inode.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838
  1. /*
  2. * linux/fs/ufs/inode.c
  3. *
  4. * Copyright (C) 1998
  5. * Daniel Pirkl <daniel.pirkl@email.cz>
  6. * Charles University, Faculty of Mathematics and Physics
  7. *
  8. * from
  9. *
  10. * linux/fs/ext2/inode.c
  11. *
  12. * Copyright (C) 1992, 1993, 1994, 1995
  13. * Remy Card (card@masi.ibp.fr)
  14. * Laboratoire MASI - Institut Blaise Pascal
  15. * Universite Pierre et Marie Curie (Paris VI)
  16. *
  17. * from
  18. *
  19. * linux/fs/minix/inode.c
  20. *
  21. * Copyright (C) 1991, 1992 Linus Torvalds
  22. *
  23. * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
  24. * Big-endian to little-endian byte-swapping/bitmaps by
  25. * David S. Miller (davem@caip.rutgers.edu), 1995
  26. */
  27. #include <asm/uaccess.h>
  28. #include <asm/system.h>
  29. #include <linux/errno.h>
  30. #include <linux/fs.h>
  31. #include <linux/ufs_fs.h>
  32. #include <linux/time.h>
  33. #include <linux/stat.h>
  34. #include <linux/string.h>
  35. #include <linux/mm.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/buffer_head.h>
  38. #include "swab.h"
  39. #include "util.h"
  40. static u64 ufs_frag_map(struct inode *inode, sector_t frag);
  41. static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
  42. {
  43. struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
  44. int ptrs = uspi->s_apb;
  45. int ptrs_bits = uspi->s_apbshift;
  46. const long direct_blocks = UFS_NDADDR,
  47. indirect_blocks = ptrs,
  48. double_blocks = (1 << (ptrs_bits * 2));
  49. int n = 0;
  50. UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
  51. if (i_block < 0) {
  52. ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
  53. } else if (i_block < direct_blocks) {
  54. offsets[n++] = i_block;
  55. } else if ((i_block -= direct_blocks) < indirect_blocks) {
  56. offsets[n++] = UFS_IND_BLOCK;
  57. offsets[n++] = i_block;
  58. } else if ((i_block -= indirect_blocks) < double_blocks) {
  59. offsets[n++] = UFS_DIND_BLOCK;
  60. offsets[n++] = i_block >> ptrs_bits;
  61. offsets[n++] = i_block & (ptrs - 1);
  62. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  63. offsets[n++] = UFS_TIND_BLOCK;
  64. offsets[n++] = i_block >> (ptrs_bits * 2);
  65. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  66. offsets[n++] = i_block & (ptrs - 1);
  67. } else {
  68. ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
  69. }
  70. return n;
  71. }
  72. /*
  73. * Returns the location of the fragment from
  74. * the begining of the filesystem.
  75. */
  76. static u64 ufs_frag_map(struct inode *inode, sector_t frag)
  77. {
  78. struct ufs_inode_info *ufsi = UFS_I(inode);
  79. struct super_block *sb = inode->i_sb;
  80. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  81. u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
  82. int shift = uspi->s_apbshift-uspi->s_fpbshift;
  83. sector_t offsets[4], *p;
  84. int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
  85. u64 ret = 0L;
  86. __fs32 block;
  87. __fs64 u2_block = 0L;
  88. unsigned flags = UFS_SB(sb)->s_flags;
  89. u64 temp = 0L;
  90. UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth);
  91. UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
  92. uspi->s_fpbshift, uspi->s_apbmask,
  93. (unsigned long long)mask);
  94. if (depth == 0)
  95. return 0;
  96. p = offsets;
  97. lock_kernel();
  98. if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  99. goto ufs2;
  100. block = ufsi->i_u1.i_data[*p++];
  101. if (!block)
  102. goto out;
  103. while (--depth) {
  104. struct buffer_head *bh;
  105. sector_t n = *p++;
  106. bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
  107. if (!bh)
  108. goto out;
  109. block = ((__fs32 *) bh->b_data)[n & mask];
  110. brelse (bh);
  111. if (!block)
  112. goto out;
  113. }
  114. ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
  115. goto out;
  116. ufs2:
  117. u2_block = ufsi->i_u1.u2_i_data[*p++];
  118. if (!u2_block)
  119. goto out;
  120. while (--depth) {
  121. struct buffer_head *bh;
  122. sector_t n = *p++;
  123. temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
  124. bh = sb_bread(sb, temp +(u64) (n>>shift));
  125. if (!bh)
  126. goto out;
  127. u2_block = ((__fs64 *)bh->b_data)[n & mask];
  128. brelse(bh);
  129. if (!u2_block)
  130. goto out;
  131. }
  132. temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
  133. ret = temp + (u64) (frag & uspi->s_fpbmask);
  134. out:
  135. unlock_kernel();
  136. return ret;
  137. }
  138. /**
  139. * ufs_inode_getfrag() - allocate new fragment(s)
  140. * @inode - pointer to inode
  141. * @fragment - number of `fragment' which hold pointer
  142. * to new allocated fragment(s)
  143. * @new_fragment - number of new allocated fragment(s)
  144. * @required - how many fragment(s) we require
  145. * @err - we set it if something wrong
  146. * @phys - pointer to where we save physical number of new allocated fragments,
  147. * NULL if we allocate not data(indirect blocks for example).
