pipe.c 22 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046
  1. /*
  2. * linux/fs/pipe.c
  3. *
  4. * Copyright (C) 1991, 1992, 1999 Linus Torvalds
  5. */
  6. #include <linux/mm.h>
  7. #include <linux/file.h>
  8. #include <linux/poll.h>
  9. #include <linux/slab.h>
  10. #include <linux/module.h>
  11. #include <linux/init.h>
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/pipe_fs_i.h>
  15. #include <linux/uio.h>
  16. #include <linux/highmem.h>
  17. #include <linux/pagemap.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/ioctls.h>
  20. /*
  21. * We use a start+len construction, which provides full use of the
  22. * allocated memory.
  23. * -- Florian Coosmann (FGC)
  24. *
  25. * Reads with count = 0 should always return 0.
  26. * -- Julian Bradfield 1999-06-07.
  27. *
  28. * FIFOs and Pipes now generate SIGIO for both readers and writers.
  29. * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
  30. *
  31. * pipe_read & write cleanup
  32. * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
  33. */
  34. /* Drop the inode semaphore and wait for a pipe event, atomically */
  35. void pipe_wait(struct pipe_inode_info *pipe)
  36. {
  37. DEFINE_WAIT(wait);
  38. /*
  39. * Pipes are system-local resources, so sleeping on them
  40. * is considered a noninteractive wait:
  41. */
  42. prepare_to_wait(&pipe->wait, &wait,
  43. TASK_INTERRUPTIBLE | TASK_NONINTERACTIVE);
  44. if (pipe->inode)
  45. mutex_unlock(&pipe->inode->i_mutex);
  46. schedule();
  47. finish_wait(&pipe->wait, &wait);
  48. if (pipe->inode)
  49. mutex_lock(&pipe->inode->i_mutex);
  50. }
  51. static int
  52. pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
  53. int atomic)
  54. {
  55. unsigned long copy;
  56. while (len > 0) {
  57. while (!iov->iov_len)
  58. iov++;
  59. copy = min_t(unsigned long, len, iov->iov_len);
  60. if (atomic) {
  61. if (__copy_from_user_inatomic(to, iov->iov_base, copy))
  62. return -EFAULT;
  63. } else {
  64. if (copy_from_user(to, iov->iov_base, copy))
  65. return -EFAULT;
  66. }
  67. to += copy;
  68. len -= copy;
  69. iov->iov_base += copy;
  70. iov->iov_len -= copy;
  71. }
  72. return 0;
  73. }
  74. static int
  75. pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
  76. int atomic)
  77. {
  78. unsigned long copy;
  79. while (len > 0) {
  80. while (!iov->iov_len)
  81. iov++;
  82. copy = min_t(unsigned long, len, iov->iov_len);
  83. if (atomic) {
  84. if (__copy_to_user_inatomic(iov->iov_base, from, copy))
  85. return -EFAULT;
  86. } else {
  87. if (copy_to_user(iov->iov_base, from, copy))
  88. return -EFAULT;
  89. }
  90. from += copy;
  91. len -= copy;
  92. iov->iov_base += copy;
  93. iov->iov_len -= copy;
  94. }
  95. return 0;
  96. }
  97. /*
  98. * Attempt to pre-fault in the user memory, so we can use atomic copies.
  99. * Returns the number of bytes not faulted in.
  100. */
  101. static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
  102. {
  103. while (!iov->iov_len)
  104. iov++;
  105. while (len > 0) {
  106. unsigned long this_len;
  107. this_len = min_t(unsigned long, len, iov->iov_len);
  108. if (fault_in_pages_writeable(iov->iov_base, this_len))
  109. break;
  110. len -= this_len;
  111. iov++;
  112. }
  113. return len;
  114. }
  115. /*
  116. * Pre-fault in the user memory, so we can use atomic copies.
