inode.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298
  1. /*
  2. * linux/fs/ext4/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext4_jbd2.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/highuid.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/quotaops.h>
  33. #include <linux/string.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/writeback.h>
  36. #include <linux/mpage.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include "xattr.h"
  40. #include "acl.h"
  41. /*
  42. * Test whether an inode is a fast symlink.
  43. */
  44. static int ext4_inode_is_fast_symlink(struct inode *inode)
  45. {
  46. int ea_blocks = EXT4_I(inode)->i_file_acl ?
  47. (inode->i_sb->s_blocksize >> 9) : 0;
  48. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  49. }
  50. /*
  51. * The ext4 forget function must perform a revoke if we are freeing data
  52. * which has been journaled. Metadata (eg. indirect blocks) must be
  53. * revoked in all cases.
  54. *
  55. * "bh" may be NULL: a metadata block may have been freed from memory
  56. * but there may still be a record of it in the journal, and that record
  57. * still needs to be revoked.
  58. */
  59. int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  60. struct buffer_head *bh, ext4_fsblk_t blocknr)
  61. {
  62. int err;
  63. might_sleep();
  64. BUFFER_TRACE(bh, "enter");
  65. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  66. "data mode %lx\n",
  67. bh, is_metadata, inode->i_mode,
  68. test_opt(inode->i_sb, DATA_FLAGS));
  69. /* Never use the revoke function if we are doing full data
  70. * journaling: there is no need to, and a V1 superblock won't
  71. * support it. Otherwise, only skip the revoke on un-journaled
  72. * data blocks. */
  73. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  74. (!is_metadata && !ext4_should_journal_data(inode))) {
  75. if (bh) {
  76. BUFFER_TRACE(bh, "call jbd2_journal_forget");
  77. return ext4_journal_forget(handle, bh);
  78. }
  79. return 0;
  80. }
  81. /*
  82. * data!=journal && (is_metadata || should_journal_data(inode))
  83. */
  84. BUFFER_TRACE(bh, "call ext4_journal_revoke");
  85. err = ext4_journal_revoke(handle, blocknr, bh);
  86. if (err)
  87. ext4_abort(inode->i_sb, __FUNCTION__,
  88. "error %d when attempting revoke", err);
  89. BUFFER_TRACE(bh, "exit");
  90. return err;
  91. }
  92. /*
  93. * Work out how many blocks we need to proceed with the next chunk of a
  94. * truncate transaction.
  95. */
  96. static unsigned long blocks_for_truncate(struct inode *inode)
  97. {
  98. unsigned long needed;
  99. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  100. /* Give ourselves just enough room to cope with inodes in which
  101. * i_blocks is corrupt: we've seen disk corruptions in the past
  102. * which resulted in random data in an inode which looked enough
  103. * like a regular file for ext4 to try to delete it. Things
  104. * will go a bit crazy if that happens, but at least we should
  105. * try not to panic the whole kernel. */
  106. if (needed < 2)
  107. needed = 2;
  108. /* But we need to bound the transaction so we don't overflow the
  109. * journal. */
  110. if (needed > EXT4_MAX_TRANS_DATA)
  111. needed = EXT4_MAX_TRANS_DATA;
  112. return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  113. }
  114. /*
  115. * Truncate transactions can be complex and absolutely huge. So we need to
  116. * be able to restart the transaction at a conventient checkpoint to make
  117. * sure we don't overflow the journal.
  118. *
  119. * start_transaction gets us a new handle for a truncate transaction,
  120. * and extend_transaction tries to extend the existing one a bit. If
  121. * extend fails, we need to propagate the failure up and restart the
  122. * transaction in the top-level truncate loop. --sct
  123. */
  124. static handle_t *start_transaction(struct inode *inode)
  125. {
  126. handle_t *result;
  127. result = ext4_journal_start(inode, blocks_for_truncate(inode));
  128. if (!IS_ERR(result))
  129. return result;
  130. ext4_std_error(inode->i_sb, PTR_ERR(result));
  131. return result;
  132. }
  133. /*
  134. * Try to extend this transaction for the purposes of truncation.
  135. *
  136. * Returns 0 if we managed to create more room. If we can't create more
  137. * room, and the transaction must be restarted we return 1.
  138. */
  139. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  140. {
  141. if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
  142. return 0;
  143. if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
  144. return 0;
  145. return 1;
  146. }
  147. /*
  148. * Restart the transaction associated with *handle. This does a commit,
  149. * so before we call here everything must be consistently dirtied against
  150. * this transaction.
  151. */
  152. static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
  153. {
  154. jbd_debug(2, "restarting handle %p\n", handle);
  155. return ext4_journal_restart(handle, blocks_for_truncate(inode));
  156. }
  157. /*
  158. * Called at the last iput() if i_nlink is zero.
  159. */
  160. void ext4_delete_inode (struct inode * inode)
  161. {
  162. handle_t *handle;
  163. truncate_inode_pages(&inode->i_data, 0);
  164. if (is_bad_inode(inode))
  165. goto no_delete;
  166. handle = start_transaction(inode);
  167. if (IS_ERR(handle)) {
  168. /*
  169. * If we're going to skip the normal cleanup, we still need to
  170. * make sure that the in-core orphan linked list is properly
  171. * cleaned up.
  172. */
  173. ext4_orphan_del(NULL, inode);
  174. goto no_delete;
  175. }
  176. if (IS_SYNC(inode))
  177. handle->h_sync = 1;
  178. inode->i_size = 0;
  179. if (inode->i_blocks)
  180. ext4_truncate(inode);
  181. /*
  182. * Kill off the orphan record which ext4_truncate created.
  183. * AKPM: I think this can be inside the above `if'.
  184. * Note that ext4_orphan_del() has to be able to cope with the
  185. * deletion of a non-existent orphan - this is because we don't
  186. * know if ext4_truncate() actually created an orphan record.
  187. * (Well, we could do this if we need to, but heck - it works)
  188. */
  189. ext4_orphan_del(handle, inode);
  190. EXT4_I(inode)->i_dtime = get_seconds();
  191. /*
  192. * One subtle ordering requirement: if anything has gone wrong
  193. * (transaction abort, IO errors, whatever), then we can still
  194. * do these next steps (the fs will already have been marked as
  195. * having errors), but we can't free the inode if the mark_dirty
  196. * fails.
  197. */
  198. if (ext4_mark_inode_dirty(handle, inode))
  199. /* If that failed, just do the required in-core inode clear. */
  200. clear_inode(inode);
  201. else
  202. ext4_free_inode(handle, inode);
  203. ext4_journal_stop(handle);
  204. return;
  205. no_delete:
  206. clear_inode(inode); /* We must guarantee clearing of inode... */
  207. }
  208. typedef struct {
  209. __le32 *p;
  210. __le32 key;
  211. struct buffer_head *bh;
  212. } Indirect;
  213. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  214. {
  215. p->key = *(p->p = v);
  216. p->bh = bh;
  217. }
  218. static int verify_chain(Indirect *from, Indirect *to)
  219. {
  220. while (from <= to && from->key == *from->p)
  221. from++;
  222. return (from > to);
  223. }
  224. /**
  225. * ext4_block_to_path - parse the block number into array of offsets
  226. * @inode: inode in question (we are only interested in its superblock)
  227. * @i_block: block number to be parsed
  228. * @offsets: array to store the offsets in
  229. * @boundary: set this non-zero if the referred-to block is likely to be
  230. * followed (on disk) by an indirect block.
  231. *
  232. * To store the locations of file's data ext4 uses a data structure common
  233. * for UNIX filesystems - tree of pointers anchored in the inode, with
  234. * data blocks at leaves and indirect blocks in intermediate nodes.
  235. * This function translates the block number into path in that tree -
  236. * return value is the path length and @offsets[n] is the offset of
  237. * pointer to (n+1)th node in the nth one. If @block is out of range
  238. * (negative or too large) warning is printed and zero returned.
  239. *
  240. * Note: function doesn't find node addresses, so no IO is needed. All
  241. * we need to know is the capacity of indirect blocks (taken from the
  242. * inode->i_sb).
  243. */
  244. /*
  245. * Portability note: the last comparison (check that we fit into triple
  246. * indirect block) is spelled differently, because otherwise on an
  247. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  248. * if our filesystem had 8Kb blocks. We might use long long, but that would
  249. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  250. * i_block would have to be negative in the very beginning, so we would not
  251. * get there at all.
  252. */
  253. static int ext4_block_to_path(struct inode *inode,
  254. long i_block, int offsets[4], int *boundary)
  255. {
  256. int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  257. int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  258. const long direct_blocks = EXT4_NDIR_BLOCKS,
  259. indirect_blocks = ptrs,
  260. double_blocks = (1 << (ptrs_bits * 2));
  261. int n = 0;
  262. int final = 0;
  263. if (i_block < 0) {
  264. ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
  265. } else if (i_block < direct_blocks) {
  266. offsets[n++] = i_block;
  267. final = direct_blocks;
  268. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  269. offsets[n++] = EXT4_IND_BLOCK;
  270. offsets[n++] = i_block;
  271. final = ptrs;
  272. } else if ((i_block -= indirect_blocks) < double_blocks) {
  273. offsets[n++] = EXT4_DIND_BLOCK;
  274. offsets[n++] = i_block >> ptrs_bits;
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  278. offsets[n++] = EXT4_TIND_BLOCK;
  279. offsets[n++] = i_block >> (ptrs_bits * 2);
  280. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  281. offsets[n++] = i_block & (ptrs - 1);
  282. final = ptrs;
  283. } else {
  284. ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
  285. }
  286. if (boundary)
  287. *boundary = final - 1 - (i_block & (ptrs - 1));
  288. return n;
  289. }
  290. /**
  291. * ext4_get_branch - read the chain of indirect blocks leading to data
  292. * @inode: inode in question
  293. * @depth: depth of the chain (1 - direct pointer, etc.)
  294. * @offsets: offsets of pointers in inode/indirect blocks
  295. * @chain: place to store the result
  296. * @err: here we store the error value
  297. *
  298. * Function fills the array of triples <key, p, bh> and returns %NULL
  299. * if everything went OK or the pointer to the last filled triple
  300. * (incomplete one) otherwise. Upon the return chain[i].key contains
  301. * the number of (i+1)-th block in the chain (as it is stored in memory,
  302. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  303. * number (it points into struct inode for i==0 and into the bh->b_data
  304. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  305. * block for i>0 and NULL for i==0. In other words, it holds the block
  306. * numbers of the chain, addresses they were taken from (and where we can
  307. * verify that chain did not change) and buffer_heads hosting these
  308. * numbers.
  309. *
  310. * Function stops when it stumbles upon zero pointer (absent block)
  311. * (pointer to last triple returned, *@err == 0)
  312. * or when it gets an IO error reading an indirect block
  313. * (ditto, *@err == -EIO)
  314. * or when it notices that chain had been changed while it was reading
  315. * (ditto, *@err == -EAGAIN)
  316. * or when it reads all @depth-1 indirect blocks successfully and finds
  317. * the whole chain, all way to the data (returns %NULL, *err == 0).
  318. */
  319. static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
  320. Indirect chain[4], int *err)
  321. {
  322. struct super_block *sb = inode->i_sb;
  323. Indirect *p = chain;
  324. struct buffer_head *bh;
  325. *err = 0;
  326. /* i_data is not going away, no lock needed */
  327. add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
  328. if (!p->key)
  329. goto no_block;
  330. while (--depth) {
  331. bh = sb_bread(sb, le32_to_cpu(p->key));
  332. if (!bh)
  333. goto failure;
  334. /* Reader: pointers */
  335. if (!verify_chain(chain, p))
  336. goto changed;
  337. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  338. /* Reader: end */
  339. if (!p->key)
  340. goto no_block;
  341. }
  342. return NULL;
  343. changed:
  344. brelse(bh);
  345. *err = -EAGAIN;
  346. goto no_block;
  347. failure:
  348. *err = -EIO;
  349. no_block:
  350. return p;
  351. }
  352. /**
  353. * ext4_find_near - find a place for allocation with sufficient locality
  354. * @inode: owner
  355. * @ind: descriptor of indirect block.
  356. *
  357. * This function returns the prefered place for block allocation.
  358. * It is used when heuristic for sequential allocation fails.
  359. * Rules are:
  360. * + if there is a block to the left of our position - allocate near it.
  361. * + if pointer will live in indirect block - allocate near that block.
  362. * + if pointer will live in inode - allocate in the same
  363. * cylinder group.
  364. *
  365. * In the latter case we colour the starting block by the callers PID to
  366. * prevent it from clashing with concurrent allocations for a different inode
  367. * in the same block group. The PID is used here so that functionally related
  368. * files will be close-by on-disk.
  369. *
  370. * Caller must make sure that @ind is valid and will stay that way.