  148. * @new - we set it if we allocate new block
  149. * @locked_page - for ufs_new_fragments()
  150. */
  151. static struct buffer_head *
  152. ufs_inode_getfrag(struct inode *inode, unsigned int fragment,
  153. sector_t new_fragment, unsigned int required, int *err,
  154. long *phys, int *new, struct page *locked_page)
  155. {
  156. struct ufs_inode_info *ufsi = UFS_I(inode);
  157. struct super_block *sb = inode->i_sb;
  158. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  159. struct buffer_head * result;
  160. unsigned block, blockoff, lastfrag, lastblock, lastblockoff;
  161. unsigned tmp, goal;
  162. __fs32 * p, * p2;
  163. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, required %u, "
  164. "metadata %d\n", inode->i_ino, fragment,
  165. (unsigned long long)new_fragment, required, !phys);
  166. /* TODO : to be done for write support
  167. if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
  168. goto ufs2;
  169. */
  170. block = ufs_fragstoblks (fragment);
  171. blockoff = ufs_fragnum (fragment);
  172. p = ufsi->i_u1.i_data + block;
  173. goal = 0;
  174. repeat:
  175. tmp = fs32_to_cpu(sb, *p);
  176. lastfrag = ufsi->i_lastfrag;
  177. if (tmp && fragment < lastfrag) {
  178. if (!phys) {
  179. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  180. if (tmp == fs32_to_cpu(sb, *p)) {
  181. UFSD("EXIT, result %u\n", tmp + blockoff);
  182. return result;
  183. }
  184. brelse (result);
  185. goto repeat;
  186. } else {
  187. *phys = tmp + blockoff;
  188. return NULL;
  189. }
  190. }
  191. lastblock = ufs_fragstoblks (lastfrag);
  192. lastblockoff = ufs_fragnum (lastfrag);
  193. /*
  194. * We will extend file into new block beyond last allocated block
  195. */
  196. if (lastblock < block) {
  197. /*
  198. * We must reallocate last allocated block
  199. */
  200. if (lastblockoff) {
  201. p2 = ufsi->i_u1.i_data + lastblock;
  202. tmp = ufs_new_fragments (inode, p2, lastfrag,
  203. fs32_to_cpu(sb, *p2), uspi->s_fpb - lastblockoff,
  204. err, locked_page);
  205. if (!tmp) {
  206. if (lastfrag != ufsi->i_lastfrag)
  207. goto repeat;
  208. else
  209. return NULL;
  210. }
  211. lastfrag = ufsi->i_lastfrag;
  212. }
  213. tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[lastblock]);
  214. if (tmp)
  215. goal = tmp + uspi->s_fpb;
  216. tmp = ufs_new_fragments (inode, p, fragment - blockoff,
  217. goal, required + blockoff,
  218. err,
  219. phys != NULL ? locked_page : NULL);
  220. }
  221. /*
  222. * We will extend last allocated block
  223. */
  224. else if (lastblock == block) {
  225. tmp = ufs_new_fragments(inode, p, fragment - (blockoff - lastblockoff),
  226. fs32_to_cpu(sb, *p), required + (blockoff - lastblockoff),
  227. err, phys != NULL ? locked_page : NULL);
  228. } else /* (lastblock > block) */ {
  229. /*
  230. * We will allocate new block before last allocated block
  231. */
  232. if (block) {
  233. tmp = fs32_to_cpu(sb, ufsi->i_u1.i_data[block-1]);
  234. if (tmp)
  235. goal = tmp + uspi->s_fpb;
  236. }
  237. tmp = ufs_new_fragments(inode, p, fragment - blockoff,
  238. goal, uspi->s_fpb, err,
  239. phys != NULL ? locked_page : NULL);
  240. }
  241. if (!tmp) {
  242. if ((!blockoff && *p) ||
  243. (blockoff && lastfrag != ufsi->i_lastfrag))
  244. goto repeat;
  245. *err = -ENOSPC;
  246. return NULL;
  247. }
  248. if (!phys) {
  249. result = sb_getblk(sb, tmp + blockoff);
  250. } else {
  251. *phys = tmp + blockoff;
  252. result = NULL;
  253. *err = 0;
  254. *new = 1;
  255. }
  256. inode->i_ctime = CURRENT_TIME_SEC;
  257. if (IS_SYNC(inode))
  258. ufs_sync_inode (inode);
  259. mark_inode_dirty(inode);
  260. UFSD("EXIT, result %u\n", tmp + blockoff);
  261. return result;
  262. /* This part : To be implemented ....
