xfs_inode.c 137 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_imap.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_alloc.h"
  43. #include "xfs_ialloc.h"
  44. #include "xfs_bmap.h"
  45. #include "xfs_rw.h"
  46. #include "xfs_error.h"
  47. #include "xfs_utils.h"
  48. #include "xfs_dir2_trace.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_mac.h"
  51. #include "xfs_acl.h"
  52. kmem_zone_t *xfs_ifork_zone;
  53. kmem_zone_t *xfs_inode_zone;
  54. kmem_zone_t *xfs_chashlist_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. int disk,
  74. xfs_exntfmt_t fmt)
  75. {
  76. xfs_bmbt_rec_t *ep;
  77. xfs_bmbt_irec_t irec;
  78. xfs_bmbt_rec_t rec;
  79. int i;
  80. for (i = 0; i < nrecs; i++) {
  81. ep = xfs_iext_get_ext(ifp, i);
  82. rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
  83. rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
  84. if (disk)
  85. xfs_bmbt_disk_get_all(&rec, &irec);
  86. else
  87. xfs_bmbt_get_all(&rec, &irec);
  88. if (fmt == XFS_EXTFMT_NOSTATE)
  89. ASSERT(irec.br_state == XFS_EXT_NORM);
  90. }
  91. }
  92. #else /* DEBUG */
  93. #define xfs_validate_extents(ifp, nrecs, disk, fmt)
  94. #endif /* DEBUG */
  95. /*
  96. * Check that none of the inode's in the buffer have a next
  97. * unlinked field of 0.
  98. */
  99. #if defined(DEBUG)
  100. void
  101. xfs_inobp_check(
  102. xfs_mount_t *mp,
  103. xfs_buf_t *bp)
  104. {
  105. int i;
  106. int j;
  107. xfs_dinode_t *dip;
  108. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  109. for (i = 0; i < j; i++) {
  110. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  111. i * mp->m_sb.sb_inodesize);
  112. if (!dip->di_next_unlinked) {
  113. xfs_fs_cmn_err(CE_ALERT, mp,
  114. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  115. bp);
  116. ASSERT(dip->di_next_unlinked);
  117. }
  118. }
  119. }
  120. #endif
  121. /*
  122. * This routine is called to map an inode number within a file
  123. * system to the buffer containing the on-disk version of the
  124. * inode. It returns a pointer to the buffer containing the
  125. * on-disk inode in the bpp parameter, and in the dip parameter
  126. * it returns a pointer to the on-disk inode within that buffer.
  127. *
  128. * If a non-zero error is returned, then the contents of bpp and
  129. * dipp are undefined.
  130. *
  131. * Use xfs_imap() to determine the size and location of the
  132. * buffer to read from disk.
  133. */
  134. STATIC int
  135. xfs_inotobp(
  136. xfs_mount_t *mp,
  137. xfs_trans_t *tp,
  138. xfs_ino_t ino,
  139. xfs_dinode_t **dipp,
  140. xfs_buf_t **bpp,
  141. int *offset)
  142. {
  143. int di_ok;
  144. xfs_imap_t imap;
  145. xfs_buf_t *bp;
  146. int error;
  147. xfs_dinode_t *dip;
  148. /*
  149. * Call the space management code to find the location of the
  150. * inode on disk.
  151. */
  152. imap.im_blkno = 0;
  153. error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
  154. if (error != 0) {
  155. cmn_err(CE_WARN,
  156. "xfs_inotobp: xfs_imap() returned an "
  157. "error %d on %s. Returning error.", error, mp->m_fsname);
  158. return error;
  159. }
  160. /*
  161. * If the inode number maps to a block outside the bounds of the
  162. * file system then return NULL rather than calling read_buf
  163. * and panicing when we get an error from the driver.
  164. */
  165. if ((imap.im_blkno + imap.im_len) >
  166. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  167. cmn_err(CE_WARN,
  168. "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
  169. "of the file system %s. Returning EINVAL.",
  170. (unsigned long long)imap.im_blkno,
  171. imap.im_len, mp->m_fsname);
  172. return XFS_ERROR(EINVAL);
  173. }
  174. /*
  175. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  176. * default to just a read_buf() call.
  177. */
  178. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  179. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  180. if (error) {
  181. cmn_err(CE_WARN,
  182. "xfs_inotobp: xfs_trans_read_buf() returned an "
  183. "error %d on %s. Returning error.", error, mp->m_fsname);
  184. return error;
  185. }
  186. dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
  187. di_ok =
  188. INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  189. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  190. if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
  191. XFS_RANDOM_ITOBP_INOTOBP))) {
  192. XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
  193. xfs_trans_brelse(tp, bp);
  194. cmn_err(CE_WARN,
  195. "xfs_inotobp: XFS_TEST_ERROR() returned an "
  196. "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
  197. return XFS_ERROR(EFSCORRUPTED);
  198. }
  199. xfs_inobp_check(mp, bp);
  200. /*
  201. * Set *dipp to point to the on-disk inode in the buffer.
  202. */
  203. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  204. *bpp = bp;
  205. *offset = imap.im_boffset;
  206. return 0;
  207. }
  208. /*
  209. * This routine is called to map an inode to the buffer containing
  210. * the on-disk version of the inode. It returns a pointer to the
  211. * buffer containing the on-disk inode in the bpp parameter, and in
  212. * the dip parameter it returns a pointer to the on-disk inode within
  213. * that buffer.
  214. *
  215. * If a non-zero error is returned, then the contents of bpp and
  216. * dipp are undefined.
  217. *
  218. * If the inode is new and has not yet been initialized, use xfs_imap()
  219. * to determine the size and location of the buffer to read from disk.
  220. * If the inode has already been mapped to its buffer and read in once,
  221. * then use the mapping information stored in the inode rather than
  222. * calling xfs_imap(). This allows us to avoid the overhead of looking
  223. * at the inode btree for small block file systems (see xfs_dilocate()).
  224. * We can tell whether the inode has been mapped in before by comparing
  225. * its disk block address to 0. Only uninitialized inodes will have
  226. * 0 for the disk block address.
  227. */
  228. int
  229. xfs_itobp(
  230. xfs_mount_t *mp,
  231. xfs_trans_t *tp,
  232. xfs_inode_t *ip,
  233. xfs_dinode_t **dipp,
  234. xfs_buf_t **bpp,
  235. xfs_daddr_t bno,
  236. uint imap_flags)
  237. {
  238. xfs_imap_t imap;
  239. xfs_buf_t *bp;
  240. int error;
  241. int i;
  242. int ni;
  243. if (ip->i_blkno == (xfs_daddr_t)0) {
  244. /*
  245. * Call the space management code to find the location of the
  246. * inode on disk.
  247. */
  248. imap.im_blkno = bno;
  249. if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
  250. XFS_IMAP_LOOKUP | imap_flags)))
  251. return error;
  252. /*
  253. * If the inode number maps to a block outside the bounds
  254. * of the file system then return NULL rather than calling
  255. * read_buf and panicing when we get an error from the
  256. * driver.
  257. */
  258. if ((imap.im_blkno + imap.im_len) >
  259. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
  260. #ifdef DEBUG
  261. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  262. "(imap.im_blkno (0x%llx) "
  263. "+ imap.im_len (0x%llx)) > "
  264. " XFS_FSB_TO_BB(mp, "
  265. "mp->m_sb.sb_dblocks) (0x%llx)",
  266. (unsigned long long) imap.im_blkno,
  267. (unsigned long long) imap.im_len,
  268. XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
  269. #endif /* DEBUG */
  270. return XFS_ERROR(EINVAL);
  271. }
  272. /*
  273. * Fill in the fields in the inode that will be used to
  274. * map the inode to its buffer from now on.
  275. */
  276. ip->i_blkno = imap.im_blkno;
  277. ip->i_len = imap.im_len;
  278. ip->i_boffset = imap.im_boffset;
  279. } else {
  280. /*
  281. * We've already mapped the inode once, so just use the
  282. * mapping that we saved the first time.
  283. */
  284. imap.im_blkno = ip->i_blkno;
  285. imap.im_len = ip->i_len;
  286. imap.im_boffset = ip->i_boffset;
  287. }
  288. ASSERT(bno == 0 || bno == imap.im_blkno);
  289. /*
  290. * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
  291. * default to just a read_buf() call.
  292. */
  293. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
  294. (int)imap.im_len, XFS_BUF_LOCK, &bp);
  295. if (error) {
  296. #ifdef DEBUG
  297. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
  298. "xfs_trans_read_buf() returned error %d, "
  299. "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
  300. error, (unsigned long long) imap.im_blkno,
  301. (unsigned long long) imap.im_len);
  302. #endif /* DEBUG */
  303. return error;
  304. }
  305. /*
  306. * Validate the magic number and version of every inode in the buffer
  307. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  308. * No validation is done here in userspace (xfs_repair).
  309. */
  310. #if !defined(__KERNEL__)
  311. ni = 0;
  312. #elif defined(DEBUG)
  313. ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
  314. #else /* usual case */
  315. ni = 1;
  316. #endif
  317. for (i = 0; i < ni; i++) {
  318. int di_ok;
  319. xfs_dinode_t *dip;
  320. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  321. (i << mp->m_sb.sb_inodelog));
  322. di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
  323. XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
  324. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  325. XFS_ERRTAG_ITOBP_INOTOBP,
  326. XFS_RANDOM_ITOBP_INOTOBP))) {
  327. if (imap_flags & XFS_IMAP_BULKSTAT) {
  328. xfs_trans_brelse(tp, bp);
  329. return XFS_ERROR(EINVAL);
  330. }
  331. #ifdef DEBUG
  332. cmn_err(CE_ALERT,
  333. "Device %s - bad inode magic/vsn "
  334. "daddr %lld #%d (magic=%x)",
  335. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  336. (unsigned long long)imap.im_blkno, i,
  337. INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
  338. #endif
  339. XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
  340. mp, dip);
  341. xfs_trans_brelse(tp, bp);
  342. return XFS_ERROR(EFSCORRUPTED);
  343. }
  344. }
  345. xfs_inobp_check(mp, bp);
  346. /*
  347. * Mark the buffer as an inode buffer now that it looks good
  348. */
  349. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  350. /*
  351. * Set *dipp to point to the on-disk inode in the buffer.
  352. */
  353. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  354. *bpp = bp;
  355. return 0;
  356. }
  357. /*
  358. * Move inode type and inode format specific information from the
  359. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  360. * this means set if_rdev to the proper value. For files, directories,
  361. * and symlinks this means to bring in the in-line data or extent
  362. * pointers. For a file in B-tree format, only the root is immediately
  363. * brought in-core. The rest will be in-lined in if_extents when it
  364. * is first referenced (see xfs_iread_extents()).
  365. */
  366. STATIC int
  367. xfs_iformat(
  368. xfs_inode_t *ip,
  369. xfs_dinode_t *dip)
  370. {
  371. xfs_attr_shortform_t *atp;
  372. int size;
  373. int error;
  374. xfs_fsize_t di_size;
  375. ip->i_df.if_ext_max =
  376. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  377. error = 0;
  378. if (unlikely(
  379. INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
  380. INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
  381. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
  382. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  383. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  384. (unsigned long long)ip->i_ino,
  385. (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
  386. + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
  387. (unsigned long long)
  388. INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
  389. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  390. ip->i_mount, dip);
  391. return XFS_ERROR(EFSCORRUPTED);
  392. }
  393. if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
  394. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  395. "corrupt dinode %Lu, forkoff = 0x%x.",
  396. (unsigned long long)ip->i_ino,
  397. (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
  398. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  399. ip->i_mount, dip);
  400. return XFS_ERROR(EFSCORRUPTED);
  401. }
  402. switch (ip->i_d.di_mode & S_IFMT) {
  403. case S_IFIFO:
  404. case S_IFCHR:
  405. case S_IFBLK:
  406. case S_IFSOCK:
  407. if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
  408. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  409. ip->i_mount, dip);
  410. return XFS_ERROR(EFSCORRUPTED);
  411. }
  412. ip->i_d.di_size = 0;
  413. ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
  414. break;
  415. case S_IFREG:
  416. case S_IFLNK:
  417. case S_IFDIR:
  418. switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
  419. case XFS_DINODE_FMT_LOCAL:
  420. /*
  421. * no local regular files yet
  422. */
  423. if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
  424. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  425. "corrupt inode %Lu "
  426. "(local format for regular file).",
  427. (unsigned long long) ip->i_ino);
  428. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  429. XFS_ERRLEVEL_LOW,
  430. ip->i_mount, dip);
  431. return XFS_ERROR(EFSCORRUPTED);
  432. }
  433. di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
  434. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  435. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  436. "corrupt inode %Lu "
  437. "(bad size %Ld for local inode).",
  438. (unsigned long long) ip->i_ino,
  439. (long long) di_size);
  440. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  441. XFS_ERRLEVEL_LOW,
  442. ip->i_mount, dip);
  443. return XFS_ERROR(EFSCORRUPTED);
  444. }
  445. size = (int)di_size;
  446. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  447. break;
  448. case XFS_DINODE_FMT_EXTENTS:
  449. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  450. break;
  451. case XFS_DINODE_FMT_BTREE:
  452. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  453. break;
  454. default:
  455. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  456. ip->i_mount);
  457. return XFS_ERROR(EFSCORRUPTED);
  458. }
  459. break;
  460. default:
  461. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  462. return XFS_ERROR(EFSCORRUPTED);
  463. }
  464. if (error) {
  465. return error;
  466. }
  467. if (!XFS_DFORK_Q(dip))
  468. return 0;
  469. ASSERT(ip->i_afp == NULL);
  470. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  471. ip->i_afp->if_ext_max =
  472. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  473. switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
  474. case XFS_DINODE_FMT_LOCAL:
  475. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  476. size = be16_to_cpu(atp->hdr.totsize);
  477. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  478. break;
  479. case XFS_DINODE_FMT_EXTENTS:
  480. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  481. break;
  482. case XFS_DINODE_FMT_BTREE:
  483. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  484. break;
  485. default:
  486. error = XFS_ERROR(EFSCORRUPTED);
  487. break;
  488. }
  489. if (error) {
  490. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  491. ip->i_afp = NULL;
  492. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  493. }
  494. return error;
  495. }
  496. /*
  497. * The file is in-lined in the on-disk inode.
  498. * If it fits into if_inline_data, then copy
  499. * it there, otherwise allocate a buffer for it
  500. * and copy the data there. Either way, set
  501. * if_data to point at the data.
  502. * If we allocate a buffer for the data, make
  503. * sure that its size is a multiple of 4 and
  504. * record the real size in i_real_bytes.
  505. */
  506. STATIC int
  507. xfs_iformat_local(
  508. xfs_inode_t *ip,
  509. xfs_dinode_t *dip,
  510. int whichfork,
  511. int size)
  512. {
  513. xfs_ifork_t *ifp;
  514. int real_size;
  515. /*
  516. * If the size is unreasonable, then something
  517. * is wrong and we just bail out rather than crash in
  518. * kmem_alloc() or memcpy() below.
  519. */
  520. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  521. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  522. "corrupt inode %Lu "
  523. "(bad size %d for local fork, size = %d).",
  524. (unsigned long long) ip->i_ino, size,
  525. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  526. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  527. ip->i_mount, dip);
  528. return XFS_ERROR(EFSCORRUPTED);
  529. }
  530. ifp = XFS_IFORK_PTR(ip, whichfork);
  531. real_size = 0;
  532. if (size == 0)
  533. ifp->if_u1.if_data = NULL;
  534. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  535. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  536. else {
  537. real_size = roundup(size, 4);
  538. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  539. }
  540. ifp->if_bytes = size;
  541. ifp->if_real_bytes = real_size;
  542. if (size)
  543. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  544. ifp->if_flags &= ~XFS_IFEXTENTS;
  545. ifp->if_flags |= XFS_IFINLINE;
  546. return 0;
  547. }
  548. /*
  549. * The file consists of a set of extents all
  550. * of which fit into the on-disk inode.
  551. * If there are few enough extents to fit into
  552. * the if_inline_ext, then copy them there.
  553. * Otherwise allocate a buffer for them and copy
  554. * them into it. Either way, set if_extents
  555. * to point at the extents.
  556. */
  557. STATIC int
  558. xfs_iformat_extents(
  559. xfs_inode_t *ip,
  560. xfs_dinode_t *dip,
  561. int whichfork)
  562. {
  563. xfs_bmbt_rec_t *ep, *dp;
  564. xfs_ifork_t *ifp;
  565. int nex;
  566. int size;
  567. int i;
  568. ifp = XFS_IFORK_PTR(ip, whichfork);
  569. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  570. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  571. /*
  572. * If the number of extents is unreasonable, then something
  573. * is wrong and we just bail out rather than crash in
  574. * kmem_alloc() or memcpy() below.
  575. */
  576. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  577. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  578. "corrupt inode %Lu ((a)extents = %d).",
  579. (unsigned long long) ip->i_ino, nex);
  580. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  581. ip->i_mount, dip);
  582. return XFS_ERROR(EFSCORRUPTED);
  583. }
  584. ifp->if_real_bytes = 0;
  585. if (nex == 0)
  586. ifp->if_u1.if_extents = NULL;
  587. else if (nex <= XFS_INLINE_EXTS)
  588. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  589. else
  590. xfs_iext_add(ifp, 0, nex);
  591. ifp->if_bytes = size;
  592. if (size) {
  593. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  594. xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
  595. for (i = 0; i < nex; i++, dp++) {
  596. ep = xfs_iext_get_ext(ifp, i);
  597. ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
  598. ARCH_CONVERT);
  599. ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
  600. ARCH_CONVERT);
  601. }
  602. xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
  603. whichfork);
  604. if (whichfork != XFS_DATA_FORK ||
  605. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  606. if (unlikely(xfs_check_nostate_extents(
  607. ifp, 0, nex))) {
  608. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  609. XFS_ERRLEVEL_LOW,
  610. ip->i_mount);
  611. return XFS_ERROR(EFSCORRUPTED);
  612. }
  613. }
  614. ifp->if_flags |= XFS_IFEXTENTS;
  615. return 0;
  616. }
  617. /*
  618. * The file has too many extents to fit into
  619. * the inode, so they are in B-tree format.
  620. * Allocate a buffer for the root of the B-tree
  621. * and copy the root into it. The i_extents
  622. * field will remain NULL until all of the
  623. * extents are read in (when they are needed).
  624. */
  625. STATIC int
  626. xfs_iformat_btree(
  627. xfs_inode_t *ip,
  628. xfs_dinode_t *dip,
  629. int whichfork)
  630. {
  631. xfs_bmdr_block_t *dfp;
  632. xfs_ifork_t *ifp;
  633. /* REFERENCED */
  634. int nrecs;
  635. int size;
  636. ifp = XFS_IFORK_PTR(ip, whichfork);
  637. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  638. size = XFS_BMAP_BROOT_SPACE(dfp);
  639. nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
  640. /*
  641. * blow out if -- fork has less extents than can fit in
  642. * fork (fork shouldn't be a btree format), root btree
  643. * block has more records than can fit into the fork,
  644. * or the number of extents is greater than the number of
  645. * blocks.