  371. */
  372. static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
  373. {
  374. struct ext4_inode_info *ei = EXT4_I(inode);
  375. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  376. __le32 *p;
  377. ext4_fsblk_t bg_start;
  378. ext4_grpblk_t colour;
  379. /* Try to find previous block */
  380. for (p = ind->p - 1; p >= start; p--) {
  381. if (*p)
  382. return le32_to_cpu(*p);
  383. }
  384. /* No such thing, so let's try location of indirect block */
  385. if (ind->bh)
  386. return ind->bh->b_blocknr;
  387. /*
  388. * It is going to be referred to from the inode itself? OK, just put it
  389. * into the same cylinder group then.
  390. */
  391. bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
  392. colour = (current->pid % 16) *
  393. (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  394. return bg_start + colour;
  395. }
  396. /**
  397. * ext4_find_goal - find a prefered place for allocation.
  398. * @inode: owner
  399. * @block: block we want
  400. * @chain: chain of indirect blocks
  401. * @partial: pointer to the last triple within a chain
  402. * @goal: place to store the result.
  403. *
  404. * Normally this function find the prefered place for block allocation,
  405. * stores it in *@goal and returns zero.
  406. */
  407. static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
  408. Indirect chain[4], Indirect *partial)
  409. {
  410. struct ext4_block_alloc_info *block_i;
  411. block_i = EXT4_I(inode)->i_block_alloc_info;
  412. /*
  413. * try the heuristic for sequential allocation,
  414. * failing that at least try to get decent locality.
  415. */
  416. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  417. && (block_i->last_alloc_physical_block != 0)) {
  418. return block_i->last_alloc_physical_block + 1;
  419. }
  420. return ext4_find_near(inode, partial);
  421. }
  422. /**
  423. * ext4_blks_to_allocate: Look up the block map and count the number
  424. * of direct blocks need to be allocated for the given branch.
  425. *
  426. * @branch: chain of indirect blocks
  427. * @k: number of blocks need for indirect blocks
  428. * @blks: number of data blocks to be mapped.
  429. * @blocks_to_boundary: the offset in the indirect block
  430. *
  431. * return the total number of blocks to be allocate, including the
  432. * direct and indirect blocks.
  433. */
  434. static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  435. int blocks_to_boundary)
  436. {
  437. unsigned long count = 0;
  438. /*
  439. * Simple case, [t,d]Indirect block(s) has not allocated yet
  440. * then it's clear blocks on that path have not allocated
  441. */
  442. if (k > 0) {
  443. /* right now we don't handle cross boundary allocation */
  444. if (blks < blocks_to_boundary + 1)
  445. count += blks;
  446. else
  447. count += blocks_to_boundary + 1;
  448. return count;
  449. }
  450. count++;
  451. while (count < blks && count <= blocks_to_boundary &&
  452. le32_to_cpu(*(branch[0].p + count)) == 0) {
  453. count++;
  454. }
  455. return count;
  456. }
  457. /**
  458. * ext4_alloc_blocks: multiple allocate blocks needed for a branch
  459. * @indirect_blks: the number of blocks need to allocate for indirect
  460. * blocks
  461. *
  462. * @new_blocks: on return it will store the new block numbers for
  463. * the indirect blocks(if needed) and the first direct block,
  464. * @blks: on return it will store the total number of allocated
  465. * direct blocks
  466. */
  467. static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
  468. ext4_fsblk_t goal, int indirect_blks, int blks,
  469. ext4_fsblk_t new_blocks[4], int *err)
  470. {
  471. int target, i;
  472. unsigned long count = 0;
  473. int index = 0;
  474. ext4_fsblk_t current_block = 0;
  475. int ret = 0;
  476. /*
  477. * Here we try to allocate the requested multiple blocks at once,
  478. * on a best-effort basis.
  479. * To build a branch, we should allocate blocks for
  480. * the indirect blocks(if not allocated yet), and at least
  481. * the first direct block of this branch. That's the
  482. * minimum number of blocks need to allocate(required)
  483. */
  484. target = blks + indirect_blks;
  485. while (1) {
  486. count = target;
  487. /* allocating blocks for indirect blocks and direct blocks */
  488. current_block = ext4_new_blocks(handle,inode,goal,&count,err);
  489. if (*err)
  490. goto failed_out;
  491. target -= count;
  492. /* allocate blocks for indirect blocks */
  493. while (index < indirect_blks && count) {
  494. new_blocks[index++] = current_block++;
  495. count--;
  496. }
  497. if (count > 0)
  498. break;
  499. }
  500. /* save the new block number for the first direct block */
  501. new_blocks[index] = current_block;
  502. /* total number of blocks allocated for direct blocks */
  503. ret = count;
  504. *err = 0;
  505. return ret;
  506. failed_out:
  507. for (i = 0; i <index; i++)
  508. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  509. return ret;
  510. }
  511. /**
  512. * ext4_alloc_branch - allocate and set up a chain of blocks.
  513. * @inode: owner
  514. * @indirect_blks: number of allocated indirect blocks
  515. * @blks: number of allocated direct blocks
  516. * @offsets: offsets (in the blocks) to store the pointers to next.
  517. * @branch: place to store the chain in.
  518. *
  519. * This function allocates blocks, zeroes out all but the last one,
  520. * links them into chain and (if we are synchronous) writes them to disk.
  521. * In other words, it prepares a branch that can be spliced onto the
  522. * inode. It stores the information about that chain in the branch[], in
  523. * the same format as ext4_get_branch() would do. We are calling it after
  524. * we had read the existing part of chain and partial points to the last
  525. * triple of that (one with zero ->key). Upon the exit we have the same
  526. * picture as after the successful ext4_get_block(), except that in one
  527. * place chain is disconnected - *branch->p is still zero (we did not
  528. * set the last link), but branch->key contains the number that should
  529. * be placed into *branch->p to fill that gap.
  530. *
  531. * If allocation fails we free all blocks we've allocated (and forget
  532. * their buffer_heads) and return the error value the from failed
  533. * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  534. * as described above and return 0.
  535. */
  536. static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
  537. int indirect_blks, int *blks, ext4_fsblk_t goal,
  538. int *offsets, Indirect *branch)
  539. {
  540. int blocksize = inode->i_sb->s_blocksize;
  541. int i, n = 0;
  542. int err = 0;
  543. struct buffer_head *bh;
  544. int num;
  545. ext4_fsblk_t new_blocks[4];
  546. ext4_fsblk_t current_block;
  547. num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
  548. *blks, new_blocks, &err);
  549. if (err)
  550. return err;
  551. branch[0].key = cpu_to_le32(new_blocks[0]);
  552. /*
  553. * metadata blocks and data blocks are allocated.
  554. */
  555. for (n = 1; n <= indirect_blks; n++) {
  556. /*
  557. * Get buffer_head for parent block, zero it out
  558. * and set the pointer to new one, then send
  559. * parent to disk.
  560. */
  561. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  562. branch[n].bh = bh;
  563. lock_buffer(bh);
  564. BUFFER_TRACE(bh, "call get_create_access");
  565. err = ext4_journal_get_create_access(handle, bh);
  566. if (err) {
  567. unlock_buffer(bh);
  568. brelse(bh);
  569. goto failed;
  570. }
  571. memset(bh->b_data, 0, blocksize);
  572. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  573. branch[n].key = cpu_to_le32(new_blocks[n]);
  574. *branch[n].p = branch[n].key;
  575. if ( n == indirect_blks) {
  576. current_block = new_blocks[n];
  577. /*
  578. * End of chain, update the last new metablock of
  579. * the chain to point to the new allocated
  580. * data blocks numbers
  581. */
  582. for (i=1; i < num; i++)
  583. *(branch[n].p + i) = cpu_to_le32(++current_block);
  584. }
  585. BUFFER_TRACE(bh, "marking uptodate");
  586. set_buffer_uptodate(bh);
  587. unlock_buffer(bh);
  588. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  589. err = ext4_journal_dirty_metadata(handle, bh);
  590. if (err)
  591. goto failed;
  592. }
  593. *blks = num;
  594. return err;
  595. failed:
  596. /* Allocation failed, free what we already allocated */
  597. for (i = 1; i <= n ; i++) {
  598. BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
  599. ext4_journal_forget(handle, branch[i].bh);
  600. }
  601. for (i = 0; i <indirect_blks; i++)
  602. ext4_free_blocks(handle, inode, new_blocks[i], 1);
  603. ext4_free_blocks(handle, inode, new_blocks[i], num);
  604. return err;
  605. }
  606. /**
  607. * ext4_splice_branch - splice the allocated branch onto inode.
  608. * @inode: owner
  609. * @block: (logical) number of block we are adding
  610. * @chain: chain of indirect blocks (with a missing link - see
  611. * ext4_alloc_branch)
  612. * @where: location of missing link
  613. * @num: number of indirect blocks we are adding
  614. * @blks: number of direct blocks we are adding
  615. *
  616. * This function fills the missing link and does all housekeeping needed in
  617. * inode (->i_blocks, etc.). In case of success we end up with the full
  618. * chain to new block and return 0.
  619. */
  620. static int ext4_splice_branch(handle_t *handle, struct inode *inode,
  621. long block, Indirect *where, int num, int blks)
  622. {
  623. int i;
  624. int err = 0;
  625. struct ext4_block_alloc_info *block_i;
  626. ext4_fsblk_t current_block;
  627. block_i = EXT4_I(inode)->i_block_alloc_info;
  628. /*
  629. * If we're splicing into a [td]indirect block (as opposed to the
  630. * inode) then we need to get write access to the [td]indirect block
  631. * before the splice.
  632. */
  633. if (where->bh) {
  634. BUFFER_TRACE(where->bh, "get_write_access");
  635. err = ext4_journal_get_write_access(handle, where->bh);
  636. if (err)
  637. goto err_out;
  638. }
  639. /* That's it */
  640. *where->p = where->key;
  641. /*
  642. * Update the host buffer_head or inode to point to more just allocated
  643. * direct blocks blocks
  644. */
  645. if (num == 0 && blks > 1) {
  646. current_block = le32_to_cpu(where->key) + 1;
  647. for (i = 1; i < blks; i++)
  648. *(where->p + i ) = cpu_to_le32(current_block++);
  649. }
  650. /*
  651. * update the most recently allocated logical & physical block
  652. * in i_block_alloc_info, to assist find the proper goal block for next
  653. * allocation
  654. */
  655. if (block_i) {
  656. block_i->last_alloc_logical_block = block + blks - 1;
  657. block_i->last_alloc_physical_block =
  658. le32_to_cpu(where[num].key) + blks - 1;
  659. }
  660. /* We are done with atomic stuff, now do the rest of housekeeping */
  661. inode->i_ctime = CURRENT_TIME_SEC;
  662. ext4_mark_inode_dirty(handle, inode);
  663. /* had we spliced it onto indirect block? */
  664. if (where->bh) {
  665. /*
  666. * If we spliced it onto an indirect block, we haven't
  667. * altered the inode. Note however that if it is being spliced
  668. * onto an indirect block at the very end of the file (the
  669. * file is growing) then we *will* alter the inode to reflect
  670. * the new i_size. But that is not done here - it is done in
  671. * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
  672. */
  673. jbd_debug(5, "splicing indirect only\n");
  674. BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
  675. err = ext4_journal_dirty_metadata(handle, where->bh);
  676. if (err)
  677. goto err_out;
  678. } else {
  679. /*
  680. * OK, we spliced it into the inode itself on a direct block.
  681. * Inode was dirtied above.
  682. */
  683. jbd_debug(5, "splicing direct\n");
  684. }
  685. return err;
  686. err_out:
  687. for (i = 1; i <= num; i++) {
  688. BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
  689. ext4_journal_forget(handle, where[i].bh);
  690. ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  691. }
  692. ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  693. return err;
  694. }
  695. /*
  696. * Allocation strategy is simple: if we have to allocate something, we will
  697. * have to go the whole way to leaf. So let's do it before attaching anything
  698. * to tree, set linkage between the newborn blocks, write them if sync is
  699. * required, recheck the path, free and repeat if check fails, otherwise
  700. * set the last missing link (that will protect us from any truncate-generated
  701. * removals - all blocks on the path are immune now) and possibly force the
  702. * write on the parent block.
  703. * That has a nice additional property: no special recovery from the failed
  704. * allocations is needed - we simply release blocks and do not touch anything
  705. * reachable from inode.
  706. *
  707. * `handle' can be NULL if create == 0.
  708. *
  709. * The BKL may not be held on entry here. Be sure to take it early.
  710. * return > 0, # of blocks mapped or allocated.
  711. * return = 0, if plain lookup failed.
  712. * return < 0, error case.