  263. Required only for writing, not required for READ-ONLY.
  264. ufs2:
  265. u2_block = ufs_fragstoblks(fragment);
  266. u2_blockoff = ufs_fragnum(fragment);
  267. p = ufsi->i_u1.u2_i_data + block;
  268. goal = 0;
  269. repeat2:
  270. tmp = fs32_to_cpu(sb, *p);
  271. lastfrag = ufsi->i_lastfrag;
  272. */
  273. }
  274. /**
  275. * ufs_inode_getblock() - allocate new block
  276. * @inode - pointer to inode
  277. * @bh - pointer to block which hold "pointer" to new allocated block
  278. * @fragment - number of `fragment' which hold pointer
  279. * to new allocated block
  280. * @new_fragment - number of new allocated fragment
  281. * (block will hold this fragment and also uspi->s_fpb-1)
  282. * @err - see ufs_inode_getfrag()
  283. * @phys - see ufs_inode_getfrag()
  284. * @new - see ufs_inode_getfrag()
  285. * @locked_page - see ufs_inode_getfrag()
  286. */
  287. static struct buffer_head *
  288. ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
  289. unsigned int fragment, sector_t new_fragment, int *err,
  290. long *phys, int *new, struct page *locked_page)
  291. {
  292. struct super_block *sb = inode->i_sb;
  293. struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
  294. struct buffer_head * result;
  295. unsigned tmp, goal, block, blockoff;
  296. __fs32 * p;
  297. block = ufs_fragstoblks (fragment);
  298. blockoff = ufs_fragnum (fragment);
  299. UFSD("ENTER, ino %lu, fragment %u, new_fragment %llu, metadata %d\n",
  300. inode->i_ino, fragment, (unsigned long long)new_fragment, !phys);
  301. result = NULL;
  302. if (!bh)
  303. goto out;
  304. if (!buffer_uptodate(bh)) {
  305. ll_rw_block (READ, 1, &bh);
  306. wait_on_buffer (bh);
  307. if (!buffer_uptodate(bh))
  308. goto out;
  309. }
  310. p = (__fs32 *) bh->b_data + block;
  311. repeat:
  312. tmp = fs32_to_cpu(sb, *p);
  313. if (tmp) {
  314. if (!phys) {
  315. result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
  316. if (tmp == fs32_to_cpu(sb, *p))
  317. goto out;
  318. brelse (result);
  319. goto repeat;
  320. } else {
  321. *phys = tmp + blockoff;
  322. goto out;
  323. }
  324. }
  325. if (block && (tmp = fs32_to_cpu(sb, ((__fs32*)bh->b_data)[block-1])))
  326. goal = tmp + uspi->s_fpb;
  327. else
  328. goal = bh->b_blocknr + uspi->s_fpb;
  329. tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
  330. uspi->s_fpb, err, locked_page);
  331. if (!tmp) {
  332. if (fs32_to_cpu(sb, *p))
  333. goto repeat;
  334. goto out;
  335. }
  336. if (!phys) {
  337. result = sb_getblk(sb, tmp + blockoff);
  338. } else {
  339. *phys = tmp + blockoff;
  340. *new = 1;
  341. }
  342. mark_buffer_dirty(bh);
  343. if (IS_SYNC(inode))
  344. sync_dirty_buffer(bh);
  345. inode->i_ctime = CURRENT_TIME_SEC;
  346. mark_inode_dirty(inode);
  347. UFSD("result %u\n", tmp + blockoff);
  348. out:
  349. brelse (bh);
  350. UFSD("EXIT\n");
  351. return result;
  352. }
  353. /**
  354. * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
  355. * readpage, writepage and so on
  356. */
  357. int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
  358. {
  359. struct super_block * sb = inode->i_sb;
  360. struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
  361. struct buffer_head * bh;
  362. int ret, err, new;
  363. unsigned long ptr,phys;
  364. u64 phys64 = 0;
  365. if (!create) {
  366. phys64 = ufs_frag_map(inode, fragment);
  367. UFSD("phys64 = %llu\n", (unsigned long long)phys64);
  368. if (phys64)
  369. map_bh(bh_result, sb, phys64);
  370. return 0;
  371. }
  372. /* This code entered only while writing ....? */
  373. err = -EIO;
  374. new = 0;
  375. ret = 0;
  376. bh = NULL;
  377. lock_kernel();