  646. */
  647. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  648. || XFS_BMDR_SPACE_CALC(nrecs) >
  649. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  650. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  651. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  652. "corrupt inode %Lu (btree).",
  653. (unsigned long long) ip->i_ino);
  654. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  655. ip->i_mount);
  656. return XFS_ERROR(EFSCORRUPTED);
  657. }
  658. ifp->if_broot_bytes = size;
  659. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  660. ASSERT(ifp->if_broot != NULL);
  661. /*
  662. * Copy and convert from the on-disk structure
  663. * to the in-memory structure.
  664. */
  665. xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  666. ifp->if_broot, size);
  667. ifp->if_flags &= ~XFS_IFEXTENTS;
  668. ifp->if_flags |= XFS_IFBROOT;
  669. return 0;
  670. }
  671. /*
  672. * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
  673. * and native format
  674. *
  675. * buf = on-disk representation
  676. * dip = native representation
  677. * dir = direction - +ve -> disk to native
  678. * -ve -> native to disk
  679. */
  680. void
  681. xfs_xlate_dinode_core(
  682. xfs_caddr_t buf,
  683. xfs_dinode_core_t *dip,
  684. int dir)
  685. {
  686. xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
  687. xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
  688. xfs_arch_t arch = ARCH_CONVERT;
  689. ASSERT(dir);
  690. INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
  691. INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
  692. INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
  693. INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
  694. INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
  695. INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
  696. INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
  697. INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
  698. INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
  699. if (dir > 0) {
  700. memcpy(mem_core->di_pad, buf_core->di_pad,
  701. sizeof(buf_core->di_pad));
  702. } else {
  703. memcpy(buf_core->di_pad, mem_core->di_pad,
  704. sizeof(buf_core->di_pad));
  705. }
  706. INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
  707. INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
  708. dir, arch);
  709. INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
  710. dir, arch);
  711. INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
  712. dir, arch);
  713. INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
  714. dir, arch);
  715. INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
  716. dir, arch);
  717. INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
  718. dir, arch);
  719. INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
  720. INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
  721. INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
  722. INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
  723. INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
  724. INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
  725. INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
  726. INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
  727. INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
  728. INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
  729. INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
  730. }
  731. STATIC uint
  732. _xfs_dic2xflags(
  733. __uint16_t di_flags)
  734. {
  735. uint flags = 0;
  736. if (di_flags & XFS_DIFLAG_ANY) {
  737. if (di_flags & XFS_DIFLAG_REALTIME)
  738. flags |= XFS_XFLAG_REALTIME;
  739. if (di_flags & XFS_DIFLAG_PREALLOC)
  740. flags |= XFS_XFLAG_PREALLOC;
  741. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  742. flags |= XFS_XFLAG_IMMUTABLE;
  743. if (di_flags & XFS_DIFLAG_APPEND)
  744. flags |= XFS_XFLAG_APPEND;
  745. if (di_flags & XFS_DIFLAG_SYNC)
  746. flags |= XFS_XFLAG_SYNC;
  747. if (di_flags & XFS_DIFLAG_NOATIME)
  748. flags |= XFS_XFLAG_NOATIME;
  749. if (di_flags & XFS_DIFLAG_NODUMP)
  750. flags |= XFS_XFLAG_NODUMP;
  751. if (di_flags & XFS_DIFLAG_RTINHERIT)
  752. flags |= XFS_XFLAG_RTINHERIT;
  753. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  754. flags |= XFS_XFLAG_PROJINHERIT;
  755. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  756. flags |= XFS_XFLAG_NOSYMLINKS;
  757. if (di_flags & XFS_DIFLAG_EXTSIZE)
  758. flags |= XFS_XFLAG_EXTSIZE;
  759. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  760. flags |= XFS_XFLAG_EXTSZINHERIT;
  761. if (di_flags & XFS_DIFLAG_NODEFRAG)
  762. flags |= XFS_XFLAG_NODEFRAG;
  763. }
  764. return flags;
  765. }
  766. uint
  767. xfs_ip2xflags(
  768. xfs_inode_t *ip)
  769. {
  770. xfs_dinode_core_t *dic = &ip->i_d;
  771. return _xfs_dic2xflags(dic->di_flags) |
  772. (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
  773. }
  774. uint
  775. xfs_dic2xflags(
  776. xfs_dinode_core_t *dic)
  777. {
  778. return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
  779. (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
  780. }
  781. /*
  782. * Given a mount structure and an inode number, return a pointer
  783. * to a newly allocated in-core inode corresponding to the given
  784. * inode number.
  785. *
  786. * Initialize the inode's attributes and extent pointers if it
  787. * already has them (it will not if the inode has no links).
  788. */
  789. int
  790. xfs_iread(
  791. xfs_mount_t *mp,
  792. xfs_trans_t *tp,
  793. xfs_ino_t ino,
  794. xfs_inode_t **ipp,
  795. xfs_daddr_t bno,
  796. uint imap_flags)
  797. {
  798. xfs_buf_t *bp;
  799. xfs_dinode_t *dip;
  800. xfs_inode_t *ip;
  801. int error;
  802. ASSERT(xfs_inode_zone != NULL);
  803. ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
  804. ip->i_ino = ino;
  805. ip->i_mount = mp;
  806. spin_lock_init(&ip->i_flags_lock);
  807. /*
  808. * Get pointer's to the on-disk inode and the buffer containing it.
  809. * If the inode number refers to a block outside the file system
  810. * then xfs_itobp() will return NULL. In this case we should
  811. * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
  812. * know that this is a new incore inode.
  813. */
  814. error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
  815. if (error) {
  816. kmem_zone_free(xfs_inode_zone, ip);
  817. return error;
  818. }
  819. /*
  820. * Initialize inode's trace buffers.
  821. * Do this before xfs_iformat in case it adds entries.
  822. */
  823. #ifdef XFS_BMAP_TRACE
  824. ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
  825. #endif
  826. #ifdef XFS_BMBT_TRACE
  827. ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
  828. #endif
  829. #ifdef XFS_RW_TRACE
  830. ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
  831. #endif
  832. #ifdef XFS_ILOCK_TRACE
  833. ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
  834. #endif
  835. #ifdef XFS_DIR2_TRACE
  836. ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
  837. #endif
  838. /*
  839. * If we got something that isn't an inode it means someone
  840. * (nfs or dmi) has a stale handle.
  841. */
  842. if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
  843. kmem_zone_free(xfs_inode_zone, ip);
  844. xfs_trans_brelse(tp, bp);
  845. #ifdef DEBUG
  846. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  847. "dip->di_core.di_magic (0x%x) != "
  848. "XFS_DINODE_MAGIC (0x%x)",
  849. INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
  850. XFS_DINODE_MAGIC);
  851. #endif /* DEBUG */
  852. return XFS_ERROR(EINVAL);
  853. }
  854. /*
  855. * If the on-disk inode is already linked to a directory
  856. * entry, copy all of the inode into the in-core inode.
  857. * xfs_iformat() handles copying in the inode format
  858. * specific information.
  859. * Otherwise, just get the truly permanent information.
  860. */
  861. if (dip->di_core.di_mode) {
  862. xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
  863. &(ip->i_d), 1);
  864. error = xfs_iformat(ip, dip);
  865. if (error) {
  866. kmem_zone_free(xfs_inode_zone, ip);
  867. xfs_trans_brelse(tp, bp);
  868. #ifdef DEBUG
  869. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  870. "xfs_iformat() returned error %d",
  871. error);
  872. #endif /* DEBUG */
  873. return error;
  874. }
  875. } else {
  876. ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
  877. ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
  878. ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
  879. ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
  880. /*
  881. * Make sure to pull in the mode here as well in
  882. * case the inode is released without being used.
  883. * This ensures that xfs_inactive() will see that
  884. * the inode is already free and not try to mess
  885. * with the uninitialized part of it.
  886. */
  887. ip->i_d.di_mode = 0;
  888. /*
  889. * Initialize the per-fork minima and maxima for a new
  890. * inode here. xfs_iformat will do it for old inodes.
  891. */
  892. ip->i_df.if_ext_max =
  893. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  894. }
  895. INIT_LIST_HEAD(&ip->i_reclaim);
  896. /*
  897. * The inode format changed when we moved the link count and
  898. * made it 32 bits long. If this is an old format inode,
  899. * convert it in memory to look like a new one. If it gets
  900. * flushed to disk we will convert back before flushing or
  901. * logging it. We zero out the new projid field and the old link
  902. * count field. We'll handle clearing the pad field (the remains
  903. * of the old uuid field) when we actually convert the inode to
  904. * the new format. We don't change the version number so that we
  905. * can distinguish this from a real new format inode.
  906. */
  907. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  908. ip->i_d.di_nlink = ip->i_d.di_onlink;
  909. ip->i_d.di_onlink = 0;
  910. ip->i_d.di_projid = 0;
  911. }
  912. ip->i_delayed_blks = 0;
  913. /*
  914. * Mark the buffer containing the inode as something to keep
  915. * around for a while. This helps to keep recently accessed
  916. * meta-data in-core longer.
  917. */
  918. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  919. /*
  920. * Use xfs_trans_brelse() to release the buffer containing the
  921. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  922. * in xfs_itobp() above. If tp is NULL, this is just a normal
  923. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  924. * will only release the buffer if it is not dirty within the
  925. * transaction. It will be OK to release the buffer in this case,
  926. * because inodes on disk are never destroyed and we will be
  927. * locking the new in-core inode before putting it in the hash
  928. * table where other processes can find it. Thus we don't have
  929. * to worry about the inode being changed just because we released
  930. * the buffer.
  931. */
  932. xfs_trans_brelse(tp, bp);
  933. *ipp = ip;
  934. return 0;
  935. }
  936. /*
  937. * Read in extents from a btree-format inode.
  938. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  939. */
  940. int
  941. xfs_iread_extents(
  942. xfs_trans_t *tp,
  943. xfs_inode_t *ip,
  944. int whichfork)
  945. {
  946. int error;
  947. xfs_ifork_t *ifp;
  948. xfs_extnum_t nextents;
  949. size_t size;
  950. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  951. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  952. ip->i_mount);
  953. return XFS_ERROR(EFSCORRUPTED);
  954. }
  955. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  956. size = nextents * sizeof(xfs_bmbt_rec_t);
  957. ifp = XFS_IFORK_PTR(ip, whichfork);
  958. /*
  959. * We know that the size is valid (it's checked in iformat_btree)
  960. */
  961. ifp->if_lastex = NULLEXTNUM;
  962. ifp->if_bytes = ifp->if_real_bytes = 0;
  963. ifp->if_flags |= XFS_IFEXTENTS;
  964. xfs_iext_add(ifp, 0, nextents);
  965. error = xfs_bmap_read_extents(tp, ip, whichfork);
  966. if (error) {
  967. xfs_iext_destroy(ifp);
  968. ifp->if_flags &= ~XFS_IFEXTENTS;
  969. return error;
  970. }
  971. xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
  972. return 0;
  973. }
  974. /*
  975. * Allocate an inode on disk and return a copy of its in-core version.
  976. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  977. * appropriately within the inode. The uid and gid for the inode are
  978. * set according to the contents of the given cred structure.
  979. *
  980. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  981. * has a free inode available, call xfs_iget()
  982. * to obtain the in-core version of the allocated inode. Finally,
  983. * fill in the inode and log its initial contents. In this case,
  984. * ialloc_context would be set to NULL and call_again set to false.
  985. *
  986. * If xfs_dialloc() does not have an available inode,
  987. * it will replenish its supply by doing an allocation. Since we can
  988. * only do one allocation within a transaction without deadlocks, we
  989. * must commit the current transaction before returning the inode itself.
  990. * In this case, therefore, we will set call_again to true and return.
  991. * The caller should then commit the current transaction, start a new
  992. * transaction, and call xfs_ialloc() again to actually get the inode.
  993. *
  994. * To ensure that some other process does not grab the inode that
  995. * was allocated during the first call to xfs_ialloc(), this routine
  996. * also returns the [locked] bp pointing to the head of the freelist
  997. * as ialloc_context. The caller should hold this buffer across
  998. * the commit and pass it back into this routine on the second call.
  999. */
  1000. int
  1001. xfs_ialloc(
  1002. xfs_trans_t *tp,
  1003. xfs_inode_t *pip,
  1004. mode_t mode,
  1005. xfs_nlink_t nlink,
  1006. xfs_dev_t rdev,
  1007. cred_t *cr,
  1008. xfs_prid_t prid,
  1009. int okalloc,
  1010. xfs_buf_t **ialloc_context,
  1011. boolean_t *call_again,
  1012. xfs_inode_t **ipp)
  1013. {
  1014. xfs_ino_t ino;
  1015. xfs_inode_t *ip;
  1016. bhv_vnode_t *vp;
  1017. uint flags;
  1018. int error;
  1019. /*
  1020. * Call the space management code to pick
  1021. * the on-disk inode to be allocated.
  1022. */
  1023. error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
  1024. ialloc_context, call_again, &ino);
  1025. if (error != 0) {
  1026. return error;
  1027. }
  1028. if (*call_again || ino == NULLFSINO) {
  1029. *ipp = NULL;
  1030. return 0;
  1031. }
  1032. ASSERT(*ialloc_context == NULL);
  1033. /*
  1034. * Get the in-core inode with the lock held exclusively.
  1035. * This is because we're setting fields here we need
  1036. * to prevent others from looking at until we're done.
  1037. */
  1038. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  1039. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  1040. if (error != 0) {
  1041. return error;
  1042. }
  1043. ASSERT(ip != NULL);
  1044. vp = XFS_ITOV(ip);
  1045. ip->i_d.di_mode = (__uint16_t)mode;
  1046. ip->i_d.di_onlink = 0;
  1047. ip->i_d.di_nlink = nlink;
  1048. ASSERT(ip->i_d.di_nlink == nlink);
  1049. ip->i_d.di_uid = current_fsuid(cr);
  1050. ip->i_d.di_gid = current_fsgid(cr);
  1051. ip->i_d.di_projid = prid;
  1052. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  1053. /*
  1054. * If the superblock version is up to where we support new format
  1055. * inodes and this is currently an old format inode, then change
  1056. * the inode version number now. This way we only do the conversion
  1057. * here rather than here and in the flush/logging code.
  1058. */
  1059. if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
  1060. ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  1061. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  1062. /*
  1063. * We've already zeroed the old link count, the projid field,
  1064. * and the pad field.
  1065. */
  1066. }
  1067. /*
  1068. * Project ids won't be stored on disk if we are using a version 1 inode.
  1069. */
  1070. if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
  1071. xfs_bump_ino_vers2(tp, ip);
  1072. if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
  1073. ip->i_d.di_gid = pip->i_d.di_gid;
  1074. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  1075. ip->i_d.di_mode |= S_ISGID;
  1076. }
  1077. }
  1078. /*
  1079. * If the group ID of the new file does not match the effective group
  1080. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  1081. * (and only if the irix_sgid_inherit compatibility variable is set).
  1082. */
  1083. if ((irix_sgid_inherit) &&
  1084. (ip->i_d.di_mode & S_ISGID) &&
  1085. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1086. ip->i_d.di_mode &= ~S_ISGID;
  1087. }
  1088. ip->i_d.di_size = 0;
  1089. ip->i_d.di_nextents = 0;
  1090. ASSERT(ip->i_d.di_nblocks == 0);
  1091. xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
  1092. /*
  1093. * di_gen will have been taken care of in xfs_iread.
  1094. */
  1095. ip->i_d.di_extsize = 0;
  1096. ip->i_d.di_dmevmask = 0;
  1097. ip->i_d.di_dmstate = 0;
  1098. ip->i_d.di_flags = 0;
  1099. flags = XFS_ILOG_CORE;
  1100. switch (mode & S_IFMT) {
  1101. case S_IFIFO:
  1102. case S_IFCHR:
  1103. case S_IFBLK:
  1104. case S_IFSOCK:
  1105. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1106. ip->i_df.if_u2.if_rdev = rdev;
  1107. ip->i_df.if_flags = 0;
  1108. flags |= XFS_ILOG_DEV;
  1109. break;
  1110. case S_IFREG:
  1111. case S_IFDIR:
  1112. if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1113. uint di_flags = 0;
  1114. if ((mode & S_IFMT) == S_IFDIR) {
  1115. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1116. di_flags |= XFS_DIFLAG_RTINHERIT;
  1117. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1118. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1119. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1120. }
  1121. } else if ((mode & S_IFMT) == S_IFREG) {
  1122. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
  1123. di_flags |= XFS_DIFLAG_REALTIME;
  1124. ip->i_iocore.io_flags |= XFS_IOCORE_RT;
  1125. }
  1126. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1127. di_flags |= XFS_DIFLAG_EXTSIZE;
  1128. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1129. }
  1130. }
  1131. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1132. xfs_inherit_noatime)
  1133. di_flags |= XFS_DIFLAG_NOATIME;
  1134. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1135. xfs_inherit_nodump)
  1136. di_flags |= XFS_DIFLAG_NODUMP;
  1137. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1138. xfs_inherit_sync)
  1139. di_flags |= XFS_DIFLAG_SYNC;
  1140. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1141. xfs_inherit_nosymlinks)
  1142. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1143. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1144. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1145. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1146. xfs_inherit_nodefrag)
  1147. di_flags |= XFS_DIFLAG_NODEFRAG;
  1148. ip->i_d.di_flags |= di_flags;
  1149. }
  1150. /* FALLTHROUGH */
  1151. case S_IFLNK:
  1152. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1153. ip->i_df.if_flags = XFS_IFEXTENTS;
  1154. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1155. ip->i_df.if_u1.if_extents = NULL;
  1156. break;
  1157. default:
  1158. ASSERT(0);
  1159. }
  1160. /*
  1161. * Attribute fork settings for new inode.
  1162. */
  1163. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1164. ip->i_d.di_anextents = 0;
  1165. /*
  1166. * Log the new values stuffed into the inode.
  1167. */
  1168. xfs_trans_log_inode(tp, ip, flags);
  1169. /* now that we have an i_mode we can setup inode ops and unlock */
  1170. bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
  1171. *ipp = ip;
  1172. return 0;
  1173. }
  1174. /*
  1175. * Check to make sure that there are no blocks allocated to the
  1176. * file beyond the size of the file. We don't check this for
  1177. * files with fixed size extents or real time extents, but we
  1178. * at least do it for regular files.
  1179. */
  1180. #ifdef DEBUG
  1181. void
  1182. xfs_isize_check(
  1183. xfs_mount_t *mp,
  1184. xfs_inode_t *ip,
  1185. xfs_fsize_t isize)
  1186. {
  1187. xfs_fileoff_t map_first;
  1188. int nimaps;
  1189. xfs_bmbt_irec_t imaps[2];
  1190. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1191. return;
  1192. if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
  1193. return;
  1194. nimaps = 2;
  1195. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1196. /*
  1197. * The filesystem could be shutting down, so bmapi may return
  1198. * an error.