  713. */
  714. int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
  715. sector_t iblock, unsigned long maxblocks,
  716. struct buffer_head *bh_result,
  717. int create, int extend_disksize)
  718. {
  719. int err = -EIO;
  720. int offsets[4];
  721. Indirect chain[4];
  722. Indirect *partial;
  723. ext4_fsblk_t goal;
  724. int indirect_blks;
  725. int blocks_to_boundary = 0;
  726. int depth;
  727. struct ext4_inode_info *ei = EXT4_I(inode);
  728. int count = 0;
  729. ext4_fsblk_t first_block = 0;
  730. J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
  731. J_ASSERT(handle != NULL || create == 0);
  732. depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  733. if (depth == 0)
  734. goto out;
  735. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  736. /* Simplest case - block found, no allocation needed */
  737. if (!partial) {
  738. first_block = le32_to_cpu(chain[depth - 1].key);
  739. clear_buffer_new(bh_result);
  740. count++;
  741. /*map more blocks*/
  742. while (count < maxblocks && count <= blocks_to_boundary) {
  743. ext4_fsblk_t blk;
  744. if (!verify_chain(chain, partial)) {
  745. /*
  746. * Indirect block might be removed by
  747. * truncate while we were reading it.
  748. * Handling of that case: forget what we've
  749. * got now. Flag the err as EAGAIN, so it
  750. * will reread.
  751. */
  752. err = -EAGAIN;
  753. count = 0;
  754. break;
  755. }
  756. blk = le32_to_cpu(*(chain[depth-1].p + count));
  757. if (blk == first_block + count)
  758. count++;
  759. else
  760. break;
  761. }
  762. if (err != -EAGAIN)
  763. goto got_it;
  764. }
  765. /* Next simple case - plain lookup or failed read of indirect block */
  766. if (!create || err == -EIO)
  767. goto cleanup;
  768. mutex_lock(&ei->truncate_mutex);
  769. /*
  770. * If the indirect block is missing while we are reading
  771. * the chain(ext4_get_branch() returns -EAGAIN err), or
  772. * if the chain has been changed after we grab the semaphore,
  773. * (either because another process truncated this branch, or
  774. * another get_block allocated this branch) re-grab the chain to see if
  775. * the request block has been allocated or not.
  776. *
  777. * Since we already block the truncate/other get_block
  778. * at this point, we will have the current copy of the chain when we
  779. * splice the branch into the tree.
  780. */
  781. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  782. while (partial > chain) {
  783. brelse(partial->bh);
  784. partial--;
  785. }
  786. partial = ext4_get_branch(inode, depth, offsets, chain, &err);
  787. if (!partial) {
  788. count++;
  789. mutex_unlock(&ei->truncate_mutex);
  790. if (err)
  791. goto cleanup;
  792. clear_buffer_new(bh_result);
  793. goto got_it;
  794. }
  795. }
  796. /*
  797. * Okay, we need to do block allocation. Lazily initialize the block
  798. * allocation info here if necessary
  799. */
  800. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  801. ext4_init_block_alloc_info(inode);
  802. goal = ext4_find_goal(inode, iblock, chain, partial);
  803. /* the number of blocks need to allocate for [d,t]indirect blocks */
  804. indirect_blks = (chain + depth) - partial - 1;
  805. /*
  806. * Next look up the indirect map to count the totoal number of
  807. * direct blocks to allocate for this branch.
  808. */
  809. count = ext4_blks_to_allocate(partial, indirect_blks,
  810. maxblocks, blocks_to_boundary);
  811. /*
  812. * Block out ext4_truncate while we alter the tree
  813. */
  814. err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
  815. offsets + (partial - chain), partial);
  816. /*
  817. * The ext4_splice_branch call will free and forget any buffers
  818. * on the new chain if there is a failure, but that risks using
  819. * up transaction credits, especially for bitmaps where the
  820. * credits cannot be returned. Can we handle this somehow? We
  821. * may need to return -EAGAIN upwards in the worst case. --sct
  822. */
  823. if (!err)
  824. err = ext4_splice_branch(handle, inode, iblock,
  825. partial, indirect_blks, count);
  826. /*
  827. * i_disksize growing is protected by truncate_mutex. Don't forget to
  828. * protect it if you're about to implement concurrent
  829. * ext4_get_block() -bzzz
  830. */
  831. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  832. ei->i_disksize = inode->i_size;
  833. mutex_unlock(&ei->truncate_mutex);
  834. if (err)
  835. goto cleanup;
  836. set_buffer_new(bh_result);
  837. got_it:
  838. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  839. if (count > blocks_to_boundary)
  840. set_buffer_boundary(bh_result);
  841. err = count;
  842. /* Clean up and exit */
  843. partial = chain + depth - 1; /* the whole chain */
  844. cleanup:
  845. while (partial > chain) {
  846. BUFFER_TRACE(partial->bh, "call brelse");
  847. brelse(partial->bh);
  848. partial--;
  849. }
  850. BUFFER_TRACE(bh_result, "returned");
  851. out:
  852. return err;
  853. }
  854. #define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
  855. static int ext4_get_block(struct inode *inode, sector_t iblock,
  856. struct buffer_head *bh_result, int create)
  857. {
  858. handle_t *handle = journal_current_handle();
  859. int ret = 0;
  860. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  861. if (!create)
  862. goto get_block; /* A read */
  863. if (max_blocks == 1)
  864. goto get_block; /* A single block get */
  865. if (handle->h_transaction->t_state == T_LOCKED) {
  866. /*
  867. * Huge direct-io writes can hold off commits for long
  868. * periods of time. Let this commit run.
  869. */
  870. ext4_journal_stop(handle);
  871. handle = ext4_journal_start(inode, DIO_CREDITS);
  872. if (IS_ERR(handle))
  873. ret = PTR_ERR(handle);
  874. goto get_block;
  875. }
  876. if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
  877. /*
  878. * Getting low on buffer credits...
  879. */
  880. ret = ext4_journal_extend(handle, DIO_CREDITS);
  881. if (ret > 0) {
  882. /*
  883. * Couldn't extend the transaction. Start a new one.
  884. */
  885. ret = ext4_journal_restart(handle, DIO_CREDITS);
  886. }
  887. }
  888. get_block:
  889. if (ret == 0) {
  890. ret = ext4_get_blocks_wrap(handle, inode, iblock,
  891. max_blocks, bh_result, create, 0);
  892. if (ret > 0) {
  893. bh_result->b_size = (ret << inode->i_blkbits);
  894. ret = 0;
  895. }
  896. }
  897. return ret;
  898. }
  899. /*
  900. * `handle' can be NULL if create is zero
  901. */
  902. struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
  903. long block, int create, int *errp)
  904. {
  905. struct buffer_head dummy;
  906. int fatal = 0, err;
  907. J_ASSERT(handle != NULL || create == 0);
  908. dummy.b_state = 0;
  909. dummy.b_blocknr = -1000;
  910. buffer_trace_init(&dummy.b_history);
  911. err = ext4_get_blocks_wrap(handle, inode, block, 1,
  912. &dummy, create, 1);
  913. /*
  914. * ext4_get_blocks_handle() returns number of blocks
  915. * mapped. 0 in case of a HOLE.
  916. */
  917. if (err > 0) {
  918. if (err > 1)
  919. WARN_ON(1);
  920. err = 0;
  921. }
  922. *errp = err;
  923. if (!err && buffer_mapped(&dummy)) {
  924. struct buffer_head *bh;
  925. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  926. if (!bh) {
  927. *errp = -EIO;
  928. goto err;
  929. }
  930. if (buffer_new(&dummy)) {
  931. J_ASSERT(create != 0);
  932. J_ASSERT(handle != 0);
  933. /*
  934. * Now that we do not always journal data, we should
  935. * keep in mind whether this should always journal the
  936. * new buffer as metadata. For now, regular file
  937. * writes use ext4_get_block instead, so it's not a
  938. * problem.
  939. */
  940. lock_buffer(bh);
  941. BUFFER_TRACE(bh, "call get_create_access");
  942. fatal = ext4_journal_get_create_access(handle, bh);
  943. if (!fatal && !buffer_uptodate(bh)) {
  944. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  945. set_buffer_uptodate(bh);
  946. }
  947. unlock_buffer(bh);
  948. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  949. err = ext4_journal_dirty_metadata(handle, bh);
  950. if (!fatal)
  951. fatal = err;
  952. } else {
  953. BUFFER_TRACE(bh, "not a new buffer");
  954. }
  955. if (fatal) {
  956. *errp = fatal;
  957. brelse(bh);
  958. bh = NULL;
  959. }
  960. return bh;
  961. }
  962. err:
  963. return NULL;
  964. }
  965. struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
  966. int block, int create, int *err)
  967. {
  968. struct buffer_head * bh;
  969. bh = ext4_getblk(handle, inode, block, create, err);
  970. if (!bh)
  971. return bh;
  972. if (buffer_uptodate(bh))
  973. return bh;
  974. ll_rw_block(READ_META, 1, &bh);
  975. wait_on_buffer(bh);
  976. if (buffer_uptodate(bh))
  977. return bh;
  978. put_bh(bh);
  979. *err = -EIO;
  980. return NULL;
  981. }
  982. static int walk_page_buffers( handle_t *handle,
  983. struct buffer_head *head,
  984. unsigned from,
  985. unsigned to,
  986. int *partial,
  987. int (*fn)( handle_t *handle,
  988. struct buffer_head *bh))
  989. {
  990. struct buffer_head *bh;
  991. unsigned block_start, block_end;
  992. unsigned blocksize = head->b_size;
  993. int err, ret = 0;
  994. struct buffer_head *next;
  995. for ( bh = head, block_start = 0;
  996. ret == 0 && (bh != head || !block_start);
  997. block_start = block_end, bh = next)
  998. {
  999. next = bh->b_this_page;
  1000. block_end = block_start + blocksize;
  1001. if (block_end <= from || block_start >= to) {
  1002. if (partial && !buffer_uptodate(bh))
  1003. *partial = 1;
  1004. continue;
  1005. }
  1006. err = (*fn)(handle, bh);
  1007. if (!ret)
  1008. ret = err;
  1009. }
  1010. return ret;
  1011. }
  1012. /*
  1013. * To preserve ordering, it is essential that the hole instantiation and
  1014. * the data write be encapsulated in a single transaction. We cannot
  1015. * close off a transaction and start a new one between the ext4_get_block()
  1016. * and the commit_write(). So doing the jbd2_journal_start at the start of
  1017. * prepare_write() is the right place.
  1018. *
  1019. * Also, this function can nest inside ext4_writepage() ->
  1020. * block_write_full_page(). In that case, we *know* that ext4_writepage()
  1021. * has generated enough buffer credits to do the whole page. So we won't
  1022. * block on the journal in that case, which is good, because the caller may
  1023. * be PF_MEMALLOC.
  1024. *
  1025. * By accident, ext4 can be reentered when a transaction is open via
  1026. * quota file writes. If we were to commit the transaction while thus
  1027. * reentered, there can be a deadlock - we would be holding a quota
  1028. * lock, and the commit would never complete if another thread had a
  1029. * transaction open and was blocking on the quota lock - a ranking
  1030. * violation.
  1031. *
  1032. * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
  1033. * will _not_ run commit under these circumstances because handle->h_ref
  1034. * is elevated. We'll still have enough credits for the tiny quotafile
  1035. * write.
  1036. */
  1037. static int do_journal_get_write_access(handle_t *handle,
  1038. struct buffer_head *bh)
  1039. {
  1040. if (!buffer_mapped(bh) || buffer_freed(bh))
  1041. return 0;
  1042. return ext4_journal_get_write_access(handle, bh);
  1043. }
  1044. /*
  1045. * The idea of this helper function is following:
  1046. * if prepare_write has allocated some blocks, but not all of them, the
  1047. * transaction must include the content of the newly allocated blocks.
  1048. * This content is expected to be set to zeroes by block_prepare_write().
  1049. * 2006/10/14 SAW
  1050. */
  1051. static int ext4_prepare_failure(struct file *file, struct page *page,
  1052. unsigned from, unsigned to)
  1053. {
  1054. struct address_space *mapping;
  1055. struct buffer_head *bh, *head, *next;
  1056. unsigned block_start, block_end;
  1057. unsigned blocksize;
  1058. int ret;
  1059. handle_t *handle = ext4_journal_current_handle();
  1060. mapping = page->mapping;
  1061. if (ext4_should_writeback_data(mapping->host)) {
  1062. /* optimization: no constraints about data */
  1063. skip:
  1064. return ext4_journal_stop(handle);
  1065. }
  1066. head = page_buffers(page);
  1067. blocksize = head->b_size;
  1068. for ( bh = head, block_start = 0;
  1069. bh != head || !block_start;
  1070. block_start = block_end, bh = next)
  1071. {
  1072. next = bh->b_this_page;
  1073. block_end = block_start + blocksize;
  1074. if (block_end <= from)
  1075. continue;
  1076. if (block_start >= to) {
  1077. block_start = to;
  1078. break;
  1079. }
  1080. if (!buffer_mapped(bh))
  1081. /* prepare_write failed on this bh */
  1082. break;
  1083. if (ext4_should_journal_data(mapping->host)) {
  1084. ret = do_journal_get_write_access(handle, bh);
  1085. if (ret) {
  1086. ext4_journal_stop(handle);
  1087. return ret;
  1088. }
  1089. }
  1090. /*
  1091. * block_start here becomes the first block where the current iteration
  1092. * of prepare_write failed.
