio = normal_prio(p);
- /* we are holding p->pi_lock already */
- p->prio = rt_mutex_getprio(p);
- /*
- * SCHED_BATCH tasks are treated as perpetual CPU hogs:
- */
- if (policy == SCHED_BATCH)
- p->sleep_avg = 0;
- set_load_weight(p);
- }
- /**
- * sched_setscheduler - change the scheduling policy and/or RT priority of
- * a thread.
- * @p: the task in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- *
- * NOTE: the task may be already dead
- */
- int sched_setscheduler(struct task_struct *p, int policy,
- struct sched_param *param)
- {
- int retval, oldprio, oldpolicy = -1;
- struct prio_array *array;
- unsigned long flags;
- struct rq *rq;
- /* may grab non-irq protected spin_locks */
- BUG_ON(in_interrupt());
- recheck:
- /* double check policy once rq lock held */
- if (policy < 0)
- policy = oldpolicy = p->policy;
- else if (policy != SCHED_FIFO && policy != SCHED_RR &&
- policy != SCHED_NORMAL && policy != SCHED_BATCH)
- return -EINVAL;
- /*
- * Valid priorities for SCHED_FIFO and SCHED_RR are
- * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
- * SCHED_BATCH is 0.
- */
- if (param->sched_priority < 0 ||
- (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
- (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
- return -EINVAL;
- if (is_rt_policy(policy) != (param->sched_priority != 0))
- return -EINVAL;
- /*
- * Allow unprivileged RT tasks to decrease priority:
- */
- if (!capable(CAP_SYS_NICE)) {
- if (is_rt_policy(policy)) {
- unsigned long rlim_rtprio;
- unsigned long flags;
- if (!lock_task_sighand(p, &flags))
- return -ESRCH;
- rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
- unlock_task_sighand(p, &flags);
- /* can't set/change the rt policy */
- if (policy != p->policy && !rlim_rtprio)
- return -EPERM;
- /* can't increase priority */
- if (param->sched_priority > p->rt_priority &&
- param->sched_priority > rlim_rtprio)
- return -EPERM;
- }
- /* can't change other user's priorities */
- if ((current->euid != p->euid) &&
- (current->euid != p->uid))
- return -EPERM;
- }
- retval = security_task_setscheduler(p, policy, param);
- if (retval)
- return retval;
- /*
- * make sure no PI-waiters arrive (or leave) while we are
- * changing the priority of the task:
- */
- spin_lock_irqsave(&p->pi_lock, flags);
- /*
- * To be able to change p->policy safely, the apropriate
- * runqueue lock must be held.
- */
- rq = __task_rq_lock(p);
- /* recheck policy now with rq lock held */
- if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
- policy = oldpolicy = -1;
- __task_rq_unlock(rq);
- spin_unlock_irqrestore(&p->pi_lock, flags);
- goto recheck;
- }
- array = p->array;
- if (array)
- deactivate_task(p, rq);
- oldprio = p->prio;
- __setscheduler(p, policy, param->sched_priority);
- if (array) {
- __activate_task(p, rq);
- /*
- * Reschedule if we are currently running on this runqueue and
- * our priority decreased, or if we are not currently running on
- * this runqueue and our priority is higher than the current's
- */
- if (task_running(rq, p)) {
- if (p->prio > oldprio)
- resched_task(rq->curr);
- } else if (TASK_PREEMPTS_CURR(p, rq))
- resched_task(rq->curr);
- }
- __task_rq_unlock(rq);
- spin_unlock_irqrestore(&p->pi_lock, flags);
- rt_mutex_adjust_pi(p);
- return 0;
- }
- EXPORT_SYMBOL_GPL(sched_setscheduler);
- static int
- do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
- {
- struct sched_param lparam;
- struct task_struct *p;
- int retval;
- if (!param || pid < 0)
- return -EINVAL;
- if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
- return -EFAULT;
- rcu_read_lock();
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (p != NULL)
- retval = sched_setscheduler(p, policy, &lparam);
- rcu_read_unlock();
- return retval;
- }
- /**
- * sys_sched_setscheduler - set/change the scheduler policy and RT priority
- * @pid: the pid in question.
- * @policy: new policy.
- * @param: structure containing the new RT priority.
- */
- asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
- struct sched_param __user *param)
- {
- /* negative values for policy are not valid */
- if (policy < 0)
- return -EINVAL;
- return do_sched_setscheduler(pid, policy, param);
- }
- /**
- * sys_sched_setparam - set/change the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the new RT priority.
- */
- asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
- {
- return do_sched_setscheduler(pid, -1, param);
- }
- /**
- * sys_sched_getscheduler - get the policy (scheduling class) of a thread
- * @pid: the pid in question.
- */
- asmlinkage long sys_sched_getscheduler(pid_t pid)
- {
- struct task_struct *p;
- int retval = -EINVAL;
- if (pid < 0)
- goto out_nounlock;
- retval = -ESRCH;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (p) {
- retval = security_task_getscheduler(p);
- if (!retval)
- retval = p->policy;
- }
- read_unlock(&tasklist_lock);
- out_nounlock:
- return retval;
- }
- /**
- * sys_sched_getscheduler - get the RT priority of a thread
- * @pid: the pid in question.
- * @param: structure containing the RT priority.
- */
- asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
- {
- struct sched_param lp;
- struct task_struct *p;
- int retval = -EINVAL;
- if (!param || pid < 0)
- goto out_nounlock;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- retval = -ESRCH;
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- lp.sched_priority = p->rt_priority;
- read_unlock(&tasklist_lock);
- /*
- * This one might sleep, we cannot do it with a spinlock held ...
- */
- retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
- out_nounlock:
- return retval;
- out_unlock:
- read_unlock(&tasklist_lock);
- return retval;
- }
- long sched_setaffinity(pid_t pid, cpumask_t new_mask)
- {
- cpumask_t cpus_allowed;
- struct task_struct *p;
- int retval;
- lock_cpu_hotplug();
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (!p) {
- read_unlock(&tasklist_lock);
- unlock_cpu_hotplug();
- return -ESRCH;
- }
- /*
- * It is not safe to call set_cpus_allowed with the
- * tasklist_lock held. We will bump the task_struct's
- * usage count and then drop tasklist_lock.
- */
- get_task_struct(p);
- read_unlock(&tasklist_lock);
- retval = -EPERM;
- if ((current->euid != p->euid) && (current->euid != p->uid) &&
- !capable(CAP_SYS_NICE))
- goto out_unlock;
- retval = security_task_setscheduler(p, 0, NULL);
- if (retval)
- goto out_unlock;
- cpus_allowed = cpuset_cpus_allowed(p);
- cpus_and(new_mask, new_mask, cpus_allowed);
- retval = set_cpus_allowed(p, new_mask);
- out_unlock:
- put_task_struct(p);
- unlock_cpu_hotplug();
- return retval;
- }
- static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
- cpumask_t *new_mask)
- {
- if (len < sizeof(cpumask_t)) {
- memset(new_mask, 0, sizeof(cpumask_t));
- } else if (len > sizeof(cpumask_t)) {
- len = sizeof(cpumask_t);
- }
- return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
- }
- /**
- * sys_sched_setaffinity - set the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to the new cpu mask
- */
- asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
- unsigned long __user *user_mask_ptr)
- {
- cpumask_t new_mask;
- int retval;
- retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
- if (retval)
- return retval;
- return sched_setaffinity(pid, new_mask);
- }
- /*
- * Represents all cpu's present in the system
- * In systems capable of hotplug, this map could dynamically grow
- * as new cpu's are detected in the system via any platform specific
- * method, such as ACPI for e.g.
- */
- cpumask_t cpu_present_map __read_mostly;
- EXPORT_SYMBOL(cpu_present_map);
- #ifndef CONFIG_SMP
- cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
- EXPORT_SYMBOL(cpu_online_map);
- cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
- EXPORT_SYMBOL(cpu_possible_map);
- #endif
- long sched_getaffinity(pid_t pid, cpumask_t *mask)
- {
- struct task_struct *p;
- int retval;
- lock_cpu_hotplug();
- read_lock(&tasklist_lock);
- retval = -ESRCH;
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- cpus_and(*mask, p->cpus_allowed, cpu_online_map);
- out_unlock:
- read_unlock(&tasklist_lock);
- unlock_cpu_hotplug();
- if (retval)
- return retval;
- return 0;
- }
- /**
- * sys_sched_getaffinity - get the cpu affinity of a process
- * @pid: pid of the process
- * @len: length in bytes of the bitmask pointed to by user_mask_ptr
- * @user_mask_ptr: user-space pointer to hold the current cpu mask
- */
- asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
- unsigned long __user *user_mask_ptr)
- {
- int ret;
- cpumask_t mask;
- if (len < sizeof(cpumask_t))
- return -EINVAL;
- ret = sched_getaffinity(pid, &mask);
- if (ret < 0)
- return ret;
- if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
- return -EFAULT;
- return sizeof(cpumask_t);
- }
- /**
- * sys_sched_yield - yield the current processor to other threads.
- *
- * this function yields the current CPU by moving the calling thread
- * to the expired array. If there are no other threads running on this
- * CPU then this function will return.
- */
- asmlinkage long sys_sched_yield(void)
- {
- struct rq *rq = this_rq_lock();
- struct prio_array *array = current->array, *target = rq->expired;
- schedstat_inc(rq, yld_cnt);
- /*
- * We implement yielding by moving the task into the expired
- * queue.
- *
- * (special rule: RT tasks will just roundrobin in the active
- * array.)