  378. UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
  379. if (fragment < 0)
  380. goto abort_negative;
  381. if (fragment >
  382. ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
  383. << uspi->s_fpbshift))
  384. goto abort_too_big;
  385. err = 0;
  386. ptr = fragment;
  387. /*
  388. * ok, these macros clean the logic up a bit and make
  389. * it much more readable:
  390. */
  391. #define GET_INODE_DATABLOCK(x) \
  392. ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
  393. bh_result->b_page)
  394. #define GET_INODE_PTR(x) \
  395. ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
  396. bh_result->b_page)
  397. #define GET_INDIRECT_DATABLOCK(x) \
  398. ufs_inode_getblock(inode, bh, x, fragment, \
  399. &err, &phys, &new, bh_result->b_page)
  400. #define GET_INDIRECT_PTR(x) \
  401. ufs_inode_getblock(inode, bh, x, fragment, \
  402. &err, NULL, NULL, NULL)
  403. if (ptr < UFS_NDIR_FRAGMENT) {
  404. bh = GET_INODE_DATABLOCK(ptr);
  405. goto out;
  406. }
  407. ptr -= UFS_NDIR_FRAGMENT;
  408. if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
  409. bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
  410. goto get_indirect;
  411. }
  412. ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
  413. if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
  414. bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
  415. goto get_double;
  416. }
  417. ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
  418. bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
  419. bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
  420. get_double:
  421. bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
  422. get_indirect:
  423. bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
  424. #undef GET_INODE_DATABLOCK
  425. #undef GET_INODE_PTR
  426. #undef GET_INDIRECT_DATABLOCK
  427. #undef GET_INDIRECT_PTR
  428. out:
  429. if (err)
  430. goto abort;
  431. if (new)
  432. set_buffer_new(bh_result);
  433. map_bh(bh_result, sb, phys);
  434. abort:
  435. unlock_kernel();
  436. return err;
  437. abort_negative:
  438. ufs_warning(sb, "ufs_get_block", "block < 0");
  439. goto abort;
  440. abort_too_big:
  441. ufs_warning(sb, "ufs_get_block", "block > big");
  442. goto abort;
  443. }
  444. static struct buffer_head *ufs_getfrag(struct inode *inode,
  445. unsigned int fragment,
  446. int create, int *err)
  447. {
  448. struct buffer_head dummy;
  449. int error;
  450. dummy.b_state = 0;
  451. dummy.b_blocknr = -1000;
  452. error = ufs_getfrag_block(inode, fragment, &dummy, create);
  453. *err = error;
  454. if (!error && buffer_mapped(&dummy)) {
  455. struct buffer_head *bh;
  456. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  457. if (buffer_new(&dummy)) {
  458. memset(bh->b_data, 0, inode->i_sb->s_blocksize);
  459. set_buffer_uptodate(bh);
  460. mark_buffer_dirty(bh);
  461. }
  462. return bh;
  463. }
  464. return NULL;
  465. }
  466. struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
  467. int create, int * err)
  468. {
  469. struct buffer_head * bh;
  470. UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
  471. bh = ufs_getfrag (inode, fragment, create, err);
  472. if (!bh || buffer_uptodate(bh))
  473. return bh;
  474. ll_rw_block (READ, 1, &bh);
  475. wait_on_buffer (bh);
  476. if (buffer_uptodate(bh))
  477. return bh;
  478. brelse (bh);
  479. *err = -EIO;
  480. return NULL;
  481. }
  482. static int ufs_writepage(struct page *page, struct writeback_control *wbc)
  483. {
  484. return block_write_full_page(page,ufs_getfrag_block,wbc);
  485. }
  486. static int ufs_readpage(struct file *file, struct page *page)
  487. {
  488. return block_read_full_page(page,ufs_getfrag_block);
  489. }