  1199. */
  1200. if (xfs_bmapi(NULL, ip, map_first,
  1201. (XFS_B_TO_FSB(mp,
  1202. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1203. map_first),
  1204. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1205. NULL, NULL))
  1206. return;
  1207. ASSERT(nimaps == 1);
  1208. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1209. }
  1210. #endif /* DEBUG */
  1211. /*
  1212. * Calculate the last possible buffered byte in a file. This must
  1213. * include data that was buffered beyond the EOF by the write code.
  1214. * This also needs to deal with overflowing the xfs_fsize_t type
  1215. * which can happen for sizes near the limit.
  1216. *
  1217. * We also need to take into account any blocks beyond the EOF. It
  1218. * may be the case that they were buffered by a write which failed.
  1219. * In that case the pages will still be in memory, but the inode size
  1220. * will never have been updated.
  1221. */
  1222. xfs_fsize_t
  1223. xfs_file_last_byte(
  1224. xfs_inode_t *ip)
  1225. {
  1226. xfs_mount_t *mp;
  1227. xfs_fsize_t last_byte;
  1228. xfs_fileoff_t last_block;
  1229. xfs_fileoff_t size_last_block;
  1230. int error;
  1231. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
  1232. mp = ip->i_mount;
  1233. /*
  1234. * Only check for blocks beyond the EOF if the extents have
  1235. * been read in. This eliminates the need for the inode lock,
  1236. * and it also saves us from looking when it really isn't
  1237. * necessary.
  1238. */
  1239. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1240. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1241. XFS_DATA_FORK);
  1242. if (error) {
  1243. last_block = 0;
  1244. }
  1245. } else {
  1246. last_block = 0;
  1247. }
  1248. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
  1249. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1250. last_byte = XFS_FSB_TO_B(mp, last_block);
  1251. if (last_byte < 0) {
  1252. return XFS_MAXIOFFSET(mp);
  1253. }
  1254. last_byte += (1 << mp->m_writeio_log);
  1255. if (last_byte < 0) {
  1256. return XFS_MAXIOFFSET(mp);
  1257. }
  1258. return last_byte;
  1259. }
  1260. #if defined(XFS_RW_TRACE)
  1261. STATIC void
  1262. xfs_itrunc_trace(
  1263. int tag,
  1264. xfs_inode_t *ip,
  1265. int flag,
  1266. xfs_fsize_t new_size,
  1267. xfs_off_t toss_start,
  1268. xfs_off_t toss_finish)
  1269. {
  1270. if (ip->i_rwtrace == NULL) {
  1271. return;
  1272. }
  1273. ktrace_enter(ip->i_rwtrace,
  1274. (void*)((long)tag),
  1275. (void*)ip,
  1276. (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
  1277. (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
  1278. (void*)((long)flag),
  1279. (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
  1280. (void*)(unsigned long)(new_size & 0xffffffff),
  1281. (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
  1282. (void*)(unsigned long)(toss_start & 0xffffffff),
  1283. (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
  1284. (void*)(unsigned long)(toss_finish & 0xffffffff),
  1285. (void*)(unsigned long)current_cpu(),
  1286. (void*)(unsigned long)current_pid(),
  1287. (void*)NULL,
  1288. (void*)NULL,
  1289. (void*)NULL);
  1290. }
  1291. #else
  1292. #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
  1293. #endif
  1294. /*
  1295. * Start the truncation of the file to new_size. The new size
  1296. * must be smaller than the current size. This routine will
  1297. * clear the buffer and page caches of file data in the removed
  1298. * range, and xfs_itruncate_finish() will remove the underlying
  1299. * disk blocks.
  1300. *
  1301. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1302. * must NOT have the inode lock held at all. This is because we're
  1303. * calling into the buffer/page cache code and we can't hold the
  1304. * inode lock when we do so.
  1305. *
  1306. * We need to wait for any direct I/Os in flight to complete before we
  1307. * proceed with the truncate. This is needed to prevent the extents
  1308. * being read or written by the direct I/Os from being removed while the
  1309. * I/O is in flight as there is no other method of synchronising
  1310. * direct I/O with the truncate operation. Also, because we hold
  1311. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1312. * started until the truncate completes and drops the lock. Essentially,
  1313. * the vn_iowait() call forms an I/O barrier that provides strict ordering
  1314. * between direct I/Os and the truncate operation.
  1315. *
  1316. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1317. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1318. * in the case that the caller is locking things out of order and
  1319. * may not be able to call xfs_itruncate_finish() with the inode lock
  1320. * held without dropping the I/O lock. If the caller must drop the
  1321. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1322. * must be called again with all the same restrictions as the initial
  1323. * call.
  1324. */
  1325. void
  1326. xfs_itruncate_start(
  1327. xfs_inode_t *ip,
  1328. uint flags,
  1329. xfs_fsize_t new_size)
  1330. {
  1331. xfs_fsize_t last_byte;
  1332. xfs_off_t toss_start;
  1333. xfs_mount_t *mp;
  1334. bhv_vnode_t *vp;
  1335. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1336. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1337. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1338. (flags == XFS_ITRUNC_MAYBE));
  1339. mp = ip->i_mount;
  1340. vp = XFS_ITOV(ip);
  1341. vn_iowait(vp); /* wait for the completion of any pending DIOs */
  1342. /*
  1343. * Call toss_pages or flushinval_pages to get rid of pages
  1344. * overlapping the region being removed. We have to use
  1345. * the less efficient flushinval_pages in the case that the
  1346. * caller may not be able to finish the truncate without
  1347. * dropping the inode's I/O lock. Make sure
  1348. * to catch any pages brought in by buffers overlapping
  1349. * the EOF by searching out beyond the isize by our
  1350. * block size. We round new_size up to a block boundary
  1351. * so that we don't toss things on the same block as
  1352. * new_size but before it.
  1353. *
  1354. * Before calling toss_page or flushinval_pages, make sure to
  1355. * call remapf() over the same region if the file is mapped.
  1356. * This frees up mapped file references to the pages in the
  1357. * given range and for the flushinval_pages case it ensures
  1358. * that we get the latest mapped changes flushed out.
  1359. */
  1360. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1361. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1362. if (toss_start < 0) {
  1363. /*
  1364. * The place to start tossing is beyond our maximum
  1365. * file size, so there is no way that the data extended
  1366. * out there.
  1367. */
  1368. return;
  1369. }
  1370. last_byte = xfs_file_last_byte(ip);
  1371. xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
  1372. last_byte);
  1373. if (last_byte > toss_start) {
  1374. if (flags & XFS_ITRUNC_DEFINITE) {
  1375. bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1376. } else {
  1377. bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
  1378. }
  1379. }
  1380. #ifdef DEBUG
  1381. if (new_size == 0) {
  1382. ASSERT(VN_CACHED(vp) == 0);
  1383. }
  1384. #endif
  1385. }
  1386. /*
  1387. * Shrink the file to the given new_size. The new
  1388. * size must be smaller than the current size.
  1389. * This will free up the underlying blocks
  1390. * in the removed range after a call to xfs_itruncate_start()
  1391. * or xfs_atruncate_start().
  1392. *
  1393. * The transaction passed to this routine must have made
  1394. * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
  1395. * This routine may commit the given transaction and
  1396. * start new ones, so make sure everything involved in
  1397. * the transaction is tidy before calling here.
  1398. * Some transaction will be returned to the caller to be
  1399. * committed. The incoming transaction must already include
  1400. * the inode, and both inode locks must be held exclusively.
  1401. * The inode must also be "held" within the transaction. On
  1402. * return the inode will be "held" within the returned transaction.
  1403. * This routine does NOT require any disk space to be reserved
  1404. * for it within the transaction.
  1405. *
  1406. * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
  1407. * and it indicates the fork which is to be truncated. For the
  1408. * attribute fork we only support truncation to size 0.
  1409. *
  1410. * We use the sync parameter to indicate whether or not the first
  1411. * transaction we perform might have to be synchronous. For the attr fork,
  1412. * it needs to be so if the unlink of the inode is not yet known to be
  1413. * permanent in the log. This keeps us from freeing and reusing the
  1414. * blocks of the attribute fork before the unlink of the inode becomes
  1415. * permanent.
  1416. *
  1417. * For the data fork, we normally have to run synchronously if we're
  1418. * being called out of the inactive path or we're being called
  1419. * out of the create path where we're truncating an existing file.
  1420. * Either way, the truncate needs to be sync so blocks don't reappear
  1421. * in the file with altered data in case of a crash. wsync filesystems
  1422. * can run the first case async because anything that shrinks the inode
  1423. * has to run sync so by the time we're called here from inactive, the
  1424. * inode size is permanently set to 0.
  1425. *
  1426. * Calls from the truncate path always need to be sync unless we're
  1427. * in a wsync filesystem and the file has already been unlinked.
  1428. *
  1429. * The caller is responsible for correctly setting the sync parameter.
  1430. * It gets too hard for us to guess here which path we're being called
  1431. * out of just based on inode state.
  1432. */
  1433. int
  1434. xfs_itruncate_finish(
  1435. xfs_trans_t **tp,
  1436. xfs_inode_t *ip,
  1437. xfs_fsize_t new_size,
  1438. int fork,
  1439. int sync)
  1440. {
  1441. xfs_fsblock_t first_block;
  1442. xfs_fileoff_t first_unmap_block;
  1443. xfs_fileoff_t last_block;
  1444. xfs_filblks_t unmap_len=0;
  1445. xfs_mount_t *mp;
  1446. xfs_trans_t *ntp;
  1447. int done;
  1448. int committed;
  1449. xfs_bmap_free_t free_list;
  1450. int error;
  1451. ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
  1452. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
  1453. ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
  1454. ASSERT(*tp != NULL);
  1455. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1456. ASSERT(ip->i_transp == *tp);
  1457. ASSERT(ip->i_itemp != NULL);
  1458. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1459. ntp = *tp;
  1460. mp = (ntp)->t_mountp;
  1461. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1462. /*
  1463. * We only support truncating the entire attribute fork.
  1464. */
  1465. if (fork == XFS_ATTR_FORK) {
  1466. new_size = 0LL;
  1467. }
  1468. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1469. xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
  1470. /*
  1471. * The first thing we do is set the size to new_size permanently
  1472. * on disk. This way we don't have to worry about anyone ever
  1473. * being able to look at the data being freed even in the face
  1474. * of a crash. What we're getting around here is the case where
  1475. * we free a block, it is allocated to another file, it is written
  1476. * to, and then we crash. If the new data gets written to the
  1477. * file but the log buffers containing the free and reallocation
  1478. * don't, then we'd end up with garbage in the blocks being freed.
  1479. * As long as we make the new_size permanent before actually
  1480. * freeing any blocks it doesn't matter if they get writtten to.
  1481. *
  1482. * The callers must signal into us whether or not the size
  1483. * setting here must be synchronous. There are a few cases
  1484. * where it doesn't have to be synchronous. Those cases
  1485. * occur if the file is unlinked and we know the unlink is
  1486. * permanent or if the blocks being truncated are guaranteed
  1487. * to be beyond the inode eof (regardless of the link count)
  1488. * and the eof value is permanent. Both of these cases occur
  1489. * only on wsync-mounted filesystems. In those cases, we're
  1490. * guaranteed that no user will ever see the data in the blocks
  1491. * that are being truncated so the truncate can run async.
  1492. * In the free beyond eof case, the file may wind up with
  1493. * more blocks allocated to it than it needs if we crash
  1494. * and that won't get fixed until the next time the file
  1495. * is re-opened and closed but that's ok as that shouldn't
  1496. * be too many blocks.
  1497. *
  1498. * However, we can't just make all wsync xactions run async
  1499. * because there's one call out of the create path that needs
  1500. * to run sync where it's truncating an existing file to size
  1501. * 0 whose size is > 0.
  1502. *
  1503. * It's probably possible to come up with a test in this
  1504. * routine that would correctly distinguish all the above
  1505. * cases from the values of the function parameters and the
  1506. * inode state but for sanity's sake, I've decided to let the
  1507. * layers above just tell us. It's simpler to correctly figure
  1508. * out in the layer above exactly under what conditions we
  1509. * can run async and I think it's easier for others read and
  1510. * follow the logic in case something has to be changed.
  1511. * cscope is your friend -- rcc.
  1512. *
  1513. * The attribute fork is much simpler.
  1514. *
  1515. * For the attribute fork we allow the caller to tell us whether
  1516. * the unlink of the inode that led to this call is yet permanent
  1517. * in the on disk log. If it is not and we will be freeing extents
  1518. * in this inode then we make the first transaction synchronous
  1519. * to make sure that the unlink is permanent by the time we free
  1520. * the blocks.
  1521. */
  1522. if (fork == XFS_DATA_FORK) {
  1523. if (ip->i_d.di_nextents > 0) {
  1524. ip->i_d.di_size = new_size;
  1525. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1526. }
  1527. } else if (sync) {
  1528. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1529. if (ip->i_d.di_anextents > 0)
  1530. xfs_trans_set_sync(ntp);
  1531. }
  1532. ASSERT(fork == XFS_DATA_FORK ||
  1533. (fork == XFS_ATTR_FORK &&
  1534. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1535. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1536. /*
  1537. * Since it is possible for space to become allocated beyond
  1538. * the end of the file (in a crash where the space is allocated
  1539. * but the inode size is not yet updated), simply remove any
  1540. * blocks which show up between the new EOF and the maximum
  1541. * possible file size. If the first block to be removed is
  1542. * beyond the maximum file size (ie it is the same as last_block),
  1543. * then there is nothing to do.
  1544. */
  1545. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1546. ASSERT(first_unmap_block <= last_block);
  1547. done = 0;
  1548. if (last_block == first_unmap_block) {
  1549. done = 1;
  1550. } else {
  1551. unmap_len = last_block - first_unmap_block + 1;
  1552. }
  1553. while (!done) {
  1554. /*
  1555. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1556. * will tell us whether it freed the entire range or
  1557. * not. If this is a synchronous mount (wsync),
  1558. * then we can tell bunmapi to keep all the
  1559. * transactions asynchronous since the unlink
  1560. * transaction that made this inode inactive has
  1561. * already hit the disk. There's no danger of
  1562. * the freed blocks being reused, there being a
  1563. * crash, and the reused blocks suddenly reappearing
  1564. * in this file with garbage in them once recovery
  1565. * runs.
  1566. */
  1567. XFS_BMAP_INIT(&free_list, &first_block);
  1568. error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
  1569. first_unmap_block, unmap_len,
  1570. XFS_BMAPI_AFLAG(fork) |
  1571. (sync ? 0 : XFS_BMAPI_ASYNC),
  1572. XFS_ITRUNC_MAX_EXTENTS,
  1573. &first_block, &free_list,
  1574. NULL, &done);
  1575. if (error) {
  1576. /*
  1577. * If the bunmapi call encounters an error,
  1578. * return to the caller where the transaction
  1579. * can be properly aborted. We just need to
  1580. * make sure we're not holding any resources
  1581. * that we were not when we came in.
  1582. */
  1583. xfs_bmap_cancel(&free_list);
  1584. return error;
  1585. }
  1586. /*
  1587. * Duplicate the transaction that has the permanent
  1588. * reservation and commit the old transaction.
  1589. */
  1590. error = xfs_bmap_finish(tp, &free_list, first_block,
  1591. &committed);
  1592. ntp = *tp;
  1593. if (error) {
  1594. /*
  1595. * If the bmap finish call encounters an error,
  1596. * return to the caller where the transaction
  1597. * can be properly aborted. We just need to
  1598. * make sure we're not holding any resources
  1599. * that we were not when we came in.
  1600. *
  1601. * Aborting from this point might lose some
  1602. * blocks in the file system, but oh well.
  1603. */
  1604. xfs_bmap_cancel(&free_list);
  1605. if (committed) {
  1606. /*
  1607. * If the passed in transaction committed
  1608. * in xfs_bmap_finish(), then we want to
  1609. * add the inode to this one before returning.
  1610. * This keeps things simple for the higher
  1611. * level code, because it always knows that
  1612. * the inode is locked and held in the
  1613. * transaction that returns to it whether
  1614. * errors occur or not. We don't mark the
  1615. * inode dirty so that this transaction can
  1616. * be easily aborted if possible.
  1617. */
  1618. xfs_trans_ijoin(ntp, ip,
  1619. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1620. xfs_trans_ihold(ntp, ip);
  1621. }
  1622. return error;
  1623. }
  1624. if (committed) {
  1625. /*
  1626. * The first xact was committed,
  1627. * so add the inode to the new one.
  1628. * Mark it dirty so it will be logged
  1629. * and moved forward in the log as
  1630. * part of every commit.
  1631. */
  1632. xfs_trans_ijoin(ntp, ip,
  1633. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1634. xfs_trans_ihold(ntp, ip);
  1635. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1636. }
  1637. ntp = xfs_trans_dup(ntp);
  1638. (void) xfs_trans_commit(*tp, 0, NULL);
  1639. *tp = ntp;
  1640. error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
  1641. XFS_TRANS_PERM_LOG_RES,
  1642. XFS_ITRUNCATE_LOG_COUNT);
  1643. /*
  1644. * Add the inode being truncated to the next chained
  1645. * transaction.
  1646. */
  1647. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1648. xfs_trans_ihold(ntp, ip);
  1649. if (error)
  1650. return (error);
  1651. }
  1652. /*
  1653. * Only update the size in the case of the data fork, but
  1654. * always re-log the inode so that our permanent transaction
  1655. * can keep on rolling it forward in the log.
  1656. */
  1657. if (fork == XFS_DATA_FORK) {
  1658. xfs_isize_check(mp, ip, new_size);
  1659. ip->i_d.di_size = new_size;
  1660. }
  1661. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1662. ASSERT((new_size != 0) ||
  1663. (fork == XFS_ATTR_FORK) ||
  1664. (ip->i_delayed_blks == 0));
  1665. ASSERT((new_size != 0) ||
  1666. (fork == XFS_ATTR_FORK) ||
  1667. (ip->i_d.di_nextents == 0));
  1668. xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
  1669. return 0;
  1670. }
  1671. /*
  1672. * xfs_igrow_start
  1673. *
  1674. * Do the first part of growing a file: zero any data in the last
  1675. * block that is beyond the old EOF. We need to do this before
  1676. * the inode is joined to the transaction to modify the i_size.
  1677. * That way we can drop the inode lock and call into the buffer
  1678. * cache to get the buffer mapping the EOF.
  1679. */
  1680. int
  1681. xfs_igrow_start(
  1682. xfs_inode_t *ip,
  1683. xfs_fsize_t new_size,
  1684. cred_t *credp)
  1685. {
  1686. int error;
  1687. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1688. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1689. ASSERT(new_size > ip->i_d.di_size);
  1690. /*
  1691. * Zero any pages that may have been created by
  1692. * xfs_write_file() beyond the end of the file
  1693. * and any blocks between the old and new file sizes.
  1694. */
  1695. error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
  1696. ip->i_d.di_size, new_size);
  1697. return error;
  1698. }
  1699. /*
  1700. * xfs_igrow_finish
  1701. *
  1702. * This routine is called to extend the size of a file.
