namespace.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/quotaops.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <asm/uaccess.h>
  28. #include <asm/unistd.h>
  29. #include "pnode.h"
  30. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  31. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  32. static int event;
  33. static struct list_head *mount_hashtable __read_mostly;
  34. static int hash_mask __read_mostly, hash_bits __read_mostly;
  35. static struct kmem_cache *mnt_cache __read_mostly;
  36. static struct rw_semaphore namespace_sem;
  37. /* /sys/fs */
  38. decl_subsys(fs, NULL, NULL);
  39. EXPORT_SYMBOL_GPL(fs_subsys);
  40. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  41. {
  42. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  43. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  44. tmp = tmp + (tmp >> hash_bits);
  45. return tmp & hash_mask;
  46. }
  47. struct vfsmount *alloc_vfsmnt(const char *name)
  48. {
  49. struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
  50. if (mnt) {
  51. memset(mnt, 0, sizeof(struct vfsmount));
  52. atomic_set(&mnt->mnt_count, 1);
  53. INIT_LIST_HEAD(&mnt->mnt_hash);
  54. INIT_LIST_HEAD(&mnt->mnt_child);
  55. INIT_LIST_HEAD(&mnt->mnt_mounts);
  56. INIT_LIST_HEAD(&mnt->mnt_list);
  57. INIT_LIST_HEAD(&mnt->mnt_expire);
  58. INIT_LIST_HEAD(&mnt->mnt_share);
  59. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  60. INIT_LIST_HEAD(&mnt->mnt_slave);
  61. if (name) {
  62. int size = strlen(name) + 1;
  63. char *newname = kmalloc(size, GFP_KERNEL);
  64. if (newname) {
  65. memcpy(newname, name, size);
  66. mnt->mnt_devname = newname;
  67. }
  68. }
  69. }
  70. return mnt;
  71. }
  72. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  73. {
  74. mnt->mnt_sb = sb;
  75. mnt->mnt_root = dget(sb->s_root);
  76. return 0;
  77. }
  78. EXPORT_SYMBOL(simple_set_mnt);
  79. void free_vfsmnt(struct vfsmount *mnt)
  80. {
  81. kfree(mnt->mnt_devname);
  82. kmem_cache_free(mnt_cache, mnt);
  83. }
  84. /*
  85. * find the first or last mount at @dentry on vfsmount @mnt depending on
  86. * @dir. If @dir is set return the first mount else return the last mount.
  87. */
  88. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  89. int dir)
  90. {
  91. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  92. struct list_head *tmp = head;
  93. struct vfsmount *p, *found = NULL;
  94. for (;;) {
  95. tmp = dir ? tmp->next : tmp->prev;
  96. p = NULL;
  97. if (tmp == head)
  98. break;
  99. p = list_entry(tmp, struct vfsmount, mnt_hash);
  100. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  101. found = p;
  102. break;
  103. }
  104. }
  105. return found;
  106. }
  107. /*
  108. * lookup_mnt increments the ref count before returning
  109. * the vfsmount struct.
  110. */
  111. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  112. {
  113. struct vfsmount *child_mnt;
  114. spin_lock(&vfsmount_lock);
  115. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  116. mntget(child_mnt);
  117. spin_unlock(&vfsmount_lock);
  118. return child_mnt;
  119. }
  120. static inline int check_mnt(struct vfsmount *mnt)
  121. {
  122. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  123. }
  124. static void touch_mnt_namespace(struct mnt_namespace *ns)
  125. {
  126. if (ns) {
  127. ns->event = ++event;
  128. wake_up_interruptible(&ns->poll);
  129. }
  130. }
  131. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  132. {
  133. if (ns && ns->event != event) {
  134. ns->event = event;
  135. wake_up_interruptible(&ns->poll);
  136. }
  137. }
  138. static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
  139. {
  140. old_nd->dentry = mnt->mnt_mountpoint;
  141. old_nd->mnt = mnt->mnt_parent;
  142. mnt->mnt_parent = mnt;
  143. mnt->mnt_mountpoint = mnt->mnt_root;
  144. list_del_init(&mnt->mnt_child);
  145. list_del_init(&mnt->mnt_hash);
  146. old_nd->dentry->d_mounted--;
  147. }
  148. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  149. struct vfsmount *child_mnt)
  150. {
  151. child_mnt->mnt_parent = mntget(mnt);
  152. child_mnt->mnt_mountpoint = dget(dentry);
  153. dentry->d_mounted++;
  154. }
  155. static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
  156. {
  157. mnt_set_mountpoint(nd->mnt, nd->dentry, mnt);
  158. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  159. hash(nd->mnt, nd->dentry));
  160. list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
  161. }
  162. /*
  163. * the caller must hold vfsmount_lock
  164. */
  165. static void commit_tree(struct vfsmount *mnt)
  166. {
  167. struct vfsmount *parent = mnt->mnt_parent;
  168. struct vfsmount *m;
  169. LIST_HEAD(head);
  170. struct mnt_namespace *n = parent->mnt_ns;
  171. BUG_ON(parent == mnt);
  172. list_add_tail(&head, &mnt->mnt_list);
  173. list_for_each_entry(m, &head, mnt_list)
  174. m->mnt_ns = n;
  175. list_splice(&head, n->list.prev);
  176. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  177. hash(parent, mnt->mnt_mountpoint));
  178. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  179. touch_mnt_namespace(n);
  180. }
  181. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  182. {
  183. struct list_head *next = p->mnt_mounts.next;
  184. if (next == &p->mnt_mounts) {
  185. while (1) {
  186. if (p == root)
  187. return NULL;
  188. next = p->mnt_child.next;
  189. if (next != &p->mnt_parent->mnt_mounts)
  190. break;
  191. p = p->mnt_parent;
  192. }
  193. }
  194. return list_entry(next, struct vfsmount, mnt_child);
  195. }
  196. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  197. {
  198. struct list_head *prev = p->mnt_mounts.prev;
  199. while (prev != &p->mnt_mounts) {
  200. p = list_entry(prev, struct vfsmount, mnt_child);
  201. prev = p->mnt_mounts.prev;
  202. }
  203. return p;
  204. }
  205. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  206. int flag)
  207. {
  208. struct super_block *sb = old->mnt_sb;
  209. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  210. if (mnt) {
  211. mnt->mnt_flags = old->mnt_flags;
  212. atomic_inc(&sb->s_active);
  213. mnt->mnt_sb = sb;
  214. mnt->mnt_root = dget(root);
  215. mnt->mnt_mountpoint = mnt->mnt_root;
  216. mnt->mnt_parent = mnt;
  217. if (flag & CL_SLAVE) {
  218. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  219. mnt->mnt_master = old;
  220. CLEAR_MNT_SHARED(mnt);
  221. } else {