  490. static int ufs_prepare_write(struct file *file, struct page *page, unsigned from, unsigned to)
  491. {
  492. return block_prepare_write(page,from,to,ufs_getfrag_block);
  493. }
  494. static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
  495. {
  496. return generic_block_bmap(mapping,block,ufs_getfrag_block);
  497. }
  498. const struct address_space_operations ufs_aops = {
  499. .readpage = ufs_readpage,
  500. .writepage = ufs_writepage,
  501. .sync_page = block_sync_page,
  502. .prepare_write = ufs_prepare_write,
  503. .commit_write = generic_commit_write,
  504. .bmap = ufs_bmap
  505. };
  506. static void ufs_set_inode_ops(struct inode *inode)
  507. {
  508. if (S_ISREG(inode->i_mode)) {
  509. inode->i_op = &ufs_file_inode_operations;
  510. inode->i_fop = &ufs_file_operations;
  511. inode->i_mapping->a_ops = &ufs_aops;
  512. } else if (S_ISDIR(inode->i_mode)) {
  513. inode->i_op = &ufs_dir_inode_operations;
  514. inode->i_fop = &ufs_dir_operations;
  515. inode->i_mapping->a_ops = &ufs_aops;
  516. } else if (S_ISLNK(inode->i_mode)) {
  517. if (!inode->i_blocks)
  518. inode->i_op = &ufs_fast_symlink_inode_operations;
  519. else {
  520. inode->i_op = &page_symlink_inode_operations;
  521. inode->i_mapping->a_ops = &ufs_aops;
  522. }
  523. } else
  524. init_special_inode(inode, inode->i_mode,
  525. ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
  526. }
  527. static void ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
  528. {
  529. struct ufs_inode_info *ufsi = UFS_I(inode);
  530. struct super_block *sb = inode->i_sb;
  531. mode_t mode;
  532. unsigned i;
  533. /*
  534. * Copy data to the in-core inode.
  535. */
  536. inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
  537. inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
  538. if (inode->i_nlink == 0)
  539. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  540. /*
  541. * Linux now has 32-bit uid and gid, so we can support EFT.
  542. */
  543. inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
  544. inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
  545. inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
  546. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
  547. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
  548. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
  549. inode->i_mtime.tv_nsec = 0;
  550. inode->i_atime.tv_nsec = 0;
  551. inode->i_ctime.tv_nsec = 0;
  552. inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
  553. ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
  554. ufsi->i_gen = fs32_to_cpu(sb, ufs_inode->ui_gen);
  555. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  556. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  557. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  558. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  559. ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
  560. } else {
  561. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  562. ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
  563. }
  564. }
  565. static void ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
  566. {
  567. struct ufs_inode_info *ufsi = UFS_I(inode);
  568. struct super_block *sb = inode->i_sb;
  569. mode_t mode;
  570. unsigned i;
  571. UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
  572. /*
  573. * Copy data to the in-core inode.
  574. */
  575. inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
  576. inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
  577. if (inode->i_nlink == 0)
  578. ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
  579. /*
  580. * Linux now has 32-bit uid and gid, so we can support EFT.