- */
- if (rt_task(current))
- target = rq->active;
- if (array->nr_active == 1) {
- schedstat_inc(rq, yld_act_empty);
- if (!rq->expired->nr_active)
- schedstat_inc(rq, yld_both_empty);
- } else if (!rq->expired->nr_active)
- schedstat_inc(rq, yld_exp_empty);
- if (array != target) {
- dequeue_task(current, array);
- enqueue_task(current, target);
- } else
- /*
- * requeue_task is cheaper so perform that if possible.
- */
- requeue_task(current, array);
- /*
- * Since we are going to call schedule() anyway, there's
- * no need to preempt or enable interrupts:
- */
- __release(rq->lock);
- spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
- _raw_spin_unlock(&rq->lock);
- preempt_enable_no_resched();
- schedule();
- return 0;
- }
- static void __cond_resched(void)
- {
- #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
- __might_sleep(__FILE__, __LINE__);
- #endif
- /*
- * The BKS might be reacquired before we have dropped
- * PREEMPT_ACTIVE, which could trigger a second
- * cond_resched() call.
- */
- do {
- add_preempt_count(PREEMPT_ACTIVE);
- schedule();
- sub_preempt_count(PREEMPT_ACTIVE);
- } while (need_resched());
- }
- int __sched cond_resched(void)
- {
- if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
- system_state == SYSTEM_RUNNING) {
- __cond_resched();
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(cond_resched);
- /*
- * cond_resched_lock() - if a reschedule is pending, drop the given lock,
- * call schedule, and on return reacquire the lock.
- *
- * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
- * operations here to prevent schedule() from being called twice (once via
- * spin_unlock(), once by hand).
- */
- int cond_resched_lock(spinlock_t *lock)
- {
- int ret = 0;
- if (need_lockbreak(lock)) {
- spin_unlock(lock);
- cpu_relax();
- ret = 1;
- spin_lock(lock);
- }
- if (need_resched() && system_state == SYSTEM_RUNNING) {
- spin_release(&lock->dep_map, 1, _THIS_IP_);
- _raw_spin_unlock(lock);
- preempt_enable_no_resched();
- __cond_resched();
- ret = 1;
- spin_lock(lock);
- }
- return ret;
- }
- EXPORT_SYMBOL(cond_resched_lock);
- int __sched cond_resched_softirq(void)
- {
- BUG_ON(!in_softirq());
- if (need_resched() && system_state == SYSTEM_RUNNING) {
- raw_local_irq_disable();
- _local_bh_enable();
- raw_local_irq_enable();
- __cond_resched();
- local_bh_disable();
- return 1;
- }
- return 0;
- }
- EXPORT_SYMBOL(cond_resched_softirq);
- /**
- * yield - yield the current processor to other threads.
- *
- * this is a shortcut for kernel-space yielding - it marks the
- * thread runnable and calls sys_sched_yield().
- */
- void __sched yield(void)
- {
- set_current_state(TASK_RUNNING);
- sys_sched_yield();
- }
- EXPORT_SYMBOL(yield);
- /*
- * This task is about to go to sleep on IO. Increment rq->nr_iowait so
- * that process accounting knows that this is a task in IO wait state.
- *
- * But don't do that if it is a deliberate, throttling IO wait (this task
- * has set its backing_dev_info: the queue against which it should throttle)
- */
- void __sched io_schedule(void)
- {
- struct rq *rq = &__raw_get_cpu_var(runqueues);
- delayacct_blkio_start();
- atomic_inc(&rq->nr_iowait);
- schedule();
- atomic_dec(&rq->nr_iowait);
- delayacct_blkio_end();
- }
- EXPORT_SYMBOL(io_schedule);
- long __sched io_schedule_timeout(long timeout)
- {
- struct rq *rq = &__raw_get_cpu_var(runqueues);
- long ret;
- delayacct_blkio_start();
- atomic_inc(&rq->nr_iowait);
- ret = schedule_timeout(timeout);
- atomic_dec(&rq->nr_iowait);
- delayacct_blkio_end();
- return ret;
- }
- /**
- * sys_sched_get_priority_max - return maximum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the maximum rt_priority that can be used
- * by a given scheduling class.
- */
- asmlinkage long sys_sched_get_priority_max(int policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = MAX_USER_RT_PRIO-1;
- break;
- case SCHED_NORMAL:
- case SCHED_BATCH:
- ret = 0;
- break;
- }
- return ret;
- }
- /**
- * sys_sched_get_priority_min - return minimum RT priority.
- * @policy: scheduling class.
- *
- * this syscall returns the minimum rt_priority that can be used
- * by a given scheduling class.
- */
- asmlinkage long sys_sched_get_priority_min(int policy)
- {
- int ret = -EINVAL;
- switch (policy) {
- case SCHED_FIFO:
- case SCHED_RR:
- ret = 1;
- break;
- case SCHED_NORMAL:
- case SCHED_BATCH:
- ret = 0;
- }
- return ret;
- }
- /**
- * sys_sched_rr_get_interval - return the default timeslice of a process.
- * @pid: pid of the process.
- * @interval: userspace pointer to the timeslice value.
- *
- * this syscall writes the default timeslice value of a given process
- * into the user-space timespec buffer. A value of '0' means infinity.
- */
- asmlinkage
- long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
- {
- struct task_struct *p;
- int retval = -EINVAL;
- struct timespec t;
- if (pid < 0)
- goto out_nounlock;
- retval = -ESRCH;
- read_lock(&tasklist_lock);
- p = find_process_by_pid(pid);
- if (!p)
- goto out_unlock;
- retval = security_task_getscheduler(p);
- if (retval)
- goto out_unlock;
- jiffies_to_timespec(p->policy == SCHED_FIFO ?
- 0 : task_timeslice(p), &t);
- read_unlock(&tasklist_lock);
- retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
- out_nounlock:
- return retval;
- out_unlock:
- read_unlock(&tasklist_lock);
- return retval;
- }
- static inline struct task_struct *eldest_child(struct task_struct *p)
- {
- if (list_empty(&p->children))
- return NULL;
- return list_entry(p->children.next,struct task_struct,sibling);
- }
- static inline struct task_struct *older_sibling(struct task_struct *p)
- {
- if (p->sibling.prev==&p->parent->children)
- return NULL;
- return list_entry(p->sibling.prev,struct task_struct,sibling);
- }
- static inline struct task_struct *younger_sibling(struct task_struct *p)
- {
- if (p->sibling.next==&p->parent->children)
- return NULL;
- return list_entry(p->sibling.next,struct task_struct,sibling);
- }
- static const char stat_nam[] = "RSDTtZX";
- static void show_task(struct task_struct *p)
- {
- struct task_struct *relative;
- unsigned long free = 0;
- unsigned state;
- state = p->state ? __ffs(p->state) + 1 : 0;
- printk("%-13.13s %c", p->comm,
- state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
- #if (BITS_PER_LONG == 32)
- if (state == TASK_RUNNING)
- printk(" running ");
- else
- printk(" %08lX ", thread_saved_pc(p));
- #else
- if (state == TASK_RUNNING)
- printk(" running task ");
- else
- printk(" %016lx ", thread_saved_pc(p));
- #endif
- #ifdef CONFIG_DEBUG_STACK_USAGE
- {
- unsigned long *n = end_of_stack(p);
- while (!*n)
- n++;
- free = (unsigned long)n - (unsigned long)end_of_stack(p);
- }
- #endif
- printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
- if ((relative = eldest_child(p)))
- printk("%5d ", relative->pid);
- else
- printk(" ");
- if ((relative = younger_sibling(p)))
- printk("%7d", relative->pid);
- else
- printk(" ");
- if ((relative = older_sibling(p)))
- printk(" %5d", relative->pid);
- else
- printk(" ");
- if (!p->mm)
- printk(" (L-TLB)\n");
- else
- printk(" (NOTLB)\n");
- if (state != TASK_RUNNING)
- show_stack(p, NULL);
- }
- void show_state_filter(unsigned long state_filter)
- {
- struct task_struct *g, *p;
- #if (BITS_PER_LONG == 32)
- printk("\n"
- " free sibling\n");
- printk(" task PC stack pid father child younger older\n");
- #else
- printk("\n"
- " free sibling\n");
- printk(" task PC stack pid father child younger older\n");
- #endif
- read_lock(&tasklist_lock);
- do_each_thread(g, p) {
- /*
- * reset the NMI-timeout, listing all files on a slow
- * console might take alot of time:
- */
- touch_nmi_watchdog();
- if (p->state & state_filter)
- show_task(p);
- } while_each_thread(g, p);
- read_unlock(&tasklist_lock);
- /*
- * Only show locks if all tasks are dumped:
- */
- if (state_filter == -1)
- debug_show_all_locks();
- }
- /**
- * init_idle - set up an idle thread for a given CPU
- * @idle: task in question
- * @cpu: cpu the idle task belongs to
- *
- * NOTE: this function does not set the idle thread's NEED_RESCHED
- * flag, to make booting more robust.
- */
- void __cpuinit init_idle(struct task_struct *idle, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- unsigned long flags;
- idle->timestamp = sched_clock();
- idle->sleep_avg = 0;
- idle->array = NULL;
- idle->prio = idle->normal_prio = MAX_PRIO;
- idle->state = TASK_RUNNING;
- idle->cpus_allowed = cpumask_of_cpu(cpu);
- set_task_cpu(idle, cpu);
- spin_lock_irqsave(&rq->lock, flags);
- rq->curr = rq->idle = idle;
- #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
- idle->oncpu = 1;
- #endif
- spin_unlock_irqrestore(&rq->lock, flags);
- /* Set the preempt count _outside_ the spinlocks! */
- #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
- task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
- #else
- task_thread_info(idle)->preempt_count = 0;
- #endif
- }
- /*
- * In a system that switches off the HZ timer nohz_cpu_mask
- * indicates which cpus entered this state. This is used
- * in the rcu update to wait only for active cpus. For system
- * which do not switch off the HZ timer nohz_cpu_mask should
- * always be CPU_MASK_NONE.