  117. */
  118. static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
  119. {
  120. while (!iov->iov_len)
  121. iov++;
  122. while (len > 0) {
  123. unsigned long this_len;
  124. this_len = min_t(unsigned long, len, iov->iov_len);
  125. fault_in_pages_readable(iov->iov_base, this_len);
  126. len -= this_len;
  127. iov++;
  128. }
  129. }
  130. static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
  131. struct pipe_buffer *buf)
  132. {
  133. struct page *page = buf->page;
  134. /*
  135. * If nobody else uses this page, and we don't already have a
  136. * temporary page, let's keep track of it as a one-deep
  137. * allocation cache. (Otherwise just release our reference to it)
  138. */
  139. if (page_count(page) == 1 && !pipe->tmp_page)
  140. pipe->tmp_page = page;
  141. else
  142. page_cache_release(page);
  143. }
  144. void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
  145. struct pipe_buffer *buf, int atomic)
  146. {
  147. if (atomic) {
  148. buf->flags |= PIPE_BUF_FLAG_ATOMIC;
  149. return kmap_atomic(buf->page, KM_USER0);
  150. }
  151. return kmap(buf->page);
  152. }
  153. void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
  154. struct pipe_buffer *buf, void *map_data)
  155. {
  156. if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
  157. buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
  158. kunmap_atomic(map_data, KM_USER0);
  159. } else
  160. kunmap(buf->page);
  161. }
  162. int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
  163. struct pipe_buffer *buf)
  164. {
  165. struct page *page = buf->page;
  166. if (page_count(page) == 1) {
  167. lock_page(page);
  168. return 0;
  169. }
  170. return 1;
  171. }
  172. void generic_pipe_buf_get(struct pipe_inode_info *info, struct pipe_buffer *buf)
  173. {
  174. page_cache_get(buf->page);
  175. }
  176. int generic_pipe_buf_pin(struct pipe_inode_info *info, struct pipe_buffer *buf)
  177. {
  178. return 0;
  179. }
  180. static const struct pipe_buf_operations anon_pipe_buf_ops = {
  181. .can_merge = 1,
  182. .map = generic_pipe_buf_map,
  183. .unmap = generic_pipe_buf_unmap,
  184. .pin = generic_pipe_buf_pin,
  185. .release = anon_pipe_buf_release,
  186. .steal = generic_pipe_buf_steal,
  187. .get = generic_pipe_buf_get,
  188. };
  189. static ssize_t
  190. pipe_read(struct kiocb *iocb, const struct iovec *_iov,
  191. unsigned long nr_segs, loff_t pos)
  192. {
  193. struct file *filp = iocb->ki_filp;
  194. struct inode *inode = filp->f_path.dentry->d_inode;
  195. struct pipe_inode_info *pipe;
  196. int do_wakeup;
  197. ssize_t ret;
  198. struct iovec *iov = (struct iovec *)_iov;
  199. size_t total_len;
  200. total_len = iov_length(iov, nr_segs);
  201. /* Null read succeeds. */
  202. if (unlikely(total_len == 0))
  203. return 0;
  204. do_wakeup = 0;
  205. ret = 0;
  206. mutex_lock(&inode->i_mutex);
  207. pipe = inode->i_pipe;
  208. for (;;) {
  209. int bufs = pipe->nrbufs;
  210. if (bufs) {
  211. int curbuf = pipe->curbuf;
  212. struct pipe_buffer *buf = pipe->bufs + curbuf;
  213. const struct pipe_buf_operations *ops = buf->ops;
  214. void *addr;
  215. size_t chars = buf->len;
  216. int error, atomic;
  217. if (chars > total_len)
  218. chars = total_len;
  219. error = ops->pin(pipe, buf);
  220. if (error) {
  221. if (!ret)
  222. error = ret;
  223. break;
  224. }
  225. atomic = !iov_fault_in_pages_write(iov, chars);
  226. redo:
  227. addr = ops->map(pipe, buf, atomic);
  228. error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
  229. ops->unmap(pipe, buf, addr);
  230. if (unlikely(error)) {
  231. /*
  232. * Just retry with the slow path if we failed.