  1703. * The inode must have both the iolock and the ilock locked
  1704. * for update and it must be a part of the current transaction.
  1705. * The xfs_igrow_start() function must have been called previously.
  1706. * If the change_flag is not zero, the inode change timestamp will
  1707. * be updated.
  1708. */
  1709. void
  1710. xfs_igrow_finish(
  1711. xfs_trans_t *tp,
  1712. xfs_inode_t *ip,
  1713. xfs_fsize_t new_size,
  1714. int change_flag)
  1715. {
  1716. ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
  1717. ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
  1718. ASSERT(ip->i_transp == tp);
  1719. ASSERT(new_size > ip->i_d.di_size);
  1720. /*
  1721. * Update the file size. Update the inode change timestamp
  1722. * if change_flag set.
  1723. */
  1724. ip->i_d.di_size = new_size;
  1725. if (change_flag)
  1726. xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
  1727. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1728. }
  1729. /*
  1730. * This is called when the inode's link count goes to 0.
  1731. * We place the on-disk inode on a list in the AGI. It
  1732. * will be pulled from this list when the inode is freed.
  1733. */
  1734. int
  1735. xfs_iunlink(
  1736. xfs_trans_t *tp,
  1737. xfs_inode_t *ip)
  1738. {
  1739. xfs_mount_t *mp;
  1740. xfs_agi_t *agi;
  1741. xfs_dinode_t *dip;
  1742. xfs_buf_t *agibp;
  1743. xfs_buf_t *ibp;
  1744. xfs_agnumber_t agno;
  1745. xfs_daddr_t agdaddr;
  1746. xfs_agino_t agino;
  1747. short bucket_index;
  1748. int offset;
  1749. int error;
  1750. int agi_ok;
  1751. ASSERT(ip->i_d.di_nlink == 0);
  1752. ASSERT(ip->i_d.di_mode != 0);
  1753. ASSERT(ip->i_transp == tp);
  1754. mp = tp->t_mountp;
  1755. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1756. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1757. /*
  1758. * Get the agi buffer first. It ensures lock ordering
  1759. * on the list.
  1760. */
  1761. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1762. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1763. if (error) {
  1764. return error;
  1765. }
  1766. /*
  1767. * Validate the magic number of the agi block.
  1768. */
  1769. agi = XFS_BUF_TO_AGI(agibp);
  1770. agi_ok =
  1771. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1772. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1773. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
  1774. XFS_RANDOM_IUNLINK))) {
  1775. XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
  1776. xfs_trans_brelse(tp, agibp);
  1777. return XFS_ERROR(EFSCORRUPTED);
  1778. }
  1779. /*
  1780. * Get the index into the agi hash table for the
  1781. * list this inode will go on.
  1782. */
  1783. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1784. ASSERT(agino != 0);
  1785. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1786. ASSERT(agi->agi_unlinked[bucket_index]);
  1787. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1788. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1789. /*
  1790. * There is already another inode in the bucket we need
  1791. * to add ourselves to. Add us at the front of the list.
  1792. * Here we put the head pointer into our next pointer,
  1793. * and then we fall through to point the head at us.
  1794. */
  1795. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1796. if (error) {
  1797. return error;
  1798. }
  1799. ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
  1800. ASSERT(dip->di_next_unlinked);
  1801. /* both on-disk, don't endian flip twice */
  1802. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1803. offset = ip->i_boffset +
  1804. offsetof(xfs_dinode_t, di_next_unlinked);
  1805. xfs_trans_inode_buf(tp, ibp);
  1806. xfs_trans_log_buf(tp, ibp, offset,
  1807. (offset + sizeof(xfs_agino_t) - 1));
  1808. xfs_inobp_check(mp, ibp);
  1809. }
  1810. /*
  1811. * Point the bucket head pointer at the inode being inserted.
  1812. */
  1813. ASSERT(agino != 0);
  1814. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1815. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1816. (sizeof(xfs_agino_t) * bucket_index);
  1817. xfs_trans_log_buf(tp, agibp, offset,
  1818. (offset + sizeof(xfs_agino_t) - 1));
  1819. return 0;
  1820. }
  1821. /*
  1822. * Pull the on-disk inode from the AGI unlinked list.
  1823. */
  1824. STATIC int
  1825. xfs_iunlink_remove(
  1826. xfs_trans_t *tp,
  1827. xfs_inode_t *ip)
  1828. {
  1829. xfs_ino_t next_ino;
  1830. xfs_mount_t *mp;
  1831. xfs_agi_t *agi;
  1832. xfs_dinode_t *dip;
  1833. xfs_buf_t *agibp;
  1834. xfs_buf_t *ibp;
  1835. xfs_agnumber_t agno;
  1836. xfs_daddr_t agdaddr;
  1837. xfs_agino_t agino;
  1838. xfs_agino_t next_agino;
  1839. xfs_buf_t *last_ibp;
  1840. xfs_dinode_t *last_dip = NULL;
  1841. short bucket_index;
  1842. int offset, last_offset = 0;
  1843. int error;
  1844. int agi_ok;
  1845. /*
  1846. * First pull the on-disk inode from the AGI unlinked list.
  1847. */
  1848. mp = tp->t_mountp;
  1849. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1850. agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  1851. /*
  1852. * Get the agi buffer first. It ensures lock ordering
  1853. * on the list.
  1854. */
  1855. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
  1856. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  1857. if (error) {
  1858. cmn_err(CE_WARN,
  1859. "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
  1860. error, mp->m_fsname);
  1861. return error;
  1862. }
  1863. /*
  1864. * Validate the magic number of the agi block.
  1865. */
  1866. agi = XFS_BUF_TO_AGI(agibp);
  1867. agi_ok =
  1868. be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
  1869. XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
  1870. if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
  1871. XFS_RANDOM_IUNLINK_REMOVE))) {
  1872. XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
  1873. mp, agi);
  1874. xfs_trans_brelse(tp, agibp);
  1875. cmn_err(CE_WARN,
  1876. "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
  1877. mp->m_fsname);
  1878. return XFS_ERROR(EFSCORRUPTED);
  1879. }
  1880. /*
  1881. * Get the index into the agi hash table for the
  1882. * list this inode will go on.
  1883. */
  1884. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1885. ASSERT(agino != 0);
  1886. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1887. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1888. ASSERT(agi->agi_unlinked[bucket_index]);
  1889. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1890. /*
  1891. * We're at the head of the list. Get the inode's
  1892. * on-disk buffer to see if there is anyone after us
  1893. * on the list. Only modify our next pointer if it
  1894. * is not already NULLAGINO. This saves us the overhead
  1895. * of dealing with the buffer when there is no need to
  1896. * change it.
  1897. */
  1898. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1899. if (error) {
  1900. cmn_err(CE_WARN,
  1901. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1902. error, mp->m_fsname);
  1903. return error;
  1904. }
  1905. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1906. ASSERT(next_agino != 0);
  1907. if (next_agino != NULLAGINO) {
  1908. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1909. offset = ip->i_boffset +
  1910. offsetof(xfs_dinode_t, di_next_unlinked);
  1911. xfs_trans_inode_buf(tp, ibp);
  1912. xfs_trans_log_buf(tp, ibp, offset,
  1913. (offset + sizeof(xfs_agino_t) - 1));
  1914. xfs_inobp_check(mp, ibp);
  1915. } else {
  1916. xfs_trans_brelse(tp, ibp);
  1917. }
  1918. /*
  1919. * Point the bucket head pointer at the next inode.
  1920. */
  1921. ASSERT(next_agino != 0);
  1922. ASSERT(next_agino != agino);
  1923. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1924. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1925. (sizeof(xfs_agino_t) * bucket_index);
  1926. xfs_trans_log_buf(tp, agibp, offset,
  1927. (offset + sizeof(xfs_agino_t) - 1));
  1928. } else {
  1929. /*
  1930. * We need to search the list for the inode being freed.
  1931. */
  1932. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1933. last_ibp = NULL;
  1934. while (next_agino != agino) {
  1935. /*
  1936. * If the last inode wasn't the one pointing to
  1937. * us, then release its buffer since we're not
  1938. * going to do anything with it.
  1939. */
  1940. if (last_ibp != NULL) {
  1941. xfs_trans_brelse(tp, last_ibp);
  1942. }
  1943. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1944. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1945. &last_ibp, &last_offset);
  1946. if (error) {
  1947. cmn_err(CE_WARN,
  1948. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1949. error, mp->m_fsname);
  1950. return error;
  1951. }
  1952. next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
  1953. ASSERT(next_agino != NULLAGINO);
  1954. ASSERT(next_agino != 0);
  1955. }
  1956. /*
  1957. * Now last_ibp points to the buffer previous to us on
  1958. * the unlinked list. Pull us from the list.
  1959. */
  1960. error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
  1961. if (error) {
  1962. cmn_err(CE_WARN,
  1963. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1964. error, mp->m_fsname);
  1965. return error;
  1966. }
  1967. next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
  1968. ASSERT(next_agino != 0);
  1969. ASSERT(next_agino != agino);
  1970. if (next_agino != NULLAGINO) {
  1971. INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
  1972. offset = ip->i_boffset +
  1973. offsetof(xfs_dinode_t, di_next_unlinked);
  1974. xfs_trans_inode_buf(tp, ibp);
  1975. xfs_trans_log_buf(tp, ibp, offset,
  1976. (offset + sizeof(xfs_agino_t) - 1));
  1977. xfs_inobp_check(mp, ibp);
  1978. } else {
  1979. xfs_trans_brelse(tp, ibp);
  1980. }
  1981. /*
  1982. * Point the previous inode on the list to the next inode.
  1983. */
  1984. INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
  1985. ASSERT(next_agino != 0);
  1986. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1987. xfs_trans_inode_buf(tp, last_ibp);
  1988. xfs_trans_log_buf(tp, last_ibp, offset,
  1989. (offset + sizeof(xfs_agino_t) - 1));
  1990. xfs_inobp_check(mp, last_ibp);
  1991. }
  1992. return 0;
  1993. }
  1994. static __inline__ int xfs_inode_clean(xfs_inode_t *ip)
  1995. {
  1996. return (((ip->i_itemp == NULL) ||
  1997. !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  1998. (ip->i_update_core == 0));
  1999. }
  2000. STATIC void
  2001. xfs_ifree_cluster(
  2002. xfs_inode_t *free_ip,
  2003. xfs_trans_t *tp,
  2004. xfs_ino_t inum)
  2005. {
  2006. xfs_mount_t *mp = free_ip->i_mount;
  2007. int blks_per_cluster;
  2008. int nbufs;
  2009. int ninodes;
  2010. int i, j, found, pre_flushed;
  2011. xfs_daddr_t blkno;
  2012. xfs_buf_t *bp;
  2013. xfs_ihash_t *ih;
  2014. xfs_inode_t *ip, **ip_found;
  2015. xfs_inode_log_item_t *iip;
  2016. xfs_log_item_t *lip;
  2017. SPLDECL(s);
  2018. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  2019. blks_per_cluster = 1;
  2020. ninodes = mp->m_sb.sb_inopblock;
  2021. nbufs = XFS_IALLOC_BLOCKS(mp);
  2022. } else {
  2023. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  2024. mp->m_sb.sb_blocksize;
  2025. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  2026. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  2027. }
  2028. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  2029. for (j = 0; j < nbufs; j++, inum += ninodes) {
  2030. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  2031. XFS_INO_TO_AGBNO(mp, inum));
  2032. /*
  2033. * Look for each inode in memory and attempt to lock it,
  2034. * we can be racing with flush and tail pushing here.
  2035. * any inode we get the locks on, add to an array of
  2036. * inode items to process later.
  2037. *
  2038. * The get the buffer lock, we could beat a flush
  2039. * or tail pushing thread to the lock here, in which
  2040. * case they will go looking for the inode buffer
  2041. * and fail, we need some other form of interlock
  2042. * here.
  2043. */
  2044. found = 0;
  2045. for (i = 0; i < ninodes; i++) {
  2046. ih = XFS_IHASH(mp, inum + i);
  2047. read_lock(&ih->ih_lock);
  2048. for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
  2049. if (ip->i_ino == inum + i)
  2050. break;
  2051. }
  2052. /* Inode not in memory or we found it already,
  2053. * nothing to do
  2054. */
  2055. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  2056. read_unlock(&ih->ih_lock);
  2057. continue;
  2058. }
  2059. if (xfs_inode_clean(ip)) {
  2060. read_unlock(&ih->ih_lock);
  2061. continue;
  2062. }
  2063. /* If we can get the locks then add it to the
  2064. * list, otherwise by the time we get the bp lock
  2065. * below it will already be attached to the
  2066. * inode buffer.
  2067. */
  2068. /* This inode will already be locked - by us, lets
  2069. * keep it that way.
  2070. */
  2071. if (ip == free_ip) {
  2072. if (xfs_iflock_nowait(ip)) {
  2073. xfs_iflags_set(ip, XFS_ISTALE);
  2074. if (xfs_inode_clean(ip)) {
  2075. xfs_ifunlock(ip);
  2076. } else {
  2077. ip_found[found++] = ip;
  2078. }
  2079. }
  2080. read_unlock(&ih->ih_lock);
  2081. continue;
  2082. }
  2083. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  2084. if (xfs_iflock_nowait(ip)) {
  2085. xfs_iflags_set(ip, XFS_ISTALE);
  2086. if (xfs_inode_clean(ip)) {
  2087. xfs_ifunlock(ip);
  2088. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2089. } else {
  2090. ip_found[found++] = ip;
  2091. }
  2092. } else {
  2093. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2094. }
  2095. }
  2096. read_unlock(&ih->ih_lock);
  2097. }
  2098. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  2099. mp->m_bsize * blks_per_cluster,
  2100. XFS_BUF_LOCK);
  2101. pre_flushed = 0;
  2102. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  2103. while (lip) {
  2104. if (lip->li_type == XFS_LI_INODE) {
  2105. iip = (xfs_inode_log_item_t *)lip;
  2106. ASSERT(iip->ili_logged == 1);
  2107. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  2108. AIL_LOCK(mp,s);
  2109. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2110. AIL_UNLOCK(mp, s);
  2111. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  2112. pre_flushed++;
  2113. }
  2114. lip = lip->li_bio_list;
  2115. }
  2116. for (i = 0; i < found; i++) {
  2117. ip = ip_found[i];
  2118. iip = ip->i_itemp;
  2119. if (!iip) {
  2120. ip->i_update_core = 0;
  2121. xfs_ifunlock(ip);
  2122. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2123. continue;
  2124. }
  2125. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2126. iip->ili_format.ilf_fields = 0;
  2127. iip->ili_logged = 1;
  2128. AIL_LOCK(mp,s);
  2129. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  2130. AIL_UNLOCK(mp, s);
  2131. xfs_buf_attach_iodone(bp,
  2132. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2133. xfs_istale_done, (xfs_log_item_t *)iip);
  2134. if (ip != free_ip) {
  2135. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  2136. }
  2137. }
  2138. if (found || pre_flushed)
  2139. xfs_trans_stale_inode_buf(tp, bp);
  2140. xfs_trans_binval(tp, bp);
  2141. }
  2142. kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
  2143. }
  2144. /*
  2145. * This is called to return an inode to the inode free list.
  2146. * The inode should already be truncated to 0 length and have
  2147. * no pages associated with it. This routine also assumes that
  2148. * the inode is already a part of the transaction.
  2149. *
  2150. * The on-disk copy of the inode will have been added to the list
  2151. * of unlinked inodes in the AGI. We need to remove the inode from
  2152. * that list atomically with respect to freeing it here.
  2153. */
  2154. int
  2155. xfs_ifree(
  2156. xfs_trans_t *tp,
  2157. xfs_inode_t *ip,
  2158. xfs_bmap_free_t *flist)
  2159. {
  2160. int error;
  2161. int delete;
  2162. xfs_ino_t first_ino;
  2163. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2164. ASSERT(ip->i_transp == tp);
  2165. ASSERT(ip->i_d.di_nlink == 0);
  2166. ASSERT(ip->i_d.di_nextents == 0);
  2167. ASSERT(ip->i_d.di_anextents == 0);
  2168. ASSERT((ip->i_d.di_size == 0) ||
  2169. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  2170. ASSERT(ip->i_d.di_nblocks == 0);
  2171. /*
  2172. * Pull the on-disk inode from the AGI unlinked list.
  2173. */
  2174. error = xfs_iunlink_remove(tp, ip);
  2175. if (error != 0) {
  2176. return error;
  2177. }
  2178. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  2179. if (error != 0) {
  2180. return error;
  2181. }
  2182. ip->i_d.di_mode = 0; /* mark incore inode as free */
  2183. ip->i_d.di_flags = 0;
  2184. ip->i_d.di_dmevmask = 0;
  2185. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  2186. ip->i_df.if_ext_max =
  2187. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  2188. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  2189. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  2190. /*
  2191. * Bump the generation count so no one will be confused
  2192. * by reincarnations of this inode.
  2193. */
  2194. ip->i_d.di_gen++;
  2195. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  2196. if (delete) {
  2197. xfs_ifree_cluster(ip, tp, first_ino);
  2198. }
  2199. return 0;
  2200. }
  2201. /*
  2202. * Reallocate the space for if_broot based on the number of records
  2203. * being added or deleted as indicated in rec_diff. Move the records
  2204. * and pointers in if_broot to fit the new size. When shrinking this
  2205. * will eliminate holes between the records and pointers created by
  2206. * the caller. When growing this will create holes to be filled in
  2207. * by the caller.
  2208. *
  2209. * The caller must not request to add more records than would fit in
  2210. * the on-disk inode root. If the if_broot is currently NULL, then
  2211. * if we adding records one will be allocated. The caller must also
  2212. * not request that the number of records go below zero, although
  2213. * it can go to zero.
  2214. *
  2215. * ip -- the inode whose if_broot area is changing
  2216. * ext_diff -- the change in the number of records, positive or negative,
  2217. * requested for the if_broot array.
  2218. */
  2219. void
  2220. xfs_iroot_realloc(
  2221. xfs_inode_t *ip,
  2222. int rec_diff,
  2223. int whichfork)
  2224. {
  2225. int cur_max;
  2226. xfs_ifork_t *ifp;
  2227. xfs_bmbt_block_t *new_broot;
  2228. int new_max;
  2229. size_t new_size;
  2230. char *np;
  2231. char *op;
  2232. /*
  2233. * Handle the degenerate case quietly.
  2234. */
  2235. if (rec_diff == 0) {
  2236. return;
  2237. }
  2238. ifp = XFS_IFORK_PTR(ip, whichfork);
  2239. if (rec_diff > 0) {
  2240. /*
  2241. * If there wasn't any memory allocated before, just
  2242. * allocate it now and get out.
  2243. */
  2244. if (ifp->if_broot_bytes == 0) {
  2245. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2246. ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
  2247. KM_SLEEP);
  2248. ifp->if_broot_bytes = (int)new_size;
  2249. return;
  2250. }
  2251. /*
  2252. * If there is already an existing if_broot, then we need
  2253. * to realloc() it and shift the pointers to their new
  2254. * location. The records don't change location because
  2255. * they are kept butted up against the btree block header.