  222. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  223. list_add(&mnt->mnt_share, &old->mnt_share);
  224. if (IS_MNT_SLAVE(old))
  225. list_add(&mnt->mnt_slave, &old->mnt_slave);
  226. mnt->mnt_master = old->mnt_master;
  227. }
  228. if (flag & CL_MAKE_SHARED)
  229. set_mnt_shared(mnt);
  230. /* stick the duplicate mount on the same expiry list
  231. * as the original if that was on one */
  232. if (flag & CL_EXPIRE) {
  233. spin_lock(&vfsmount_lock);
  234. if (!list_empty(&old->mnt_expire))
  235. list_add(&mnt->mnt_expire, &old->mnt_expire);
  236. spin_unlock(&vfsmount_lock);
  237. }
  238. }
  239. return mnt;
  240. }
  241. static inline void __mntput(struct vfsmount *mnt)
  242. {
  243. struct super_block *sb = mnt->mnt_sb;
  244. dput(mnt->mnt_root);
  245. free_vfsmnt(mnt);
  246. deactivate_super(sb);
  247. }
  248. void mntput_no_expire(struct vfsmount *mnt)
  249. {
  250. repeat:
  251. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  252. if (likely(!mnt->mnt_pinned)) {
  253. spin_unlock(&vfsmount_lock);
  254. __mntput(mnt);
  255. return;
  256. }
  257. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  258. mnt->mnt_pinned = 0;
  259. spin_unlock(&vfsmount_lock);
  260. acct_auto_close_mnt(mnt);
  261. security_sb_umount_close(mnt);
  262. goto repeat;
  263. }
  264. }
  265. EXPORT_SYMBOL(mntput_no_expire);
  266. void mnt_pin(struct vfsmount *mnt)
  267. {
  268. spin_lock(&vfsmount_lock);
  269. mnt->mnt_pinned++;
  270. spin_unlock(&vfsmount_lock);
  271. }
  272. EXPORT_SYMBOL(mnt_pin);
  273. void mnt_unpin(struct vfsmount *mnt)
  274. {
  275. spin_lock(&vfsmount_lock);
  276. if (mnt->mnt_pinned) {
  277. atomic_inc(&mnt->mnt_count);
  278. mnt->mnt_pinned--;
  279. }
  280. spin_unlock(&vfsmount_lock);
  281. }
  282. EXPORT_SYMBOL(mnt_unpin);
  283. /* iterator */
  284. static void *m_start(struct seq_file *m, loff_t *pos)
  285. {
  286. struct mnt_namespace *n = m->private;
  287. struct list_head *p;
  288. loff_t l = *pos;
  289. down_read(&namespace_sem);
  290. list_for_each(p, &n->list)
  291. if (!l--)
  292. return list_entry(p, struct vfsmount, mnt_list);
  293. return NULL;
  294. }
  295. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  296. {
  297. struct mnt_namespace *n = m->private;
  298. struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
  299. (*pos)++;
  300. return p == &n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
  301. }
  302. static void m_stop(struct seq_file *m, void *v)
  303. {
  304. up_read(&namespace_sem);
  305. }
  306. static inline void mangle(struct seq_file *m, const char *s)
  307. {
  308. seq_escape(m, s, " \t\n\\");
  309. }
  310. static int show_vfsmnt(struct seq_file *m, void *v)
  311. {
  312. struct vfsmount *mnt = v;
  313. int err = 0;
  314. static struct proc_fs_info {
  315. int flag;
  316. char *str;
  317. } fs_info[] = {
  318. { MS_SYNCHRONOUS, ",sync" },
  319. { MS_DIRSYNC, ",dirsync" },
  320. { MS_MANDLOCK, ",mand" },
  321. { 0, NULL }
  322. };
  323. static struct proc_fs_info mnt_info[] = {
  324. { MNT_NOSUID, ",nosuid" },
  325. { MNT_NODEV, ",nodev" },
  326. { MNT_NOEXEC, ",noexec" },
  327. { MNT_NOATIME, ",noatime" },
  328. { MNT_NODIRATIME, ",nodiratime" },
  329. { MNT_RELATIME, ",relatime" },
  330. { 0, NULL }
  331. };
  332. struct proc_fs_info *fs_infop;
  333. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  334. seq_putc(m, ' ');
  335. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  336. seq_putc(m, ' ');
  337. mangle(m, mnt->mnt_sb->s_type->name);
  338. seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
  339. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  340. if (mnt->mnt_sb->s_flags & fs_infop->flag)
  341. seq_puts(m, fs_infop->str);
  342. }
  343. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  344. if (mnt->mnt_flags & fs_infop->flag)
  345. seq_puts(m, fs_infop->str);
  346. }
  347. if (mnt->mnt_sb->s_op->show_options)
  348. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  349. seq_puts(m, " 0 0\n");
  350. return err;
  351. }
  352. struct seq_operations mounts_op = {
  353. .start = m_start,
  354. .next = m_next,
  355. .stop = m_stop,
  356. .show = show_vfsmnt
  357. };
  358. static int show_vfsstat(struct seq_file *m, void *v)
  359. {
  360. struct vfsmount *mnt = v;
  361. int err = 0;
  362. /* device */
  363. if (mnt->mnt_devname) {
  364. seq_puts(m, "device ");
  365. mangle(m, mnt->mnt_devname);
  366. } else
  367. seq_puts(m, "no device");
  368. /* mount point */
  369. seq_puts(m, " mounted on ");
  370. seq_path(m, mnt, mnt->mnt_root, " \t\n\\");
  371. seq_putc(m, ' ');
  372. /* file system type */
  373. seq_puts(m, "with fstype ");
  374. mangle(m, mnt->mnt_sb->s_type->name);
  375. /* optional statistics */
  376. if (mnt->mnt_sb->s_op->show_stats) {
  377. seq_putc(m, ' ');
  378. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  379. }
  380. seq_putc(m, '\n');
  381. return err;
  382. }
  383. struct seq_operations mountstats_op = {
  384. .start = m_start,
  385. .next = m_next,
  386. .stop = m_stop,
  387. .show = show_vfsstat,
  388. };
  389. /**
  390. * may_umount_tree - check if a mount tree is busy
  391. * @mnt: root of mount tree
  392. *
  393. * This is called to check if a tree of mounts has any
  394. * open files, pwds, chroots or sub mounts that are
  395. * busy.
  396. */
  397. int may_umount_tree(struct vfsmount *mnt)
  398. {
  399. int actual_refs = 0;
  400. int minimum_refs = 0;
  401. struct vfsmount *p;
  402. spin_lock(&vfsmount_lock);
  403. for (p = mnt; p; p = next_mnt(p, mnt)) {
  404. actual_refs += atomic_read(&p->mnt_count);
  405. minimum_refs += 2;
  406. }
  407. spin_unlock(&vfsmount_lock);
  408. if (actual_refs > minimum_refs)
  409. return 0;
  410. return 1;
  411. }
  412. EXPORT_SYMBOL(may_umount_tree);
  413. /**
  414. * may_umount - check if a mount point is busy
  415. * @mnt: root of mount
  416. *
  417. * This is called to check if a mount point has any
  418. * open files, pwds, chroots or sub mounts. If the
  419. * mount has sub mounts this will return busy
  420. * regardless of whether the sub mounts are busy.
  421. *
  422. * Doesn't take quota and stuff into account. IOW, in some cases it will
  423. * give false negatives. The main reason why it's here is that we need
  424. * a non-destructive way to look for easily umountable filesystems.