  1093. */
  1094. }
  1095. if (block_start <= from)
  1096. goto skip;
  1097. /* commit allocated and zeroed buffers */
  1098. return mapping->a_ops->commit_write(file, page, from, block_start);
  1099. }
  1100. static int ext4_prepare_write(struct file *file, struct page *page,
  1101. unsigned from, unsigned to)
  1102. {
  1103. struct inode *inode = page->mapping->host;
  1104. int ret, ret2;
  1105. int needed_blocks = ext4_writepage_trans_blocks(inode);
  1106. handle_t *handle;
  1107. int retries = 0;
  1108. retry:
  1109. handle = ext4_journal_start(inode, needed_blocks);
  1110. if (IS_ERR(handle))
  1111. return PTR_ERR(handle);
  1112. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1113. ret = nobh_prepare_write(page, from, to, ext4_get_block);
  1114. else
  1115. ret = block_prepare_write(page, from, to, ext4_get_block);
  1116. if (ret)
  1117. goto failure;
  1118. if (ext4_should_journal_data(inode)) {
  1119. ret = walk_page_buffers(handle, page_buffers(page),
  1120. from, to, NULL, do_journal_get_write_access);
  1121. if (ret)
  1122. /* fatal error, just put the handle and return */
  1123. ext4_journal_stop(handle);
  1124. }
  1125. return ret;
  1126. failure:
  1127. ret2 = ext4_prepare_failure(file, page, from, to);
  1128. if (ret2 < 0)
  1129. return ret2;
  1130. if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
  1131. goto retry;
  1132. /* retry number exceeded, or other error like -EDQUOT */
  1133. return ret;
  1134. }
  1135. int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1136. {
  1137. int err = jbd2_journal_dirty_data(handle, bh);
  1138. if (err)
  1139. ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1140. bh, handle,err);
  1141. return err;
  1142. }
  1143. /* For commit_write() in data=journal mode */
  1144. static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
  1145. {
  1146. if (!buffer_mapped(bh) || buffer_freed(bh))
  1147. return 0;
  1148. set_buffer_uptodate(bh);
  1149. return ext4_journal_dirty_metadata(handle, bh);
  1150. }
  1151. /*
  1152. * We need to pick up the new inode size which generic_commit_write gave us
  1153. * `file' can be NULL - eg, when called from page_symlink().
  1154. *
  1155. * ext4 never places buffers on inode->i_mapping->private_list. metadata
  1156. * buffers are managed internally.
  1157. */
  1158. static int ext4_ordered_commit_write(struct file *file, struct page *page,
  1159. unsigned from, unsigned to)
  1160. {
  1161. handle_t *handle = ext4_journal_current_handle();
  1162. struct inode *inode = page->mapping->host;
  1163. int ret = 0, ret2;
  1164. ret = walk_page_buffers(handle, page_buffers(page),
  1165. from, to, NULL, ext4_journal_dirty_data);
  1166. if (ret == 0) {
  1167. /*
  1168. * generic_commit_write() will run mark_inode_dirty() if i_size
  1169. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1170. * into that.
  1171. */
  1172. loff_t new_i_size;
  1173. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1174. if (new_i_size > EXT4_I(inode)->i_disksize)
  1175. EXT4_I(inode)->i_disksize = new_i_size;
  1176. ret = generic_commit_write(file, page, from, to);
  1177. }
  1178. ret2 = ext4_journal_stop(handle);
  1179. if (!ret)
  1180. ret = ret2;
  1181. return ret;
  1182. }
  1183. static int ext4_writeback_commit_write(struct file *file, struct page *page,
  1184. unsigned from, unsigned to)
  1185. {
  1186. handle_t *handle = ext4_journal_current_handle();
  1187. struct inode *inode = page->mapping->host;
  1188. int ret = 0, ret2;
  1189. loff_t new_i_size;
  1190. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1191. if (new_i_size > EXT4_I(inode)->i_disksize)
  1192. EXT4_I(inode)->i_disksize = new_i_size;
  1193. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1194. ret = nobh_commit_write(file, page, from, to);
  1195. else
  1196. ret = generic_commit_write(file, page, from, to);
  1197. ret2 = ext4_journal_stop(handle);
  1198. if (!ret)
  1199. ret = ret2;
  1200. return ret;
  1201. }
  1202. static int ext4_journalled_commit_write(struct file *file,
  1203. struct page *page, unsigned from, unsigned to)
  1204. {
  1205. handle_t *handle = ext4_journal_current_handle();
  1206. struct inode *inode = page->mapping->host;
  1207. int ret = 0, ret2;
  1208. int partial = 0;
  1209. loff_t pos;
  1210. /*
  1211. * Here we duplicate the generic_commit_write() functionality
  1212. */
  1213. pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1214. ret = walk_page_buffers(handle, page_buffers(page), from,
  1215. to, &partial, commit_write_fn);
  1216. if (!partial)
  1217. SetPageUptodate(page);
  1218. if (pos > inode->i_size)
  1219. i_size_write(inode, pos);
  1220. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1221. if (inode->i_size > EXT4_I(inode)->i_disksize) {
  1222. EXT4_I(inode)->i_disksize = inode->i_size;
  1223. ret2 = ext4_mark_inode_dirty(handle, inode);
  1224. if (!ret)
  1225. ret = ret2;
  1226. }
  1227. ret2 = ext4_journal_stop(handle);
  1228. if (!ret)
  1229. ret = ret2;
  1230. return ret;
  1231. }
  1232. /*
  1233. * bmap() is special. It gets used by applications such as lilo and by
  1234. * the swapper to find the on-disk block of a specific piece of data.
  1235. *
  1236. * Naturally, this is dangerous if the block concerned is still in the
  1237. * journal. If somebody makes a swapfile on an ext4 data-journaling
  1238. * filesystem and enables swap, then they may get a nasty shock when the
  1239. * data getting swapped to that swapfile suddenly gets overwritten by
  1240. * the original zero's written out previously to the journal and
  1241. * awaiting writeback in the kernel's buffer cache.
  1242. *
  1243. * So, if we see any bmap calls here on a modified, data-journaled file,
  1244. * take extra steps to flush any blocks which might be in the cache.
  1245. */
  1246. static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
  1247. {
  1248. struct inode *inode = mapping->host;
  1249. journal_t *journal;
  1250. int err;
  1251. if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
  1252. /*
  1253. * This is a REALLY heavyweight approach, but the use of
  1254. * bmap on dirty files is expected to be extremely rare:
  1255. * only if we run lilo or swapon on a freshly made file
  1256. * do we expect this to happen.
  1257. *
  1258. * (bmap requires CAP_SYS_RAWIO so this does not
  1259. * represent an unprivileged user DOS attack --- we'd be
  1260. * in trouble if mortal users could trigger this path at
  1261. * will.)
  1262. *
  1263. * NB. EXT4_STATE_JDATA is not set on files other than
  1264. * regular files. If somebody wants to bmap a directory
  1265. * or symlink and gets confused because the buffer
  1266. * hasn't yet been flushed to disk, they deserve
  1267. * everything they get.
  1268. */
  1269. EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
  1270. journal = EXT4_JOURNAL(inode);
  1271. jbd2_journal_lock_updates(journal);
  1272. err = jbd2_journal_flush(journal);
  1273. jbd2_journal_unlock_updates(journal);
  1274. if (err)
  1275. return 0;
  1276. }
  1277. return generic_block_bmap(mapping,block,ext4_get_block);
  1278. }
  1279. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1280. {
  1281. get_bh(bh);
  1282. return 0;
  1283. }
  1284. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1285. {
  1286. put_bh(bh);
  1287. return 0;
  1288. }
  1289. static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1290. {
  1291. if (buffer_mapped(bh))
  1292. return ext4_journal_dirty_data(handle, bh);
  1293. return 0;
  1294. }
  1295. /*
  1296. * Note that we always start a transaction even if we're not journalling
  1297. * data. This is to preserve ordering: any hole instantiation within
  1298. * __block_write_full_page -> ext4_get_block() should be journalled
  1299. * along with the data so we don't crash and then get metadata which
  1300. * refers to old data.
  1301. *
  1302. * In all journalling modes block_write_full_page() will start the I/O.
  1303. *
  1304. * Problem:
  1305. *
  1306. * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1307. * ext4_writepage()
  1308. *
  1309. * Similar for:
  1310. *
  1311. * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1312. *
  1313. * Same applies to ext4_get_block(). We will deadlock on various things like
  1314. * lock_journal and i_truncate_mutex.
  1315. *
  1316. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1317. * allocations fail.
  1318. *
  1319. * 16May01: If we're reentered then journal_current_handle() will be
  1320. * non-zero. We simply *return*.
  1321. *
  1322. * 1 July 2001: @@@ FIXME:
  1323. * In journalled data mode, a data buffer may be metadata against the
  1324. * current transaction. But the same file is part of a shared mapping
  1325. * and someone does a writepage() on it.
  1326. *
  1327. * We will move the buffer onto the async_data list, but *after* it has
  1328. * been dirtied. So there's a small window where we have dirty data on
  1329. * BJ_Metadata.
  1330. *
  1331. * Note that this only applies to the last partial page in the file. The
  1332. * bit which block_write_full_page() uses prepare/commit for. (That's
  1333. * broken code anyway: it's wrong for msync()).
  1334. *
  1335. * It's a rare case: affects the final partial page, for journalled data
  1336. * where the file is subject to bith write() and writepage() in the same
  1337. * transction. To fix it we'll need a custom block_write_full_page().
  1338. * We'll probably need that anyway for journalling writepage() output.
  1339. *
  1340. * We don't honour synchronous mounts for writepage(). That would be
  1341. * disastrous. Any write() or metadata operation will sync the fs for
  1342. * us.
  1343. *
  1344. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1345. * we don't need to open a transaction here.
  1346. */
  1347. static int ext4_ordered_writepage(struct page *page,
  1348. struct writeback_control *wbc)
  1349. {
  1350. struct inode *inode = page->mapping->host;
  1351. struct buffer_head *page_bufs;
  1352. handle_t *handle = NULL;
  1353. int ret = 0;
  1354. int err;
  1355. J_ASSERT(PageLocked(page));
  1356. /*
  1357. * We give up here if we're reentered, because it might be for a
  1358. * different filesystem.
  1359. */
  1360. if (ext4_journal_current_handle())
  1361. goto out_fail;
  1362. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1363. if (IS_ERR(handle)) {
  1364. ret = PTR_ERR(handle);
  1365. goto out_fail;
  1366. }
  1367. if (!page_has_buffers(page)) {
  1368. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1369. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1370. }
  1371. page_bufs = page_buffers(page);
  1372. walk_page_buffers(handle, page_bufs, 0,
  1373. PAGE_CACHE_SIZE, NULL, bget_one);
  1374. ret = block_write_full_page(page, ext4_get_block, wbc);
  1375. /*
  1376. * The page can become unlocked at any point now, and
  1377. * truncate can then come in and change things. So we
  1378. * can't touch *page from now on. But *page_bufs is
  1379. * safe due to elevated refcount.
  1380. */
  1381. /*
  1382. * And attach them to the current transaction. But only if
  1383. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1384. * and generally junk.
  1385. */
  1386. if (ret == 0) {
  1387. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1388. NULL, jbd2_journal_dirty_data_fn);
  1389. if (!ret)
  1390. ret = err;
  1391. }
  1392. walk_page_buffers(handle, page_bufs, 0,
  1393. PAGE_CACHE_SIZE, NULL, bput_one);
  1394. err = ext4_journal_stop(handle);
  1395. if (!ret)
  1396. ret = err;
  1397. return ret;
  1398. out_fail:
  1399. redirty_page_for_writepage(wbc, page);
  1400. unlock_page(page);
  1401. return ret;
  1402. }
  1403. static int ext4_writeback_writepage(struct page *page,
  1404. struct writeback_control *wbc)
  1405. {
  1406. struct inode *inode = page->mapping->host;
  1407. handle_t *handle = NULL;
  1408. int ret = 0;
  1409. int err;
  1410. if (ext4_journal_current_handle())
  1411. goto out_fail;
  1412. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1413. if (IS_ERR(handle)) {
  1414. ret = PTR_ERR(handle);
  1415. goto out_fail;
  1416. }
  1417. if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
  1418. ret = nobh_writepage(page, ext4_get_block, wbc);
  1419. else
  1420. ret = block_write_full_page(page, ext4_get_block, wbc);
  1421. err = ext4_journal_stop(handle);
  1422. if (!ret)
  1423. ret = err;
  1424. return ret;
  1425. out_fail:
  1426. redirty_page_for_writepage(wbc, page);
  1427. unlock_page(page);
  1428. return ret;
  1429. }
  1430. static int ext4_journalled_writepage(struct page *page,
  1431. struct writeback_control *wbc)
  1432. {
  1433. struct inode *inode = page->mapping->host;
  1434. handle_t *handle = NULL;
  1435. int ret = 0;
  1436. int err;
  1437. if (ext4_journal_current_handle())
  1438. goto no_write;
  1439. handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
  1440. if (IS_ERR(handle)) {
  1441. ret = PTR_ERR(handle);
  1442. goto no_write;
  1443. }
  1444. if (!page_has_buffers(page) || PageChecked(page)) {
  1445. /*
  1446. * It's mmapped pagecache. Add buffers and journal it. There
  1447. * doesn't seem much point in redirtying the page here.