  2256. */
  2257. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2258. new_max = cur_max + rec_diff;
  2259. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2260. ifp->if_broot = (xfs_bmbt_block_t *)
  2261. kmem_realloc(ifp->if_broot,
  2262. new_size,
  2263. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2264. KM_SLEEP);
  2265. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2266. ifp->if_broot_bytes);
  2267. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2268. (int)new_size);
  2269. ifp->if_broot_bytes = (int)new_size;
  2270. ASSERT(ifp->if_broot_bytes <=
  2271. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2272. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2273. return;
  2274. }
  2275. /*
  2276. * rec_diff is less than 0. In this case, we are shrinking the
  2277. * if_broot buffer. It must already exist. If we go to zero
  2278. * records, just get rid of the root and clear the status bit.
  2279. */
  2280. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2281. cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
  2282. new_max = cur_max + rec_diff;
  2283. ASSERT(new_max >= 0);
  2284. if (new_max > 0)
  2285. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2286. else
  2287. new_size = 0;
  2288. if (new_size > 0) {
  2289. new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
  2290. /*
  2291. * First copy over the btree block header.
  2292. */
  2293. memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
  2294. } else {
  2295. new_broot = NULL;
  2296. ifp->if_flags &= ~XFS_IFBROOT;
  2297. }
  2298. /*
  2299. * Only copy the records and pointers if there are any.
  2300. */
  2301. if (new_max > 0) {
  2302. /*
  2303. * First copy the records.
  2304. */
  2305. op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
  2306. ifp->if_broot_bytes);
  2307. np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
  2308. (int)new_size);
  2309. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2310. /*
  2311. * Then copy the pointers.
  2312. */
  2313. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
  2314. ifp->if_broot_bytes);
  2315. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
  2316. (int)new_size);
  2317. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2318. }
  2319. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2320. ifp->if_broot = new_broot;
  2321. ifp->if_broot_bytes = (int)new_size;
  2322. ASSERT(ifp->if_broot_bytes <=
  2323. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2324. return;
  2325. }
  2326. /*
  2327. * This is called when the amount of space needed for if_data
  2328. * is increased or decreased. The change in size is indicated by
  2329. * the number of bytes that need to be added or deleted in the
  2330. * byte_diff parameter.
  2331. *
  2332. * If the amount of space needed has decreased below the size of the
  2333. * inline buffer, then switch to using the inline buffer. Otherwise,
  2334. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2335. * to what is needed.
  2336. *
  2337. * ip -- the inode whose if_data area is changing
  2338. * byte_diff -- the change in the number of bytes, positive or negative,
  2339. * requested for the if_data array.
  2340. */
  2341. void
  2342. xfs_idata_realloc(
  2343. xfs_inode_t *ip,
  2344. int byte_diff,
  2345. int whichfork)
  2346. {
  2347. xfs_ifork_t *ifp;
  2348. int new_size;
  2349. int real_size;
  2350. if (byte_diff == 0) {
  2351. return;
  2352. }
  2353. ifp = XFS_IFORK_PTR(ip, whichfork);
  2354. new_size = (int)ifp->if_bytes + byte_diff;
  2355. ASSERT(new_size >= 0);
  2356. if (new_size == 0) {
  2357. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2358. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2359. }
  2360. ifp->if_u1.if_data = NULL;
  2361. real_size = 0;
  2362. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2363. /*
  2364. * If the valid extents/data can fit in if_inline_ext/data,
  2365. * copy them from the malloc'd vector and free it.
  2366. */
  2367. if (ifp->if_u1.if_data == NULL) {
  2368. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2369. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2370. ASSERT(ifp->if_real_bytes != 0);
  2371. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2372. new_size);
  2373. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2374. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2375. }
  2376. real_size = 0;
  2377. } else {
  2378. /*
  2379. * Stuck with malloc/realloc.
  2380. * For inline data, the underlying buffer must be
  2381. * a multiple of 4 bytes in size so that it can be
  2382. * logged and stay on word boundaries. We enforce
  2383. * that here.
  2384. */
  2385. real_size = roundup(new_size, 4);
  2386. if (ifp->if_u1.if_data == NULL) {
  2387. ASSERT(ifp->if_real_bytes == 0);
  2388. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2389. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2390. /*
  2391. * Only do the realloc if the underlying size
  2392. * is really changing.
  2393. */
  2394. if (ifp->if_real_bytes != real_size) {
  2395. ifp->if_u1.if_data =
  2396. kmem_realloc(ifp->if_u1.if_data,
  2397. real_size,
  2398. ifp->if_real_bytes,
  2399. KM_SLEEP);
  2400. }
  2401. } else {
  2402. ASSERT(ifp->if_real_bytes == 0);
  2403. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2404. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2405. ifp->if_bytes);
  2406. }
  2407. }
  2408. ifp->if_real_bytes = real_size;
  2409. ifp->if_bytes = new_size;
  2410. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2411. }
  2412. /*
  2413. * Map inode to disk block and offset.
  2414. *
  2415. * mp -- the mount point structure for the current file system
  2416. * tp -- the current transaction
  2417. * ino -- the inode number of the inode to be located
  2418. * imap -- this structure is filled in with the information necessary
  2419. * to retrieve the given inode from disk
  2420. * flags -- flags to pass to xfs_dilocate indicating whether or not
  2421. * lookups in the inode btree were OK or not
  2422. */
  2423. int
  2424. xfs_imap(
  2425. xfs_mount_t *mp,
  2426. xfs_trans_t *tp,
  2427. xfs_ino_t ino,
  2428. xfs_imap_t *imap,
  2429. uint flags)
  2430. {
  2431. xfs_fsblock_t fsbno;
  2432. int len;
  2433. int off;
  2434. int error;
  2435. fsbno = imap->im_blkno ?
  2436. XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
  2437. error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
  2438. if (error != 0) {
  2439. return error;
  2440. }
  2441. imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
  2442. imap->im_len = XFS_FSB_TO_BB(mp, len);
  2443. imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
  2444. imap->im_ioffset = (ushort)off;
  2445. imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
  2446. return 0;
  2447. }
  2448. void
  2449. xfs_idestroy_fork(
  2450. xfs_inode_t *ip,
  2451. int whichfork)
  2452. {
  2453. xfs_ifork_t *ifp;
  2454. ifp = XFS_IFORK_PTR(ip, whichfork);
  2455. if (ifp->if_broot != NULL) {
  2456. kmem_free(ifp->if_broot, ifp->if_broot_bytes);
  2457. ifp->if_broot = NULL;
  2458. }
  2459. /*
  2460. * If the format is local, then we can't have an extents
  2461. * array so just look for an inline data array. If we're
  2462. * not local then we may or may not have an extents list,
  2463. * so check and free it up if we do.
  2464. */
  2465. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2466. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2467. (ifp->if_u1.if_data != NULL)) {
  2468. ASSERT(ifp->if_real_bytes != 0);
  2469. kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
  2470. ifp->if_u1.if_data = NULL;
  2471. ifp->if_real_bytes = 0;
  2472. }
  2473. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2474. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2475. ((ifp->if_u1.if_extents != NULL) &&
  2476. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2477. ASSERT(ifp->if_real_bytes != 0);
  2478. xfs_iext_destroy(ifp);
  2479. }
  2480. ASSERT(ifp->if_u1.if_extents == NULL ||
  2481. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2482. ASSERT(ifp->if_real_bytes == 0);
  2483. if (whichfork == XFS_ATTR_FORK) {
  2484. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2485. ip->i_afp = NULL;
  2486. }
  2487. }
  2488. /*
  2489. * This is called free all the memory associated with an inode.
  2490. * It must free the inode itself and any buffers allocated for
  2491. * if_extents/if_data and if_broot. It must also free the lock
  2492. * associated with the inode.
  2493. */
  2494. void
  2495. xfs_idestroy(
  2496. xfs_inode_t *ip)
  2497. {
  2498. switch (ip->i_d.di_mode & S_IFMT) {
  2499. case S_IFREG:
  2500. case S_IFDIR:
  2501. case S_IFLNK:
  2502. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  2503. break;
  2504. }
  2505. if (ip->i_afp)
  2506. xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  2507. mrfree(&ip->i_lock);
  2508. mrfree(&ip->i_iolock);
  2509. freesema(&ip->i_flock);
  2510. #ifdef XFS_BMAP_TRACE
  2511. ktrace_free(ip->i_xtrace);
  2512. #endif
  2513. #ifdef XFS_BMBT_TRACE
  2514. ktrace_free(ip->i_btrace);
  2515. #endif
  2516. #ifdef XFS_RW_TRACE
  2517. ktrace_free(ip->i_rwtrace);
  2518. #endif
  2519. #ifdef XFS_ILOCK_TRACE
  2520. ktrace_free(ip->i_lock_trace);
  2521. #endif
  2522. #ifdef XFS_DIR2_TRACE
  2523. ktrace_free(ip->i_dir_trace);
  2524. #endif
  2525. if (ip->i_itemp) {
  2526. /* XXXdpd should be able to assert this but shutdown
  2527. * is leaving the AIL behind. */
  2528. ASSERT(((ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL) == 0) ||
  2529. XFS_FORCED_SHUTDOWN(ip->i_mount));
  2530. xfs_inode_item_destroy(ip);
  2531. }
  2532. kmem_zone_free(xfs_inode_zone, ip);
  2533. }
  2534. /*
  2535. * Increment the pin count of the given buffer.
  2536. * This value is protected by ipinlock spinlock in the mount structure.
  2537. */
  2538. void
  2539. xfs_ipin(
  2540. xfs_inode_t *ip)
  2541. {
  2542. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
  2543. atomic_inc(&ip->i_pincount);
  2544. }
  2545. /*
  2546. * Decrement the pin count of the given inode, and wake up
  2547. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2548. * inode must have been previously pinned with a call to xfs_ipin().
  2549. */
  2550. void
  2551. xfs_iunpin(
  2552. xfs_inode_t *ip)
  2553. {
  2554. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2555. if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
  2556. /*
  2557. * If the inode is currently being reclaimed, the link between
  2558. * the bhv_vnode and the xfs_inode will be broken after the
  2559. * XFS_IRECLAIM* flag is set. Hence, if these flags are not
  2560. * set, then we can move forward and mark the linux inode dirty
  2561. * knowing that it is still valid as it won't freed until after
  2562. * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
  2563. * i_flags_lock is used to synchronise the setting of the
  2564. * XFS_IRECLAIM* flags and the breaking of the link, and so we
  2565. * can execute atomically w.r.t to reclaim by holding this lock
  2566. * here.
  2567. *
  2568. * However, we still need to issue the unpin wakeup call as the
  2569. * inode reclaim may be blocked waiting for the inode to become
  2570. * unpinned.
  2571. */
  2572. if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
  2573. bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
  2574. struct inode *inode = NULL;
  2575. BUG_ON(vp == NULL);
  2576. inode = vn_to_inode(vp);
  2577. BUG_ON(inode->i_state & I_CLEAR);
  2578. /* make sync come back and flush this inode */
  2579. if (!(inode->i_state & (I_NEW|I_FREEING)))
  2580. mark_inode_dirty_sync(inode);
  2581. }
  2582. spin_unlock(&ip->i_flags_lock);
  2583. wake_up(&ip->i_ipin_wait);
  2584. }
  2585. }
  2586. /*
  2587. * This is called to wait for the given inode to be unpinned.
  2588. * It will sleep until this happens. The caller must have the
  2589. * inode locked in at least shared mode so that the buffer cannot
  2590. * be subsequently pinned once someone is waiting for it to be
  2591. * unpinned.
  2592. */
  2593. STATIC void
  2594. xfs_iunpin_wait(
  2595. xfs_inode_t *ip)
  2596. {
  2597. xfs_inode_log_item_t *iip;
  2598. xfs_lsn_t lsn;
  2599. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
  2600. if (atomic_read(&ip->i_pincount) == 0) {
  2601. return;
  2602. }
  2603. iip = ip->i_itemp;
  2604. if (iip && iip->ili_last_lsn) {
  2605. lsn = iip->ili_last_lsn;
  2606. } else {
  2607. lsn = (xfs_lsn_t)0;
  2608. }
  2609. /*
  2610. * Give the log a push so we don't wait here too long.
  2611. */
  2612. xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
  2613. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2614. }
  2615. /*
  2616. * xfs_iextents_copy()
  2617. *
  2618. * This is called to copy the REAL extents (as opposed to the delayed
  2619. * allocation extents) from the inode into the given buffer. It
  2620. * returns the number of bytes copied into the buffer.
  2621. *
  2622. * If there are no delayed allocation extents, then we can just
  2623. * memcpy() the extents into the buffer. Otherwise, we need to
  2624. * examine each extent in turn and skip those which are delayed.
  2625. */
  2626. int
  2627. xfs_iextents_copy(
  2628. xfs_inode_t *ip,
  2629. xfs_bmbt_rec_t *buffer,
  2630. int whichfork)
  2631. {
  2632. int copied;
  2633. xfs_bmbt_rec_t *dest_ep;
  2634. xfs_bmbt_rec_t *ep;
  2635. #ifdef XFS_BMAP_TRACE
  2636. static char fname[] = "xfs_iextents_copy";
  2637. #endif
  2638. int i;
  2639. xfs_ifork_t *ifp;
  2640. int nrecs;
  2641. xfs_fsblock_t start_block;
  2642. ifp = XFS_IFORK_PTR(ip, whichfork);
  2643. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2644. ASSERT(ifp->if_bytes > 0);
  2645. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2646. xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
  2647. ASSERT(nrecs > 0);
  2648. /*
  2649. * There are some delayed allocation extents in the
  2650. * inode, so copy the extents one at a time and skip
  2651. * the delayed ones. There must be at least one
  2652. * non-delayed extent.
  2653. */
  2654. dest_ep = buffer;
  2655. copied = 0;
  2656. for (i = 0; i < nrecs; i++) {
  2657. ep = xfs_iext_get_ext(ifp, i);
  2658. start_block = xfs_bmbt_get_startblock(ep);
  2659. if (ISNULLSTARTBLOCK(start_block)) {
  2660. /*
  2661. * It's a delayed allocation extent, so skip it.
  2662. */
  2663. continue;
  2664. }
  2665. /* Translate to on disk format */
  2666. put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
  2667. (__uint64_t*)&dest_ep->l0);
  2668. put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
  2669. (__uint64_t*)&dest_ep->l1);
  2670. dest_ep++;
  2671. copied++;
  2672. }
  2673. ASSERT(copied != 0);
  2674. xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
  2675. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2676. }
  2677. /*
  2678. * Each of the following cases stores data into the same region
  2679. * of the on-disk inode, so only one of them can be valid at
  2680. * any given time. While it is possible to have conflicting formats
  2681. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2682. * in EXTENTS format, this can only happen when the fork has
  2683. * changed formats after being modified but before being flushed.
  2684. * In these cases, the format always takes precedence, because the
  2685. * format indicates the current state of the fork.
  2686. */
  2687. /*ARGSUSED*/
  2688. STATIC int
  2689. xfs_iflush_fork(
  2690. xfs_inode_t *ip,
  2691. xfs_dinode_t *dip,
  2692. xfs_inode_log_item_t *iip,
  2693. int whichfork,
  2694. xfs_buf_t *bp)
  2695. {
  2696. char *cp;
  2697. xfs_ifork_t *ifp;
  2698. xfs_mount_t *mp;
  2699. #ifdef XFS_TRANS_DEBUG
  2700. int first;
  2701. #endif
  2702. static const short brootflag[2] =
  2703. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2704. static const short dataflag[2] =
  2705. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2706. static const short extflag[2] =
  2707. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2708. if (iip == NULL)
  2709. return 0;
  2710. ifp = XFS_IFORK_PTR(ip, whichfork);
  2711. /*
  2712. * This can happen if we gave up in iformat in an error path,
  2713. * for the attribute fork.
  2714. */
  2715. if (ifp == NULL) {
  2716. ASSERT(whichfork == XFS_ATTR_FORK);
  2717. return 0;
  2718. }
  2719. cp = XFS_DFORK_PTR(dip, whichfork);
  2720. mp = ip->i_mount;
  2721. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2722. case XFS_DINODE_FMT_LOCAL:
  2723. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2724. (ifp->if_bytes > 0)) {
  2725. ASSERT(ifp->if_u1.if_data != NULL);
  2726. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2727. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2728. }
  2729. break;
  2730. case XFS_DINODE_FMT_EXTENTS:
  2731. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2732. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2733. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2734. (ifp->if_bytes == 0));
  2735. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2736. (ifp->if_bytes > 0));
  2737. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2738. (ifp->if_bytes > 0)) {
  2739. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2740. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2741. whichfork);
  2742. }
  2743. break;
  2744. case XFS_DINODE_FMT_BTREE:
  2745. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2746. (ifp->if_broot_bytes > 0)) {
  2747. ASSERT(ifp->if_broot != NULL);
  2748. ASSERT(ifp->if_broot_bytes <=
  2749. (XFS_IFORK_SIZE(ip, whichfork) +
  2750. XFS_BROOT_SIZE_ADJ));
  2751. xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
  2752. (xfs_bmdr_block_t *)cp,
  2753. XFS_DFORK_SIZE(dip, mp, whichfork));
  2754. }
  2755. break;
  2756. case XFS_DINODE_FMT_DEV:
  2757. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2758. ASSERT(whichfork == XFS_DATA_FORK);
  2759. INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
  2760. }
  2761. break;
  2762. case XFS_DINODE_FMT_UUID:
  2763. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2764. ASSERT(whichfork == XFS_DATA_FORK);
  2765. memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
  2766. sizeof(uuid_t));
  2767. }
  2768. break;
  2769. default:
  2770. ASSERT(0);
  2771. break;
  2772. }
  2773. return 0;
  2774. }
  2775. /*
  2776. * xfs_iflush() will write a modified inode's changes out to the
  2777. * inode's on disk home. The caller must have the inode lock held
  2778. * in at least shared mode and the inode flush semaphore must be
  2779. * held as well. The inode lock will still be held upon return from
  2780. * the call and the caller is free to unlock it.
  2781. * The inode flush lock will be unlocked when the inode reaches the disk.
  2782. * The flags indicate how the inode's buffer should be written out.
  2783. */
  2784. int
  2785. xfs_iflush(
  2786. xfs_inode_t *ip,
  2787. uint flags)
  2788. {
  2789. xfs_inode_log_item_t *iip;
  2790. xfs_buf_t *bp;
  2791. xfs_dinode_t *dip;
  2792. xfs_mount_t *mp;
  2793. int error;
  2794. /* REFERENCED */
  2795. xfs_chash_t *ch;
  2796. xfs_inode_t *iq;
  2797. int clcount; /* count of inodes clustered */
  2798. int bufwasdelwri;
  2799. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2800. SPLDECL(s);
  2801. XFS_STATS_INC(xs_iflush_count);
  2802. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  2803. ASSERT(issemalocked(&(ip->i_flock)));
  2804. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2805. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2806. iip = ip->i_itemp;
  2807. mp = ip->i_mount;
  2808. /*
  2809. * If the inode isn't dirty, then just release the inode
  2810. * flush lock and do nothing.