  425. */
  426. int may_umount(struct vfsmount *mnt)
  427. {
  428. int ret = 1;
  429. spin_lock(&vfsmount_lock);
  430. if (propagate_mount_busy(mnt, 2))
  431. ret = 0;
  432. spin_unlock(&vfsmount_lock);
  433. return ret;
  434. }
  435. EXPORT_SYMBOL(may_umount);
  436. void release_mounts(struct list_head *head)
  437. {
  438. struct vfsmount *mnt;
  439. while (!list_empty(head)) {
  440. mnt = list_entry(head->next, struct vfsmount, mnt_hash);
  441. list_del_init(&mnt->mnt_hash);
  442. if (mnt->mnt_parent != mnt) {
  443. struct dentry *dentry;
  444. struct vfsmount *m;
  445. spin_lock(&vfsmount_lock);
  446. dentry = mnt->mnt_mountpoint;
  447. m = mnt->mnt_parent;
  448. mnt->mnt_mountpoint = mnt->mnt_root;
  449. mnt->mnt_parent = mnt;
  450. spin_unlock(&vfsmount_lock);
  451. dput(dentry);
  452. mntput(m);
  453. }
  454. mntput(mnt);
  455. }
  456. }
  457. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  458. {
  459. struct vfsmount *p;
  460. for (p = mnt; p; p = next_mnt(p, mnt))
  461. list_move(&p->mnt_hash, kill);
  462. if (propagate)
  463. propagate_umount(kill);
  464. list_for_each_entry(p, kill, mnt_hash) {
  465. list_del_init(&p->mnt_expire);
  466. list_del_init(&p->mnt_list);
  467. __touch_mnt_namespace(p->mnt_ns);
  468. p->mnt_ns = NULL;
  469. list_del_init(&p->mnt_child);
  470. if (p->mnt_parent != p)
  471. p->mnt_mountpoint->d_mounted--;
  472. change_mnt_propagation(p, MS_PRIVATE);
  473. }
  474. }
  475. static int do_umount(struct vfsmount *mnt, int flags)
  476. {
  477. struct super_block *sb = mnt->mnt_sb;
  478. int retval;
  479. LIST_HEAD(umount_list);
  480. retval = security_sb_umount(mnt, flags);
  481. if (retval)
  482. return retval;
  483. /*
  484. * Allow userspace to request a mountpoint be expired rather than
  485. * unmounting unconditionally. Unmount only happens if:
  486. * (1) the mark is already set (the mark is cleared by mntput())
  487. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  488. */
  489. if (flags & MNT_EXPIRE) {
  490. if (mnt == current->fs->rootmnt ||
  491. flags & (MNT_FORCE | MNT_DETACH))
  492. return -EINVAL;
  493. if (atomic_read(&mnt->mnt_count) != 2)
  494. return -EBUSY;
  495. if (!xchg(&mnt->mnt_expiry_mark, 1))
  496. return -EAGAIN;
  497. }
  498. /*
  499. * If we may have to abort operations to get out of this
  500. * mount, and they will themselves hold resources we must
  501. * allow the fs to do things. In the Unix tradition of
  502. * 'Gee thats tricky lets do it in userspace' the umount_begin
  503. * might fail to complete on the first run through as other tasks
  504. * must return, and the like. Thats for the mount program to worry
  505. * about for the moment.
  506. */
  507. lock_kernel();
  508. if (sb->s_op->umount_begin)
  509. sb->s_op->umount_begin(mnt, flags);
  510. unlock_kernel();
  511. /*
  512. * No sense to grab the lock for this test, but test itself looks
  513. * somewhat bogus. Suggestions for better replacement?
  514. * Ho-hum... In principle, we might treat that as umount + switch
  515. * to rootfs. GC would eventually take care of the old vfsmount.
  516. * Actually it makes sense, especially if rootfs would contain a
  517. * /reboot - static binary that would close all descriptors and
  518. * call reboot(9). Then init(8) could umount root and exec /reboot.
  519. */
  520. if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
  521. /*
  522. * Special case for "unmounting" root ...
  523. * we just try to remount it readonly.
  524. */
  525. down_write(&sb->s_umount);
  526. if (!(sb->s_flags & MS_RDONLY)) {
  527. lock_kernel();
  528. DQUOT_OFF(sb);
  529. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  530. unlock_kernel();
  531. }
  532. up_write(&sb->s_umount);
  533. return retval;
  534. }
  535. down_write(&namespace_sem);
  536. spin_lock(&vfsmount_lock);
  537. event++;
  538. retval = -EBUSY;
  539. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  540. if (!list_empty(&mnt->mnt_list))
  541. umount_tree(mnt, 1, &umount_list);
  542. retval = 0;
  543. }
  544. spin_unlock(&vfsmount_lock);
  545. if (retval)
  546. security_sb_umount_busy(mnt);
  547. up_write(&namespace_sem);
  548. release_mounts(&umount_list);
  549. return retval;
  550. }
  551. /*
  552. * Now umount can handle mount points as well as block devices.
  553. * This is important for filesystems which use unnamed block devices.
  554. *
  555. * We now support a flag for forced unmount like the other 'big iron'
  556. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  557. */
  558. asmlinkage long sys_umount(char __user * name, int flags)
  559. {
  560. struct nameidata nd;
  561. int retval;
  562. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  563. if (retval)
  564. goto out;
  565. retval = -EINVAL;
  566. if (nd.dentry != nd.mnt->mnt_root)
  567. goto dput_and_out;
  568. if (!check_mnt(nd.mnt))
  569. goto dput_and_out;
  570. retval = -EPERM;
  571. if (!capable(CAP_SYS_ADMIN))
  572. goto dput_and_out;
  573. retval = do_umount(nd.mnt, flags);
  574. dput_and_out:
  575. path_release_on_umount(&nd);
  576. out:
  577. return retval;
  578. }
  579. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  580. /*
  581. * The 2.0 compatible umount. No flags.
  582. */
  583. asmlinkage long sys_oldumount(char __user * name)
  584. {
  585. return sys_umount(name, 0);
  586. }
  587. #endif
  588. static int mount_is_safe(struct nameidata *nd)
  589. {
  590. if (capable(CAP_SYS_ADMIN))
  591. return 0;
  592. return -EPERM;
  593. #ifdef notyet
  594. if (S_ISLNK(nd->dentry->d_inode->i_mode))
  595. return -EPERM;
  596. if (nd->dentry->d_inode->i_mode & S_ISVTX) {
  597. if (current->uid != nd->dentry->d_inode->i_uid)
  598. return -EPERM;
  599. }
  600. if (vfs_permission(nd, MAY_WRITE))
  601. return -EPERM;
  602. return 0;
  603. #endif
  604. }
  605. static int lives_below_in_same_fs(struct dentry *d, struct dentry *dentry)
  606. {
  607. while (1) {
  608. if (d == dentry)
  609. return 1;
  610. if (d == NULL || d == d->d_parent)
  611. return 0;
  612. d = d->d_parent;
  613. }
  614. }
  615. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  616. int flag)
  617. {
  618. struct vfsmount *res, *p, *q, *r, *s;
  619. struct nameidata nd;
  620. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  621. return NULL;
  622. res = q = clone_mnt(mnt, dentry, flag);
  623. if (!q)
  624. goto Enomem;
  625. q->mnt_mountpoint = mnt->mnt_mountpoint;
  626. p = mnt;
  627. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  628. if (!lives_below_in_same_fs(r->mnt_mountpoint, dentry))
  629. continue;
  630. for (s = r; s; s = next_mnt(s, r)) {
  631. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  632. s = skip_mnt_tree(s);
  633. continue;
  634. }
  635. while (p != s->mnt_parent) {
  636. p = p->mnt_parent;
  637. q = q->mnt_parent;
  638. }
  639. p = s;
  640. nd.mnt = q;
  641. nd.dentry = p->mnt_mountpoint;
  642. q = clone_mnt(p, p->mnt_root, flag);
  643. if (!q)
  644. goto Enomem;
  645. spin_lock(&vfsmount_lock);
  646. list_add_tail(&q->mnt_list, &res->mnt_list);
  647. attach_mnt(q, &nd);
  648. spin_unlock(&vfsmount_lock);
  649. }
  650. }
  651. return res;
  652. Enomem:
  653. if (res) {
  654. LIST_HEAD(umount_list);
  655. spin_lock(&vfsmount_lock);
  656. umount_tree(res, 0, &umount_list);
  657. spin_unlock(&vfsmount_lock);
  658. release_mounts(&umount_list);
  659. }
  660. return NULL;
  661. }
  662. /*
  663. * @source_mnt : mount tree to be attached
  664. * @nd : place the mount tree @source_mnt is attached
  665. * @parent_nd : if non-null, detach the source_mnt from its parent and
  666. * store the parent mount and mountpoint dentry.