- */
- cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
- #ifdef CONFIG_SMP
- /*
- * This is how migration works:
- *
- * 1) we queue a struct migration_req structure in the source CPU's
- * runqueue and wake up that CPU's migration thread.
- * 2) we down() the locked semaphore => thread blocks.
- * 3) migration thread wakes up (implicitly it forces the migrated
- * thread off the CPU)
- * 4) it gets the migration request and checks whether the migrated
- * task is still in the wrong runqueue.
- * 5) if it's in the wrong runqueue then the migration thread removes
- * it and puts it into the right queue.
- * 6) migration thread up()s the semaphore.
- * 7) we wake up and the migration is done.
- */
- /*
- * Change a given task's CPU affinity. Migrate the thread to a
- * proper CPU and schedule it away if the CPU it's executing on
- * is removed from the allowed bitmask.
- *
- * NOTE: the caller must have a valid reference to the task, the
- * task must not exit() & deallocate itself prematurely. The
- * call is not atomic; no spinlocks may be held.
- */
- int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
- {
- struct migration_req req;
- unsigned long flags;
- struct rq *rq;
- int ret = 0;
- rq = task_rq_lock(p, &flags);
- if (!cpus_intersects(new_mask, cpu_online_map)) {
- ret = -EINVAL;
- goto out;
- }
- p->cpus_allowed = new_mask;
- /* Can the task run on the task's current CPU? If so, we're done */
- if (cpu_isset(task_cpu(p), new_mask))
- goto out;
- if (migrate_task(p, any_online_cpu(new_mask), &req)) {
- /* Need help from migration thread: drop lock and wait. */
- task_rq_unlock(rq, &flags);
- wake_up_process(rq->migration_thread);
- wait_for_completion(&req.done);
- tlb_migrate_finish(p->mm);
- return 0;
- }
- out:
- task_rq_unlock(rq, &flags);
- return ret;
- }
- EXPORT_SYMBOL_GPL(set_cpus_allowed);
- /*
- * Move (not current) task off this cpu, onto dest cpu. We're doing
- * this because either it can't run here any more (set_cpus_allowed()
- * away from this CPU, or CPU going down), or because we're
- * attempting to rebalance this task on exec (sched_exec).
- *
- * So we race with normal scheduler movements, but that's OK, as long
- * as the task is no longer on this CPU.
- *
- * Returns non-zero if task was successfully migrated.
- */
- static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
- {
- struct rq *rq_dest, *rq_src;
- int ret = 0;
- if (unlikely(cpu_is_offline(dest_cpu)))
- return ret;
- rq_src = cpu_rq(src_cpu);
- rq_dest = cpu_rq(dest_cpu);
- double_rq_lock(rq_src, rq_dest);
- /* Already moved. */
- if (task_cpu(p) != src_cpu)
- goto out;
- /* Affinity changed (again). */
- if (!cpu_isset(dest_cpu, p->cpus_allowed))
- goto out;
- set_task_cpu(p, dest_cpu);
- if (p->array) {
- /*
- * Sync timestamp with rq_dest's before activating.
- * The same thing could be achieved by doing this step
- * afterwards, and pretending it was a local activate.
- * This way is cleaner and logically correct.
- */
- p->timestamp = p->timestamp - rq_src->most_recent_timestamp
- + rq_dest->most_recent_timestamp;
- deactivate_task(p, rq_src);
- __activate_task(p, rq_dest);
- if (TASK_PREEMPTS_CURR(p, rq_dest))
- resched_task(rq_dest->curr);
- }
- ret = 1;
- out:
- double_rq_unlock(rq_src, rq_dest);
- return ret;
- }
- /*
- * migration_thread - this is a highprio system thread that performs
- * thread migration by bumping thread off CPU then 'pushing' onto
- * another runqueue.
- */
- static int migration_thread(void *data)
- {
- int cpu = (long)data;
- struct rq *rq;
- rq = cpu_rq(cpu);
- BUG_ON(rq->migration_thread != current);
- set_current_state(TASK_INTERRUPTIBLE);
- while (!kthread_should_stop()) {
- struct migration_req *req;
- struct list_head *head;
- try_to_freeze();
- spin_lock_irq(&rq->lock);
- if (cpu_is_offline(cpu)) {
- spin_unlock_irq(&rq->lock);
- goto wait_to_die;
- }
- if (rq->active_balance) {
- active_load_balance(rq, cpu);
- rq->active_balance = 0;
- }
- head = &rq->migration_queue;
- if (list_empty(head)) {
- spin_unlock_irq(&rq->lock);
- schedule();
- set_current_state(TASK_INTERRUPTIBLE);
- continue;
- }
- req = list_entry(head->next, struct migration_req, list);
- list_del_init(head->next);
- spin_unlock(&rq->lock);
- __migrate_task(req->task, cpu, req->dest_cpu);
- local_irq_enable();
- complete(&req->done);
- }
- __set_current_state(TASK_RUNNING);
- return 0;
- wait_to_die:
- /* Wait for kthread_stop */
- set_current_state(TASK_INTERRUPTIBLE);
- while (!kthread_should_stop()) {
- schedule();
- set_current_state(TASK_INTERRUPTIBLE);
- }
- __set_current_state(TASK_RUNNING);
- return 0;
- }
- #ifdef CONFIG_HOTPLUG_CPU
- /*
- * Figure out where task on dead CPU should go, use force if neccessary.
- * NOTE: interrupts should be disabled by the caller
- */
- static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
- {
- unsigned long flags;
- cpumask_t mask;
- struct rq *rq;
- int dest_cpu;
- restart:
- /* On same node? */
- mask = node_to_cpumask(cpu_to_node(dead_cpu));
- cpus_and(mask, mask, p->cpus_allowed);
- dest_cpu = any_online_cpu(mask);
- /* On any allowed CPU? */
- if (dest_cpu == NR_CPUS)
- dest_cpu = any_online_cpu(p->cpus_allowed);
- /* No more Mr. Nice Guy. */
- if (dest_cpu == NR_CPUS) {
- rq = task_rq_lock(p, &flags);
- cpus_setall(p->cpus_allowed);
- dest_cpu = any_online_cpu(p->cpus_allowed);
- task_rq_unlock(rq, &flags);
- /*
- * Don't tell them about moving exiting tasks or
- * kernel threads (both mm NULL), since they never
- * leave kernel.
- */
- if (p->mm && printk_ratelimit())
- printk(KERN_INFO "process %d (%s) no "
- "longer affine to cpu%d\n",
- p->pid, p->comm, dead_cpu);
- }
- if (!__migrate_task(p, dead_cpu, dest_cpu))
- goto restart;
- }
- /*
- * While a dead CPU has no uninterruptible tasks queued at this point,
- * it might still have a nonzero ->nr_uninterruptible counter, because
- * for performance reasons the counter is not stricly tracking tasks to
- * their home CPUs. So we just add the counter to another CPU's counter,
- * to keep the global sum constant after CPU-down:
- */
- static void migrate_nr_uninterruptible(struct rq *rq_src)
- {
- struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
- unsigned long flags;
- local_irq_save(flags);
- double_rq_lock(rq_src, rq_dest);
- rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
- rq_src->nr_uninterruptible = 0;
- double_rq_unlock(rq_src, rq_dest);
- local_irq_restore(flags);
- }
- /* Run through task list and migrate tasks from the dead cpu. */
- static void migrate_live_tasks(int src_cpu)
- {
- struct task_struct *p, *t;
- write_lock_irq(&tasklist_lock);
- do_each_thread(t, p) {
- if (p == current)
- continue;
- if (task_cpu(p) == src_cpu)
- move_task_off_dead_cpu(src_cpu, p);
- } while_each_thread(t, p);
- write_unlock_irq(&tasklist_lock);
- }
- /* Schedules idle task to be the next runnable task on current CPU.
- * It does so by boosting its priority to highest possible and adding it to
- * the _front_ of the runqueue. Used by CPU offline code.
- */
- void sched_idle_next(void)
- {
- int this_cpu = smp_processor_id();
- struct rq *rq = cpu_rq(this_cpu);
- struct task_struct *p = rq->idle;
- unsigned long flags;
- /* cpu has to be offline */
- BUG_ON(cpu_online(this_cpu));
- /*
- * Strictly not necessary since rest of the CPUs are stopped by now
- * and interrupts disabled on the current cpu.
- */
- spin_lock_irqsave(&rq->lock, flags);
- __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
- /* Add idle task to the _front_ of its priority queue: */
- __activate_idle_task(p, rq);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- /*
- * Ensures that the idle task is using init_mm right before its cpu goes
- * offline.
- */
- void idle_task_exit(void)
- {
- struct mm_struct *mm = current->active_mm;
- BUG_ON(cpu_online(smp_processor_id()));
- if (mm != &init_mm)
- switch_mm(mm, &init_mm, current);
- mmdrop(mm);
- }
- /* called under rq->lock with disabled interrupts */
- static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
- {
- struct rq *rq = cpu_rq(dead_cpu);
- /* Must be exiting, otherwise would be on tasklist. */
- BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
- /* Cannot have done final schedule yet: would have vanished. */
- BUG_ON(p->state == TASK_DEAD);
- get_task_struct(p);
- /*
- * Drop lock around migration; if someone else moves it,
- * that's OK. No task can be added to this CPU, so iteration is
- * fine.