  233. */
  234. if (atomic) {
  235. atomic = 0;
  236. goto redo;
  237. }
  238. if (!ret)
  239. ret = error;
  240. break;
  241. }
  242. ret += chars;
  243. buf->offset += chars;
  244. buf->len -= chars;
  245. if (!buf->len) {
  246. buf->ops = NULL;
  247. ops->release(pipe, buf);
  248. curbuf = (curbuf + 1) & (PIPE_BUFFERS-1);
  249. pipe->curbuf = curbuf;
  250. pipe->nrbufs = --bufs;
  251. do_wakeup = 1;
  252. }
  253. total_len -= chars;
  254. if (!total_len)
  255. break; /* common path: read succeeded */
  256. }
  257. if (bufs) /* More to do? */
  258. continue;
  259. if (!pipe->writers)
  260. break;
  261. if (!pipe->waiting_writers) {
  262. /* syscall merging: Usually we must not sleep
  263. * if O_NONBLOCK is set, or if we got some data.
  264. * But if a writer sleeps in kernel space, then
  265. * we can wait for that data without violating POSIX.
  266. */
  267. if (ret)
  268. break;
  269. if (filp->f_flags & O_NONBLOCK) {
  270. ret = -EAGAIN;
  271. break;
  272. }
  273. }
  274. if (signal_pending(current)) {
  275. if (!ret)
  276. ret = -ERESTARTSYS;
  277. break;
  278. }
  279. if (do_wakeup) {
  280. wake_up_interruptible_sync(&pipe->wait);
  281. kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
  282. }
  283. pipe_wait(pipe);
  284. }
  285. mutex_unlock(&inode->i_mutex);
  286. /* Signal writers asynchronously that there is more room. */
  287. if (do_wakeup) {
  288. wake_up_interruptible(&pipe->wait);
  289. kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
  290. }
  291. if (ret > 0)
  292. file_accessed(filp);
  293. return ret;
  294. }
  295. static ssize_t
  296. pipe_write(struct kiocb *iocb, const struct iovec *_iov,
  297. unsigned long nr_segs, loff_t ppos)
  298. {
  299. struct file *filp = iocb->ki_filp;
  300. struct inode *inode = filp->f_path.dentry->d_inode;
  301. struct pipe_inode_info *pipe;
  302. ssize_t ret;
  303. int do_wakeup;
  304. struct iovec *iov = (struct iovec *)_iov;
  305. size_t total_len;
  306. ssize_t chars;
  307. total_len = iov_length(iov, nr_segs);
  308. /* Null write succeeds. */
  309. if (unlikely(total_len == 0))
  310. return 0;
  311. do_wakeup = 0;
  312. ret = 0;
  313. mutex_lock(&inode->i_mutex);
  314. pipe = inode->i_pipe;
  315. if (!pipe->readers) {
  316. send_sig(SIGPIPE, current, 0);
  317. ret = -EPIPE;
  318. goto out;
  319. }
  320. /* We try to merge small writes */
  321. chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
  322. if (pipe->nrbufs && chars != 0) {
  323. int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
  324. (PIPE_BUFFERS-1);
  325. struct pipe_buffer *buf = pipe->bufs + lastbuf;
  326. const struct pipe_buf_operations *ops = buf->ops;
  327. int offset = buf->offset + buf->len;
  328. if (ops->can_merge && offset + chars <= PAGE_SIZE) {
  329. int error, atomic = 1;
  330. void *addr;
  331. error = ops->pin(pipe, buf);
  332. if (error)
  333. goto out;
  334. iov_fault_in_pages_read(iov, chars);
  335. redo1:
  336. addr = ops->map(pipe, buf, atomic);
  337. error = pipe_iov_copy_from_user(offset + addr, iov,
  338. chars, atomic);
  339. ops->unmap(pipe, buf, addr);
  340. ret = error;
  341. do_wakeup = 1;
  342. if (error) {
  343. if (atomic) {
  344. atomic = 0;
  345. goto redo1;
  346. }
  347. goto out;
  348. }
  349. buf->len += chars;
  350. total_len -= chars;
  351. ret = chars;
  352. if (!total_len)
  353. goto out;
  354. }
  355. }
  356. for (;;) {
  357. int bufs;
  358. if (!pipe->readers) {
  359. send_sig(SIGPIPE, current, 0);
  360. if (!ret)
  361. ret = -EPIPE;
  362. break;
  363. }
  364. bufs = pipe->nrbufs;
  365. if (bufs < PIPE_BUFFERS) {
  366. int newbuf = (pipe->curbuf + bufs) & (PIPE_BUFFERS-1);
  367. struct pipe_buffer *buf = pipe->bufs + newbuf;
  368. struct page *page = pipe->tmp_page;
  369. char *src;
  370. int error, atomic = 1;
  371. if (!page) {
  372. page = alloc_page(GFP_HIGHUSER);
  373. if (unlikely(!page)) {
  374. ret = ret ? : -ENOMEM;
  375. break;
  376. }
  377. pipe->tmp_page = page;
  378. }
  379. /* Always wake up, even if the copy fails. Otherwise
  380. * we lock up (O_NONBLOCK-)readers that sleep due to
  381. * syscall merging.