  667. * (done when source_mnt is moved)
  668. *
  669. * NOTE: in the table below explains the semantics when a source mount
  670. * of a given type is attached to a destination mount of a given type.
  671. * ---------------------------------------------------------------------------
  672. * | BIND MOUNT OPERATION |
  673. * |**************************************************************************
  674. * | source-->| shared | private | slave | unbindable |
  675. * | dest | | | | |
  676. * | | | | | | |
  677. * | v | | | | |
  678. * |**************************************************************************
  679. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  680. * | | | | | |
  681. * |non-shared| shared (+) | private | slave (*) | invalid |
  682. * ***************************************************************************
  683. * A bind operation clones the source mount and mounts the clone on the
  684. * destination mount.
  685. *
  686. * (++) the cloned mount is propagated to all the mounts in the propagation
  687. * tree of the destination mount and the cloned mount is added to
  688. * the peer group of the source mount.
  689. * (+) the cloned mount is created under the destination mount and is marked
  690. * as shared. The cloned mount is added to the peer group of the source
  691. * mount.
  692. * (+++) the mount is propagated to all the mounts in the propagation tree
  693. * of the destination mount and the cloned mount is made slave
  694. * of the same master as that of the source mount. The cloned mount
  695. * is marked as 'shared and slave'.
  696. * (*) the cloned mount is made a slave of the same master as that of the
  697. * source mount.
  698. *
  699. * ---------------------------------------------------------------------------
  700. * | MOVE MOUNT OPERATION |
  701. * |**************************************************************************
  702. * | source-->| shared | private | slave | unbindable |
  703. * | dest | | | | |
  704. * | | | | | | |
  705. * | v | | | | |
  706. * |**************************************************************************
  707. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  708. * | | | | | |
  709. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  710. * ***************************************************************************
  711. *
  712. * (+) the mount is moved to the destination. And is then propagated to
  713. * all the mounts in the propagation tree of the destination mount.
  714. * (+*) the mount is moved to the destination.
  715. * (+++) the mount is moved to the destination and is then propagated to
  716. * all the mounts belonging to the destination mount's propagation tree.
  717. * the mount is marked as 'shared and slave'.
  718. * (*) the mount continues to be a slave at the new location.
  719. *
  720. * if the source mount is a tree, the operations explained above is
  721. * applied to each mount in the tree.
  722. * Must be called without spinlocks held, since this function can sleep
  723. * in allocations.
  724. */
  725. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  726. struct nameidata *nd, struct nameidata *parent_nd)
  727. {
  728. LIST_HEAD(tree_list);
  729. struct vfsmount *dest_mnt = nd->mnt;
  730. struct dentry *dest_dentry = nd->dentry;
  731. struct vfsmount *child, *p;
  732. if (propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list))
  733. return -EINVAL;
  734. if (IS_MNT_SHARED(dest_mnt)) {
  735. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  736. set_mnt_shared(p);
  737. }
  738. spin_lock(&vfsmount_lock);
  739. if (parent_nd) {
  740. detach_mnt(source_mnt, parent_nd);
  741. attach_mnt(source_mnt, nd);
  742. touch_mnt_namespace(current->nsproxy->mnt_ns);
  743. } else {
  744. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  745. commit_tree(source_mnt);
  746. }
  747. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  748. list_del_init(&child->mnt_hash);
  749. commit_tree(child);
  750. }
  751. spin_unlock(&vfsmount_lock);
  752. return 0;
  753. }
  754. static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
  755. {
  756. int err;
  757. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  758. return -EINVAL;
  759. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  760. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  761. return -ENOTDIR;
  762. err = -ENOENT;
  763. mutex_lock(&nd->dentry->d_inode->i_mutex);
  764. if (IS_DEADDIR(nd->dentry->d_inode))
  765. goto out_unlock;
  766. err = security_sb_check_sb(mnt, nd);
  767. if (err)
  768. goto out_unlock;
  769. err = -ENOENT;
  770. if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry))
  771. err = attach_recursive_mnt(mnt, nd, NULL);
  772. out_unlock:
  773. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  774. if (!err)
  775. security_sb_post_addmount(mnt, nd);
  776. return err;
  777. }
  778. /*
  779. * recursively change the type of the mountpoint.
  780. */
  781. static int do_change_type(struct nameidata *nd, int flag)
  782. {
  783. struct vfsmount *m, *mnt = nd->mnt;
  784. int recurse = flag & MS_REC;
  785. int type = flag & ~MS_REC;
  786. if (nd->dentry != nd->mnt->mnt_root)
  787. return -EINVAL;
  788. down_write(&namespace_sem);
  789. spin_lock(&vfsmount_lock);
  790. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  791. change_mnt_propagation(m, type);
  792. spin_unlock(&vfsmount_lock);
  793. up_write(&namespace_sem);
  794. return 0;
  795. }
  796. /*
  797. * do loopback mount.
  798. */
  799. static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
  800. {
  801. struct nameidata old_nd;
  802. struct vfsmount *mnt = NULL;
  803. int err = mount_is_safe(nd);
  804. if (err)
  805. return err;
  806. if (!old_name || !*old_name)
  807. return -EINVAL;
  808. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  809. if (err)
  810. return err;
  811. down_write(&namespace_sem);
  812. err = -EINVAL;
  813. if (IS_MNT_UNBINDABLE(old_nd.mnt))
  814. goto out;
  815. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  816. goto out;
  817. err = -ENOMEM;
  818. if (recurse)
  819. mnt = copy_tree(old_nd.mnt, old_nd.dentry, 0);
  820. else
  821. mnt = clone_mnt(old_nd.mnt, old_nd.dentry, 0);
  822. if (!mnt)
  823. goto out;
  824. err = graft_tree(mnt, nd);
  825. if (err) {
  826. LIST_HEAD(umount_list);
  827. spin_lock(&vfsmount_lock);
  828. umount_tree(mnt, 0, &umount_list);
  829. spin_unlock(&vfsmount_lock);
  830. release_mounts(&umount_list);
  831. }
  832. out:
  833. up_write(&namespace_sem);
  834. path_release(&old_nd);
  835. return err;
  836. }
  837. /*
  838. * change filesystem flags. dir should be a physical root of filesystem.
  839. * If you've mounted a non-root directory somewhere and want to do remount
  840. * on it - tough luck.