- * NOTE: interrupts should be left disabled --dev@
- */
- spin_unlock(&rq->lock);
- move_task_off_dead_cpu(dead_cpu, p);
- spin_lock(&rq->lock);
- put_task_struct(p);
- }
- /* release_task() removes task from tasklist, so we won't find dead tasks. */
- static void migrate_dead_tasks(unsigned int dead_cpu)
- {
- struct rq *rq = cpu_rq(dead_cpu);
- unsigned int arr, i;
- for (arr = 0; arr < 2; arr++) {
- for (i = 0; i < MAX_PRIO; i++) {
- struct list_head *list = &rq->arrays[arr].queue[i];
- while (!list_empty(list))
- migrate_dead(dead_cpu, list_entry(list->next,
- struct task_struct, run_list));
- }
- }
- }
- #endif /* CONFIG_HOTPLUG_CPU */
- /*
- * migration_call - callback that gets triggered when a CPU is added.
- * Here we can start up the necessary migration thread for the new CPU.
- */
- static int __cpuinit
- migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
- {
- struct task_struct *p;
- int cpu = (long)hcpu;
- unsigned long flags;
- struct rq *rq;
- switch (action) {
- case CPU_UP_PREPARE:
- p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
- if (IS_ERR(p))
- return NOTIFY_BAD;
- p->flags |= PF_NOFREEZE;
- kthread_bind(p, cpu);
- /* Must be high prio: stop_machine expects to yield to it. */
- rq = task_rq_lock(p, &flags);
- __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
- task_rq_unlock(rq, &flags);
- cpu_rq(cpu)->migration_thread = p;
- break;
- case CPU_ONLINE:
- /* Strictly unneccessary, as first user will wake it. */
- wake_up_process(cpu_rq(cpu)->migration_thread);
- break;
- #ifdef CONFIG_HOTPLUG_CPU
- case CPU_UP_CANCELED:
- if (!cpu_rq(cpu)->migration_thread)
- break;
- /* Unbind it from offline cpu so it can run. Fall thru. */
- kthread_bind(cpu_rq(cpu)->migration_thread,
- any_online_cpu(cpu_online_map));
- kthread_stop(cpu_rq(cpu)->migration_thread);
- cpu_rq(cpu)->migration_thread = NULL;
- break;
- case CPU_DEAD:
- migrate_live_tasks(cpu);
- rq = cpu_rq(cpu);
- kthread_stop(rq->migration_thread);
- rq->migration_thread = NULL;
- /* Idle task back to normal (off runqueue, low prio) */
- rq = task_rq_lock(rq->idle, &flags);
- deactivate_task(rq->idle, rq);
- rq->idle->static_prio = MAX_PRIO;
- __setscheduler(rq->idle, SCHED_NORMAL, 0);
- migrate_dead_tasks(cpu);
- task_rq_unlock(rq, &flags);
- migrate_nr_uninterruptible(rq);
- BUG_ON(rq->nr_running != 0);
- /* No need to migrate the tasks: it was best-effort if
- * they didn't do lock_cpu_hotplug(). Just wake up
- * the requestors. */
- spin_lock_irq(&rq->lock);
- while (!list_empty(&rq->migration_queue)) {
- struct migration_req *req;
- req = list_entry(rq->migration_queue.next,
- struct migration_req, list);
- list_del_init(&req->list);
- complete(&req->done);
- }
- spin_unlock_irq(&rq->lock);
- break;
- #endif
- }
- return NOTIFY_OK;
- }
- /* Register at highest priority so that task migration (migrate_all_tasks)
- * happens before everything else.
- */
- static struct notifier_block __cpuinitdata migration_notifier = {
- .notifier_call = migration_call,
- .priority = 10
- };
- int __init migration_init(void)
- {
- void *cpu = (void *)(long)smp_processor_id();
- int err;
- /* Start one for the boot CPU: */
- err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
- BUG_ON(err == NOTIFY_BAD);
- migration_call(&migration_notifier, CPU_ONLINE, cpu);
- register_cpu_notifier(&migration_notifier);
- return 0;
- }
- #endif
- #ifdef CONFIG_SMP
- #undef SCHED_DOMAIN_DEBUG
- #ifdef SCHED_DOMAIN_DEBUG
- static void sched_domain_debug(struct sched_domain *sd, int cpu)
- {
- int level = 0;
- if (!sd) {
- printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
- return;
- }
- printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
- do {
- int i;
- char str[NR_CPUS];
- struct sched_group *group = sd->groups;
- cpumask_t groupmask;
- cpumask_scnprintf(str, NR_CPUS, sd->span);
- cpus_clear(groupmask);
- printk(KERN_DEBUG);
- for (i = 0; i < level + 1; i++)
- printk(" ");
- printk("domain %d: ", level);
- if (!(sd->flags & SD_LOAD_BALANCE)) {
- printk("does not load-balance\n");
- if (sd->parent)
- printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
- " has parent");
- break;
- }
- printk("span %s\n", str);
- if (!cpu_isset(cpu, sd->span))
- printk(KERN_ERR "ERROR: domain->span does not contain "
- "CPU%d\n", cpu);
- if (!cpu_isset(cpu, group->cpumask))
- printk(KERN_ERR "ERROR: domain->groups does not contain"
- " CPU%d\n", cpu);
- printk(KERN_DEBUG);
- for (i = 0; i < level + 2; i++)
- printk(" ");
- printk("groups:");
- do {
- if (!group) {
- printk("\n");
- printk(KERN_ERR "ERROR: group is NULL\n");
- break;
- }
- if (!group->cpu_power) {
- printk("\n");
- printk(KERN_ERR "ERROR: domain->cpu_power not "
- "set\n");
- }
- if (!cpus_weight(group->cpumask)) {
- printk("\n");
- printk(KERN_ERR "ERROR: empty group\n");
- }
- if (cpus_intersects(groupmask, group->cpumask)) {
- printk("\n");
- printk(KERN_ERR "ERROR: repeated CPUs\n");
- }
- cpus_or(groupmask, groupmask, group->cpumask);
- cpumask_scnprintf(str, NR_CPUS, group->cpumask);
- printk(" %s", str);
- group = group->next;
- } while (group != sd->groups);
- printk("\n");
- if (!cpus_equal(sd->span, groupmask))
- printk(KERN_ERR "ERROR: groups don't span "
- "domain->span\n");
- level++;
- sd = sd->parent;
- if (!sd)
- continue;
- if (!cpus_subset(groupmask, sd->span))
- printk(KERN_ERR "ERROR: parent span is not a superset "
- "of domain->span\n");
- } while (sd);
- }
- #else
- # define sched_domain_debug(sd, cpu) do { } while (0)
- #endif
- static int sd_degenerate(struct sched_domain *sd)
- {
- if (cpus_weight(sd->span) == 1)
- return 1;
- /* Following flags need at least 2 groups */
- if (sd->flags & (SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_SHARE_CPUPOWER |
- SD_SHARE_PKG_RESOURCES)) {
- if (sd->groups != sd->groups->next)
- return 0;
- }
- /* Following flags don't use groups */
- if (sd->flags & (SD_WAKE_IDLE |
- SD_WAKE_AFFINE |
- SD_WAKE_BALANCE))
- return 0;
- return 1;
- }
- static int
- sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
- {
- unsigned long cflags = sd->flags, pflags = parent->flags;
- if (sd_degenerate(parent))
- return 1;
- if (!cpus_equal(sd->span, parent->span))
- return 0;
- /* Does parent contain flags not in child? */
- /* WAKE_BALANCE is a subset of WAKE_AFFINE */
- if (cflags & SD_WAKE_AFFINE)
- pflags &= ~SD_WAKE_BALANCE;
- /* Flags needing groups don't count if only 1 group in parent */
- if (parent->groups == parent->groups->next) {
- pflags &= ~(SD_LOAD_BALANCE |
- SD_BALANCE_NEWIDLE |
- SD_BALANCE_FORK |
- SD_BALANCE_EXEC |
- SD_SHARE_CPUPOWER |
- SD_SHARE_PKG_RESOURCES);
- }
- if (~cflags & pflags)
- return 0;
- return 1;
- }
- /*
- * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
- * hold the hotplug lock.
- */
- static void cpu_attach_domain(struct sched_domain *sd, int cpu)
- {
- struct rq *rq = cpu_rq(cpu);
- struct sched_domain *tmp;
- /* Remove the sched domains which do not contribute to scheduling. */
- for (tmp = sd; tmp; tmp = tmp->parent) {
- struct sched_domain *parent = tmp->parent;
- if (!parent)
- break;
- if (sd_parent_degenerate(tmp, parent)) {
- tmp->parent = parent->parent;
- if (parent->parent)
- parent->parent->child = tmp;
- }
- }
- if (sd && sd_degenerate(sd)) {
- sd = sd->parent;
- if (sd)
- sd->child = NULL;
- }
- sched_domain_debug(sd, cpu);
- rcu_assign_pointer(rq->sd, sd);
- }
- /* cpus with isolated domains */
- static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
- /* Setup the mask of cpus configured for isolated domains */
- static int __init isolated_cpu_setup(char *str)
- {
- int ints[NR_CPUS], i;
- str = get_options(str, ARRAY_SIZE(ints), ints);
- cpus_clear(cpu_isolated_map);
- for (i = 1; i <= ints[0]; i++)
- if (ints[i] < NR_CPUS)
- cpu_set(ints[i], cpu_isolated_map);
- return 1;
- }
- __setup ("isolcpus=", isolated_cpu_setup);
- /*
- * init_sched_build_groups takes the cpumask we wish to span, and a pointer
- * to a function which identifies what group(along with sched group) a CPU
- * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
- * (due to the fact that we keep track of groups covered with a cpumask_t).
- *
- * init_sched_build_groups will build a circular linked list of the groups
- * covered by the given span, and will set each group's ->cpumask correctly,
- * and ->cpu_power to 0.