  382. * FIXME! Is this really true?
  383. */
  384. do_wakeup = 1;
  385. chars = PAGE_SIZE;
  386. if (chars > total_len)
  387. chars = total_len;
  388. iov_fault_in_pages_read(iov, chars);
  389. redo2:
  390. if (atomic)
  391. src = kmap_atomic(page, KM_USER0);
  392. else
  393. src = kmap(page);
  394. error = pipe_iov_copy_from_user(src, iov, chars,
  395. atomic);
  396. if (atomic)
  397. kunmap_atomic(src, KM_USER0);
  398. else
  399. kunmap(page);
  400. if (unlikely(error)) {
  401. if (atomic) {
  402. atomic = 0;
  403. goto redo2;
  404. }
  405. if (!ret)
  406. ret = error;
  407. break;
  408. }
  409. ret += chars;
  410. /* Insert it into the buffer array */
  411. buf->page = page;
  412. buf->ops = &anon_pipe_buf_ops;
  413. buf->offset = 0;
  414. buf->len = chars;
  415. pipe->nrbufs = ++bufs;
  416. pipe->tmp_page = NULL;
  417. total_len -= chars;
  418. if (!total_len)
  419. break;
  420. }
  421. if (bufs < PIPE_BUFFERS)
  422. continue;
  423. if (filp->f_flags & O_NONBLOCK) {
  424. if (!ret)
  425. ret = -EAGAIN;
  426. break;
  427. }
  428. if (signal_pending(current)) {
  429. if (!ret)
  430. ret = -ERESTARTSYS;
  431. break;
  432. }
  433. if (do_wakeup) {
  434. wake_up_interruptible_sync(&pipe->wait);
  435. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  436. do_wakeup = 0;
  437. }
  438. pipe->waiting_writers++;
  439. pipe_wait(pipe);
  440. pipe->waiting_writers--;
  441. }
  442. out:
  443. mutex_unlock(&inode->i_mutex);
  444. if (do_wakeup) {
  445. wake_up_interruptible(&pipe->wait);
  446. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  447. }
  448. if (ret > 0)
  449. file_update_time(filp);
  450. return ret;
  451. }
  452. static ssize_t
  453. bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
  454. {
  455. return -EBADF;
  456. }
  457. static ssize_t
  458. bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
  459. loff_t *ppos)
  460. {
  461. return -EBADF;
  462. }
  463. static int
  464. pipe_ioctl(struct inode *pino, struct file *filp,
  465. unsigned int cmd, unsigned long arg)
  466. {
  467. struct inode *inode = filp->f_path.dentry->d_inode;
  468. struct pipe_inode_info *pipe;
  469. int count, buf, nrbufs;
  470. switch (cmd) {
  471. case FIONREAD:
  472. mutex_lock(&inode->i_mutex);
  473. pipe = inode->i_pipe;
  474. count = 0;
  475. buf = pipe->curbuf;
  476. nrbufs = pipe->nrbufs;
  477. while (--nrbufs >= 0) {
  478. count += pipe->bufs[buf].len;
  479. buf = (buf+1) & (PIPE_BUFFERS-1);
  480. }
  481. mutex_unlock(&inode->i_mutex);
  482. return put_user(count, (int __user *)arg);
  483. default:
  484. return -EINVAL;
  485. }
  486. }
  487. /* No kernel lock held - fine */
  488. static unsigned int
  489. pipe_poll(struct file *filp, poll_table *wait)
  490. {
  491. unsigned int mask;
  492. struct inode *inode = filp->f_path.dentry->d_inode;
  493. struct pipe_inode_info *pipe = inode->i_pipe;
  494. int nrbufs;
  495. poll_wait(filp, &pipe->wait, wait);
  496. /* Reading only -- no need for acquiring the semaphore. */
  497. nrbufs = pipe->nrbufs;