  841. */
  842. static int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  843. void *data)
  844. {
  845. int err;
  846. struct super_block *sb = nd->mnt->mnt_sb;
  847. if (!capable(CAP_SYS_ADMIN))
  848. return -EPERM;
  849. if (!check_mnt(nd->mnt))
  850. return -EINVAL;
  851. if (nd->dentry != nd->mnt->mnt_root)
  852. return -EINVAL;
  853. down_write(&sb->s_umount);
  854. err = do_remount_sb(sb, flags, data, 0);
  855. if (!err)
  856. nd->mnt->mnt_flags = mnt_flags;
  857. up_write(&sb->s_umount);
  858. if (!err)
  859. security_sb_post_remount(nd->mnt, flags, data);
  860. return err;
  861. }
  862. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  863. {
  864. struct vfsmount *p;
  865. for (p = mnt; p; p = next_mnt(p, mnt)) {
  866. if (IS_MNT_UNBINDABLE(p))
  867. return 1;
  868. }
  869. return 0;
  870. }
  871. static int do_move_mount(struct nameidata *nd, char *old_name)
  872. {
  873. struct nameidata old_nd, parent_nd;
  874. struct vfsmount *p;
  875. int err = 0;
  876. if (!capable(CAP_SYS_ADMIN))
  877. return -EPERM;
  878. if (!old_name || !*old_name)
  879. return -EINVAL;
  880. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  881. if (err)
  882. return err;
  883. down_write(&namespace_sem);
  884. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  885. ;
  886. err = -EINVAL;
  887. if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
  888. goto out;
  889. err = -ENOENT;
  890. mutex_lock(&nd->dentry->d_inode->i_mutex);
  891. if (IS_DEADDIR(nd->dentry->d_inode))
  892. goto out1;
  893. if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
  894. goto out1;
  895. err = -EINVAL;
  896. if (old_nd.dentry != old_nd.mnt->mnt_root)
  897. goto out1;
  898. if (old_nd.mnt == old_nd.mnt->mnt_parent)
  899. goto out1;
  900. if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
  901. S_ISDIR(old_nd.dentry->d_inode->i_mode))
  902. goto out1;
  903. /*
  904. * Don't move a mount residing in a shared parent.
  905. */
  906. if (old_nd.mnt->mnt_parent && IS_MNT_SHARED(old_nd.mnt->mnt_parent))
  907. goto out1;
  908. /*
  909. * Don't move a mount tree containing unbindable mounts to a destination
  910. * mount which is shared.
  911. */
  912. if (IS_MNT_SHARED(nd->mnt) && tree_contains_unbindable(old_nd.mnt))
  913. goto out1;
  914. err = -ELOOP;
  915. for (p = nd->mnt; p->mnt_parent != p; p = p->mnt_parent)
  916. if (p == old_nd.mnt)
  917. goto out1;
  918. if ((err = attach_recursive_mnt(old_nd.mnt, nd, &parent_nd)))
  919. goto out1;
  920. spin_lock(&vfsmount_lock);
  921. /* if the mount is moved, it should no longer be expire
  922. * automatically */
  923. list_del_init(&old_nd.mnt->mnt_expire);
  924. spin_unlock(&vfsmount_lock);
  925. out1:
  926. mutex_unlock(&nd->dentry->d_inode->i_mutex);
  927. out:
  928. up_write(&namespace_sem);
  929. if (!err)
  930. path_release(&parent_nd);
  931. path_release(&old_nd);
  932. return err;
  933. }
  934. /*
  935. * create a new mount for userspace and request it to be added into the
  936. * namespace's tree
  937. */
  938. static int do_new_mount(struct nameidata *nd, char *type, int flags,
  939. int mnt_flags, char *name, void *data)
  940. {
  941. struct vfsmount *mnt;
  942. if (!type || !memchr(type, 0, PAGE_SIZE))
  943. return -EINVAL;
  944. /* we need capabilities... */
  945. if (!capable(CAP_SYS_ADMIN))
  946. return -EPERM;
  947. mnt = do_kern_mount(type, flags, name, data);
  948. if (IS_ERR(mnt))
  949. return PTR_ERR(mnt);
  950. return do_add_mount(mnt, nd, mnt_flags, NULL);
  951. }
  952. /*
  953. * add a mount into a namespace's mount tree
  954. * - provide the option of adding the new mount to an expiration list
  955. */
  956. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  957. int mnt_flags, struct list_head *fslist)
  958. {
  959. int err;
  960. down_write(&namespace_sem);
  961. /* Something was mounted here while we slept */
  962. while (d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
  963. ;
  964. err = -EINVAL;
  965. if (!check_mnt(nd->mnt))
  966. goto unlock;
  967. /* Refuse the same filesystem on the same mount point */
  968. err = -EBUSY;
  969. if (nd->mnt->mnt_sb == newmnt->mnt_sb &&
  970. nd->mnt->mnt_root == nd->dentry)
  971. goto unlock;
  972. err = -EINVAL;
  973. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  974. goto unlock;
  975. newmnt->mnt_flags = mnt_flags;
  976. if ((err = graft_tree(newmnt, nd)))
  977. goto unlock;
  978. if (fslist) {
  979. /* add to the specified expiration list */
  980. spin_lock(&vfsmount_lock);
  981. list_add_tail(&newmnt->mnt_expire, fslist);
  982. spin_unlock(&vfsmount_lock);
  983. }
  984. up_write(&namespace_sem);
  985. return 0;
  986. unlock:
  987. up_write(&namespace_sem);
  988. mntput(newmnt);
  989. return err;
  990. }
  991. EXPORT_SYMBOL_GPL(do_add_mount);
  992. static void expire_mount(struct vfsmount *mnt, struct list_head *mounts,
  993. struct list_head *umounts)
  994. {
  995. spin_lock(&vfsmount_lock);
  996. /*
  997. * Check if mount is still attached, if not, let whoever holds it deal
  998. * with the sucker
  999. */
  1000. if (mnt->mnt_parent == mnt) {
  1001. spin_unlock(&vfsmount_lock);
  1002. return;
  1003. }
  1004. /*
  1005. * Check that it is still dead: the count should now be 2 - as
  1006. * contributed by the vfsmount parent and the mntget above
  1007. */
  1008. if (!propagate_mount_busy(mnt, 2)) {
  1009. /* delete from the namespace */
  1010. touch_mnt_namespace(mnt->mnt_ns);
  1011. list_del_init(&mnt->mnt_list);
  1012. mnt->mnt_ns = NULL;
  1013. umount_tree(mnt, 1, umounts);
  1014. spin_unlock(&vfsmount_lock);
  1015. } else {
  1016. /*
  1017. * Someone brought it back to life whilst we didn't have any
  1018. * locks held so return it to the expiration list
  1019. */
  1020. list_add_tail(&mnt->mnt_expire, mounts);
  1021. spin_unlock(&vfsmount_lock);
  1022. }
  1023. }
  1024. /*
  1025. * go through the vfsmounts we've just consigned to the graveyard to
  1026. * - check that they're still dead
  1027. * - delete the vfsmount from the appropriate namespace under lock
  1028. * - dispose of the corpse
  1029. */
  1030. static void expire_mount_list(struct list_head *graveyard, struct list_head *mounts)
  1031. {
  1032. struct mnt_namespace *ns;
  1033. struct vfsmount *mnt;
  1034. while (!list_empty(graveyard)) {
  1035. LIST_HEAD(umounts);
  1036. mnt = list_entry(graveyard->next, struct vfsmount, mnt_expire);
  1037. list_del_init(&mnt->mnt_expire);
  1038. /* don't do anything if the namespace is dead - all the
  1039. * vfsmounts from it are going away anyway */
  1040. ns = mnt->mnt_ns;
  1041. if (!ns || !ns->root)
  1042. continue;
  1043. get_mnt_ns(ns);
  1044. spin_unlock(&vfsmount_lock);
  1045. down_write(&namespace_sem);
  1046. expire_mount(mnt, mounts, &umounts);
  1047. up_write(&namespace_sem);
  1048. release_mounts(&umounts);
  1049. mntput(mnt);
  1050. put_mnt_ns(ns);
  1051. spin_lock(&vfsmount_lock);
  1052. }
  1053. }
  1054. /*
  1055. * process a list of expirable mountpoints with the intent of discarding any
  1056. * mountpoints that aren't in use and haven't been touched since last we came
  1057. * here
  1058. */
  1059. void mark_mounts_for_expiry(struct list_head *mounts)
  1060. {
  1061. struct vfsmount *mnt, *next;
  1062. LIST_HEAD(graveyard);
  1063. if (list_empty(mounts))
  1064. return;
  1065. spin_lock(&vfsmount_lock);
  1066. /* extract from the expiration list every vfsmount that matches the
  1067. * following criteria:
  1068. * - only referenced by its parent vfsmount
  1069. * - still marked for expiry (marked on the last call here; marks are
  1070. * cleared by mntput())
  1071. */
  1072. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1073. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1074. atomic_read(&mnt->mnt_count) != 1)
  1075. continue;
  1076. mntget(mnt);
  1077. list_move(&mnt->mnt_expire, &graveyard);
  1078. }
  1079. expire_mount_list(&graveyard, mounts);
  1080. spin_unlock(&vfsmount_lock);
  1081. }
  1082. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1083. /*
  1084. * Ripoff of 'select_parent()'
  1085. *
  1086. * search the list of submounts for a given mountpoint, and move any
  1087. * shrinkable submounts to the 'graveyard' list.