  2811. */
  2812. if ((ip->i_update_core == 0) &&
  2813. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2814. ASSERT((iip != NULL) ?
  2815. !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
  2816. xfs_ifunlock(ip);
  2817. return 0;
  2818. }
  2819. /*
  2820. * We can't flush the inode until it is unpinned, so
  2821. * wait for it. We know noone new can pin it, because
  2822. * we are holding the inode lock shared and you need
  2823. * to hold it exclusively to pin the inode.
  2824. */
  2825. xfs_iunpin_wait(ip);
  2826. /*
  2827. * This may have been unpinned because the filesystem is shutting
  2828. * down forcibly. If that's the case we must not write this inode
  2829. * to disk, because the log record didn't make it to disk!
  2830. */
  2831. if (XFS_FORCED_SHUTDOWN(mp)) {
  2832. ip->i_update_core = 0;
  2833. if (iip)
  2834. iip->ili_format.ilf_fields = 0;
  2835. xfs_ifunlock(ip);
  2836. return XFS_ERROR(EIO);
  2837. }
  2838. /*
  2839. * Get the buffer containing the on-disk inode.
  2840. */
  2841. error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
  2842. if (error) {
  2843. xfs_ifunlock(ip);
  2844. return error;
  2845. }
  2846. /*
  2847. * Decide how buffer will be flushed out. This is done before
  2848. * the call to xfs_iflush_int because this field is zeroed by it.
  2849. */
  2850. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2851. /*
  2852. * Flush out the inode buffer according to the directions
  2853. * of the caller. In the cases where the caller has given
  2854. * us a choice choose the non-delwri case. This is because
  2855. * the inode is in the AIL and we need to get it out soon.
  2856. */
  2857. switch (flags) {
  2858. case XFS_IFLUSH_SYNC:
  2859. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2860. flags = 0;
  2861. break;
  2862. case XFS_IFLUSH_ASYNC:
  2863. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2864. flags = INT_ASYNC;
  2865. break;
  2866. case XFS_IFLUSH_DELWRI:
  2867. flags = INT_DELWRI;
  2868. break;
  2869. default:
  2870. ASSERT(0);
  2871. flags = 0;
  2872. break;
  2873. }
  2874. } else {
  2875. switch (flags) {
  2876. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2877. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2878. case XFS_IFLUSH_DELWRI:
  2879. flags = INT_DELWRI;
  2880. break;
  2881. case XFS_IFLUSH_ASYNC:
  2882. flags = INT_ASYNC;
  2883. break;
  2884. case XFS_IFLUSH_SYNC:
  2885. flags = 0;
  2886. break;
  2887. default:
  2888. ASSERT(0);
  2889. flags = 0;
  2890. break;
  2891. }
  2892. }
  2893. /*
  2894. * First flush out the inode that xfs_iflush was called with.
  2895. */
  2896. error = xfs_iflush_int(ip, bp);
  2897. if (error) {
  2898. goto corrupt_out;
  2899. }
  2900. /*
  2901. * inode clustering:
  2902. * see if other inodes can be gathered into this write
  2903. */
  2904. ip->i_chash->chl_buf = bp;
  2905. ch = XFS_CHASH(mp, ip->i_blkno);
  2906. s = mutex_spinlock(&ch->ch_lock);
  2907. clcount = 0;
  2908. for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
  2909. /*
  2910. * Do an un-protected check to see if the inode is dirty and
  2911. * is a candidate for flushing. These checks will be repeated
  2912. * later after the appropriate locks are acquired.
  2913. */
  2914. iip = iq->i_itemp;
  2915. if ((iq->i_update_core == 0) &&
  2916. ((iip == NULL) ||
  2917. !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
  2918. xfs_ipincount(iq) == 0) {
  2919. continue;
  2920. }
  2921. /*
  2922. * Try to get locks. If any are unavailable,
  2923. * then this inode cannot be flushed and is skipped.
  2924. */
  2925. /* get inode locks (just i_lock) */
  2926. if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
  2927. /* get inode flush lock */
  2928. if (xfs_iflock_nowait(iq)) {
  2929. /* check if pinned */
  2930. if (xfs_ipincount(iq) == 0) {
  2931. /* arriving here means that
  2932. * this inode can be flushed.
  2933. * first re-check that it's
  2934. * dirty
  2935. */
  2936. iip = iq->i_itemp;
  2937. if ((iq->i_update_core != 0)||
  2938. ((iip != NULL) &&
  2939. (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  2940. clcount++;
  2941. error = xfs_iflush_int(iq, bp);
  2942. if (error) {
  2943. xfs_iunlock(iq,
  2944. XFS_ILOCK_SHARED);
  2945. goto cluster_corrupt_out;
  2946. }
  2947. } else {
  2948. xfs_ifunlock(iq);
  2949. }
  2950. } else {
  2951. xfs_ifunlock(iq);
  2952. }
  2953. }
  2954. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2955. }
  2956. }
  2957. mutex_spinunlock(&ch->ch_lock, s);
  2958. if (clcount) {
  2959. XFS_STATS_INC(xs_icluster_flushcnt);
  2960. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2961. }
  2962. /*
  2963. * If the buffer is pinned then push on the log so we won't
  2964. * get stuck waiting in the write for too long.
  2965. */
  2966. if (XFS_BUF_ISPINNED(bp)){
  2967. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2968. }
  2969. if (flags & INT_DELWRI) {
  2970. xfs_bdwrite(mp, bp);
  2971. } else if (flags & INT_ASYNC) {
  2972. xfs_bawrite(mp, bp);
  2973. } else {
  2974. error = xfs_bwrite(mp, bp);
  2975. }
  2976. return error;
  2977. corrupt_out:
  2978. xfs_buf_relse(bp);
  2979. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2980. xfs_iflush_abort(ip);
  2981. /*
  2982. * Unlocks the flush lock
  2983. */
  2984. return XFS_ERROR(EFSCORRUPTED);
  2985. cluster_corrupt_out:
  2986. /* Corruption detected in the clustering loop. Invalidate the
  2987. * inode buffer and shut down the filesystem.
  2988. */
  2989. mutex_spinunlock(&ch->ch_lock, s);
  2990. /*
  2991. * Clean up the buffer. If it was B_DELWRI, just release it --
  2992. * brelse can handle it with no problems. If not, shut down the
  2993. * filesystem before releasing the buffer.
  2994. */
  2995. if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
  2996. xfs_buf_relse(bp);
  2997. }
  2998. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2999. if(!bufwasdelwri) {
  3000. /*
  3001. * Just like incore_relse: if we have b_iodone functions,
  3002. * mark the buffer as an error and call them. Otherwise
  3003. * mark it as stale and brelse.
  3004. */
  3005. if (XFS_BUF_IODONE_FUNC(bp)) {
  3006. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  3007. XFS_BUF_UNDONE(bp);
  3008. XFS_BUF_STALE(bp);
  3009. XFS_BUF_SHUT(bp);
  3010. XFS_BUF_ERROR(bp,EIO);
  3011. xfs_biodone(bp);
  3012. } else {
  3013. XFS_BUF_STALE(bp);
  3014. xfs_buf_relse(bp);
  3015. }
  3016. }
  3017. xfs_iflush_abort(iq);
  3018. /*
  3019. * Unlocks the flush lock
  3020. */
  3021. return XFS_ERROR(EFSCORRUPTED);
  3022. }
  3023. STATIC int
  3024. xfs_iflush_int(
  3025. xfs_inode_t *ip,
  3026. xfs_buf_t *bp)
  3027. {
  3028. xfs_inode_log_item_t *iip;
  3029. xfs_dinode_t *dip;
  3030. xfs_mount_t *mp;
  3031. #ifdef XFS_TRANS_DEBUG
  3032. int first;
  3033. #endif
  3034. SPLDECL(s);
  3035. ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
  3036. ASSERT(issemalocked(&(ip->i_flock)));
  3037. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  3038. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  3039. iip = ip->i_itemp;
  3040. mp = ip->i_mount;
  3041. /*
  3042. * If the inode isn't dirty, then just release the inode
  3043. * flush lock and do nothing.
  3044. */
  3045. if ((ip->i_update_core == 0) &&
  3046. ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
  3047. xfs_ifunlock(ip);
  3048. return 0;
  3049. }
  3050. /* set *dip = inode's place in the buffer */
  3051. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
  3052. /*
  3053. * Clear i_update_core before copying out the data.
  3054. * This is for coordination with our timestamp updates
  3055. * that don't hold the inode lock. They will always
  3056. * update the timestamps BEFORE setting i_update_core,
  3057. * so if we clear i_update_core after they set it we
  3058. * are guaranteed to see their updates to the timestamps.
  3059. * I believe that this depends on strongly ordered memory
  3060. * semantics, but we have that. We use the SYNCHRONIZE
  3061. * macro to make sure that the compiler does not reorder
  3062. * the i_update_core access below the data copy below.
  3063. */
  3064. ip->i_update_core = 0;
  3065. SYNCHRONIZE();
  3066. /*
  3067. * Make sure to get the latest atime from the Linux inode.
  3068. */
  3069. xfs_synchronize_atime(ip);
  3070. if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
  3071. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  3072. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3073. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  3074. ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
  3075. goto corrupt_out;
  3076. }
  3077. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  3078. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  3079. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3080. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  3081. ip->i_ino, ip, ip->i_d.di_magic);
  3082. goto corrupt_out;
  3083. }
  3084. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  3085. if (XFS_TEST_ERROR(
  3086. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3087. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  3088. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  3089. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3090. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  3091. ip->i_ino, ip);
  3092. goto corrupt_out;
  3093. }
  3094. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  3095. if (XFS_TEST_ERROR(
  3096. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  3097. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  3098. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  3099. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  3100. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3101. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  3102. ip->i_ino, ip);
  3103. goto corrupt_out;
  3104. }
  3105. }
  3106. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  3107. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  3108. XFS_RANDOM_IFLUSH_5)) {
  3109. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3110. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  3111. ip->i_ino,
  3112. ip->i_d.di_nextents + ip->i_d.di_anextents,
  3113. ip->i_d.di_nblocks,
  3114. ip);
  3115. goto corrupt_out;
  3116. }
  3117. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  3118. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  3119. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  3120. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  3121. ip->i_ino, ip->i_d.di_forkoff, ip);
  3122. goto corrupt_out;
  3123. }
  3124. /*
  3125. * bump the flush iteration count, used to detect flushes which
  3126. * postdate a log record during recovery.
  3127. */
  3128. ip->i_d.di_flushiter++;
  3129. /*
  3130. * Copy the dirty parts of the inode into the on-disk
  3131. * inode. We always copy out the core of the inode,
  3132. * because if the inode is dirty at all the core must
  3133. * be.
  3134. */
  3135. xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
  3136. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  3137. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  3138. ip->i_d.di_flushiter = 0;
  3139. /*
  3140. * If this is really an old format inode and the superblock version
  3141. * has not been updated to support only new format inodes, then
  3142. * convert back to the old inode format. If the superblock version
  3143. * has been updated, then make the conversion permanent.
  3144. */
  3145. ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
  3146. XFS_SB_VERSION_HASNLINK(&mp->m_sb));
  3147. if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
  3148. if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
  3149. /*
  3150. * Convert it back.
  3151. */
  3152. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  3153. INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
  3154. } else {
  3155. /*
  3156. * The superblock version has already been bumped,
  3157. * so just make the conversion to the new inode
  3158. * format permanent.
  3159. */
  3160. ip->i_d.di_version = XFS_DINODE_VERSION_2;
  3161. INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
  3162. ip->i_d.di_onlink = 0;
  3163. dip->di_core.di_onlink = 0;
  3164. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  3165. memset(&(dip->di_core.di_pad[0]), 0,
  3166. sizeof(dip->di_core.di_pad));
  3167. ASSERT(ip->i_d.di_projid == 0);
  3168. }
  3169. }
  3170. if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
  3171. goto corrupt_out;
  3172. }
  3173. if (XFS_IFORK_Q(ip)) {
  3174. /*
  3175. * The only error from xfs_iflush_fork is on the data fork.
  3176. */
  3177. (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  3178. }
  3179. xfs_inobp_check(mp, bp);
  3180. /*
  3181. * We've recorded everything logged in the inode, so we'd
  3182. * like to clear the ilf_fields bits so we don't log and
  3183. * flush things unnecessarily. However, we can't stop
  3184. * logging all this information until the data we've copied
  3185. * into the disk buffer is written to disk. If we did we might
  3186. * overwrite the copy of the inode in the log with all the
  3187. * data after re-logging only part of it, and in the face of
  3188. * a crash we wouldn't have all the data we need to recover.
  3189. *
  3190. * What we do is move the bits to the ili_last_fields field.
  3191. * When logging the inode, these bits are moved back to the
  3192. * ilf_fields field. In the xfs_iflush_done() routine we
  3193. * clear ili_last_fields, since we know that the information
  3194. * those bits represent is permanently on disk. As long as
  3195. * the flush completes before the inode is logged again, then
  3196. * both ilf_fields and ili_last_fields will be cleared.
  3197. *
  3198. * We can play with the ilf_fields bits here, because the inode
  3199. * lock must be held exclusively in order to set bits there
  3200. * and the flush lock protects the ili_last_fields bits.
  3201. * Set ili_logged so the flush done
  3202. * routine can tell whether or not to look in the AIL.
  3203. * Also, store the current LSN of the inode so that we can tell
  3204. * whether the item has moved in the AIL from xfs_iflush_done().
  3205. * In order to read the lsn we need the AIL lock, because
  3206. * it is a 64 bit value that cannot be read atomically.
  3207. */
  3208. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  3209. iip->ili_last_fields = iip->ili_format.ilf_fields;
  3210. iip->ili_format.ilf_fields = 0;
  3211. iip->ili_logged = 1;
  3212. ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
  3213. AIL_LOCK(mp,s);
  3214. iip->ili_flush_lsn = iip->ili_item.li_lsn;
  3215. AIL_UNLOCK(mp, s);
  3216. /*
  3217. * Attach the function xfs_iflush_done to the inode's
  3218. * buffer. This will remove the inode from the AIL
  3219. * and unlock the inode's flush lock when the inode is
  3220. * completely written to disk.
  3221. */
  3222. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  3223. xfs_iflush_done, (xfs_log_item_t *)iip);
  3224. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  3225. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  3226. } else {
  3227. /*
  3228. * We're flushing an inode which is not in the AIL and has
  3229. * not been logged but has i_update_core set. For this
  3230. * case we can use a B_DELWRI flush and immediately drop
  3231. * the inode flush lock because we can avoid the whole
  3232. * AIL state thing. It's OK to drop the flush lock now,
  3233. * because we've already locked the buffer and to do anything
  3234. * you really need both.
  3235. */
  3236. if (iip != NULL) {
  3237. ASSERT(iip->ili_logged == 0);
  3238. ASSERT(iip->ili_last_fields == 0);
  3239. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  3240. }
  3241. xfs_ifunlock(ip);
  3242. }
  3243. return 0;
  3244. corrupt_out:
  3245. return XFS_ERROR(EFSCORRUPTED);
  3246. }
  3247. /*
  3248. * Flush all inactive inodes in mp.
  3249. */
  3250. void
  3251. xfs_iflush_all(
  3252. xfs_mount_t *mp)
  3253. {
  3254. xfs_inode_t *ip;
  3255. bhv_vnode_t *vp;
  3256. again:
  3257. XFS_MOUNT_ILOCK(mp);
  3258. ip = mp->m_inodes;
  3259. if (ip == NULL)
  3260. goto out;
  3261. do {
  3262. /* Make sure we skip markers inserted by sync */
  3263. if (ip->i_mount == NULL) {
  3264. ip = ip->i_mnext;
  3265. continue;
  3266. }
  3267. vp = XFS_ITOV_NULL(ip);
  3268. if (!vp) {
  3269. XFS_MOUNT_IUNLOCK(mp);
  3270. xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
  3271. goto again;
  3272. }
  3273. ASSERT(vn_count(vp) == 0);
  3274. ip = ip->i_mnext;
  3275. } while (ip != mp->m_inodes);
  3276. out:
  3277. XFS_MOUNT_IUNLOCK(mp);
  3278. }
  3279. /*
  3280. * xfs_iaccess: check accessibility of inode for mode.
  3281. */
  3282. int
  3283. xfs_iaccess(
  3284. xfs_inode_t *ip,
  3285. mode_t mode,
  3286. cred_t *cr)
  3287. {
  3288. int error;
  3289. mode_t orgmode = mode;
  3290. struct inode *inode = vn_to_inode(XFS_ITOV(ip));
  3291. if (mode & S_IWUSR) {
  3292. umode_t imode = inode->i_mode;
  3293. if (IS_RDONLY(inode) &&
  3294. (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
  3295. return XFS_ERROR(EROFS);
  3296. if (IS_IMMUTABLE(inode))
  3297. return XFS_ERROR(EACCES);
  3298. }
  3299. /*
  3300. * If there's an Access Control List it's used instead of
  3301. * the mode bits.
  3302. */
  3303. if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
  3304. return error ? XFS_ERROR(error) : 0;
  3305. if (current_fsuid(cr) != ip->i_d.di_uid) {
  3306. mode >>= 3;
  3307. if (!in_group_p((gid_t)ip->i_d.di_gid))
  3308. mode >>= 3;
  3309. }
  3310. /*
  3311. * If the DACs are ok we don't need any capability check.
  3312. */
  3313. if ((ip->i_d.di_mode & mode) == mode)
  3314. return 0;
  3315. /*
  3316. * Read/write DACs are always overridable.
  3317. * Executable DACs are overridable if at least one exec bit is set.
  3318. */
  3319. if (!(orgmode & S_IXUSR) ||
  3320. (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
  3321. if (capable_cred(cr, CAP_DAC_OVERRIDE))
  3322. return 0;
  3323. if ((orgmode == S_IRUSR) ||
  3324. (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
  3325. if (capable_cred(cr, CAP_DAC_READ_SEARCH))
  3326. return 0;
  3327. #ifdef NOISE
  3328. cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
  3329. #endif /* NOISE */
  3330. return XFS_ERROR(EACCES);
  3331. }
  3332. return XFS_ERROR(EACCES);
  3333. }
  3334. /*
  3335. * xfs_iroundup: round up argument to next power of two
  3336. */
  3337. uint
  3338. xfs_iroundup(
  3339. uint v)
  3340. {
  3341. int i;
  3342. uint m;
  3343. if ((v & (v - 1)) == 0)
  3344. return v;
  3345. ASSERT((v & 0x80000000) == 0);
  3346. if ((v & (v + 1)) == 0)
  3347. return v + 1;
  3348. for (i = 0, m = 1; i < 31; i++, m <<= 1) {
  3349. if (v & m)
  3350. continue;
  3351. v |= m;
  3352. if ((v & (v + 1)) == 0)
  3353. return v + 1;
  3354. }
  3355. ASSERT(0);
  3356. return( 0 );
  3357. }
  3358. #ifdef XFS_ILOCK_TRACE
  3359. ktrace_t *xfs_ilock_trace_buf;
  3360. void
  3361. xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
  3362. {
  3363. ktrace_enter(ip->i_lock_trace,
  3364. (void *)ip,
  3365. (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
  3366. (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
  3367. (void *)ra, /* caller of ilock */
  3368. (void *)(unsigned long)current_cpu(),
  3369. (void *)(unsigned long)current_pid(),
  3370. NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
  3371. }
  3372. #endif
  3373. /*
  3374. * Return a pointer to the extent record at file index idx.