  498. mask = 0;
  499. if (filp->f_mode & FMODE_READ) {
  500. mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
  501. if (!pipe->writers && filp->f_version != pipe->w_counter)
  502. mask |= POLLHUP;
  503. }
  504. if (filp->f_mode & FMODE_WRITE) {
  505. mask |= (nrbufs < PIPE_BUFFERS) ? POLLOUT | POLLWRNORM : 0;
  506. /*
  507. * Most Unices do not set POLLERR for FIFOs but on Linux they
  508. * behave exactly like pipes for poll().
  509. */
  510. if (!pipe->readers)
  511. mask |= POLLERR;
  512. }
  513. return mask;
  514. }
  515. static int
  516. pipe_release(struct inode *inode, int decr, int decw)
  517. {
  518. struct pipe_inode_info *pipe;
  519. mutex_lock(&inode->i_mutex);
  520. pipe = inode->i_pipe;
  521. pipe->readers -= decr;
  522. pipe->writers -= decw;
  523. if (!pipe->readers && !pipe->writers) {
  524. free_pipe_info(inode);
  525. } else {
  526. wake_up_interruptible(&pipe->wait);
  527. kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
  528. kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
  529. }
  530. mutex_unlock(&inode->i_mutex);
  531. return 0;
  532. }
  533. static int
  534. pipe_read_fasync(int fd, struct file *filp, int on)
  535. {
  536. struct inode *inode = filp->f_path.dentry->d_inode;
  537. int retval;
  538. mutex_lock(&inode->i_mutex);
  539. retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
  540. mutex_unlock(&inode->i_mutex);
  541. if (retval < 0)
  542. return retval;
  543. return 0;
  544. }
  545. static int
  546. pipe_write_fasync(int fd, struct file *filp, int on)
  547. {
  548. struct inode *inode = filp->f_path.dentry->d_inode;
  549. int retval;
  550. mutex_lock(&inode->i_mutex);
  551. retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
  552. mutex_unlock(&inode->i_mutex);
  553. if (retval < 0)
  554. return retval;
  555. return 0;
  556. }
  557. static int
  558. pipe_rdwr_fasync(int fd, struct file *filp, int on)
  559. {
  560. struct inode *inode = filp->f_path.dentry->d_inode;
  561. struct pipe_inode_info *pipe = inode->i_pipe;
  562. int retval;
  563. mutex_lock(&inode->i_mutex);
  564. retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
  565. if (retval >= 0)
  566. retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
  567. mutex_unlock(&inode->i_mutex);
  568. if (retval < 0)
  569. return retval;
  570. return 0;
  571. }
  572. static int
  573. pipe_read_release(struct inode *inode, struct file *filp)
  574. {
  575. pipe_read_fasync(-1, filp, 0);
  576. return pipe_release(inode, 1, 0);
  577. }
  578. static int
  579. pipe_write_release(struct inode *inode, struct file *filp)
  580. {
  581. pipe_write_fasync(-1, filp, 0);
  582. return pipe_release(inode, 0, 1);
  583. }
  584. static int
  585. pipe_rdwr_release(struct inode *inode, struct file *filp)
  586. {
  587. int decr, decw;
  588. pipe_rdwr_fasync(-1, filp, 0);
  589. decr = (filp->f_mode & FMODE_READ) != 0;
  590. decw = (filp->f_mode & FMODE_WRITE) != 0;
  591. return pipe_release(inode, decr, decw);
  592. }
  593. static int