  1448. */
  1449. ClearPageChecked(page);
  1450. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1451. ext4_get_block);
  1452. if (ret != 0) {
  1453. ext4_journal_stop(handle);
  1454. goto out_unlock;
  1455. }
  1456. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1457. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1458. err = walk_page_buffers(handle, page_buffers(page), 0,
  1459. PAGE_CACHE_SIZE, NULL, commit_write_fn);
  1460. if (ret == 0)
  1461. ret = err;
  1462. EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
  1463. unlock_page(page);
  1464. } else {
  1465. /*
  1466. * It may be a page full of checkpoint-mode buffers. We don't
  1467. * really know unless we go poke around in the buffer_heads.
  1468. * But block_write_full_page will do the right thing.
  1469. */
  1470. ret = block_write_full_page(page, ext4_get_block, wbc);
  1471. }
  1472. err = ext4_journal_stop(handle);
  1473. if (!ret)
  1474. ret = err;
  1475. out:
  1476. return ret;
  1477. no_write:
  1478. redirty_page_for_writepage(wbc, page);
  1479. out_unlock:
  1480. unlock_page(page);
  1481. goto out;
  1482. }
  1483. static int ext4_readpage(struct file *file, struct page *page)
  1484. {
  1485. return mpage_readpage(page, ext4_get_block);
  1486. }
  1487. static int
  1488. ext4_readpages(struct file *file, struct address_space *mapping,
  1489. struct list_head *pages, unsigned nr_pages)
  1490. {
  1491. return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
  1492. }
  1493. static void ext4_invalidatepage(struct page *page, unsigned long offset)
  1494. {
  1495. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1496. /*
  1497. * If it's a full truncate we just forget about the pending dirtying
  1498. */
  1499. if (offset == 0)
  1500. ClearPageChecked(page);
  1501. jbd2_journal_invalidatepage(journal, page, offset);
  1502. }
  1503. static int ext4_releasepage(struct page *page, gfp_t wait)
  1504. {
  1505. journal_t *journal = EXT4_JOURNAL(page->mapping->host);
  1506. WARN_ON(PageChecked(page));
  1507. if (!page_has_buffers(page))
  1508. return 0;
  1509. return jbd2_journal_try_to_free_buffers(journal, page, wait);
  1510. }
  1511. /*
  1512. * If the O_DIRECT write will extend the file then add this inode to the
  1513. * orphan list. So recovery will truncate it back to the original size
  1514. * if the machine crashes during the write.
  1515. *
  1516. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1517. * crashes then stale disk data _may_ be exposed inside the file.
  1518. */
  1519. static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
  1520. const struct iovec *iov, loff_t offset,
  1521. unsigned long nr_segs)
  1522. {
  1523. struct file *file = iocb->ki_filp;
  1524. struct inode *inode = file->f_mapping->host;
  1525. struct ext4_inode_info *ei = EXT4_I(inode);
  1526. handle_t *handle = NULL;
  1527. ssize_t ret;
  1528. int orphan = 0;
  1529. size_t count = iov_length(iov, nr_segs);
  1530. if (rw == WRITE) {
  1531. loff_t final_size = offset + count;
  1532. handle = ext4_journal_start(inode, DIO_CREDITS);
  1533. if (IS_ERR(handle)) {
  1534. ret = PTR_ERR(handle);
  1535. goto out;
  1536. }
  1537. if (final_size > inode->i_size) {
  1538. ret = ext4_orphan_add(handle, inode);
  1539. if (ret)
  1540. goto out_stop;
  1541. orphan = 1;
  1542. ei->i_disksize = inode->i_size;
  1543. }
  1544. }
  1545. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1546. offset, nr_segs,
  1547. ext4_get_block, NULL);
  1548. /*
  1549. * Reacquire the handle: ext4_get_block() can restart the transaction
  1550. */
  1551. handle = journal_current_handle();
  1552. out_stop:
  1553. if (handle) {
  1554. int err;
  1555. if (orphan && inode->i_nlink)
  1556. ext4_orphan_del(handle, inode);
  1557. if (orphan && ret > 0) {
  1558. loff_t end = offset + ret;
  1559. if (end > inode->i_size) {
  1560. ei->i_disksize = end;
  1561. i_size_write(inode, end);
  1562. /*
  1563. * We're going to return a positive `ret'
  1564. * here due to non-zero-length I/O, so there's
  1565. * no way of reporting error returns from
  1566. * ext4_mark_inode_dirty() to userspace. So
  1567. * ignore it.
  1568. */
  1569. ext4_mark_inode_dirty(handle, inode);
  1570. }
  1571. }
  1572. err = ext4_journal_stop(handle);
  1573. if (ret == 0)
  1574. ret = err;
  1575. }
  1576. out:
  1577. return ret;
  1578. }
  1579. /*
  1580. * Pages can be marked dirty completely asynchronously from ext4's journalling
  1581. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1582. * much here because ->set_page_dirty is called under VFS locks. The page is
  1583. * not necessarily locked.
  1584. *
  1585. * We cannot just dirty the page and leave attached buffers clean, because the
  1586. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1587. * or jbddirty because all the journalling code will explode.
  1588. *
  1589. * So what we do is to mark the page "pending dirty" and next time writepage
  1590. * is called, propagate that into the buffers appropriately.
  1591. */
  1592. static int ext4_journalled_set_page_dirty(struct page *page)
  1593. {
  1594. SetPageChecked(page);
  1595. return __set_page_dirty_nobuffers(page);
  1596. }
  1597. static const struct address_space_operations ext4_ordered_aops = {
  1598. .readpage = ext4_readpage,
  1599. .readpages = ext4_readpages,
  1600. .writepage = ext4_ordered_writepage,
  1601. .sync_page = block_sync_page,
  1602. .prepare_write = ext4_prepare_write,
  1603. .commit_write = ext4_ordered_commit_write,
  1604. .bmap = ext4_bmap,
  1605. .invalidatepage = ext4_invalidatepage,
  1606. .releasepage = ext4_releasepage,
  1607. .direct_IO = ext4_direct_IO,
  1608. .migratepage = buffer_migrate_page,
  1609. };
  1610. static const struct address_space_operations ext4_writeback_aops = {
  1611. .readpage = ext4_readpage,
  1612. .readpages = ext4_readpages,
  1613. .writepage = ext4_writeback_writepage,
  1614. .sync_page = block_sync_page,
  1615. .prepare_write = ext4_prepare_write,
  1616. .commit_write = ext4_writeback_commit_write,
  1617. .bmap = ext4_bmap,
  1618. .invalidatepage = ext4_invalidatepage,
  1619. .releasepage = ext4_releasepage,
  1620. .direct_IO = ext4_direct_IO,
  1621. .migratepage = buffer_migrate_page,
  1622. };
  1623. static const struct address_space_operations ext4_journalled_aops = {
  1624. .readpage = ext4_readpage,
  1625. .readpages = ext4_readpages,
  1626. .writepage = ext4_journalled_writepage,
  1627. .sync_page = block_sync_page,
  1628. .prepare_write = ext4_prepare_write,
  1629. .commit_write = ext4_journalled_commit_write,
  1630. .set_page_dirty = ext4_journalled_set_page_dirty,
  1631. .bmap = ext4_bmap,
  1632. .invalidatepage = ext4_invalidatepage,
  1633. .releasepage = ext4_releasepage,
  1634. };
  1635. void ext4_set_aops(struct inode *inode)
  1636. {
  1637. if (ext4_should_order_data(inode))
  1638. inode->i_mapping->a_ops = &ext4_ordered_aops;
  1639. else if (ext4_should_writeback_data(inode))
  1640. inode->i_mapping->a_ops = &ext4_writeback_aops;
  1641. else
  1642. inode->i_mapping->a_ops = &ext4_journalled_aops;
  1643. }
  1644. /*
  1645. * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
  1646. * up to the end of the block which corresponds to `from'.
  1647. * This required during truncate. We need to physically zero the tail end
  1648. * of that block so it doesn't yield old data if the file is later grown.
  1649. */
  1650. int ext4_block_truncate_page(handle_t *handle, struct page *page,
  1651. struct address_space *mapping, loff_t from)
  1652. {
  1653. ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1654. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1655. unsigned blocksize, iblock, length, pos;
  1656. struct inode *inode = mapping->host;
  1657. struct buffer_head *bh;
  1658. int err = 0;
  1659. void *kaddr;
  1660. blocksize = inode->i_sb->s_blocksize;
  1661. length = blocksize - (offset & (blocksize - 1));
  1662. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1663. /*
  1664. * For "nobh" option, we can only work if we don't need to
  1665. * read-in the page - otherwise we create buffers to do the IO.
  1666. */
  1667. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1668. ext4_should_writeback_data(inode) && PageUptodate(page)) {
  1669. kaddr = kmap_atomic(page, KM_USER0);
  1670. memset(kaddr + offset, 0, length);
  1671. flush_dcache_page(page);
  1672. kunmap_atomic(kaddr, KM_USER0);
  1673. set_page_dirty(page);
  1674. goto unlock;
  1675. }
  1676. if (!page_has_buffers(page))
  1677. create_empty_buffers(page, blocksize, 0);
  1678. /* Find the buffer that contains "offset" */
  1679. bh = page_buffers(page);
  1680. pos = blocksize;
  1681. while (offset >= pos) {
  1682. bh = bh->b_this_page;
  1683. iblock++;
  1684. pos += blocksize;
  1685. }
  1686. err = 0;
  1687. if (buffer_freed(bh)) {
  1688. BUFFER_TRACE(bh, "freed: skip");
  1689. goto unlock;
  1690. }
  1691. if (!buffer_mapped(bh)) {
  1692. BUFFER_TRACE(bh, "unmapped");
  1693. ext4_get_block(inode, iblock, bh, 0);
  1694. /* unmapped? It's a hole - nothing to do */
  1695. if (!buffer_mapped(bh)) {
  1696. BUFFER_TRACE(bh, "still unmapped");
  1697. goto unlock;
  1698. }
  1699. }
  1700. /* Ok, it's mapped. Make sure it's up-to-date */
  1701. if (PageUptodate(page))
  1702. set_buffer_uptodate(bh);
  1703. if (!buffer_uptodate(bh)) {
  1704. err = -EIO;
  1705. ll_rw_block(READ, 1, &bh);
  1706. wait_on_buffer(bh);
  1707. /* Uhhuh. Read error. Complain and punt. */
  1708. if (!buffer_uptodate(bh))
  1709. goto unlock;
  1710. }
  1711. if (ext4_should_journal_data(inode)) {
  1712. BUFFER_TRACE(bh, "get write access");
  1713. err = ext4_journal_get_write_access(handle, bh);
  1714. if (err)
  1715. goto unlock;
  1716. }
  1717. kaddr = kmap_atomic(page, KM_USER0);
  1718. memset(kaddr + offset, 0, length);
  1719. flush_dcache_page(page);
  1720. kunmap_atomic(kaddr, KM_USER0);
  1721. BUFFER_TRACE(bh, "zeroed end of block");
  1722. err = 0;
  1723. if (ext4_should_journal_data(inode)) {
  1724. err = ext4_journal_dirty_metadata(handle, bh);
  1725. } else {
  1726. if (ext4_should_order_data(inode))
  1727. err = ext4_journal_dirty_data(handle, bh);
  1728. mark_buffer_dirty(bh);
  1729. }
  1730. unlock:
  1731. unlock_page(page);
  1732. page_cache_release(page);
  1733. return err;
  1734. }
  1735. /*
  1736. * Probably it should be a library function... search for first non-zero word
  1737. * or memcmp with zero_page, whatever is better for particular architecture.
  1738. * Linus?
  1739. */
  1740. static inline int all_zeroes(__le32 *p, __le32 *q)
  1741. {
  1742. while (p < q)
  1743. if (*p++)
  1744. return 0;
  1745. return 1;
  1746. }
  1747. /**
  1748. * ext4_find_shared - find the indirect blocks for partial truncation.
  1749. * @inode: inode in question
  1750. * @depth: depth of the affected branch
  1751. * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
  1752. * @chain: place to store the pointers to partial indirect blocks
  1753. * @top: place to the (detached) top of branch
  1754. *
  1755. * This is a helper function used by ext4_truncate().