- */
- static void
- init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
- int (*group_fn)(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg))
- {
- struct sched_group *first = NULL, *last = NULL;
- cpumask_t covered = CPU_MASK_NONE;
- int i;
- for_each_cpu_mask(i, span) {
- struct sched_group *sg;
- int group = group_fn(i, cpu_map, &sg);
- int j;
- if (cpu_isset(i, covered))
- continue;
- sg->cpumask = CPU_MASK_NONE;
- sg->cpu_power = 0;
- for_each_cpu_mask(j, span) {
- if (group_fn(j, cpu_map, NULL) != group)
- continue;
- cpu_set(j, covered);
- cpu_set(j, sg->cpumask);
- }
- if (!first)
- first = sg;
- if (last)
- last->next = sg;
- last = sg;
- }
- last->next = first;
- }
- #define SD_NODES_PER_DOMAIN 16
- /*
- * Self-tuning task migration cost measurement between source and target CPUs.
- *
- * This is done by measuring the cost of manipulating buffers of varying
- * sizes. For a given buffer-size here are the steps that are taken:
- *
- * 1) the source CPU reads+dirties a shared buffer
- * 2) the target CPU reads+dirties the same shared buffer
- *
- * We measure how long they take, in the following 4 scenarios:
- *
- * - source: CPU1, target: CPU2 | cost1
- * - source: CPU2, target: CPU1 | cost2
- * - source: CPU1, target: CPU1 | cost3
- * - source: CPU2, target: CPU2 | cost4
- *
- * We then calculate the cost3+cost4-cost1-cost2 difference - this is
- * the cost of migration.
- *
- * We then start off from a small buffer-size and iterate up to larger
- * buffer sizes, in 5% steps - measuring each buffer-size separately, and
- * doing a maximum search for the cost. (The maximum cost for a migration
- * normally occurs when the working set size is around the effective cache
- * size.)
- */
- #define SEARCH_SCOPE 2
- #define MIN_CACHE_SIZE (64*1024U)
- #define DEFAULT_CACHE_SIZE (5*1024*1024U)
- #define ITERATIONS 1
- #define SIZE_THRESH 130
- #define COST_THRESH 130
- /*
- * The migration cost is a function of 'domain distance'. Domain
- * distance is the number of steps a CPU has to iterate down its
- * domain tree to share a domain with the other CPU. The farther
- * two CPUs are from each other, the larger the distance gets.
- *
- * Note that we use the distance only to cache measurement results,
- * the distance value is not used numerically otherwise. When two
- * CPUs have the same distance it is assumed that the migration
- * cost is the same. (this is a simplification but quite practical)
- */
- #define MAX_DOMAIN_DISTANCE 32
- static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
- { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
- /*
- * Architectures may override the migration cost and thus avoid
- * boot-time calibration. Unit is nanoseconds. Mostly useful for
- * virtualized hardware:
- */
- #ifdef CONFIG_DEFAULT_MIGRATION_COST
- CONFIG_DEFAULT_MIGRATION_COST
- #else
- -1LL
- #endif
- };
- /*
- * Allow override of migration cost - in units of microseconds.
- * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
- * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
- */
- static int __init migration_cost_setup(char *str)
- {
- int ints[MAX_DOMAIN_DISTANCE+1], i;
- str = get_options(str, ARRAY_SIZE(ints), ints);
- printk("#ints: %d\n", ints[0]);
- for (i = 1; i <= ints[0]; i++) {
- migration_cost[i-1] = (unsigned long long)ints[i]*1000;
- printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
- }
- return 1;
- }
- __setup ("migration_cost=", migration_cost_setup);
- /*
- * Global multiplier (divisor) for migration-cutoff values,
- * in percentiles. E.g. use a value of 150 to get 1.5 times
- * longer cache-hot cutoff times.
- *
- * (We scale it from 100 to 128 to long long handling easier.)
- */
- #define MIGRATION_FACTOR_SCALE 128
- static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
- static int __init setup_migration_factor(char *str)
- {
- get_option(&str, &migration_factor);
- migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
- return 1;
- }
- __setup("migration_factor=", setup_migration_factor);
- /*
- * Estimated distance of two CPUs, measured via the number of domains
- * we have to pass for the two CPUs to be in the same span:
- */
- static unsigned long domain_distance(int cpu1, int cpu2)
- {
- unsigned long distance = 0;
- struct sched_domain *sd;
- for_each_domain(cpu1, sd) {
- WARN_ON(!cpu_isset(cpu1, sd->span));
- if (cpu_isset(cpu2, sd->span))
- return distance;
- distance++;
- }
- if (distance >= MAX_DOMAIN_DISTANCE) {
- WARN_ON(1);
- distance = MAX_DOMAIN_DISTANCE-1;
- }
- return distance;
- }
- static unsigned int migration_debug;
- static int __init setup_migration_debug(char *str)
- {
- get_option(&str, &migration_debug);
- return 1;
- }
- __setup("migration_debug=", setup_migration_debug);
- /*
- * Maximum cache-size that the scheduler should try to measure.
- * Architectures with larger caches should tune this up during
- * bootup. Gets used in the domain-setup code (i.e. during SMP
- * bootup).
- */
- unsigned int max_cache_size;
- static int __init setup_max_cache_size(char *str)
- {
- get_option(&str, &max_cache_size);
- return 1;
- }
- __setup("max_cache_size=", setup_max_cache_size);
- /*
- * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
- * is the operation that is timed, so we try to generate unpredictable
- * cachemisses that still end up filling the L2 cache:
- */
- static void touch_cache(void *__cache, unsigned long __size)
- {
- unsigned long size = __size / sizeof(long);
- unsigned long chunk1 = size / 3;
- unsigned long chunk2 = 2 * size / 3;
- unsigned long *cache = __cache;
- int i;
- for (i = 0; i < size/6; i += 8) {
- switch (i % 6) {
- case 0: cache[i]++;
- case 1: cache[size-1-i]++;
- case 2: cache[chunk1-i]++;
- case 3: cache[chunk1+i]++;
- case 4: cache[chunk2-i]++;
- case 5: cache[chunk2+i]++;
- }
- }
- }
- /*
- * Measure the cache-cost of one task migration. Returns in units of nsec.
- */
- static unsigned long long
- measure_one(void *cache, unsigned long size, int source, int target)
- {
- cpumask_t mask, saved_mask;
- unsigned long long t0, t1, t2, t3, cost;
- saved_mask = current->cpus_allowed;
- /*
- * Flush source caches to RAM and invalidate them:
- */
- sched_cacheflush();
- /*
- * Migrate to the source CPU:
- */
- mask = cpumask_of_cpu(source);
- set_cpus_allowed(current, mask);
- WARN_ON(smp_processor_id() != source);
- /*
- * Dirty the working set:
- */
- t0 = sched_clock();
- touch_cache(cache, size);
- t1 = sched_clock();
- /*
- * Migrate to the target CPU, dirty the L2 cache and access
- * the shared buffer. (which represents the working set
- * of a migrated task.)
- */
- mask = cpumask_of_cpu(target);
- set_cpus_allowed(current, mask);
- WARN_ON(smp_processor_id() != target);
- t2 = sched_clock();
- touch_cache(cache, size);
- t3 = sched_clock();
- cost = t1-t0 + t3-t2;
- if (migration_debug >= 2)
- printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
- source, target, t1-t0, t1-t0, t3-t2, cost);
- /*
- * Flush target caches to RAM and invalidate them:
- */
- sched_cacheflush();
- set_cpus_allowed(current, saved_mask);
- return cost;
- }
- /*
- * Measure a series of task migrations and return the average
- * result. Since this code runs early during bootup the system
- * is 'undisturbed' and the average latency makes sense.
- *
- * The algorithm in essence auto-detects the relevant cache-size,
- * so it will properly detect different cachesizes for different
- * cache-hierarchies, depending on how the CPUs are connected.
- *
- * Architectures can prime the upper limit of the search range via
- * max_cache_size, otherwise the search range defaults to 20MB...64K.
- */
- static unsigned long long
- measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
- {
- unsigned long long cost1, cost2;
- int i;
- /*
- * Measure the migration cost of 'size' bytes, over an
- * average of 10 runs:
- *
- * (We perturb the cache size by a small (0..4k)
- * value to compensate size/alignment related artifacts.
- * We also subtract the cost of the operation done on
- * the same CPU.)
- */
- cost1 = 0;
- /*
- * dry run, to make sure we start off cache-cold on cpu1,
- * and to get any vmalloc pagefaults in advance:
- */
- measure_one(cache, size, cpu1, cpu2);
- for (i = 0; i < ITERATIONS; i++)
- cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
- measure_one(cache, size, cpu2, cpu1);
- for (i = 0; i < ITERATIONS; i++)
- cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
- /*
- * (We measure the non-migrating [cached] cost on both
- * cpu1 and cpu2, to handle CPUs with different speeds)
- */
- cost2 = 0;
- measure_one(cache, size, cpu1, cpu1);
- for (i = 0; i < ITERATIONS; i++)
- cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
- measure_one(cache, size, cpu2, cpu2);
- for (i = 0; i < ITERATIONS; i++)
- cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
- /*
- * Get the per-iteration migration cost:
- */
- do_div(cost1, 2 * ITERATIONS);
- do_div(cost2, 2 * ITERATIONS);
- return cost1 - cost2;
- }
- static unsigned long long measure_migration_cost(int cpu1, int cpu2)
- {
- unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
- unsigned int max_size, size, size_found = 0;
- long long cost = 0, prev_cost;
- void *cache;
- /*
- * Search from max_cache_size*5 down to 64K - the real relevant
- * cachesize has to lie somewhere inbetween.