  1088. */
  1089. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1090. {
  1091. struct vfsmount *this_parent = parent;
  1092. struct list_head *next;
  1093. int found = 0;
  1094. repeat:
  1095. next = this_parent->mnt_mounts.next;
  1096. resume:
  1097. while (next != &this_parent->mnt_mounts) {
  1098. struct list_head *tmp = next;
  1099. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1100. next = tmp->next;
  1101. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1102. continue;
  1103. /*
  1104. * Descend a level if the d_mounts list is non-empty.
  1105. */
  1106. if (!list_empty(&mnt->mnt_mounts)) {
  1107. this_parent = mnt;
  1108. goto repeat;
  1109. }
  1110. if (!propagate_mount_busy(mnt, 1)) {
  1111. mntget(mnt);
  1112. list_move_tail(&mnt->mnt_expire, graveyard);
  1113. found++;
  1114. }
  1115. }
  1116. /*
  1117. * All done at this level ... ascend and resume the search
  1118. */
  1119. if (this_parent != parent) {
  1120. next = this_parent->mnt_child.next;
  1121. this_parent = this_parent->mnt_parent;
  1122. goto resume;
  1123. }
  1124. return found;
  1125. }
  1126. /*
  1127. * process a list of expirable mountpoints with the intent of discarding any
  1128. * submounts of a specific parent mountpoint
  1129. */
  1130. void shrink_submounts(struct vfsmount *mountpoint, struct list_head *mounts)
  1131. {
  1132. LIST_HEAD(graveyard);
  1133. int found;
  1134. spin_lock(&vfsmount_lock);
  1135. /* extract submounts of 'mountpoint' from the expiration list */
  1136. while ((found = select_submounts(mountpoint, &graveyard)) != 0)
  1137. expire_mount_list(&graveyard, mounts);
  1138. spin_unlock(&vfsmount_lock);
  1139. }
  1140. EXPORT_SYMBOL_GPL(shrink_submounts);
  1141. /*
  1142. * Some copy_from_user() implementations do not return the exact number of
  1143. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1144. * Note that this function differs from copy_from_user() in that it will oops
  1145. * on bad values of `to', rather than returning a short copy.
  1146. */
  1147. static long exact_copy_from_user(void *to, const void __user * from,
  1148. unsigned long n)
  1149. {
  1150. char *t = to;
  1151. const char __user *f = from;
  1152. char c;
  1153. if (!access_ok(VERIFY_READ, from, n))
  1154. return n;
  1155. while (n) {
  1156. if (__get_user(c, f)) {
  1157. memset(t, 0, n);
  1158. break;
  1159. }
  1160. *t++ = c;
  1161. f++;
  1162. n--;
  1163. }
  1164. return n;
  1165. }
  1166. int copy_mount_options(const void __user * data, unsigned long *where)
  1167. {
  1168. int i;
  1169. unsigned long page;
  1170. unsigned long size;
  1171. *where = 0;
  1172. if (!data)
  1173. return 0;
  1174. if (!(page = __get_free_page(GFP_KERNEL)))
  1175. return -ENOMEM;
  1176. /* We only care that *some* data at the address the user
  1177. * gave us is valid. Just in case, we'll zero
  1178. * the remainder of the page.
  1179. */
  1180. /* copy_from_user cannot cross TASK_SIZE ! */
  1181. size = TASK_SIZE - (unsigned long)data;
  1182. if (size > PAGE_SIZE)
  1183. size = PAGE_SIZE;
  1184. i = size - exact_copy_from_user((void *)page, data, size);
  1185. if (!i) {
  1186. free_page(page);
  1187. return -EFAULT;
  1188. }
  1189. if (i != PAGE_SIZE)
  1190. memset((char *)page + i, 0, PAGE_SIZE - i);
  1191. *where = page;
  1192. return 0;
  1193. }
  1194. /*
  1195. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1196. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1197. *
  1198. * data is a (void *) that can point to any structure up to
  1199. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1200. * information (or be NULL).
  1201. *
  1202. * Pre-0.97 versions of mount() didn't have a flags word.
  1203. * When the flags word was introduced its top half was required
  1204. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1205. * Therefore, if this magic number is present, it carries no information
  1206. * and must be discarded.
  1207. */
  1208. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1209. unsigned long flags, void *data_page)
  1210. {
  1211. struct nameidata nd;
  1212. int retval = 0;
  1213. int mnt_flags = 0;
  1214. /* Discard magic */
  1215. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1216. flags &= ~MS_MGC_MSK;
  1217. /* Basic sanity checks */
  1218. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1219. return -EINVAL;
  1220. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1221. return -EINVAL;
  1222. if (data_page)
  1223. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1224. /* Separate the per-mountpoint flags */
  1225. if (flags & MS_NOSUID)
  1226. mnt_flags |= MNT_NOSUID;
  1227. if (flags & MS_NODEV)
  1228. mnt_flags |= MNT_NODEV;
  1229. if (flags & MS_NOEXEC)
  1230. mnt_flags |= MNT_NOEXEC;
  1231. if (flags & MS_NOATIME)
  1232. mnt_flags |= MNT_NOATIME;
  1233. if (flags & MS_NODIRATIME)
  1234. mnt_flags |= MNT_NODIRATIME;
  1235. if (flags & MS_RELATIME)
  1236. mnt_flags |= MNT_RELATIME;
  1237. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1238. MS_NOATIME | MS_NODIRATIME | MS_RELATIME);
  1239. /* ... and get the mountpoint */
  1240. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1241. if (retval)
  1242. return retval;
  1243. retval = security_sb_mount(dev_name, &nd, type_page, flags, data_page);
  1244. if (retval)
  1245. goto dput_out;
  1246. if (flags & MS_REMOUNT)
  1247. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1248. data_page);
  1249. else if (flags & MS_BIND)
  1250. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1251. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1252. retval = do_change_type(&nd, flags);
  1253. else if (flags & MS_MOVE)
  1254. retval = do_move_mount(&nd, dev_name);
  1255. else
  1256. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1257. dev_name, data_page);
  1258. dput_out:
  1259. path_release(&nd);
  1260. return retval;
  1261. }
  1262. /*
  1263. * Allocate a new namespace structure and populate it with contents
  1264. * copied from the namespace of the passed in task structure.