  3375. */
  3376. xfs_bmbt_rec_t *
  3377. xfs_iext_get_ext(
  3378. xfs_ifork_t *ifp, /* inode fork pointer */
  3379. xfs_extnum_t idx) /* index of target extent */
  3380. {
  3381. ASSERT(idx >= 0);
  3382. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  3383. return ifp->if_u1.if_ext_irec->er_extbuf;
  3384. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3385. xfs_ext_irec_t *erp; /* irec pointer */
  3386. int erp_idx = 0; /* irec index */
  3387. xfs_extnum_t page_idx = idx; /* ext index in target list */
  3388. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3389. return &erp->er_extbuf[page_idx];
  3390. } else if (ifp->if_bytes) {
  3391. return &ifp->if_u1.if_extents[idx];
  3392. } else {
  3393. return NULL;
  3394. }
  3395. }
  3396. /*
  3397. * Insert new item(s) into the extent records for incore inode
  3398. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  3399. */
  3400. void
  3401. xfs_iext_insert(
  3402. xfs_ifork_t *ifp, /* inode fork pointer */
  3403. xfs_extnum_t idx, /* starting index of new items */
  3404. xfs_extnum_t count, /* number of inserted items */
  3405. xfs_bmbt_irec_t *new) /* items to insert */
  3406. {
  3407. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3408. xfs_extnum_t i; /* extent record index */
  3409. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3410. xfs_iext_add(ifp, idx, count);
  3411. for (i = idx; i < idx + count; i++, new++) {
  3412. ep = xfs_iext_get_ext(ifp, i);
  3413. xfs_bmbt_set_all(ep, new);
  3414. }
  3415. }
  3416. /*
  3417. * This is called when the amount of space required for incore file
  3418. * extents needs to be increased. The ext_diff parameter stores the
  3419. * number of new extents being added and the idx parameter contains
  3420. * the extent index where the new extents will be added. If the new
  3421. * extents are being appended, then we just need to (re)allocate and
  3422. * initialize the space. Otherwise, if the new extents are being
  3423. * inserted into the middle of the existing entries, a bit more work
  3424. * is required to make room for the new extents to be inserted. The
  3425. * caller is responsible for filling in the new extent entries upon
  3426. * return.
  3427. */
  3428. void
  3429. xfs_iext_add(
  3430. xfs_ifork_t *ifp, /* inode fork pointer */
  3431. xfs_extnum_t idx, /* index to begin adding exts */
  3432. int ext_diff) /* number of extents to add */
  3433. {
  3434. int byte_diff; /* new bytes being added */
  3435. int new_size; /* size of extents after adding */
  3436. xfs_extnum_t nextents; /* number of extents in file */
  3437. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3438. ASSERT((idx >= 0) && (idx <= nextents));
  3439. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3440. new_size = ifp->if_bytes + byte_diff;
  3441. /*
  3442. * If the new number of extents (nextents + ext_diff)
  3443. * fits inside the inode, then continue to use the inline
  3444. * extent buffer.
  3445. */
  3446. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3447. if (idx < nextents) {
  3448. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3449. &ifp->if_u2.if_inline_ext[idx],
  3450. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3451. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3452. }
  3453. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3454. ifp->if_real_bytes = 0;
  3455. ifp->if_lastex = nextents + ext_diff;
  3456. }
  3457. /*
  3458. * Otherwise use a linear (direct) extent list.
  3459. * If the extents are currently inside the inode,
  3460. * xfs_iext_realloc_direct will switch us from
  3461. * inline to direct extent allocation mode.
  3462. */
  3463. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3464. xfs_iext_realloc_direct(ifp, new_size);
  3465. if (idx < nextents) {
  3466. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3467. &ifp->if_u1.if_extents[idx],
  3468. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3469. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3470. }
  3471. }
  3472. /* Indirection array */
  3473. else {
  3474. xfs_ext_irec_t *erp;
  3475. int erp_idx = 0;
  3476. int page_idx = idx;
  3477. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3478. if (ifp->if_flags & XFS_IFEXTIREC) {
  3479. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3480. } else {
  3481. xfs_iext_irec_init(ifp);
  3482. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3483. erp = ifp->if_u1.if_ext_irec;
  3484. }
  3485. /* Extents fit in target extent page */
  3486. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3487. if (page_idx < erp->er_extcount) {
  3488. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3489. &erp->er_extbuf[page_idx],
  3490. (erp->er_extcount - page_idx) *
  3491. sizeof(xfs_bmbt_rec_t));
  3492. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3493. }
  3494. erp->er_extcount += ext_diff;
  3495. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3496. }
  3497. /* Insert a new extent page */
  3498. else if (erp) {
  3499. xfs_iext_add_indirect_multi(ifp,
  3500. erp_idx, page_idx, ext_diff);
  3501. }
  3502. /*
  3503. * If extent(s) are being appended to the last page in
  3504. * the indirection array and the new extent(s) don't fit
  3505. * in the page, then erp is NULL and erp_idx is set to
  3506. * the next index needed in the indirection array.
  3507. */
  3508. else {
  3509. int count = ext_diff;
  3510. while (count) {
  3511. erp = xfs_iext_irec_new(ifp, erp_idx);
  3512. erp->er_extcount = count;
  3513. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3514. if (count) {
  3515. erp_idx++;
  3516. }
  3517. }
  3518. }
  3519. }
  3520. ifp->if_bytes = new_size;
  3521. }
  3522. /*
  3523. * This is called when incore extents are being added to the indirection
  3524. * array and the new extents do not fit in the target extent list. The
  3525. * erp_idx parameter contains the irec index for the target extent list
  3526. * in the indirection array, and the idx parameter contains the extent
  3527. * index within the list. The number of extents being added is stored
  3528. * in the count parameter.
  3529. *
  3530. * |-------| |-------|
  3531. * | | | | idx - number of extents before idx
  3532. * | idx | | count |
  3533. * | | | | count - number of extents being inserted at idx
  3534. * |-------| |-------|
  3535. * | count | | nex2 | nex2 - number of extents after idx + count
  3536. * |-------| |-------|
  3537. */
  3538. void
  3539. xfs_iext_add_indirect_multi(
  3540. xfs_ifork_t *ifp, /* inode fork pointer */
  3541. int erp_idx, /* target extent irec index */
  3542. xfs_extnum_t idx, /* index within target list */
  3543. int count) /* new extents being added */
  3544. {
  3545. int byte_diff; /* new bytes being added */
  3546. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3547. xfs_extnum_t ext_diff; /* number of extents to add */
  3548. xfs_extnum_t ext_cnt; /* new extents still needed */
  3549. xfs_extnum_t nex2; /* extents after idx + count */
  3550. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3551. int nlists; /* number of irec's (lists) */
  3552. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3553. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3554. nex2 = erp->er_extcount - idx;
  3555. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3556. /*
  3557. * Save second part of target extent list
  3558. * (all extents past */
  3559. if (nex2) {
  3560. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3561. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
  3562. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3563. erp->er_extcount -= nex2;
  3564. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3565. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3566. }
  3567. /*
  3568. * Add the new extents to the end of the target
  3569. * list, then allocate new irec record(s) and
  3570. * extent buffer(s) as needed to store the rest
  3571. * of the new extents.
  3572. */
  3573. ext_cnt = count;
  3574. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3575. if (ext_diff) {
  3576. erp->er_extcount += ext_diff;
  3577. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3578. ext_cnt -= ext_diff;
  3579. }
  3580. while (ext_cnt) {
  3581. erp_idx++;
  3582. erp = xfs_iext_irec_new(ifp, erp_idx);
  3583. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3584. erp->er_extcount = ext_diff;
  3585. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3586. ext_cnt -= ext_diff;
  3587. }
  3588. /* Add nex2 extents back to indirection array */
  3589. if (nex2) {
  3590. xfs_extnum_t ext_avail;
  3591. int i;
  3592. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3593. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3594. i = 0;
  3595. /*
  3596. * If nex2 extents fit in the current page, append
  3597. * nex2_ep after the new extents.
  3598. */
  3599. if (nex2 <= ext_avail) {
  3600. i = erp->er_extcount;
  3601. }
  3602. /*
  3603. * Otherwise, check if space is available in the
  3604. * next page.
  3605. */
  3606. else if ((erp_idx < nlists - 1) &&
  3607. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3608. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3609. erp_idx++;
  3610. erp++;
  3611. /* Create a hole for nex2 extents */
  3612. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3613. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3614. }
  3615. /*
  3616. * Final choice, create a new extent page for
  3617. * nex2 extents.
  3618. */
  3619. else {
  3620. erp_idx++;
  3621. erp = xfs_iext_irec_new(ifp, erp_idx);
  3622. }
  3623. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3624. kmem_free(nex2_ep, byte_diff);
  3625. erp->er_extcount += nex2;
  3626. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3627. }
  3628. }
  3629. /*
  3630. * This is called when the amount of space required for incore file
  3631. * extents needs to be decreased. The ext_diff parameter stores the
  3632. * number of extents to be removed and the idx parameter contains
  3633. * the extent index where the extents will be removed from.
  3634. *
  3635. * If the amount of space needed has decreased below the linear
  3636. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3637. * extent array. Otherwise, use kmem_realloc() to adjust the
  3638. * size to what is needed.
  3639. */
  3640. void
  3641. xfs_iext_remove(
  3642. xfs_ifork_t *ifp, /* inode fork pointer */
  3643. xfs_extnum_t idx, /* index to begin removing exts */
  3644. int ext_diff) /* number of extents to remove */
  3645. {
  3646. xfs_extnum_t nextents; /* number of extents in file */
  3647. int new_size; /* size of extents after removal */
  3648. ASSERT(ext_diff > 0);
  3649. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3650. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3651. if (new_size == 0) {
  3652. xfs_iext_destroy(ifp);
  3653. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3654. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3655. } else if (ifp->if_real_bytes) {
  3656. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3657. } else {
  3658. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3659. }
  3660. ifp->if_bytes = new_size;
  3661. }
  3662. /*
  3663. * This removes ext_diff extents from the inline buffer, beginning
  3664. * at extent index idx.
  3665. */
  3666. void
  3667. xfs_iext_remove_inline(
  3668. xfs_ifork_t *ifp, /* inode fork pointer */
  3669. xfs_extnum_t idx, /* index to begin removing exts */
  3670. int ext_diff) /* number of extents to remove */
  3671. {
  3672. int nextents; /* number of extents in file */
  3673. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3674. ASSERT(idx < XFS_INLINE_EXTS);
  3675. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3676. ASSERT(((nextents - ext_diff) > 0) &&
  3677. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3678. if (idx + ext_diff < nextents) {
  3679. memmove(&ifp->if_u2.if_inline_ext[idx],
  3680. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3681. (nextents - (idx + ext_diff)) *
  3682. sizeof(xfs_bmbt_rec_t));
  3683. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3684. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3685. } else {
  3686. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3687. ext_diff * sizeof(xfs_bmbt_rec_t));
  3688. }
  3689. }
  3690. /*
  3691. * This removes ext_diff extents from a linear (direct) extent list,
  3692. * beginning at extent index idx. If the extents are being removed
  3693. * from the end of the list (ie. truncate) then we just need to re-
  3694. * allocate the list to remove the extra space. Otherwise, if the
  3695. * extents are being removed from the middle of the existing extent
  3696. * entries, then we first need to move the extent records beginning
  3697. * at idx + ext_diff up in the list to overwrite the records being
  3698. * removed, then remove the extra space via kmem_realloc.
  3699. */
  3700. void
  3701. xfs_iext_remove_direct(
  3702. xfs_ifork_t *ifp, /* inode fork pointer */
  3703. xfs_extnum_t idx, /* index to begin removing exts */
  3704. int ext_diff) /* number of extents to remove */
  3705. {
  3706. xfs_extnum_t nextents; /* number of extents in file */
  3707. int new_size; /* size of extents after removal */
  3708. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3709. new_size = ifp->if_bytes -
  3710. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3711. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3712. if (new_size == 0) {
  3713. xfs_iext_destroy(ifp);
  3714. return;
  3715. }
  3716. /* Move extents up in the list (if needed) */
  3717. if (idx + ext_diff < nextents) {
  3718. memmove(&ifp->if_u1.if_extents[idx],
  3719. &ifp->if_u1.if_extents[idx + ext_diff],
  3720. (nextents - (idx + ext_diff)) *
  3721. sizeof(xfs_bmbt_rec_t));
  3722. }
  3723. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3724. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3725. /*
  3726. * Reallocate the direct extent list. If the extents
  3727. * will fit inside the inode then xfs_iext_realloc_direct
  3728. * will switch from direct to inline extent allocation
  3729. * mode for us.
  3730. */
  3731. xfs_iext_realloc_direct(ifp, new_size);
  3732. ifp->if_bytes = new_size;
  3733. }
  3734. /*
  3735. * This is called when incore extents are being removed from the
  3736. * indirection array and the extents being removed span multiple extent
  3737. * buffers. The idx parameter contains the file extent index where we
  3738. * want to begin removing extents, and the count parameter contains
  3739. * how many extents need to be removed.
  3740. *
  3741. * |-------| |-------|
  3742. * | nex1 | | | nex1 - number of extents before idx
  3743. * |-------| | count |
  3744. * | | | | count - number of extents being removed at idx
  3745. * | count | |-------|
  3746. * | | | nex2 | nex2 - number of extents after idx + count
  3747. * |-------| |-------|
  3748. */
  3749. void
  3750. xfs_iext_remove_indirect(
  3751. xfs_ifork_t *ifp, /* inode fork pointer */
  3752. xfs_extnum_t idx, /* index to begin removing extents */
  3753. int count) /* number of extents to remove */
  3754. {
  3755. xfs_ext_irec_t *erp; /* indirection array pointer */
  3756. int erp_idx = 0; /* indirection array index */
  3757. xfs_extnum_t ext_cnt; /* extents left to remove */
  3758. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3759. xfs_extnum_t nex1; /* number of extents before idx */
  3760. xfs_extnum_t nex2; /* extents after idx + count */
  3761. int nlists; /* entries in indirection array */
  3762. int page_idx = idx; /* index in target extent list */
  3763. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3764. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3765. ASSERT(erp != NULL);
  3766. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3767. nex1 = page_idx;
  3768. ext_cnt = count;
  3769. while (ext_cnt) {
  3770. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3771. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3772. /*
  3773. * Check for deletion of entire list;
  3774. * xfs_iext_irec_remove() updates extent offsets.
  3775. */
  3776. if (ext_diff == erp->er_extcount) {
  3777. xfs_iext_irec_remove(ifp, erp_idx);
  3778. ext_cnt -= ext_diff;
  3779. nex1 = 0;
  3780. if (ext_cnt) {
  3781. ASSERT(erp_idx < ifp->if_real_bytes /
  3782. XFS_IEXT_BUFSZ);
  3783. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3784. nex1 = 0;
  3785. continue;
  3786. } else {
  3787. break;
  3788. }
  3789. }
  3790. /* Move extents up (if needed) */
  3791. if (nex2) {
  3792. memmove(&erp->er_extbuf[nex1],
  3793. &erp->er_extbuf[nex1 + ext_diff],
  3794. nex2 * sizeof(xfs_bmbt_rec_t));
  3795. }
  3796. /* Zero out rest of page */
  3797. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3798. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3799. /* Update remaining counters */
  3800. erp->er_extcount -= ext_diff;
  3801. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3802. ext_cnt -= ext_diff;
  3803. nex1 = 0;
  3804. erp_idx++;
  3805. erp++;
  3806. }
  3807. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3808. xfs_iext_irec_compact(ifp);
  3809. }
  3810. /*
  3811. * Create, destroy, or resize a linear (direct) block of extents.
  3812. */
  3813. void
  3814. xfs_iext_realloc_direct(
  3815. xfs_ifork_t *ifp, /* inode fork pointer */
  3816. int new_size) /* new size of extents */
  3817. {
  3818. int rnew_size; /* real new size of extents */
  3819. rnew_size = new_size;
  3820. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3821. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3822. (new_size != ifp->if_real_bytes)));
  3823. /* Free extent records */
  3824. if (new_size == 0) {
  3825. xfs_iext_destroy(ifp);
  3826. }
  3827. /* Resize direct extent list and zero any new bytes */
  3828. else if (ifp->if_real_bytes) {
  3829. /* Check if extents will fit inside the inode */
  3830. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3831. xfs_iext_direct_to_inline(ifp, new_size /
  3832. (uint)sizeof(xfs_bmbt_rec_t));
  3833. ifp->if_bytes = new_size;
  3834. return;
  3835. }
  3836. if ((new_size & (new_size - 1)) != 0) {
  3837. rnew_size = xfs_iroundup(new_size);
  3838. }
  3839. if (rnew_size != ifp->if_real_bytes) {
  3840. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3841. kmem_realloc(ifp->if_u1.if_extents,
  3842. rnew_size,
  3843. ifp->if_real_bytes,
  3844. KM_SLEEP);
  3845. }
  3846. if (rnew_size > ifp->if_real_bytes) {
  3847. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3848. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3849. rnew_size - ifp->if_real_bytes);
  3850. }
  3851. }
  3852. /*
  3853. * Switch from the inline extent buffer to a direct
  3854. * extent list. Be sure to include the inline extent
  3855. * bytes in new_size.
  3856. */
  3857. else {
  3858. new_size += ifp->if_bytes;
  3859. if ((new_size & (new_size - 1)) != 0) {
  3860. rnew_size = xfs_iroundup(new_size);
  3861. }
  3862. xfs_iext_inline_to_direct(ifp, rnew_size);
  3863. }
  3864. ifp->if_real_bytes = rnew_size;
  3865. ifp->if_bytes = new_size;
  3866. }
  3867. /*
  3868. * Switch from linear (direct) extent records to inline buffer.
  3869. */
  3870. void
  3871. xfs_iext_direct_to_inline(
  3872. xfs_ifork_t *ifp, /* inode fork pointer */
  3873. xfs_extnum_t nextents) /* number of extents in file */
  3874. {
  3875. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3876. ASSERT(nextents <= XFS_INLINE_EXTS);
  3877. /*
  3878. * The inline buffer was zeroed when we switched
  3879. * from inline to direct extent allocation mode,
  3880. * so we don't need to clear it here.