  594. pipe_read_open(struct inode *inode, struct file *filp)
  595. {
  596. /* We could have perhaps used atomic_t, but this and friends
  597. below are the only places. So it doesn't seem worthwhile. */
  598. mutex_lock(&inode->i_mutex);
  599. inode->i_pipe->readers++;
  600. mutex_unlock(&inode->i_mutex);
  601. return 0;
  602. }
  603. static int
  604. pipe_write_open(struct inode *inode, struct file *filp)
  605. {
  606. mutex_lock(&inode->i_mutex);
  607. inode->i_pipe->writers++;
  608. mutex_unlock(&inode->i_mutex);
  609. return 0;
  610. }
  611. static int
  612. pipe_rdwr_open(struct inode *inode, struct file *filp)
  613. {
  614. mutex_lock(&inode->i_mutex);
  615. if (filp->f_mode & FMODE_READ)
  616. inode->i_pipe->readers++;
  617. if (filp->f_mode & FMODE_WRITE)
  618. inode->i_pipe->writers++;
  619. mutex_unlock(&inode->i_mutex);
  620. return 0;
  621. }
  622. /*
  623. * The file_operations structs are not static because they
  624. * are also used in linux/fs/fifo.c to do operations on FIFOs.
  625. */
  626. const struct file_operations read_fifo_fops = {
  627. .llseek = no_llseek,
  628. .read = do_sync_read,
  629. .aio_read = pipe_read,
  630. .write = bad_pipe_w,
  631. .poll = pipe_poll,
  632. .ioctl = pipe_ioctl,
  633. .open = pipe_read_open,
  634. .release = pipe_read_release,
  635. .fasync = pipe_read_fasync,
  636. };
  637. const struct file_operations write_fifo_fops = {
  638. .llseek = no_llseek,
  639. .read = bad_pipe_r,
  640. .write = do_sync_write,
  641. .aio_write = pipe_write,
  642. .poll = pipe_poll,
  643. .ioctl = pipe_ioctl,
  644. .open = pipe_write_open,
  645. .release = pipe_write_release,
  646. .fasync = pipe_write_fasync,
  647. };
  648. const struct file_operations rdwr_fifo_fops = {
  649. .llseek = no_llseek,
  650. .read = do_sync_read,
  651. .aio_read = pipe_read,
  652. .write = do_sync_write,
  653. .aio_write = pipe_write,
  654. .poll = pipe_poll,
  655. .ioctl = pipe_ioctl,
  656. .open = pipe_rdwr_open,
  657. .release = pipe_rdwr_release,
  658. .fasync = pipe_rdwr_fasync,
  659. };
  660. static const struct file_operations read_pipe_fops = {
  661. .llseek = no_llseek,
  662. .read = do_sync_read,
  663. .aio_read = pipe_read,
  664. .write = bad_pipe_w,
  665. .poll = pipe_poll,
  666. .ioctl = pipe_ioctl,
  667. .open = pipe_read_open,
  668. .release = pipe_read_release,
  669. .fasync = pipe_read_fasync,
  670. };
  671. static const struct file_operations write_pipe_fops = {
  672. .llseek = no_llseek,
  673. .read = bad_pipe_r,
  674. .write = do_sync_write,
  675. .aio_write = pipe_write,
  676. .poll = pipe_poll,
  677. .ioctl = pipe_ioctl,
  678. .open = pipe_write_open,
  679. .release = pipe_write_release,
  680. .fasync = pipe_write_fasync,
  681. };
  682. static const struct file_operations rdwr_pipe_fops = {
  683. .llseek = no_llseek,
  684. .read = do_sync_read,
  685. .aio_read = pipe_read,
  686. .write = do_sync_write,
  687. .aio_write = pipe_write,
  688. .poll = pipe_poll,
  689. .ioctl = pipe_ioctl,
  690. .open = pipe_rdwr_open,
  691. .release = pipe_rdwr_release,