- */
- if (max_cache_size) {
- max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
- size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
- } else {
- /*
- * Since we have no estimation about the relevant
- * search range
- */
- max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
- size = MIN_CACHE_SIZE;
- }
- if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
- printk("cpu %d and %d not both online!\n", cpu1, cpu2);
- return 0;
- }
- /*
- * Allocate the working set:
- */
- cache = vmalloc(max_size);
- if (!cache) {
- printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
- return 1000000; /* return 1 msec on very small boxen */
- }
- while (size <= max_size) {
- prev_cost = cost;
- cost = measure_cost(cpu1, cpu2, cache, size);
- /*
- * Update the max:
- */
- if (cost > 0) {
- if (max_cost < cost) {
- max_cost = cost;
- size_found = size;
- }
- }
- /*
- * Calculate average fluctuation, we use this to prevent
- * noise from triggering an early break out of the loop:
- */
- fluct = abs(cost - prev_cost);
- avg_fluct = (avg_fluct + fluct)/2;
- if (migration_debug)
- printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
- "(%8Ld %8Ld)\n",
- cpu1, cpu2, size,
- (long)cost / 1000000,
- ((long)cost / 100000) % 10,
- (long)max_cost / 1000000,
- ((long)max_cost / 100000) % 10,
- domain_distance(cpu1, cpu2),
- cost, avg_fluct);
- /*
- * If we iterated at least 20% past the previous maximum,
- * and the cost has dropped by more than 20% already,
- * (taking fluctuations into account) then we assume to
- * have found the maximum and break out of the loop early:
- */
- if (size_found && (size*100 > size_found*SIZE_THRESH))
- if (cost+avg_fluct <= 0 ||
- max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
- if (migration_debug)
- printk("-> found max.\n");
- break;
- }
- /*
- * Increase the cachesize in 10% steps:
- */
- size = size * 10 / 9;
- }
- if (migration_debug)
- printk("[%d][%d] working set size found: %d, cost: %Ld\n",
- cpu1, cpu2, size_found, max_cost);
- vfree(cache);
- /*
- * A task is considered 'cache cold' if at least 2 times
- * the worst-case cost of migration has passed.
- *
- * (this limit is only listened to if the load-balancing
- * situation is 'nice' - if there is a large imbalance we
- * ignore it for the sake of CPU utilization and
- * processing fairness.)
- */
- return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
- }
- static void calibrate_migration_costs(const cpumask_t *cpu_map)
- {
- int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
- unsigned long j0, j1, distance, max_distance = 0;
- struct sched_domain *sd;
- j0 = jiffies;
- /*
- * First pass - calculate the cacheflush times:
- */
- for_each_cpu_mask(cpu1, *cpu_map) {
- for_each_cpu_mask(cpu2, *cpu_map) {
- if (cpu1 == cpu2)
- continue;
- distance = domain_distance(cpu1, cpu2);
- max_distance = max(max_distance, distance);
- /*
- * No result cached yet?
- */
- if (migration_cost[distance] == -1LL)
- migration_cost[distance] =
- measure_migration_cost(cpu1, cpu2);
- }
- }
- /*
- * Second pass - update the sched domain hierarchy with
- * the new cache-hot-time estimations:
- */
- for_each_cpu_mask(cpu, *cpu_map) {
- distance = 0;
- for_each_domain(cpu, sd) {
- sd->cache_hot_time = migration_cost[distance];
- distance++;
- }
- }
- /*
- * Print the matrix:
- */
- if (migration_debug)
- printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
- max_cache_size,
- #ifdef CONFIG_X86
- cpu_khz/1000
- #else
- -1
- #endif
- );
- if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
- printk("migration_cost=");
- for (distance = 0; distance <= max_distance; distance++) {
- if (distance)
- printk(",");
- printk("%ld", (long)migration_cost[distance] / 1000);
- }
- printk("\n");
- }
- j1 = jiffies;
- if (migration_debug)
- printk("migration: %ld seconds\n", (j1-j0) / HZ);
- /*
- * Move back to the original CPU. NUMA-Q gets confused
- * if we migrate to another quad during bootup.
- */
- if (raw_smp_processor_id() != orig_cpu) {
- cpumask_t mask = cpumask_of_cpu(orig_cpu),
- saved_mask = current->cpus_allowed;
- set_cpus_allowed(current, mask);
- set_cpus_allowed(current, saved_mask);
- }
- }
- #ifdef CONFIG_NUMA
- /**
- * find_next_best_node - find the next node to include in a sched_domain
- * @node: node whose sched_domain we're building
- * @used_nodes: nodes already in the sched_domain
- *
- * Find the next node to include in a given scheduling domain. Simply
- * finds the closest node not already in the @used_nodes map.
- *
- * Should use nodemask_t.
- */
- static int find_next_best_node(int node, unsigned long *used_nodes)
- {
- int i, n, val, min_val, best_node = 0;
- min_val = INT_MAX;
- for (i = 0; i < MAX_NUMNODES; i++) {
- /* Start at @node */
- n = (node + i) % MAX_NUMNODES;
- if (!nr_cpus_node(n))
- continue;
- /* Skip already used nodes */
- if (test_bit(n, used_nodes))
- continue;
- /* Simple min distance search */
- val = node_distance(node, n);
- if (val < min_val) {
- min_val = val;
- best_node = n;
- }
- }
- set_bit(best_node, used_nodes);
- return best_node;
- }
- /**
- * sched_domain_node_span - get a cpumask for a node's sched_domain
- * @node: node whose cpumask we're constructing
- * @size: number of nodes to include in this span
- *
- * Given a node, construct a good cpumask for its sched_domain to span. It
- * should be one that prevents unnecessary balancing, but also spreads tasks
- * out optimally.
- */
- static cpumask_t sched_domain_node_span(int node)
- {
- DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
- cpumask_t span, nodemask;
- int i;
- cpus_clear(span);
- bitmap_zero(used_nodes, MAX_NUMNODES);
- nodemask = node_to_cpumask(node);
- cpus_or(span, span, nodemask);
- set_bit(node, used_nodes);
- for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
- int next_node = find_next_best_node(node, used_nodes);
- nodemask = node_to_cpumask(next_node);
- cpus_or(span, span, nodemask);
- }
- return span;
- }
- #endif
- int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
- /*
- * SMT sched-domains:
- */
- #ifdef CONFIG_SCHED_SMT
- static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
- static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg)
- {
- if (sg)
- *sg = &per_cpu(sched_group_cpus, cpu);
- return cpu;
- }
- #endif
- /*
- * multi-core sched-domains:
- */
- #ifdef CONFIG_SCHED_MC
- static DEFINE_PER_CPU(struct sched_domain, core_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_core);
- #endif
- #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
- static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg)
- {
- int group;
- cpumask_t mask = cpu_sibling_map[cpu];
- cpus_and(mask, mask, *cpu_map);
- group = first_cpu(mask);
- if (sg)
- *sg = &per_cpu(sched_group_core, group);
- return group;
- }
- #elif defined(CONFIG_SCHED_MC)
- static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg)
- {
- if (sg)
- *sg = &per_cpu(sched_group_core, cpu);
- return cpu;
- }
- #endif
- static DEFINE_PER_CPU(struct sched_domain, phys_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
- static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg)
- {
- int group;
- #ifdef CONFIG_SCHED_MC
- cpumask_t mask = cpu_coregroup_map(cpu);
- cpus_and(mask, mask, *cpu_map);
- group = first_cpu(mask);
- #elif defined(CONFIG_SCHED_SMT)
- cpumask_t mask = cpu_sibling_map[cpu];
- cpus_and(mask, mask, *cpu_map);
- group = first_cpu(mask);
- #else
- group = cpu;
- #endif
- if (sg)
- *sg = &per_cpu(sched_group_phys, group);
- return group;
- }
- #ifdef CONFIG_NUMA
- /*
- * The init_sched_build_groups can't handle what we want to do with node
- * groups, so roll our own. Now each node has its own list of groups which
- * gets dynamically allocated.
- */
- static DEFINE_PER_CPU(struct sched_domain, node_domains);
- static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
- static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
- static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
- static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
- struct sched_group **sg)
- {
- cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
- int group;
- cpus_and(nodemask, nodemask, *cpu_map);
- group = first_cpu(nodemask);
- if (sg)
- *sg = &per_cpu(sched_group_allnodes, group);
- return group;
- }
- static void init_numa_sched_groups_power(struct sched_group *group_head)
- {
- struct sched_group *sg = group_head;
- int j;
- if (!sg)
- return;
- next_sg:
- for_each_cpu_mask(j, sg->cpumask) {
- struct sched_domain *sd;
- sd = &per_cpu(phys_domains, j);
- if (j != first_cpu(sd->groups->cpumask)) {
- /*
- * Only add "power" once for each
- * physical package.
- */
- continue;
- }
- sg->cpu_power += sd->groups->cpu_power;
- }
- sg = sg->next;
- if (sg != group_head)
- goto next_sg;
- }
- #endif
- #ifdef CONFIG_NUMA
- /* Free memory allocated for various sched_group structures */
- static void free_sched_groups(const cpumask_t *cpu_map)
- {
- int cpu, i;
- for_each_cpu_mask(cpu, *cpu_map) {
- struct sched_group **sched_group_nodes
- = sched_group_nodes_bycpu[cpu];
- if (!sched_group_nodes)
- continue;
- for (i = 0; i < MAX_NUMNODES; i++) {
- cpumask_t nodemask = node_to_cpumask(i);
- struct sched_group *oldsg, *sg = sched_group_nodes[i];
- cpus_and(nodemask, nodemask, *cpu_map);
- if (cpus_empty(nodemask))
- continue;
- if (sg == NULL)
- continue;
- sg = sg->next;
- next_sg:
- oldsg = sg;
- sg = sg->next;
- kfree(oldsg);
- if (oldsg != sched_group_nodes[i])
- goto next_sg;
- }
- kfree(sched_group_nodes);
- sched_group_nodes_bycpu[cpu] = NULL;
- }
- }
- #else
- static void free_sched_groups(const cpumask_t *cpu_map)
- {
- }
- #endif
- /*
- * Initialize sched groups cpu_power.