  3881. */
  3882. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3883. nextents * sizeof(xfs_bmbt_rec_t));
  3884. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3885. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3886. ifp->if_real_bytes = 0;
  3887. }
  3888. /*
  3889. * Switch from inline buffer to linear (direct) extent records.
  3890. * new_size should already be rounded up to the next power of 2
  3891. * by the caller (when appropriate), so use new_size as it is.
  3892. * However, since new_size may be rounded up, we can't update
  3893. * if_bytes here. It is the caller's responsibility to update
  3894. * if_bytes upon return.
  3895. */
  3896. void
  3897. xfs_iext_inline_to_direct(
  3898. xfs_ifork_t *ifp, /* inode fork pointer */
  3899. int new_size) /* number of extents in file */
  3900. {
  3901. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  3902. kmem_alloc(new_size, KM_SLEEP);
  3903. memset(ifp->if_u1.if_extents, 0, new_size);
  3904. if (ifp->if_bytes) {
  3905. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3906. ifp->if_bytes);
  3907. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3908. sizeof(xfs_bmbt_rec_t));
  3909. }
  3910. ifp->if_real_bytes = new_size;
  3911. }
  3912. /*
  3913. * Resize an extent indirection array to new_size bytes.
  3914. */
  3915. void
  3916. xfs_iext_realloc_indirect(
  3917. xfs_ifork_t *ifp, /* inode fork pointer */
  3918. int new_size) /* new indirection array size */
  3919. {
  3920. int nlists; /* number of irec's (ex lists) */
  3921. int size; /* current indirection array size */
  3922. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3923. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3924. size = nlists * sizeof(xfs_ext_irec_t);
  3925. ASSERT(ifp->if_real_bytes);
  3926. ASSERT((new_size >= 0) && (new_size != size));
  3927. if (new_size == 0) {
  3928. xfs_iext_destroy(ifp);
  3929. } else {
  3930. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3931. kmem_realloc(ifp->if_u1.if_ext_irec,
  3932. new_size, size, KM_SLEEP);
  3933. }
  3934. }
  3935. /*
  3936. * Switch from indirection array to linear (direct) extent allocations.
  3937. */
  3938. void
  3939. xfs_iext_indirect_to_direct(
  3940. xfs_ifork_t *ifp) /* inode fork pointer */
  3941. {
  3942. xfs_bmbt_rec_t *ep; /* extent record pointer */
  3943. xfs_extnum_t nextents; /* number of extents in file */
  3944. int size; /* size of file extents */
  3945. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3946. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3947. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3948. size = nextents * sizeof(xfs_bmbt_rec_t);
  3949. xfs_iext_irec_compact_full(ifp);
  3950. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3951. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3952. kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
  3953. ifp->if_flags &= ~XFS_IFEXTIREC;
  3954. ifp->if_u1.if_extents = ep;
  3955. ifp->if_bytes = size;
  3956. if (nextents < XFS_LINEAR_EXTS) {
  3957. xfs_iext_realloc_direct(ifp, size);
  3958. }
  3959. }
  3960. /*
  3961. * Free incore file extents.
  3962. */
  3963. void
  3964. xfs_iext_destroy(
  3965. xfs_ifork_t *ifp) /* inode fork pointer */
  3966. {
  3967. if (ifp->if_flags & XFS_IFEXTIREC) {
  3968. int erp_idx;
  3969. int nlists;
  3970. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3971. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3972. xfs_iext_irec_remove(ifp, erp_idx);
  3973. }
  3974. ifp->if_flags &= ~XFS_IFEXTIREC;
  3975. } else if (ifp->if_real_bytes) {
  3976. kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
  3977. } else if (ifp->if_bytes) {
  3978. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3979. sizeof(xfs_bmbt_rec_t));
  3980. }
  3981. ifp->if_u1.if_extents = NULL;
  3982. ifp->if_real_bytes = 0;
  3983. ifp->if_bytes = 0;
  3984. }
  3985. /*
  3986. * Return a pointer to the extent record for file system block bno.
  3987. */
  3988. xfs_bmbt_rec_t * /* pointer to found extent record */
  3989. xfs_iext_bno_to_ext(
  3990. xfs_ifork_t *ifp, /* inode fork pointer */
  3991. xfs_fileoff_t bno, /* block number to search for */
  3992. xfs_extnum_t *idxp) /* index of target extent */
  3993. {
  3994. xfs_bmbt_rec_t *base; /* pointer to first extent */
  3995. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3996. xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
  3997. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3998. int high; /* upper boundary in search */
  3999. xfs_extnum_t idx = 0; /* index of target extent */
  4000. int low; /* lower boundary in search */
  4001. xfs_extnum_t nextents; /* number of file extents */
  4002. xfs_fileoff_t startoff = 0; /* start offset of extent */
  4003. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4004. if (nextents == 0) {
  4005. *idxp = 0;
  4006. return NULL;
  4007. }
  4008. low = 0;
  4009. if (ifp->if_flags & XFS_IFEXTIREC) {
  4010. /* Find target extent list */
  4011. int erp_idx = 0;
  4012. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  4013. base = erp->er_extbuf;
  4014. high = erp->er_extcount - 1;
  4015. } else {
  4016. base = ifp->if_u1.if_extents;
  4017. high = nextents - 1;
  4018. }
  4019. /* Binary search extent records */
  4020. while (low <= high) {
  4021. idx = (low + high) >> 1;
  4022. ep = base + idx;
  4023. startoff = xfs_bmbt_get_startoff(ep);
  4024. blockcount = xfs_bmbt_get_blockcount(ep);
  4025. if (bno < startoff) {
  4026. high = idx - 1;
  4027. } else if (bno >= startoff + blockcount) {
  4028. low = idx + 1;
  4029. } else {
  4030. /* Convert back to file-based extent index */
  4031. if (ifp->if_flags & XFS_IFEXTIREC) {
  4032. idx += erp->er_extoff;
  4033. }
  4034. *idxp = idx;
  4035. return ep;
  4036. }
  4037. }
  4038. /* Convert back to file-based extent index */
  4039. if (ifp->if_flags & XFS_IFEXTIREC) {
  4040. idx += erp->er_extoff;
  4041. }
  4042. if (bno >= startoff + blockcount) {
  4043. if (++idx == nextents) {
  4044. ep = NULL;
  4045. } else {
  4046. ep = xfs_iext_get_ext(ifp, idx);
  4047. }
  4048. }
  4049. *idxp = idx;
  4050. return ep;
  4051. }
  4052. /*
  4053. * Return a pointer to the indirection array entry containing the
  4054. * extent record for filesystem block bno. Store the index of the
  4055. * target irec in *erp_idxp.
  4056. */
  4057. xfs_ext_irec_t * /* pointer to found extent record */
  4058. xfs_iext_bno_to_irec(
  4059. xfs_ifork_t *ifp, /* inode fork pointer */
  4060. xfs_fileoff_t bno, /* block number to search for */
  4061. int *erp_idxp) /* irec index of target ext list */
  4062. {
  4063. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  4064. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  4065. int erp_idx; /* indirection array index */
  4066. int nlists; /* number of extent irec's (lists) */
  4067. int high; /* binary search upper limit */
  4068. int low; /* binary search lower limit */
  4069. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4070. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4071. erp_idx = 0;
  4072. low = 0;
  4073. high = nlists - 1;
  4074. while (low <= high) {
  4075. erp_idx = (low + high) >> 1;
  4076. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4077. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  4078. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  4079. high = erp_idx - 1;
  4080. } else if (erp_next && bno >=
  4081. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  4082. low = erp_idx + 1;
  4083. } else {
  4084. break;
  4085. }
  4086. }
  4087. *erp_idxp = erp_idx;
  4088. return erp;
  4089. }
  4090. /*
  4091. * Return a pointer to the indirection array entry containing the
  4092. * extent record at file extent index *idxp. Store the index of the
  4093. * target irec in *erp_idxp and store the page index of the target
  4094. * extent record in *idxp.
  4095. */
  4096. xfs_ext_irec_t *
  4097. xfs_iext_idx_to_irec(
  4098. xfs_ifork_t *ifp, /* inode fork pointer */
  4099. xfs_extnum_t *idxp, /* extent index (file -> page) */
  4100. int *erp_idxp, /* pointer to target irec */
  4101. int realloc) /* new bytes were just added */
  4102. {
  4103. xfs_ext_irec_t *prev; /* pointer to previous irec */
  4104. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  4105. int erp_idx; /* indirection array index */
  4106. int nlists; /* number of irec's (ex lists) */
  4107. int high; /* binary search upper limit */
  4108. int low; /* binary search lower limit */
  4109. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  4110. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4111. ASSERT(page_idx >= 0 && page_idx <=
  4112. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  4113. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4114. erp_idx = 0;
  4115. low = 0;
  4116. high = nlists - 1;
  4117. /* Binary search extent irec's */
  4118. while (low <= high) {
  4119. erp_idx = (low + high) >> 1;
  4120. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4121. prev = erp_idx > 0 ? erp - 1 : NULL;
  4122. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  4123. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  4124. high = erp_idx - 1;
  4125. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  4126. (page_idx == erp->er_extoff + erp->er_extcount &&
  4127. !realloc)) {
  4128. low = erp_idx + 1;
  4129. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  4130. erp->er_extcount == XFS_LINEAR_EXTS) {
  4131. ASSERT(realloc);
  4132. page_idx = 0;
  4133. erp_idx++;
  4134. erp = erp_idx < nlists ? erp + 1 : NULL;
  4135. break;
  4136. } else {
  4137. page_idx -= erp->er_extoff;
  4138. break;
  4139. }
  4140. }
  4141. *idxp = page_idx;
  4142. *erp_idxp = erp_idx;
  4143. return(erp);
  4144. }
  4145. /*
  4146. * Allocate and initialize an indirection array once the space needed
  4147. * for incore extents increases above XFS_IEXT_BUFSZ.
  4148. */
  4149. void
  4150. xfs_iext_irec_init(
  4151. xfs_ifork_t *ifp) /* inode fork pointer */
  4152. {
  4153. xfs_ext_irec_t *erp; /* indirection array pointer */
  4154. xfs_extnum_t nextents; /* number of extents in file */
  4155. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  4156. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4157. ASSERT(nextents <= XFS_LINEAR_EXTS);
  4158. erp = (xfs_ext_irec_t *)
  4159. kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
  4160. if (nextents == 0) {
  4161. ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
  4162. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4163. } else if (!ifp->if_real_bytes) {
  4164. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  4165. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  4166. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  4167. }
  4168. erp->er_extbuf = ifp->if_u1.if_extents;
  4169. erp->er_extcount = nextents;
  4170. erp->er_extoff = 0;
  4171. ifp->if_flags |= XFS_IFEXTIREC;
  4172. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  4173. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  4174. ifp->if_u1.if_ext_irec = erp;
  4175. return;
  4176. }
  4177. /*
  4178. * Allocate and initialize a new entry in the indirection array.
  4179. */
  4180. xfs_ext_irec_t *
  4181. xfs_iext_irec_new(
  4182. xfs_ifork_t *ifp, /* inode fork pointer */
  4183. int erp_idx) /* index for new irec */
  4184. {
  4185. xfs_ext_irec_t *erp; /* indirection array pointer */
  4186. int i; /* loop counter */
  4187. int nlists; /* number of irec's (ex lists) */
  4188. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4189. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4190. /* Resize indirection array */
  4191. xfs_iext_realloc_indirect(ifp, ++nlists *
  4192. sizeof(xfs_ext_irec_t));
  4193. /*
  4194. * Move records down in the array so the
  4195. * new page can use erp_idx.
  4196. */
  4197. erp = ifp->if_u1.if_ext_irec;
  4198. for (i = nlists - 1; i > erp_idx; i--) {
  4199. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  4200. }
  4201. ASSERT(i == erp_idx);
  4202. /* Initialize new extent record */
  4203. erp = ifp->if_u1.if_ext_irec;
  4204. erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
  4205. kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
  4206. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4207. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  4208. erp[erp_idx].er_extcount = 0;
  4209. erp[erp_idx].er_extoff = erp_idx > 0 ?
  4210. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  4211. return (&erp[erp_idx]);
  4212. }
  4213. /*
  4214. * Remove a record from the indirection array.
  4215. */
  4216. void
  4217. xfs_iext_irec_remove(
  4218. xfs_ifork_t *ifp, /* inode fork pointer */
  4219. int erp_idx) /* irec index to remove */
  4220. {
  4221. xfs_ext_irec_t *erp; /* indirection array pointer */
  4222. int i; /* loop counter */
  4223. int nlists; /* number of irec's (ex lists) */
  4224. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4225. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4226. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4227. if (erp->er_extbuf) {
  4228. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  4229. -erp->er_extcount);
  4230. kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
  4231. }
  4232. /* Compact extent records */
  4233. erp = ifp->if_u1.if_ext_irec;
  4234. for (i = erp_idx; i < nlists - 1; i++) {
  4235. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  4236. }
  4237. /*
  4238. * Manually free the last extent record from the indirection
  4239. * array. A call to xfs_iext_realloc_indirect() with a size
  4240. * of zero would result in a call to xfs_iext_destroy() which
  4241. * would in turn call this function again, creating a nasty
  4242. * infinite loop.
  4243. */
  4244. if (--nlists) {
  4245. xfs_iext_realloc_indirect(ifp,
  4246. nlists * sizeof(xfs_ext_irec_t));
  4247. } else {
  4248. kmem_free(ifp->if_u1.if_ext_irec,
  4249. sizeof(xfs_ext_irec_t));
  4250. }
  4251. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  4252. }
  4253. /*
  4254. * This is called to clean up large amounts of unused memory allocated
  4255. * by the indirection array. Before compacting anything though, verify
  4256. * that the indirection array is still needed and switch back to the
  4257. * linear extent list (or even the inline buffer) if possible. The
  4258. * compaction policy is as follows:
  4259. *
  4260. * Full Compaction: Extents fit into a single page (or inline buffer)
  4261. * Full Compaction: Extents occupy less than 10% of allocated space
  4262. * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
  4263. * No Compaction: Extents occupy at least 50% of allocated space
  4264. */
  4265. void
  4266. xfs_iext_irec_compact(
  4267. xfs_ifork_t *ifp) /* inode fork pointer */
  4268. {
  4269. xfs_extnum_t nextents; /* number of extents in file */
  4270. int nlists; /* number of irec's (ex lists) */
  4271. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4272. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4273. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  4274. if (nextents == 0) {
  4275. xfs_iext_destroy(ifp);
  4276. } else if (nextents <= XFS_INLINE_EXTS) {
  4277. xfs_iext_indirect_to_direct(ifp);
  4278. xfs_iext_direct_to_inline(ifp, nextents);
  4279. } else if (nextents <= XFS_LINEAR_EXTS) {
  4280. xfs_iext_indirect_to_direct(ifp);
  4281. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
  4282. xfs_iext_irec_compact_full(ifp);
  4283. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  4284. xfs_iext_irec_compact_pages(ifp);
  4285. }
  4286. }
  4287. /*
  4288. * Combine extents from neighboring extent pages.
  4289. */
  4290. void
  4291. xfs_iext_irec_compact_pages(
  4292. xfs_ifork_t *ifp) /* inode fork pointer */
  4293. {
  4294. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  4295. int erp_idx = 0; /* indirection array index */
  4296. int nlists; /* number of irec's (ex lists) */
  4297. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4298. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4299. while (erp_idx < nlists - 1) {
  4300. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4301. erp_next = erp + 1;
  4302. if (erp_next->er_extcount <=
  4303. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  4304. memmove(&erp->er_extbuf[erp->er_extcount],
  4305. erp_next->er_extbuf, erp_next->er_extcount *
  4306. sizeof(xfs_bmbt_rec_t));
  4307. erp->er_extcount += erp_next->er_extcount;
  4308. /*
  4309. * Free page before removing extent record
  4310. * so er_extoffs don't get modified in
  4311. * xfs_iext_irec_remove.
  4312. */
  4313. kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
  4314. erp_next->er_extbuf = NULL;
  4315. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4316. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4317. } else {
  4318. erp_idx++;
  4319. }
  4320. }
  4321. }
  4322. /*
  4323. * Fully compact the extent records managed by the indirection array.
  4324. */
  4325. void
  4326. xfs_iext_irec_compact_full(
  4327. xfs_ifork_t *ifp) /* inode fork pointer */
  4328. {
  4329. xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
  4330. xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
  4331. int erp_idx = 0; /* extent irec index */
  4332. int ext_avail; /* empty entries in ex list */
  4333. int ext_diff; /* number of exts to add */
  4334. int nlists; /* number of irec's (ex lists) */
  4335. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4336. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4337. erp = ifp->if_u1.if_ext_irec;
  4338. ep = &erp->er_extbuf[erp->er_extcount];
  4339. erp_next = erp + 1;
  4340. ep_next = erp_next->er_extbuf;
  4341. while (erp_idx < nlists - 1) {
  4342. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  4343. ext_diff = MIN(ext_avail, erp_next->er_extcount);
  4344. memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
  4345. erp->er_extcount += ext_diff;
  4346. erp_next->er_extcount -= ext_diff;
  4347. /* Remove next page */
  4348. if (erp_next->er_extcount == 0) {
  4349. /*
  4350. * Free page before removing extent record
  4351. * so er_extoffs don't get modified in
  4352. * xfs_iext_irec_remove.
  4353. */
  4354. kmem_free(erp_next->er_extbuf,
  4355. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4356. erp_next->er_extbuf = NULL;
  4357. xfs_iext_irec_remove(ifp, erp_idx + 1);
  4358. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4359. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4360. /* Update next page */
  4361. } else {
  4362. /* Move rest of page up to become next new page */
  4363. memmove(erp_next->er_extbuf, ep_next,
  4364. erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
  4365. ep_next = erp_next->er_extbuf;
  4366. memset(&ep_next[erp_next->er_extcount], 0,
  4367. (XFS_LINEAR_EXTS - erp_next->er_extcount) *
  4368. sizeof(xfs_bmbt_rec_t));
  4369. }
  4370. if (erp->er_extcount == XFS_LINEAR_EXTS) {
  4371. erp_idx++;
  4372. if (erp_idx < nlists)
  4373. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  4374. else
  4375. break;
  4376. }
  4377. ep = &erp->er_extbuf[erp->er_extcount];
  4378. erp_next = erp + 1;
  4379. ep_next = erp_next->er_extbuf;
  4380. }
  4381. }
  4382. /*
  4383. * This is called to update the er_extoff field in the indirection
  4384. * array when extents have been added or removed from one of the
  4385. * extent lists. erp_idx contains the irec index to begin updating
  4386. * at and ext_diff contains the number of extents that were added
  4387. * or removed.
  4388. */
  4389. void
  4390. xfs_iext_irec_update_extoffs(
  4391. xfs_ifork_t *ifp, /* inode fork pointer */
  4392. int erp_idx, /* irec index to update */
  4393. int ext_diff) /* number of new extents */
  4394. {
  4395. int i; /* loop counter */
  4396. int nlists; /* number of irec's (ex lists */
  4397. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  4398. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  4399. for (i = erp_idx; i < nlists; i++) {
  4400. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  4401. }
  4402. }