  692. .fasync = pipe_rdwr_fasync,
  693. };
  694. struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
  695. {
  696. struct pipe_inode_info *pipe;
  697. pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
  698. if (pipe) {
  699. init_waitqueue_head(&pipe->wait);
  700. pipe->r_counter = pipe->w_counter = 1;
  701. pipe->inode = inode;
  702. }
  703. return pipe;
  704. }
  705. void __free_pipe_info(struct pipe_inode_info *pipe)
  706. {
  707. int i;
  708. for (i = 0; i < PIPE_BUFFERS; i++) {
  709. struct pipe_buffer *buf = pipe->bufs + i;
  710. if (buf->ops)
  711. buf->ops->release(pipe, buf);
  712. }
  713. if (pipe->tmp_page)
  714. __free_page(pipe->tmp_page);
  715. kfree(pipe);
  716. }
  717. void free_pipe_info(struct inode *inode)
  718. {
  719. __free_pipe_info(inode->i_pipe);
  720. inode->i_pipe = NULL;
  721. }
  722. static struct vfsmount *pipe_mnt __read_mostly;
  723. static int pipefs_delete_dentry(struct dentry *dentry)
  724. {
  725. /*
  726. * At creation time, we pretended this dentry was hashed
  727. * (by clearing DCACHE_UNHASHED bit in d_flags)
  728. * At delete time, we restore the truth : not hashed.
  729. * (so that dput() can proceed correctly)
  730. */
  731. dentry->d_flags |= DCACHE_UNHASHED;
  732. return 0;
  733. }
  734. static struct dentry_operations pipefs_dentry_operations = {
  735. .d_delete = pipefs_delete_dentry,
  736. };
  737. static struct inode * get_pipe_inode(void)
  738. {
  739. struct inode *inode = new_inode(pipe_mnt->mnt_sb);
  740. struct pipe_inode_info *pipe;
  741. if (!inode)
  742. goto fail_inode;
  743. pipe = alloc_pipe_info(inode);
  744. if (!pipe)
  745. goto fail_iput;
  746. inode->i_pipe = pipe;
  747. pipe->readers = pipe->writers = 1;
  748. inode->i_fop = &rdwr_pipe_fops;
  749. /*
  750. * Mark the inode dirty from the very beginning,
  751. * that way it will never be moved to the dirty
  752. * list because "mark_inode_dirty()" will think
  753. * that it already _is_ on the dirty list.
  754. */
  755. inode->i_state = I_DIRTY;
  756. inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
  757. inode->i_uid = current->fsuid;
  758. inode->i_gid = current->fsgid;
  759. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  760. return inode;
  761. fail_iput:
  762. iput(inode);
  763. fail_inode:
  764. return NULL;
  765. }
  766. struct file *create_write_pipe(void)
  767. {
  768. int err;
  769. struct inode *inode;
  770. struct file *f;
  771. struct dentry *dentry;
  772. char name[32];
  773. struct qstr this;
  774. f = get_empty_filp();
  775. if (!f)
  776. return ERR_PTR(-ENFILE);
  777. err = -ENFILE;
  778. inode = get_pipe_inode();
  779. if (!inode)
  780. goto err_file;
  781. this.len = sprintf(name, "[%lu]", inode->i_ino);
  782. this.name = name;
  783. this.hash = 0;
  784. err = -ENOMEM;
  785. dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &this);
  786. if (!dentry)
  787. goto err_inode;
  788. dentry->d_op = &pipefs_dentry_operations;
  789. /*
  790. * We dont want to publish this dentry into global dentry hash table.