- *
- * cpu_power indicates the capacity of sched group, which is used while
- * distributing the load between different sched groups in a sched domain.
- * Typically cpu_power for all the groups in a sched domain will be same unless
- * there are asymmetries in the topology. If there are asymmetries, group
- * having more cpu_power will pickup more load compared to the group having
- * less cpu_power.
- *
- * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
- * the maximum number of tasks a group can handle in the presence of other idle
- * or lightly loaded groups in the same sched domain.
- */
- static void init_sched_groups_power(int cpu, struct sched_domain *sd)
- {
- struct sched_domain *child;
- struct sched_group *group;
- WARN_ON(!sd || !sd->groups);
- if (cpu != first_cpu(sd->groups->cpumask))
- return;
- child = sd->child;
- /*
- * For perf policy, if the groups in child domain share resources
- * (for example cores sharing some portions of the cache hierarchy
- * or SMT), then set this domain groups cpu_power such that each group
- * can handle only one task, when there are other idle groups in the
- * same sched domain.
- */
- if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
- (child->flags &
- (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
- sd->groups->cpu_power = SCHED_LOAD_SCALE;
- return;
- }
- sd->groups->cpu_power = 0;
- /*
- * add cpu_power of each child group to this groups cpu_power
- */
- group = child->groups;
- do {
- sd->groups->cpu_power += group->cpu_power;
- group = group->next;
- } while (group != child->groups);
- }
- /*
- * Build sched domains for a given set of cpus and attach the sched domains
- * to the individual cpus
- */
- static int build_sched_domains(const cpumask_t *cpu_map)
- {
- int i;
- struct sched_domain *sd;
- #ifdef CONFIG_NUMA
- struct sched_group **sched_group_nodes = NULL;
- int sd_allnodes = 0;
- /*
- * Allocate the per-node list of sched groups
- */
- sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
- GFP_KERNEL);
- if (!sched_group_nodes) {
- printk(KERN_WARNING "Can not alloc sched group node list\n");
- return -ENOMEM;
- }
- sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
- #endif
- /*
- * Set up domains for cpus specified by the cpu_map.
- */
- for_each_cpu_mask(i, *cpu_map) {
- struct sched_domain *sd = NULL, *p;
- cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
- cpus_and(nodemask, nodemask, *cpu_map);
- #ifdef CONFIG_NUMA
- if (cpus_weight(*cpu_map)
- > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
- sd = &per_cpu(allnodes_domains, i);
- *sd = SD_ALLNODES_INIT;
- sd->span = *cpu_map;
- cpu_to_allnodes_group(i, cpu_map, &sd->groups);
- p = sd;
- sd_allnodes = 1;
- } else
- p = NULL;
- sd = &per_cpu(node_domains, i);
- *sd = SD_NODE_INIT;
- sd->span = sched_domain_node_span(cpu_to_node(i));
- sd->parent = p;
- if (p)
- p->child = sd;
- cpus_and(sd->span, sd->span, *cpu_map);
- #endif
- p = sd;
- sd = &per_cpu(phys_domains, i);
- *sd = SD_CPU_INIT;
- sd->span = nodemask;
- sd->parent = p;
- if (p)
- p->child = sd;
- cpu_to_phys_group(i, cpu_map, &sd->groups);
- #ifdef CONFIG_SCHED_MC
- p = sd;
- sd = &per_cpu(core_domains, i);
- *sd = SD_MC_INIT;
- sd->span = cpu_coregroup_map(i);
- cpus_and(sd->span, sd->span, *cpu_map);
- sd->parent = p;
- p->child = sd;
- cpu_to_core_group(i, cpu_map, &sd->groups);
- #endif
- #ifdef CONFIG_SCHED_SMT
- p = sd;
- sd = &per_cpu(cpu_domains, i);
- *sd = SD_SIBLING_INIT;
- sd->span = cpu_sibling_map[i];
- cpus_and(sd->span, sd->span, *cpu_map);
- sd->parent = p;
- p->child = sd;
- cpu_to_cpu_group(i, cpu_map, &sd->groups);
- #endif
- }
- #ifdef CONFIG_SCHED_SMT
- /* Set up CPU (sibling) groups */
- for_each_cpu_mask(i, *cpu_map) {
- cpumask_t this_sibling_map = cpu_sibling_map[i];
- cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
- if (i != first_cpu(this_sibling_map))
- continue;
- init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
- }
- #endif
- #ifdef CONFIG_SCHED_MC
- /* Set up multi-core groups */
- for_each_cpu_mask(i, *cpu_map) {
- cpumask_t this_core_map = cpu_coregroup_map(i);
- cpus_and(this_core_map, this_core_map, *cpu_map);
- if (i != first_cpu(this_core_map))
- continue;
- init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
- }
- #endif
- /* Set up physical groups */
- for (i = 0; i < MAX_NUMNODES; i++) {
- cpumask_t nodemask = node_to_cpumask(i);
- cpus_and(nodemask, nodemask, *cpu_map);
- if (cpus_empty(nodemask))
- continue;
- init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
- }
- #ifdef CONFIG_NUMA
- /* Set up node groups */
- if (sd_allnodes)
- init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
- for (i = 0; i < MAX_NUMNODES; i++) {
- /* Set up node groups */
- struct sched_group *sg, *prev;
- cpumask_t nodemask = node_to_cpumask(i);
- cpumask_t domainspan;
- cpumask_t covered = CPU_MASK_NONE;
- int j;
- cpus_and(nodemask, nodemask, *cpu_map);
- if (cpus_empty(nodemask)) {
- sched_group_nodes[i] = NULL;
- continue;
- }
- domainspan = sched_domain_node_span(i);
- cpus_and(domainspan, domainspan, *cpu_map);
- sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
- if (!sg) {
- printk(KERN_WARNING "Can not alloc domain group for "
- "node %d\n", i);
- goto error;
- }
- sched_group_nodes[i] = sg;
- for_each_cpu_mask(j, nodemask) {
- struct sched_domain *sd;
- sd = &per_cpu(node_domains, j);
- sd->groups = sg;
- }
- sg->cpu_power = 0;
- sg->cpumask = nodemask;
- sg->next = sg;
- cpus_or(covered, covered, nodemask);
- prev = sg;
- for (j = 0; j < MAX_NUMNODES; j++) {
- cpumask_t tmp, notcovered;
- int n = (i + j) % MAX_NUMNODES;
- cpus_complement(notcovered, covered);
- cpus_and(tmp, notcovered, *cpu_map);
- cpus_and(tmp, tmp, domainspan);
- if (cpus_empty(tmp))
- break;
- nodemask = node_to_cpumask(n);
- cpus_and(tmp, tmp, nodemask);
- if (cpus_empty(tmp))
- continue;
- sg = kmalloc_node(sizeof(struct sched_group),
- GFP_KERNEL, i);
- if (!sg) {
- printk(KERN_WARNING
- "Can not alloc domain group for node %d\n", j);
- goto error;
- }
- sg->cpu_power = 0;
- sg->cpumask = tmp;
- sg->next = prev->next;
- cpus_or(covered, covered, tmp);
- prev->next = sg;
- prev = sg;
- }
- }
- #endif
- /* Calculate CPU power for physical packages and nodes */
- #ifdef CONFIG_SCHED_SMT
- for_each_cpu_mask(i, *cpu_map) {
- sd = &per_cpu(cpu_domains, i);
- init_sched_groups_power(i, sd);
- }
- #endif
- #ifdef CONFIG_SCHED_MC
- for_each_cpu_mask(i, *cpu_map) {
- sd = &per_cpu(core_domains, i);
- init_sched_groups_power(i, sd);
- }
- #endif
- for_each_cpu_mask(i, *cpu_map) {
- sd = &per_cpu(phys_domains, i);
- init_sched_groups_power(i, sd);
- }
- #ifdef CONFIG_NUMA
- for (i = 0; i < MAX_NUMNODES; i++)
- init_numa_sched_groups_power(sched_group_nodes[i]);
- if (sd_allnodes) {
- struct sched_group *sg;
- cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
- init_numa_sched_groups_power(sg);
- }
- #endif
- /* Attach the domains */
- for_each_cpu_mask(i, *cpu_map) {
- struct sched_domain *sd;
- #ifdef CONFIG_SCHED_SMT
- sd = &per_cpu(cpu_domains, i);
- #elif defined(CONFIG_SCHED_MC)
- sd = &per_cpu(core_domains, i);
- #else
- sd = &per_cpu(phys_domains, i);
- #endif
- cpu_attach_domain(sd, i);
- }
- /*
- * Tune cache-hot values:
- */
- calibrate_migration_costs(cpu_map);
- return 0;
- #ifdef CONFIG_NUMA
- error:
- free_sched_groups(cpu_map);
- return -ENOMEM;
- #endif
- }
- /*
- * Set up scheduler domains and groups. Callers must hold the hotplug lock.
- */
- static int arch_init_sched_domains(const cpumask_t *cpu_map)
- {
- cpumask_t cpu_default_map;
- int err;
- /*
- * Setup mask for cpus without special case scheduling requirements.
- * For now this just excludes isolated cpus, but could be used to
- * exclude other special cases in the future.