  1265. */
  1266. struct mnt_namespace *dup_mnt_ns(struct task_struct *tsk,
  1267. struct fs_struct *fs)
  1268. {
  1269. struct mnt_namespace *mnt_ns = tsk->nsproxy->mnt_ns;
  1270. struct mnt_namespace *new_ns;
  1271. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1272. struct vfsmount *p, *q;
  1273. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1274. if (!new_ns)
  1275. return NULL;
  1276. atomic_set(&new_ns->count, 1);
  1277. INIT_LIST_HEAD(&new_ns->list);
  1278. init_waitqueue_head(&new_ns->poll);
  1279. new_ns->event = 0;
  1280. down_write(&namespace_sem);
  1281. /* First pass: copy the tree topology */
  1282. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1283. CL_COPY_ALL | CL_EXPIRE);
  1284. if (!new_ns->root) {
  1285. up_write(&namespace_sem);
  1286. kfree(new_ns);
  1287. return NULL;
  1288. }
  1289. spin_lock(&vfsmount_lock);
  1290. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1291. spin_unlock(&vfsmount_lock);
  1292. /*
  1293. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1294. * as belonging to new namespace. We have already acquired a private
  1295. * fs_struct, so tsk->fs->lock is not needed.
  1296. */
  1297. p = mnt_ns->root;
  1298. q = new_ns->root;
  1299. while (p) {
  1300. q->mnt_ns = new_ns;
  1301. if (fs) {
  1302. if (p == fs->rootmnt) {
  1303. rootmnt = p;
  1304. fs->rootmnt = mntget(q);
  1305. }
  1306. if (p == fs->pwdmnt) {
  1307. pwdmnt = p;
  1308. fs->pwdmnt = mntget(q);
  1309. }
  1310. if (p == fs->altrootmnt) {
  1311. altrootmnt = p;
  1312. fs->altrootmnt = mntget(q);
  1313. }
  1314. }
  1315. p = next_mnt(p, mnt_ns->root);
  1316. q = next_mnt(q, new_ns->root);
  1317. }
  1318. up_write(&namespace_sem);
  1319. if (rootmnt)
  1320. mntput(rootmnt);
  1321. if (pwdmnt)
  1322. mntput(pwdmnt);
  1323. if (altrootmnt)
  1324. mntput(altrootmnt);
  1325. return new_ns;
  1326. }
  1327. int copy_mnt_ns(int flags, struct task_struct *tsk)
  1328. {
  1329. struct mnt_namespace *ns = tsk->nsproxy->mnt_ns;
  1330. struct mnt_namespace *new_ns;
  1331. int err = 0;
  1332. if (!ns)
  1333. return 0;
  1334. get_mnt_ns(ns);
  1335. if (!(flags & CLONE_NEWNS))
  1336. return 0;
  1337. if (!capable(CAP_SYS_ADMIN)) {
  1338. err = -EPERM;
  1339. goto out;
  1340. }
  1341. new_ns = dup_mnt_ns(tsk, tsk->fs);
  1342. if (!new_ns) {
  1343. err = -ENOMEM;
  1344. goto out;
  1345. }
  1346. tsk->nsproxy->mnt_ns = new_ns;
  1347. out:
  1348. put_mnt_ns(ns);
  1349. return err;
  1350. }
  1351. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1352. char __user * type, unsigned long flags,
  1353. void __user * data)
  1354. {
  1355. int retval;
  1356. unsigned long data_page;
  1357. unsigned long type_page;
  1358. unsigned long dev_page;
  1359. char *dir_page;
  1360. retval = copy_mount_options(type, &type_page);
  1361. if (retval < 0)
  1362. return retval;
  1363. dir_page = getname(dir_name);
  1364. retval = PTR_ERR(dir_page);
  1365. if (IS_ERR(dir_page))
  1366. goto out1;
  1367. retval = copy_mount_options(dev_name, &dev_page);
  1368. if (retval < 0)
  1369. goto out2;
  1370. retval = copy_mount_options(data, &data_page);
  1371. if (retval < 0)
  1372. goto out3;
  1373. lock_kernel();
  1374. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1375. flags, (void *)data_page);
  1376. unlock_kernel();
  1377. free_page(data_page);
  1378. out3:
  1379. free_page(dev_page);
  1380. out2:
  1381. putname(dir_page);
  1382. out1:
  1383. free_page(type_page);
  1384. return retval;
  1385. }
  1386. /*
  1387. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1388. * It can block. Requires the big lock held.
  1389. */
  1390. void set_fs_root(struct fs_struct *fs, struct vfsmount *mnt,
  1391. struct dentry *dentry)
  1392. {
  1393. struct dentry *old_root;
  1394. struct vfsmount *old_rootmnt;
  1395. write_lock(&fs->lock);
  1396. old_root = fs->root;
  1397. old_rootmnt = fs->rootmnt;
  1398. fs->rootmnt = mntget(mnt);
  1399. fs->root = dget(dentry);
  1400. write_unlock(&fs->lock);
  1401. if (old_root) {
  1402. dput(old_root);
  1403. mntput(old_rootmnt);
  1404. }
  1405. }
  1406. /*
  1407. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1408. * It can block. Requires the big lock held.
  1409. */
  1410. void set_fs_pwd(struct fs_struct *fs, struct vfsmount *mnt,
  1411. struct dentry *dentry)
  1412. {
  1413. struct dentry *old_pwd;
  1414. struct vfsmount *old_pwdmnt;
  1415. write_lock(&fs->lock);
  1416. old_pwd = fs->pwd;
  1417. old_pwdmnt = fs->pwdmnt;
  1418. fs->pwdmnt = mntget(mnt);
  1419. fs->pwd = dget(dentry);
  1420. write_unlock(&fs->lock);
  1421. if (old_pwd) {
  1422. dput(old_pwd);
  1423. mntput(old_pwdmnt);
  1424. }
  1425. }
  1426. static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
  1427. {
  1428. struct task_struct *g, *p;
  1429. struct fs_struct *fs;
  1430. read_lock(&tasklist_lock);
  1431. do_each_thread(g, p) {
  1432. task_lock(p);
  1433. fs = p->fs;
  1434. if (fs) {
  1435. atomic_inc(&fs->count);
  1436. task_unlock(p);
  1437. if (fs->root == old_nd->dentry
  1438. && fs->rootmnt == old_nd->mnt)
  1439. set_fs_root(fs, new_nd->mnt, new_nd->dentry);
  1440. if (fs->pwd == old_nd->dentry
  1441. && fs->pwdmnt == old_nd->mnt)
  1442. set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
  1443. put_fs_struct(fs);
  1444. } else
  1445. task_unlock(p);
  1446. } while_each_thread(g, p);
  1447. read_unlock(&tasklist_lock);
  1448. }
  1449. /*
  1450. * pivot_root Semantics:
  1451. * Moves the root file system of the current process to the directory put_old,
  1452. * makes new_root as the new root file system of the current process, and sets
  1453. * root/cwd of all processes which had them on the current root to new_root.
  1454. *
  1455. * Restrictions:
  1456. * The new_root and put_old must be directories, and must not be on the
  1457. * same file system as the current process root. The put_old must be
  1458. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1459. * pointed to by put_old must yield the same directory as new_root. No other
  1460. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1461. *
  1462. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1463. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1464. * in this situation.
  1465. *
  1466. * Notes:
  1467. * - we don't move root/cwd if they are not at the root (reason: if something
  1468. * cared enough to change them, it's probably wrong to force them elsewhere)
  1469. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1470. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1471. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1472. * first.