  1756. *
  1757. * When we do truncate() we may have to clean the ends of several
  1758. * indirect blocks but leave the blocks themselves alive. Block is
  1759. * partially truncated if some data below the new i_size is refered
  1760. * from it (and it is on the path to the first completely truncated
  1761. * data block, indeed). We have to free the top of that path along
  1762. * with everything to the right of the path. Since no allocation
  1763. * past the truncation point is possible until ext4_truncate()
  1764. * finishes, we may safely do the latter, but top of branch may
  1765. * require special attention - pageout below the truncation point
  1766. * might try to populate it.
  1767. *
  1768. * We atomically detach the top of branch from the tree, store the
  1769. * block number of its root in *@top, pointers to buffer_heads of
  1770. * partially truncated blocks - in @chain[].bh and pointers to
  1771. * their last elements that should not be removed - in
  1772. * @chain[].p. Return value is the pointer to last filled element
  1773. * of @chain.
  1774. *
  1775. * The work left to caller to do the actual freeing of subtrees:
  1776. * a) free the subtree starting from *@top
  1777. * b) free the subtrees whose roots are stored in
  1778. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1779. * c) free the subtrees growing from the inode past the @chain[0].
  1780. * (no partially truncated stuff there). */
  1781. static Indirect *ext4_find_shared(struct inode *inode, int depth,
  1782. int offsets[4], Indirect chain[4], __le32 *top)
  1783. {
  1784. Indirect *partial, *p;
  1785. int k, err;
  1786. *top = 0;
  1787. /* Make k index the deepest non-null offest + 1 */
  1788. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1789. ;
  1790. partial = ext4_get_branch(inode, k, offsets, chain, &err);
  1791. /* Writer: pointers */
  1792. if (!partial)
  1793. partial = chain + k-1;
  1794. /*
  1795. * If the branch acquired continuation since we've looked at it -
  1796. * fine, it should all survive and (new) top doesn't belong to us.
  1797. */
  1798. if (!partial->key && *partial->p)
  1799. /* Writer: end */
  1800. goto no_top;
  1801. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1802. ;
  1803. /*
  1804. * OK, we've found the last block that must survive. The rest of our
  1805. * branch should be detached before unlocking. However, if that rest
  1806. * of branch is all ours and does not grow immediately from the inode
  1807. * it's easier to cheat and just decrement partial->p.
  1808. */
  1809. if (p == chain + k - 1 && p > chain) {
  1810. p->p--;
  1811. } else {
  1812. *top = *p->p;
  1813. /* Nope, don't do this in ext4. Must leave the tree intact */
  1814. #if 0
  1815. *p->p = 0;
  1816. #endif
  1817. }
  1818. /* Writer: end */
  1819. while(partial > p) {
  1820. brelse(partial->bh);
  1821. partial--;
  1822. }
  1823. no_top:
  1824. return partial;
  1825. }
  1826. /*
  1827. * Zero a number of block pointers in either an inode or an indirect block.
  1828. * If we restart the transaction we must again get write access to the
  1829. * indirect block for further modification.
  1830. *
  1831. * We release `count' blocks on disk, but (last - first) may be greater
  1832. * than `count' because there can be holes in there.
  1833. */
  1834. static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
  1835. struct buffer_head *bh, ext4_fsblk_t block_to_free,
  1836. unsigned long count, __le32 *first, __le32 *last)
  1837. {
  1838. __le32 *p;
  1839. if (try_to_extend_transaction(handle, inode)) {
  1840. if (bh) {
  1841. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  1842. ext4_journal_dirty_metadata(handle, bh);
  1843. }
  1844. ext4_mark_inode_dirty(handle, inode);
  1845. ext4_journal_test_restart(handle, inode);
  1846. if (bh) {
  1847. BUFFER_TRACE(bh, "retaking write access");
  1848. ext4_journal_get_write_access(handle, bh);
  1849. }
  1850. }
  1851. /*
  1852. * Any buffers which are on the journal will be in memory. We find
  1853. * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
  1854. * on them. We've already detached each block from the file, so
  1855. * bforget() in jbd2_journal_forget() should be safe.
  1856. *
  1857. * AKPM: turn on bforget in jbd2_journal_forget()!!!
  1858. */
  1859. for (p = first; p < last; p++) {
  1860. u32 nr = le32_to_cpu(*p);
  1861. if (nr) {
  1862. struct buffer_head *bh;
  1863. *p = 0;
  1864. bh = sb_find_get_block(inode->i_sb, nr);
  1865. ext4_forget(handle, 0, inode, bh, nr);
  1866. }
  1867. }
  1868. ext4_free_blocks(handle, inode, block_to_free, count);
  1869. }
  1870. /**
  1871. * ext4_free_data - free a list of data blocks
  1872. * @handle: handle for this transaction
  1873. * @inode: inode we are dealing with
  1874. * @this_bh: indirect buffer_head which contains *@first and *@last
  1875. * @first: array of block numbers
  1876. * @last: points immediately past the end of array
  1877. *
  1878. * We are freeing all blocks refered from that array (numbers are stored as
  1879. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1880. *
  1881. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1882. * blocks are contiguous then releasing them at one time will only affect one
  1883. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1884. * actually use a lot of journal space.
  1885. *
  1886. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1887. * block pointers.
  1888. */
  1889. static void ext4_free_data(handle_t *handle, struct inode *inode,
  1890. struct buffer_head *this_bh,
  1891. __le32 *first, __le32 *last)
  1892. {
  1893. ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1894. unsigned long count = 0; /* Number of blocks in the run */
  1895. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1896. corresponding to
  1897. block_to_free */
  1898. ext4_fsblk_t nr; /* Current block # */
  1899. __le32 *p; /* Pointer into inode/ind
  1900. for current block */
  1901. int err;
  1902. if (this_bh) { /* For indirect block */
  1903. BUFFER_TRACE(this_bh, "get_write_access");
  1904. err = ext4_journal_get_write_access(handle, this_bh);
  1905. /* Important: if we can't update the indirect pointers
  1906. * to the blocks, we can't free them. */
  1907. if (err)
  1908. return;
  1909. }
  1910. for (p = first; p < last; p++) {
  1911. nr = le32_to_cpu(*p);
  1912. if (nr) {
  1913. /* accumulate blocks to free if they're contiguous */
  1914. if (count == 0) {
  1915. block_to_free = nr;
  1916. block_to_free_p = p;
  1917. count = 1;
  1918. } else if (nr == block_to_free + count) {
  1919. count++;
  1920. } else {
  1921. ext4_clear_blocks(handle, inode, this_bh,
  1922. block_to_free,
  1923. count, block_to_free_p, p);
  1924. block_to_free = nr;
  1925. block_to_free_p = p;
  1926. count = 1;
  1927. }
  1928. }
  1929. }
  1930. if (count > 0)
  1931. ext4_clear_blocks(handle, inode, this_bh, block_to_free,
  1932. count, block_to_free_p, p);
  1933. if (this_bh) {
  1934. BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
  1935. ext4_journal_dirty_metadata(handle, this_bh);
  1936. }
  1937. }
  1938. /**
  1939. * ext4_free_branches - free an array of branches
  1940. * @handle: JBD handle for this transaction
  1941. * @inode: inode we are dealing with
  1942. * @parent_bh: the buffer_head which contains *@first and *@last
  1943. * @first: array of block numbers
  1944. * @last: pointer immediately past the end of array
  1945. * @depth: depth of the branches to free
  1946. *
  1947. * We are freeing all blocks refered from these branches (numbers are
  1948. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1949. * appropriately.
  1950. */
  1951. static void ext4_free_branches(handle_t *handle, struct inode *inode,
  1952. struct buffer_head *parent_bh,
  1953. __le32 *first, __le32 *last, int depth)
  1954. {
  1955. ext4_fsblk_t nr;
  1956. __le32 *p;
  1957. if (is_handle_aborted(handle))
  1958. return;
  1959. if (depth--) {
  1960. struct buffer_head *bh;
  1961. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  1962. p = last;
  1963. while (--p >= first) {
  1964. nr = le32_to_cpu(*p);
  1965. if (!nr)
  1966. continue; /* A hole */
  1967. /* Go read the buffer for the next level down */
  1968. bh = sb_bread(inode->i_sb, nr);
  1969. /*
  1970. * A read failure? Report error and clear slot
  1971. * (should be rare).
  1972. */
  1973. if (!bh) {
  1974. ext4_error(inode->i_sb, "ext4_free_branches",
  1975. "Read failure, inode=%lu, block=%llu",
  1976. inode->i_ino, nr);
  1977. continue;
  1978. }
  1979. /* This zaps the entire block. Bottom up. */
  1980. BUFFER_TRACE(bh, "free child branches");
  1981. ext4_free_branches(handle, inode, bh,
  1982. (__le32*)bh->b_data,
  1983. (__le32*)bh->b_data + addr_per_block,
  1984. depth);
  1985. /*
  1986. * We've probably journalled the indirect block several
  1987. * times during the truncate. But it's no longer
  1988. * needed and we now drop it from the transaction via
  1989. * jbd2_journal_revoke().
  1990. *
  1991. * That's easy if it's exclusively part of this
  1992. * transaction. But if it's part of the committing
  1993. * transaction then jbd2_journal_forget() will simply
  1994. * brelse() it. That means that if the underlying
  1995. * block is reallocated in ext4_get_block(),
  1996. * unmap_underlying_metadata() will find this block
  1997. * and will try to get rid of it. damn, damn.
  1998. *
  1999. * If this block has already been committed to the
  2000. * journal, a revoke record will be written. And
  2001. * revoke records must be emitted *before* clearing
  2002. * this block's bit in the bitmaps.
  2003. */
  2004. ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
  2005. /*
  2006. * Everything below this this pointer has been
  2007. * released. Now let this top-of-subtree go.
  2008. *
  2009. * We want the freeing of this indirect block to be
  2010. * atomic in the journal with the updating of the
  2011. * bitmap block which owns it. So make some room in
  2012. * the journal.
  2013. *
  2014. * We zero the parent pointer *after* freeing its
  2015. * pointee in the bitmaps, so if extend_transaction()
  2016. * for some reason fails to put the bitmap changes and
  2017. * the release into the same transaction, recovery
  2018. * will merely complain about releasing a free block,
  2019. * rather than leaking blocks.
  2020. */
  2021. if (is_handle_aborted(handle))
  2022. return;
  2023. if (try_to_extend_transaction(handle, inode)) {
  2024. ext4_mark_inode_dirty(handle, inode);
  2025. ext4_journal_test_restart(handle, inode);
  2026. }
  2027. ext4_free_blocks(handle, inode, nr, 1);
  2028. if (parent_bh) {
  2029. /*
  2030. * The block which we have just freed is
  2031. * pointed to by an indirect block: journal it
  2032. */
  2033. BUFFER_TRACE(parent_bh, "get_write_access");
  2034. if (!ext4_journal_get_write_access(handle,
  2035. parent_bh)){
  2036. *p = 0;
  2037. BUFFER_TRACE(parent_bh,
  2038. "call ext4_journal_dirty_metadata");
  2039. ext4_journal_dirty_metadata(handle,
  2040. parent_bh);
  2041. }
  2042. }
  2043. }
  2044. } else {
  2045. /* We have reached the bottom of the tree. */
  2046. BUFFER_TRACE(parent_bh, "free data blocks");
  2047. ext4_free_data(handle, inode, parent_bh, first, last);
  2048. }
  2049. }
  2050. /*
  2051. * ext4_truncate()
  2052. *
  2053. * We block out ext4_get_block() block instantiations across the entire
  2054. * transaction, and VFS/VM ensures that ext4_truncate() cannot run
  2055. * simultaneously on behalf of the same inode.
  2056. *
  2057. * As we work through the truncate and commmit bits of it to the journal there
  2058. * is one core, guiding principle: the file's tree must always be consistent on
  2059. * disk. We must be able to restart the truncate after a crash.
  2060. *
  2061. * The file's tree may be transiently inconsistent in memory (although it
  2062. * probably isn't), but whenever we close off and commit a journal transaction,
  2063. * the contents of (the filesystem + the journal) must be consistent and
  2064. * restartable. It's pretty simple, really: bottom up, right to left (although
  2065. * left-to-right works OK too).
  2066. *
  2067. * Note that at recovery time, journal replay occurs *before* the restart of
  2068. * truncate against the orphan inode list.
  2069. *
  2070. * The committed inode has the new, desired i_size (which is the same as
  2071. * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
  2072. * that this inode's truncate did not complete and it will again call
  2073. * ext4_truncate() to have another go. So there will be instantiated blocks
  2074. * to the right of the truncation point in a crashed ext4 filesystem. But
  2075. * that's fine - as long as they are linked from the inode, the post-crash
  2076. * ext4_truncate() run will find them and release them.