  791. * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
  792. * This permits a working /proc/$pid/fd/XXX on pipes
  793. */
  794. dentry->d_flags &= ~DCACHE_UNHASHED;
  795. d_instantiate(dentry, inode);
  796. f->f_path.mnt = mntget(pipe_mnt);
  797. f->f_path.dentry = dentry;
  798. f->f_mapping = inode->i_mapping;
  799. f->f_flags = O_WRONLY;
  800. f->f_op = &write_pipe_fops;
  801. f->f_mode = FMODE_WRITE;
  802. f->f_version = 0;
  803. return f;
  804. err_inode:
  805. free_pipe_info(inode);
  806. iput(inode);
  807. err_file:
  808. put_filp(f);
  809. return ERR_PTR(err);
  810. }
  811. void free_write_pipe(struct file *f)
  812. {
  813. free_pipe_info(f->f_dentry->d_inode);
  814. dput(f->f_path.dentry);
  815. mntput(f->f_path.mnt);
  816. put_filp(f);
  817. }
  818. struct file *create_read_pipe(struct file *wrf)
  819. {
  820. struct file *f = get_empty_filp();
  821. if (!f)
  822. return ERR_PTR(-ENFILE);
  823. /* Grab pipe from the writer */
  824. f->f_path.mnt = mntget(wrf->f_path.mnt);
  825. f->f_path.dentry = dget(wrf->f_path.dentry);
  826. f->f_mapping = wrf->f_path.dentry->d_inode->i_mapping;
  827. f->f_pos = 0;
  828. f->f_flags = O_RDONLY;
  829. f->f_op = &read_pipe_fops;
  830. f->f_mode = FMODE_READ;
  831. f->f_version = 0;
  832. return f;
  833. }
  834. int do_pipe(int *fd)
  835. {
  836. struct file *fw, *fr;
  837. int error;
  838. int fdw, fdr;
  839. fw = create_write_pipe();
  840. if (IS_ERR(fw))
  841. return PTR_ERR(fw);
  842. fr = create_read_pipe(fw);
  843. error = PTR_ERR(fr);
  844. if (IS_ERR(fr))
  845. goto err_write_pipe;
  846. error = get_unused_fd();
  847. if (error < 0)
  848. goto err_read_pipe;
  849. fdr = error;
  850. error = get_unused_fd();
  851. if (error < 0)
  852. goto err_fdr;
  853. fdw = error;
  854. fd_install(fdr, fr);
  855. fd_install(fdw, fw);
  856. fd[0] = fdr;
  857. fd[1] = fdw;
  858. return 0;
  859. err_fdr:
  860. put_unused_fd(fdr);
  861. err_read_pipe:
  862. dput(fr->f_dentry);
  863. mntput(fr->f_vfsmnt);
  864. put_filp(fr);
  865. err_write_pipe:
  866. free_write_pipe(fw);
  867. return error;
  868. }
  869. /*
  870. * pipefs should _never_ be mounted by userland - too much of security hassle,
  871. * no real gain from having the whole whorehouse mounted. So we don't need
  872. * any operations on the root directory. However, we need a non-trivial
  873. * d_name - pipe: will go nicely and kill the special-casing in procfs.
  874. */
  875. static int pipefs_get_sb(struct file_system_type *fs_type,
  876. int flags, const char *dev_name, void *data,
  877. struct vfsmount *mnt)
  878. {
  879. return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
  880. }
  881. static struct file_system_type pipe_fs_type = {
  882. .name = "pipefs",
  883. .get_sb = pipefs_get_sb,
  884. .kill_sb = kill_anon_super,
  885. };
  886. static int __init init_pipe_fs(void)
  887. {
  888. int err = register_filesystem(&pipe_fs_type);
  889. if (!err) {
  890. pipe_mnt = kern_mount(&pipe_fs_type);
  891. if (IS_ERR(pipe_mnt)) {
  892. err = PTR_ERR(pipe_mnt);
  893. unregister_filesystem(&pipe_fs_type);
  894. }
  895. }
  896. return err;
  897. }
  898. static void __exit exit_pipe_fs(void)
  899. {
  900. unregister_filesystem(&pipe_fs_type);
  901. mntput(pipe_mnt);
  902. }
  903. fs_initcall(init_pipe_fs);
  904. module_exit(exit_pipe_fs);