  1473. */
  1474. asmlinkage long sys_pivot_root(const char __user * new_root,
  1475. const char __user * put_old)
  1476. {
  1477. struct vfsmount *tmp;
  1478. struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
  1479. int error;
  1480. if (!capable(CAP_SYS_ADMIN))
  1481. return -EPERM;
  1482. lock_kernel();
  1483. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1484. &new_nd);
  1485. if (error)
  1486. goto out0;
  1487. error = -EINVAL;
  1488. if (!check_mnt(new_nd.mnt))
  1489. goto out1;
  1490. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1491. if (error)
  1492. goto out1;
  1493. error = security_sb_pivotroot(&old_nd, &new_nd);
  1494. if (error) {
  1495. path_release(&old_nd);
  1496. goto out1;
  1497. }
  1498. read_lock(&current->fs->lock);
  1499. user_nd.mnt = mntget(current->fs->rootmnt);
  1500. user_nd.dentry = dget(current->fs->root);
  1501. read_unlock(&current->fs->lock);
  1502. down_write(&namespace_sem);
  1503. mutex_lock(&old_nd.dentry->d_inode->i_mutex);
  1504. error = -EINVAL;
  1505. if (IS_MNT_SHARED(old_nd.mnt) ||
  1506. IS_MNT_SHARED(new_nd.mnt->mnt_parent) ||
  1507. IS_MNT_SHARED(user_nd.mnt->mnt_parent))
  1508. goto out2;
  1509. if (!check_mnt(user_nd.mnt))
  1510. goto out2;
  1511. error = -ENOENT;
  1512. if (IS_DEADDIR(new_nd.dentry->d_inode))
  1513. goto out2;
  1514. if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
  1515. goto out2;
  1516. if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
  1517. goto out2;
  1518. error = -EBUSY;
  1519. if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
  1520. goto out2; /* loop, on the same file system */
  1521. error = -EINVAL;
  1522. if (user_nd.mnt->mnt_root != user_nd.dentry)
  1523. goto out2; /* not a mountpoint */
  1524. if (user_nd.mnt->mnt_parent == user_nd.mnt)
  1525. goto out2; /* not attached */
  1526. if (new_nd.mnt->mnt_root != new_nd.dentry)
  1527. goto out2; /* not a mountpoint */
  1528. if (new_nd.mnt->mnt_parent == new_nd.mnt)
  1529. goto out2; /* not attached */
  1530. tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
  1531. spin_lock(&vfsmount_lock);
  1532. if (tmp != new_nd.mnt) {
  1533. for (;;) {
  1534. if (tmp->mnt_parent == tmp)
  1535. goto out3; /* already mounted on put_old */
  1536. if (tmp->mnt_parent == new_nd.mnt)
  1537. break;
  1538. tmp = tmp->mnt_parent;
  1539. }
  1540. if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
  1541. goto out3;
  1542. } else if (!is_subdir(old_nd.dentry, new_nd.dentry))
  1543. goto out3;
  1544. detach_mnt(new_nd.mnt, &parent_nd);
  1545. detach_mnt(user_nd.mnt, &root_parent);
  1546. attach_mnt(user_nd.mnt, &old_nd); /* mount old root on put_old */
  1547. attach_mnt(new_nd.mnt, &root_parent); /* mount new_root on / */
  1548. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1549. spin_unlock(&vfsmount_lock);
  1550. chroot_fs_refs(&user_nd, &new_nd);
  1551. security_sb_post_pivotroot(&user_nd, &new_nd);
  1552. error = 0;
  1553. path_release(&root_parent);
  1554. path_release(&parent_nd);
  1555. out2:
  1556. mutex_unlock(&old_nd.dentry->d_inode->i_mutex);
  1557. up_write(&namespace_sem);
  1558. path_release(&user_nd);
  1559. path_release(&old_nd);
  1560. out1:
  1561. path_release(&new_nd);
  1562. out0:
  1563. unlock_kernel();
  1564. return error;
  1565. out3:
  1566. spin_unlock(&vfsmount_lock);
  1567. goto out2;
  1568. }
  1569. static void __init init_mount_tree(void)
  1570. {
  1571. struct vfsmount *mnt;
  1572. struct mnt_namespace *ns;
  1573. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  1574. if (IS_ERR(mnt))
  1575. panic("Can't create rootfs");
  1576. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  1577. if (!ns)
  1578. panic("Can't allocate initial namespace");
  1579. atomic_set(&ns->count, 1);
  1580. INIT_LIST_HEAD(&ns->list);
  1581. init_waitqueue_head(&ns->poll);
  1582. ns->event = 0;
  1583. list_add(&mnt->mnt_list, &ns->list);
  1584. ns->root = mnt;
  1585. mnt->mnt_ns = ns;
  1586. init_task.nsproxy->mnt_ns = ns;
  1587. get_mnt_ns(ns);
  1588. set_fs_pwd(current->fs, ns->root, ns->root->mnt_root);
  1589. set_fs_root(current->fs, ns->root, ns->root->mnt_root);
  1590. }
  1591. void __init mnt_init(unsigned long mempages)
  1592. {
  1593. struct list_head *d;
  1594. unsigned int nr_hash;
  1595. int i;
  1596. int err;
  1597. init_rwsem(&namespace_sem);
  1598. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  1599. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL, NULL);
  1600. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  1601. if (!mount_hashtable)
  1602. panic("Failed to allocate mount hash table\n");
  1603. /*
  1604. * Find the power-of-two list-heads that can fit into the allocation..
  1605. * We don't guarantee that "sizeof(struct list_head)" is necessarily
  1606. * a power-of-two.
  1607. */
  1608. nr_hash = PAGE_SIZE / sizeof(struct list_head);
  1609. hash_bits = 0;
  1610. do {
  1611. hash_bits++;
  1612. } while ((nr_hash >> hash_bits) != 0);
  1613. hash_bits--;
  1614. /*
  1615. * Re-calculate the actual number of entries and the mask
  1616. * from the number of bits we can fit.
  1617. */
  1618. nr_hash = 1UL << hash_bits;
  1619. hash_mask = nr_hash - 1;
  1620. printk("Mount-cache hash table entries: %d\n", nr_hash);
  1621. /* And initialize the newly allocated array */
  1622. d = mount_hashtable;
  1623. i = nr_hash;
  1624. do {
  1625. INIT_LIST_HEAD(d);
  1626. d++;
  1627. i--;
  1628. } while (i);
  1629. err = sysfs_init();
  1630. if (err)
  1631. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  1632. __FUNCTION__, err);
  1633. err = subsystem_register(&fs_subsys);
  1634. if (err)
  1635. printk(KERN_WARNING "%s: subsystem_register error: %d\n",
  1636. __FUNCTION__, err);
  1637. init_rootfs();
  1638. init_mount_tree();
  1639. }
  1640. void __put_mnt_ns(struct mnt_namespace *ns)
  1641. {
  1642. struct vfsmount *root = ns->root;
  1643. LIST_HEAD(umount_list);
  1644. ns->root = NULL;
  1645. spin_unlock(&vfsmount_lock);
  1646. down_write(&namespace_sem);
  1647. spin_lock(&vfsmount_lock);
  1648. umount_tree(root, 0, &umount_list);
  1649. spin_unlock(&vfsmount_lock);
  1650. up_write(&namespace_sem);
  1651. release_mounts(&umount_list);
  1652. kfree(ns);
  1653. }