  2077. */
  2078. void ext4_truncate(struct inode *inode)
  2079. {
  2080. handle_t *handle;
  2081. struct ext4_inode_info *ei = EXT4_I(inode);
  2082. __le32 *i_data = ei->i_data;
  2083. int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  2084. struct address_space *mapping = inode->i_mapping;
  2085. int offsets[4];
  2086. Indirect chain[4];
  2087. Indirect *partial;
  2088. __le32 nr = 0;
  2089. int n;
  2090. long last_block;
  2091. unsigned blocksize = inode->i_sb->s_blocksize;
  2092. struct page *page;
  2093. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2094. S_ISLNK(inode->i_mode)))
  2095. return;
  2096. if (ext4_inode_is_fast_symlink(inode))
  2097. return;
  2098. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2099. return;
  2100. /*
  2101. * We have to lock the EOF page here, because lock_page() nests
  2102. * outside jbd2_journal_start().
  2103. */
  2104. if ((inode->i_size & (blocksize - 1)) == 0) {
  2105. /* Block boundary? Nothing to do */
  2106. page = NULL;
  2107. } else {
  2108. page = grab_cache_page(mapping,
  2109. inode->i_size >> PAGE_CACHE_SHIFT);
  2110. if (!page)
  2111. return;
  2112. }
  2113. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2114. return ext4_ext_truncate(inode, page);
  2115. handle = start_transaction(inode);
  2116. if (IS_ERR(handle)) {
  2117. if (page) {
  2118. clear_highpage(page);
  2119. flush_dcache_page(page);
  2120. unlock_page(page);
  2121. page_cache_release(page);
  2122. }
  2123. return; /* AKPM: return what? */
  2124. }
  2125. last_block = (inode->i_size + blocksize-1)
  2126. >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
  2127. if (page)
  2128. ext4_block_truncate_page(handle, page, mapping, inode->i_size);
  2129. n = ext4_block_to_path(inode, last_block, offsets, NULL);
  2130. if (n == 0)
  2131. goto out_stop; /* error */
  2132. /*
  2133. * OK. This truncate is going to happen. We add the inode to the
  2134. * orphan list, so that if this truncate spans multiple transactions,
  2135. * and we crash, we will resume the truncate when the filesystem
  2136. * recovers. It also marks the inode dirty, to catch the new size.
  2137. *
  2138. * Implication: the file must always be in a sane, consistent
  2139. * truncatable state while each transaction commits.
  2140. */
  2141. if (ext4_orphan_add(handle, inode))
  2142. goto out_stop;
  2143. /*
  2144. * The orphan list entry will now protect us from any crash which
  2145. * occurs before the truncate completes, so it is now safe to propagate
  2146. * the new, shorter inode size (held for now in i_size) into the
  2147. * on-disk inode. We do this via i_disksize, which is the value which
  2148. * ext4 *really* writes onto the disk inode.
  2149. */
  2150. ei->i_disksize = inode->i_size;
  2151. /*
  2152. * From here we block out all ext4_get_block() callers who want to
  2153. * modify the block allocation tree.
  2154. */
  2155. mutex_lock(&ei->truncate_mutex);
  2156. if (n == 1) { /* direct blocks */
  2157. ext4_free_data(handle, inode, NULL, i_data+offsets[0],
  2158. i_data + EXT4_NDIR_BLOCKS);
  2159. goto do_indirects;
  2160. }
  2161. partial = ext4_find_shared(inode, n, offsets, chain, &nr);
  2162. /* Kill the top of shared branch (not detached) */
  2163. if (nr) {
  2164. if (partial == chain) {
  2165. /* Shared branch grows from the inode */
  2166. ext4_free_branches(handle, inode, NULL,
  2167. &nr, &nr+1, (chain+n-1) - partial);
  2168. *partial->p = 0;
  2169. /*
  2170. * We mark the inode dirty prior to restart,
  2171. * and prior to stop. No need for it here.
  2172. */
  2173. } else {
  2174. /* Shared branch grows from an indirect block */
  2175. BUFFER_TRACE(partial->bh, "get_write_access");
  2176. ext4_free_branches(handle, inode, partial->bh,
  2177. partial->p,
  2178. partial->p+1, (chain+n-1) - partial);
  2179. }
  2180. }
  2181. /* Clear the ends of indirect blocks on the shared branch */
  2182. while (partial > chain) {
  2183. ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
  2184. (__le32*)partial->bh->b_data+addr_per_block,
  2185. (chain+n-1) - partial);
  2186. BUFFER_TRACE(partial->bh, "call brelse");
  2187. brelse (partial->bh);
  2188. partial--;
  2189. }
  2190. do_indirects:
  2191. /* Kill the remaining (whole) subtrees */
  2192. switch (offsets[0]) {
  2193. default:
  2194. nr = i_data[EXT4_IND_BLOCK];
  2195. if (nr) {
  2196. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2197. i_data[EXT4_IND_BLOCK] = 0;
  2198. }
  2199. case EXT4_IND_BLOCK:
  2200. nr = i_data[EXT4_DIND_BLOCK];
  2201. if (nr) {
  2202. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2203. i_data[EXT4_DIND_BLOCK] = 0;
  2204. }
  2205. case EXT4_DIND_BLOCK:
  2206. nr = i_data[EXT4_TIND_BLOCK];
  2207. if (nr) {
  2208. ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2209. i_data[EXT4_TIND_BLOCK] = 0;
  2210. }
  2211. case EXT4_TIND_BLOCK:
  2212. ;
  2213. }
  2214. ext4_discard_reservation(inode);
  2215. mutex_unlock(&ei->truncate_mutex);
  2216. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2217. ext4_mark_inode_dirty(handle, inode);
  2218. /*
  2219. * In a multi-transaction truncate, we only make the final transaction
  2220. * synchronous
  2221. */
  2222. if (IS_SYNC(inode))
  2223. handle->h_sync = 1;
  2224. out_stop:
  2225. /*
  2226. * If this was a simple ftruncate(), and the file will remain alive
  2227. * then we need to clear up the orphan record which we created above.
  2228. * However, if this was a real unlink then we were called by
  2229. * ext4_delete_inode(), and we allow that function to clean up the
  2230. * orphan info for us.
  2231. */
  2232. if (inode->i_nlink)
  2233. ext4_orphan_del(handle, inode);
  2234. ext4_journal_stop(handle);
  2235. }
  2236. static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
  2237. unsigned long ino, struct ext4_iloc *iloc)
  2238. {
  2239. unsigned long desc, group_desc, block_group;
  2240. unsigned long offset;
  2241. ext4_fsblk_t block;
  2242. struct buffer_head *bh;
  2243. struct ext4_group_desc * gdp;
  2244. if (!ext4_valid_inum(sb, ino)) {
  2245. /*
  2246. * This error is already checked for in namei.c unless we are
  2247. * looking at an NFS filehandle, in which case no error
  2248. * report is needed
  2249. */
  2250. return 0;
  2251. }
  2252. block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
  2253. if (block_group >= EXT4_SB(sb)->s_groups_count) {
  2254. ext4_error(sb,"ext4_get_inode_block","group >= groups count");
  2255. return 0;
  2256. }
  2257. smp_rmb();
  2258. group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
  2259. desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
  2260. bh = EXT4_SB(sb)->s_group_desc[group_desc];
  2261. if (!bh) {
  2262. ext4_error (sb, "ext4_get_inode_block",
  2263. "Descriptor not loaded");
  2264. return 0;
  2265. }
  2266. gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
  2267. desc * EXT4_DESC_SIZE(sb));
  2268. /*
  2269. * Figure out the offset within the block group inode table
  2270. */
  2271. offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
  2272. EXT4_INODE_SIZE(sb);
  2273. block = ext4_inode_table(sb, gdp) +
  2274. (offset >> EXT4_BLOCK_SIZE_BITS(sb));
  2275. iloc->block_group = block_group;
  2276. iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
  2277. return block;
  2278. }
  2279. /*
  2280. * ext4_get_inode_loc returns with an extra refcount against the inode's
  2281. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2282. * data in memory that is needed to recreate the on-disk version of this
  2283. * inode.
  2284. */
  2285. static int __ext4_get_inode_loc(struct inode *inode,
  2286. struct ext4_iloc *iloc, int in_mem)
  2287. {
  2288. ext4_fsblk_t block;
  2289. struct buffer_head *bh;
  2290. block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2291. if (!block)
  2292. return -EIO;
  2293. bh = sb_getblk(inode->i_sb, block);
  2294. if (!bh) {
  2295. ext4_error (inode->i_sb, "ext4_get_inode_loc",
  2296. "unable to read inode block - "
  2297. "inode=%lu, block=%llu",
  2298. inode->i_ino, block);
  2299. return -EIO;
  2300. }
  2301. if (!buffer_uptodate(bh)) {
  2302. lock_buffer(bh);
  2303. if (buffer_uptodate(bh)) {
  2304. /* someone brought it uptodate while we waited */
  2305. unlock_buffer(bh);
  2306. goto has_buffer;
  2307. }
  2308. /*
  2309. * If we have all information of the inode in memory and this
  2310. * is the only valid inode in the block, we need not read the
  2311. * block.
  2312. */
  2313. if (in_mem) {
  2314. struct buffer_head *bitmap_bh;
  2315. struct ext4_group_desc *desc;
  2316. int inodes_per_buffer;
  2317. int inode_offset, i;
  2318. int block_group;
  2319. int start;
  2320. block_group = (inode->i_ino - 1) /
  2321. EXT4_INODES_PER_GROUP(inode->i_sb);
  2322. inodes_per_buffer = bh->b_size /
  2323. EXT4_INODE_SIZE(inode->i_sb);
  2324. inode_offset = ((inode->i_ino - 1) %
  2325. EXT4_INODES_PER_GROUP(inode->i_sb));
  2326. start = inode_offset & ~(inodes_per_buffer - 1);
  2327. /* Is the inode bitmap in cache? */
  2328. desc = ext4_get_group_desc(inode->i_sb,
  2329. block_group, NULL);
  2330. if (!desc)
  2331. goto make_io;
  2332. bitmap_bh = sb_getblk(inode->i_sb,
  2333. ext4_inode_bitmap(inode->i_sb, desc));
  2334. if (!bitmap_bh)
  2335. goto make_io;
  2336. /*
  2337. * If the inode bitmap isn't in cache then the
  2338. * optimisation may end up performing two reads instead
  2339. * of one, so skip it.
  2340. */
  2341. if (!buffer_uptodate(bitmap_bh)) {
  2342. brelse(bitmap_bh);
  2343. goto make_io;
  2344. }
  2345. for (i = start; i < start + inodes_per_buffer; i++) {
  2346. if (i == inode_offset)
  2347. continue;
  2348. if (ext4_test_bit(i, bitmap_bh->b_data))
  2349. break;
  2350. }
  2351. brelse(bitmap_bh);
  2352. if (i == start + inodes_per_buffer) {
  2353. /* all other inodes are free, so skip I/O */
  2354. memset(bh->b_data, 0, bh->b_size);
  2355. set_buffer_uptodate(bh);
  2356. unlock_buffer(bh);
  2357. goto has_buffer;
  2358. }
  2359. }
  2360. make_io:
  2361. /*
  2362. * There are other valid inodes in the buffer, this inode
  2363. * has in-inode xattrs, or we don't have this inode in memory.
  2364. * Read the block from disk.
  2365. */
  2366. get_bh(bh);
  2367. bh->b_end_io = end_buffer_read_sync;
  2368. submit_bh(READ_META, bh);
  2369. wait_on_buffer(bh);
  2370. if (!buffer_uptodate(bh)) {
  2371. ext4_error(inode->i_sb, "ext4_get_inode_loc",
  2372. "unable to read inode block - "
  2373. "inode=%lu, block=%llu",
  2374. inode->i_ino, block);
  2375. brelse(bh);
  2376. return -EIO;
  2377. }
  2378. }
  2379. has_buffer:
  2380. iloc->bh = bh;
  2381. return 0;
  2382. }
  2383. int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
  2384. {
  2385. /* We have all inode data except xattrs in memory here. */
  2386. return __ext4_get_inode_loc(inode, iloc,
  2387. !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
  2388. }
  2389. void ext4_set_inode_flags(struct inode *inode)
  2390. {
  2391. unsigned int flags = EXT4_I(inode)->i_flags;
  2392. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2393. if (flags & EXT4_SYNC_FL)
  2394. inode->i_flags |= S_SYNC;
  2395. if (flags & EXT4_APPEND_FL)
  2396. inode->i_flags |= S_APPEND;
  2397. if (flags & EXT4_IMMUTABLE_FL)
  2398. inode->i_flags |= S_IMMUTABLE;
  2399. if (flags & EXT4_NOATIME_FL)
  2400. inode->i_flags |= S_NOATIME;
  2401. if (flags & EXT4_DIRSYNC_FL)
  2402. inode->i_flags |= S_DIRSYNC;
  2403. }
  2404. void ext4_read_inode(struct inode * inode)
  2405. {
  2406. struct ext4_iloc iloc;
  2407. struct ext4_inode *raw_inode;
  2408. struct ext4_inode_info *ei = EXT4_I(inode);
  2409. struct buffer_head *bh;
  2410. int block;
  2411. #ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
  2412. ei->i_acl = EXT4_ACL_NOT_CACHED;
  2413. ei->i_default_acl = EXT4_ACL_NOT_CACHED;
  2414. #endif
  2415. ei->i_block_alloc_info = NULL;
  2416. if (__ext4_get_inode_loc(inode, &iloc, 0))
  2417. goto bad_inode;
  2418. bh = iloc.bh;
  2419. raw_inode = ext4_raw_inode(&iloc);
  2420. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2421. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2422. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2423. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2424. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2425. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2426. }
  2427. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2428. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2429. inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
  2430. inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
  2431. inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
  2432. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2433. ei->i_state = 0;
  2434. ei->i_dir_start_lookup = 0;
  2435. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2436. /* We now have enough fields to check if the inode was active or not.