  581. */
  582. inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
  583. inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
  584. inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
  585. inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_atime.tv_sec);
  586. inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_ctime.tv_sec);
  587. inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs2_inode->ui_mtime.tv_sec);
  588. inode->i_mtime.tv_nsec = 0;
  589. inode->i_atime.tv_nsec = 0;
  590. inode->i_ctime.tv_nsec = 0;
  591. inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
  592. ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
  593. ufsi->i_gen = fs32_to_cpu(sb, ufs2_inode->ui_gen);
  594. /*
  595. ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
  596. ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
  597. */
  598. if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
  599. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  600. ufsi->i_u1.u2_i_data[i] =
  601. ufs2_inode->ui_u2.ui_addr.ui_db[i];
  602. } else {
  603. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  604. ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
  605. }
  606. }
  607. void ufs_read_inode(struct inode * inode)
  608. {
  609. struct ufs_inode_info *ufsi = UFS_I(inode);
  610. struct super_block * sb;
  611. struct ufs_sb_private_info * uspi;
  612. struct buffer_head * bh;
  613. UFSD("ENTER, ino %lu\n", inode->i_ino);
  614. sb = inode->i_sb;
  615. uspi = UFS_SB(sb)->s_uspi;
  616. if (inode->i_ino < UFS_ROOTINO ||
  617. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  618. ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
  619. inode->i_ino);
  620. goto bad_inode;
  621. }
  622. bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
  623. if (!bh) {
  624. ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
  625. inode->i_ino);
  626. goto bad_inode;
  627. }
  628. if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
  629. struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
  630. ufs2_read_inode(inode,
  631. ufs2_inode + ufs_inotofsbo(inode->i_ino));
  632. } else {
  633. struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
  634. ufs1_read_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
  635. }
  636. inode->i_version++;
  637. ufsi->i_lastfrag =
  638. (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
  639. ufsi->i_dir_start_lookup = 0;
  640. ufsi->i_osync = 0;
  641. ufs_set_inode_ops(inode);
  642. brelse(bh);
  643. UFSD("EXIT\n");
  644. return;
  645. bad_inode:
  646. make_bad_inode(inode);
  647. }
  648. static int ufs_update_inode(struct inode * inode, int do_sync)
  649. {
  650. struct ufs_inode_info *ufsi = UFS_I(inode);
  651. struct super_block * sb;
  652. struct ufs_sb_private_info * uspi;
  653. struct buffer_head * bh;
  654. struct ufs_inode * ufs_inode;
  655. unsigned i;
  656. unsigned flags;
  657. UFSD("ENTER, ino %lu\n", inode->i_ino);
  658. sb = inode->i_sb;
  659. uspi = UFS_SB(sb)->s_uspi;
  660. flags = UFS_SB(sb)->s_flags;
  661. if (inode->i_ino < UFS_ROOTINO ||
  662. inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
  663. ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
  664. return -1;
  665. }
  666. bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
  667. if (!bh) {
  668. ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
  669. return -1;
  670. }
  671. ufs_inode = (struct ufs_inode *) (bh->b_data + ufs_inotofsbo(inode->i_ino) * sizeof(struct ufs_inode));
  672. ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
  673. ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
  674. ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
  675. ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
  676. ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
  677. ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
  678. ufs_inode->ui_atime.tv_usec = 0;
  679. ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
  680. ufs_inode->ui_ctime.tv_usec = 0;
  681. ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
  682. ufs_inode->ui_mtime.tv_usec = 0;
  683. ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
  684. ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
  685. ufs_inode->ui_gen = cpu_to_fs32(sb, ufsi->i_gen);
  686. if ((flags & UFS_UID_MASK) == UFS_UID_EFT) {
  687. ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
  688. ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
  689. }
  690. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  691. /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
  692. ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
  693. } else if (inode->i_blocks) {
  694. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
  695. ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
  696. }
  697. else {
  698. for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
  699. ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
  700. }
  701. if (!inode->i_nlink)
  702. memset (ufs_inode, 0, sizeof(struct ufs_inode));
  703. mark_buffer_dirty(bh);
  704. if (do_sync)
  705. sync_dirty_buffer(bh);
  706. brelse (bh);
  707. UFSD("EXIT\n");
  708. return 0;
  709. }
  710. int ufs_write_inode (struct inode * inode, int wait)
  711. {
  712. int ret;
  713. lock_kernel();
  714. ret = ufs_update_inode (inode, wait);
  715. unlock_kernel();
  716. return ret;
  717. }
  718. int ufs_sync_inode (struct inode *inode)
  719. {
  720. return ufs_update_inode (inode, 1);
  721. }
  722. void ufs_delete_inode (struct inode * inode)
  723. {
  724. loff_t old_i_size;
  725. truncate_inode_pages(&inode->i_data, 0);
  726. /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
  727. lock_kernel();
  728. mark_inode_dirty(inode);
  729. ufs_update_inode(inode, IS_SYNC(inode));
  730. old_i_size = inode->i_size;
  731. inode->i_size = 0;
  732. if (inode->i_blocks && ufs_truncate(inode, old_i_size))
  733. ufs_warning(inode->i_sb, __FUNCTION__, "ufs_truncate failed\n");
  734. ufs_free_inode (inode);
  735. unlock_kernel();
  736. }