- */
- cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
- err = build_sched_domains(&cpu_default_map);
- return err;
- }
- static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
- {
- free_sched_groups(cpu_map);
- }
- /*
- * Detach sched domains from a group of cpus specified in cpu_map
- * These cpus will now be attached to the NULL domain
- */
- static void detach_destroy_domains(const cpumask_t *cpu_map)
- {
- int i;
- for_each_cpu_mask(i, *cpu_map)
- cpu_attach_domain(NULL, i);
- synchronize_sched();
- arch_destroy_sched_domains(cpu_map);
- }
- /*
- * Partition sched domains as specified by the cpumasks below.
- * This attaches all cpus from the cpumasks to the NULL domain,
- * waits for a RCU quiescent period, recalculates sched
- * domain information and then attaches them back to the
- * correct sched domains
- * Call with hotplug lock held
- */
- int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
- {
- cpumask_t change_map;
- int err = 0;
- cpus_and(*partition1, *partition1, cpu_online_map);
- cpus_and(*partition2, *partition2, cpu_online_map);
- cpus_or(change_map, *partition1, *partition2);
- /* Detach sched domains from all of the affected cpus */
- detach_destroy_domains(&change_map);
- if (!cpus_empty(*partition1))
- err = build_sched_domains(partition1);
- if (!err && !cpus_empty(*partition2))
- err = build_sched_domains(partition2);
- return err;
- }
- #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
- int arch_reinit_sched_domains(void)
- {
- int err;
- lock_cpu_hotplug();
- detach_destroy_domains(&cpu_online_map);
- err = arch_init_sched_domains(&cpu_online_map);
- unlock_cpu_hotplug();
- return err;
- }
- static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
- {
- int ret;
- if (buf[0] != '0' && buf[0] != '1')
- return -EINVAL;
- if (smt)
- sched_smt_power_savings = (buf[0] == '1');
- else
- sched_mc_power_savings = (buf[0] == '1');
- ret = arch_reinit_sched_domains();
- return ret ? ret : count;
- }
- int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
- {
- int err = 0;
- #ifdef CONFIG_SCHED_SMT
- if (smt_capable())
- err = sysfs_create_file(&cls->kset.kobj,
- &attr_sched_smt_power_savings.attr);
- #endif
- #ifdef CONFIG_SCHED_MC
- if (!err && mc_capable())
- err = sysfs_create_file(&cls->kset.kobj,
- &attr_sched_mc_power_savings.attr);
- #endif
- return err;
- }
- #endif
- #ifdef CONFIG_SCHED_MC
- static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
- {
- return sprintf(page, "%u\n", sched_mc_power_savings);
- }
- static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
- const char *buf, size_t count)
- {
- return sched_power_savings_store(buf, count, 0);
- }
- SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
- sched_mc_power_savings_store);
- #endif
- #ifdef CONFIG_SCHED_SMT
- static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
- {
- return sprintf(page, "%u\n", sched_smt_power_savings);
- }
- static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
- const char *buf, size_t count)
- {
- return sched_power_savings_store(buf, count, 1);
- }
- SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
- sched_smt_power_savings_store);
- #endif
- /*
- * Force a reinitialization of the sched domains hierarchy. The domains
- * and groups cannot be updated in place without racing with the balancing
- * code, so we temporarily attach all running cpus to the NULL domain
- * which will prevent rebalancing while the sched domains are recalculated.
- */
- static int update_sched_domains(struct notifier_block *nfb,
- unsigned long action, void *hcpu)
- {
- switch (action) {
- case CPU_UP_PREPARE:
- case CPU_DOWN_PREPARE:
- detach_destroy_domains(&cpu_online_map);
- return NOTIFY_OK;
- case CPU_UP_CANCELED:
- case CPU_DOWN_FAILED:
- case CPU_ONLINE:
- case CPU_DEAD:
- /*
- * Fall through and re-initialise the domains.
- */
- break;
- default:
- return NOTIFY_DONE;
- }
- /* The hotplug lock is already held by cpu_up/cpu_down */
- arch_init_sched_domains(&cpu_online_map);
- return NOTIFY_OK;
- }
- void __init sched_init_smp(void)
- {
- cpumask_t non_isolated_cpus;
- lock_cpu_hotplug();
- arch_init_sched_domains(&cpu_online_map);
- cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
- if (cpus_empty(non_isolated_cpus))
- cpu_set(smp_processor_id(), non_isolated_cpus);
- unlock_cpu_hotplug();
- /* XXX: Theoretical race here - CPU may be hotplugged now */
- hotcpu_notifier(update_sched_domains, 0);
- /* Move init over to a non-isolated CPU */
- if (set_cpus_allowed(current, non_isolated_cpus) < 0)
- BUG();
- }
- #else
- void __init sched_init_smp(void)
- {
- }
- #endif /* CONFIG_SMP */
- int in_sched_functions(unsigned long addr)
- {
- /* Linker adds these: start and end of __sched functions */
- extern char __sched_text_start[], __sched_text_end[];
- return in_lock_functions(addr) ||
- (addr >= (unsigned long)__sched_text_start
- && addr < (unsigned long)__sched_text_end);
- }
- void __init sched_init(void)
- {
- int i, j, k;
- for_each_possible_cpu(i) {
- struct prio_array *array;
- struct rq *rq;
- rq = cpu_rq(i);
- spin_lock_init(&rq->lock);
- lockdep_set_class(&rq->lock, &rq->rq_lock_key);
- rq->nr_running = 0;
- rq->active = rq->arrays;
- rq->expired = rq->arrays + 1;
- rq->best_expired_prio = MAX_PRIO;
- #ifdef CONFIG_SMP
- rq->sd = NULL;
- for (j = 1; j < 3; j++)
- rq->cpu_load[j] = 0;
- rq->active_balance = 0;
- rq->push_cpu = 0;
- rq->cpu = i;
- rq->migration_thread = NULL;
- INIT_LIST_HEAD(&rq->migration_queue);
- #endif
- atomic_set(&rq->nr_iowait, 0);
- for (j = 0; j < 2; j++) {
- array = rq->arrays + j;
- for (k = 0; k < MAX_PRIO; k++) {
- INIT_LIST_HEAD(array->queue + k);
- __clear_bit(k, array->bitmap);
- }
- // delimiter for bitsearch
- __set_bit(MAX_PRIO, array->bitmap);
- }
- }
- set_load_weight(&init_task);
- #ifdef CONFIG_SMP
- open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
- #endif
- #ifdef CONFIG_RT_MUTEXES
- plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
- #endif
- /*
- * The boot idle thread does lazy MMU switching as well:
- */
- atomic_inc(&init_mm.mm_count);
- enter_lazy_tlb(&init_mm, current);
- /*
- * Make us the idle thread. Technically, schedule() should not be
- * called from this thread, however somewhere below it might be,
- * but because we are the idle thread, we just pick up running again
- * when this runqueue becomes "idle".
- */
- init_idle(current, smp_processor_id());
- }
- #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
- void __might_sleep(char *file, int line)
- {
- #ifdef in_atomic
- static unsigned long prev_jiffy; /* ratelimiting */
- if ((in_atomic() || irqs_disabled()) &&
- system_state == SYSTEM_RUNNING && !oops_in_progress) {
- if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
- return;
- prev_jiffy = jiffies;
- printk(KERN_ERR "BUG: sleeping function called from invalid"
- " context at %s:%d\n", file, line);
- printk("in_atomic():%d, irqs_disabled():%d\n",
- in_atomic(), irqs_disabled());
- debug_show_held_locks(current);
- if (irqs_disabled())
- print_irqtrace_events(current);
- dump_stack();
- }
- #endif
- }
- EXPORT_SYMBOL(__might_sleep);
- #endif
- #ifdef CONFIG_MAGIC_SYSRQ
- void normalize_rt_tasks(void)
- {
- struct prio_array *array;
- struct task_struct *p;
- unsigned long flags;
- struct rq *rq;
- read_lock_irq(&tasklist_lock);
- for_each_process(p) {
- if (!rt_task(p))
- continue;
- spin_lock_irqsave(&p->pi_lock, flags);
- rq = __task_rq_lock(p);
- array = p->array;
- if (array)
- deactivate_task(p, task_rq(p));
- __setscheduler(p, SCHED_NORMAL, 0);
- if (array) {
- __activate_task(p, task_rq(p));
- resched_task(rq->curr);
- }
- __task_rq_unlock(rq);
- spin_unlock_irqrestore(&p->pi_lock, flags);
- }
- read_unlock_irq(&tasklist_lock);
- }
- #endif /* CONFIG_MAGIC_SYSRQ */
- #ifdef CONFIG_IA64
- /*
- * These functions are only useful for the IA64 MCA handling.
- *
- * They can only be called when the whole system has been
- * stopped - every CPU needs to be quiescent, and no scheduling
- * activity can take place. Using them for anything else would
- * be a serious bug, and as a result, they aren't even visible
- * under any other configuration.
- */
- /**
- * curr_task - return the current task for a given cpu.
- * @cpu: the processor in question.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
- struct task_struct *curr_task(int cpu)
- {
- return cpu_curr(cpu);
- }
- /**
- * set_curr_task - set the current task for a given cpu.
- * @cpu: the processor in question.
- * @p: the task pointer to set.
- *
- * Description: This function must only be used when non-maskable interrupts
- * are serviced on a separate stack. It allows the architecture to switch the
- * notion of the current task on a cpu in a non-blocking manner. This function
- * must be called with all CPU's synchronized, and interrupts disabled, the
- * and caller must save the original value of the current task (see
- * curr_task() above) and restore that value before reenabling interrupts and
- * re-starting the system.
- *
- * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
- */
- void set_curr_task(int cpu, struct task_struct *p)
- {
- cpu_curr(cpu) = p;
- }
- #endif
|