  2437. * This is needed because nfsd might try to access dead inodes
  2438. * the test is that same one that e2fsck uses
  2439. * NeilBrown 1999oct15
  2440. */
  2441. if (inode->i_nlink == 0) {
  2442. if (inode->i_mode == 0 ||
  2443. !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
  2444. /* this inode is deleted */
  2445. brelse (bh);
  2446. goto bad_inode;
  2447. }
  2448. /* The only unlinked inodes we let through here have
  2449. * valid i_mode and are being read by the orphan
  2450. * recovery code: that's fine, we're about to complete
  2451. * the process of deleting those. */
  2452. }
  2453. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2454. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2455. #ifdef EXT4_FRAGMENTS
  2456. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2457. ei->i_frag_no = raw_inode->i_frag;
  2458. ei->i_frag_size = raw_inode->i_fsize;
  2459. #endif
  2460. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2461. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2462. cpu_to_le32(EXT4_OS_HURD))
  2463. ei->i_file_acl |=
  2464. ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
  2465. if (!S_ISREG(inode->i_mode)) {
  2466. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2467. } else {
  2468. inode->i_size |=
  2469. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2470. }
  2471. ei->i_disksize = inode->i_size;
  2472. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2473. ei->i_block_group = iloc.block_group;
  2474. /*
  2475. * NOTE! The in-memory inode i_data array is in little-endian order
  2476. * even on big-endian machines: we do NOT byteswap the block numbers!
  2477. */
  2478. for (block = 0; block < EXT4_N_BLOCKS; block++)
  2479. ei->i_data[block] = raw_inode->i_block[block];
  2480. INIT_LIST_HEAD(&ei->i_orphan);
  2481. if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
  2482. EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  2483. /*
  2484. * When mke2fs creates big inodes it does not zero out
  2485. * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
  2486. * so ignore those first few inodes.
  2487. */
  2488. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2489. if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2490. EXT4_INODE_SIZE(inode->i_sb))
  2491. goto bad_inode;
  2492. if (ei->i_extra_isize == 0) {
  2493. /* The extra space is currently unused. Use it. */
  2494. ei->i_extra_isize = sizeof(struct ext4_inode) -
  2495. EXT4_GOOD_OLD_INODE_SIZE;
  2496. } else {
  2497. __le32 *magic = (void *)raw_inode +
  2498. EXT4_GOOD_OLD_INODE_SIZE +
  2499. ei->i_extra_isize;
  2500. if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
  2501. ei->i_state |= EXT4_STATE_XATTR;
  2502. }
  2503. } else
  2504. ei->i_extra_isize = 0;
  2505. if (S_ISREG(inode->i_mode)) {
  2506. inode->i_op = &ext4_file_inode_operations;
  2507. inode->i_fop = &ext4_file_operations;
  2508. ext4_set_aops(inode);
  2509. } else if (S_ISDIR(inode->i_mode)) {
  2510. inode->i_op = &ext4_dir_inode_operations;
  2511. inode->i_fop = &ext4_dir_operations;
  2512. } else if (S_ISLNK(inode->i_mode)) {
  2513. if (ext4_inode_is_fast_symlink(inode))
  2514. inode->i_op = &ext4_fast_symlink_inode_operations;
  2515. else {
  2516. inode->i_op = &ext4_symlink_inode_operations;
  2517. ext4_set_aops(inode);
  2518. }
  2519. } else {
  2520. inode->i_op = &ext4_special_inode_operations;
  2521. if (raw_inode->i_block[0])
  2522. init_special_inode(inode, inode->i_mode,
  2523. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2524. else
  2525. init_special_inode(inode, inode->i_mode,
  2526. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2527. }
  2528. brelse (iloc.bh);
  2529. ext4_set_inode_flags(inode);
  2530. return;
  2531. bad_inode:
  2532. make_bad_inode(inode);
  2533. return;
  2534. }
  2535. /*
  2536. * Post the struct inode info into an on-disk inode location in the
  2537. * buffer-cache. This gobbles the caller's reference to the
  2538. * buffer_head in the inode location struct.
  2539. *
  2540. * The caller must have write access to iloc->bh.
  2541. */
  2542. static int ext4_do_update_inode(handle_t *handle,
  2543. struct inode *inode,
  2544. struct ext4_iloc *iloc)
  2545. {
  2546. struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
  2547. struct ext4_inode_info *ei = EXT4_I(inode);
  2548. struct buffer_head *bh = iloc->bh;
  2549. int err = 0, rc, block;
  2550. /* For fields not not tracking in the in-memory inode,
  2551. * initialise them to zero for new inodes. */
  2552. if (ei->i_state & EXT4_STATE_NEW)
  2553. memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
  2554. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2555. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2556. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2557. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2558. /*
  2559. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2560. * re-used with the upper 16 bits of the uid/gid intact
  2561. */
  2562. if(!ei->i_dtime) {
  2563. raw_inode->i_uid_high =
  2564. cpu_to_le16(high_16_bits(inode->i_uid));
  2565. raw_inode->i_gid_high =
  2566. cpu_to_le16(high_16_bits(inode->i_gid));
  2567. } else {
  2568. raw_inode->i_uid_high = 0;
  2569. raw_inode->i_gid_high = 0;
  2570. }
  2571. } else {
  2572. raw_inode->i_uid_low =
  2573. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2574. raw_inode->i_gid_low =
  2575. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2576. raw_inode->i_uid_high = 0;
  2577. raw_inode->i_gid_high = 0;
  2578. }
  2579. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2580. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2581. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2582. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2583. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2584. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2585. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2586. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2587. #ifdef EXT4_FRAGMENTS
  2588. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2589. raw_inode->i_frag = ei->i_frag_no;
  2590. raw_inode->i_fsize = ei->i_frag_size;
  2591. #endif
  2592. if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  2593. cpu_to_le32(EXT4_OS_HURD))
  2594. raw_inode->i_file_acl_high =
  2595. cpu_to_le16(ei->i_file_acl >> 32);
  2596. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2597. if (!S_ISREG(inode->i_mode)) {
  2598. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2599. } else {
  2600. raw_inode->i_size_high =
  2601. cpu_to_le32(ei->i_disksize >> 32);
  2602. if (ei->i_disksize > 0x7fffffffULL) {
  2603. struct super_block *sb = inode->i_sb;
  2604. if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
  2605. EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2606. EXT4_SB(sb)->s_es->s_rev_level ==
  2607. cpu_to_le32(EXT4_GOOD_OLD_REV)) {
  2608. /* If this is the first large file
  2609. * created, add a flag to the superblock.
  2610. */
  2611. err = ext4_journal_get_write_access(handle,
  2612. EXT4_SB(sb)->s_sbh);
  2613. if (err)
  2614. goto out_brelse;
  2615. ext4_update_dynamic_rev(sb);
  2616. EXT4_SET_RO_COMPAT_FEATURE(sb,
  2617. EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
  2618. sb->s_dirt = 1;
  2619. handle->h_sync = 1;
  2620. err = ext4_journal_dirty_metadata(handle,
  2621. EXT4_SB(sb)->s_sbh);
  2622. }
  2623. }
  2624. }
  2625. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2626. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2627. if (old_valid_dev(inode->i_rdev)) {
  2628. raw_inode->i_block[0] =
  2629. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2630. raw_inode->i_block[1] = 0;
  2631. } else {
  2632. raw_inode->i_block[0] = 0;
  2633. raw_inode->i_block[1] =
  2634. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2635. raw_inode->i_block[2] = 0;
  2636. }
  2637. } else for (block = 0; block < EXT4_N_BLOCKS; block++)
  2638. raw_inode->i_block[block] = ei->i_data[block];
  2639. if (ei->i_extra_isize)
  2640. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2641. BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
  2642. rc = ext4_journal_dirty_metadata(handle, bh);
  2643. if (!err)
  2644. err = rc;
  2645. ei->i_state &= ~EXT4_STATE_NEW;
  2646. out_brelse:
  2647. brelse (bh);
  2648. ext4_std_error(inode->i_sb, err);
  2649. return err;
  2650. }
  2651. /*
  2652. * ext4_write_inode()
  2653. *
  2654. * We are called from a few places:
  2655. *
  2656. * - Within generic_file_write() for O_SYNC files.
  2657. * Here, there will be no transaction running. We wait for any running
  2658. * trasnaction to commit.
  2659. *
  2660. * - Within sys_sync(), kupdate and such.
  2661. * We wait on commit, if tol to.
  2662. *
  2663. * - Within prune_icache() (PF_MEMALLOC == true)
  2664. * Here we simply return. We can't afford to block kswapd on the
  2665. * journal commit.
  2666. *
  2667. * In all cases it is actually safe for us to return without doing anything,
  2668. * because the inode has been copied into a raw inode buffer in
  2669. * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2670. * knfsd.
  2671. *
  2672. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2673. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2674. * which we are interested.
  2675. *
  2676. * It would be a bug for them to not do this. The code:
  2677. *
  2678. * mark_inode_dirty(inode)
  2679. * stuff();
  2680. * inode->i_size = expr;
  2681. *
  2682. * is in error because a kswapd-driven write_inode() could occur while
  2683. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2684. * will no longer be on the superblock's dirty inode list.
  2685. */
  2686. int ext4_write_inode(struct inode *inode, int wait)
  2687. {
  2688. if (current->flags & PF_MEMALLOC)
  2689. return 0;
  2690. if (ext4_journal_current_handle()) {
  2691. jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
  2692. dump_stack();
  2693. return -EIO;
  2694. }
  2695. if (!wait)
  2696. return 0;
  2697. return ext4_force_commit(inode->i_sb);
  2698. }
  2699. /*
  2700. * ext4_setattr()
  2701. *
  2702. * Called from notify_change.
  2703. *
  2704. * We want to trap VFS attempts to truncate the file as soon as
  2705. * possible. In particular, we want to make sure that when the VFS
  2706. * shrinks i_size, we put the inode on the orphan list and modify
  2707. * i_disksize immediately, so that during the subsequent flushing of
  2708. * dirty pages and freeing of disk blocks, we can guarantee that any
  2709. * commit will leave the blocks being flushed in an unused state on
  2710. * disk. (On recovery, the inode will get truncated and the blocks will
  2711. * be freed, so we have a strong guarantee that no future commit will
  2712. * leave these blocks visible to the user.)
  2713. *
  2714. * Called with inode->sem down.
  2715. */
  2716. int ext4_setattr(struct dentry *dentry, struct iattr *attr)
  2717. {
  2718. struct inode *inode = dentry->d_inode;
  2719. int error, rc = 0;
  2720. const unsigned int ia_valid = attr->ia_valid;
  2721. error = inode_change_ok(inode, attr);
  2722. if (error)
  2723. return error;
  2724. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2725. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2726. handle_t *handle;
  2727. /* (user+group)*(old+new) structure, inode write (sb,
  2728. * inode block, ? - but truncate inode update has it) */
  2729. handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2730. EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2731. if (IS_ERR(handle)) {
  2732. error = PTR_ERR(handle);
  2733. goto err_out;
  2734. }
  2735. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2736. if (error) {
  2737. ext4_journal_stop(handle);
  2738. return error;
  2739. }
  2740. /* Update corresponding info in inode so that everything is in
  2741. * one transaction */
  2742. if (attr->ia_valid & ATTR_UID)
  2743. inode->i_uid = attr->ia_uid;
  2744. if (attr->ia_valid & ATTR_GID)
  2745. inode->i_gid = attr->ia_gid;
  2746. error = ext4_mark_inode_dirty(handle, inode);
  2747. ext4_journal_stop(handle);
  2748. }
  2749. if (S_ISREG(inode->i_mode) &&
  2750. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2751. handle_t *handle;
  2752. handle = ext4_journal_start(inode, 3);
  2753. if (IS_ERR(handle)) {
  2754. error = PTR_ERR(handle);
  2755. goto err_out;
  2756. }
  2757. error = ext4_orphan_add(handle, inode);
  2758. EXT4_I(inode)->i_disksize = attr->ia_size;
  2759. rc = ext4_mark_inode_dirty(handle, inode);
  2760. if (!error)
  2761. error = rc;
  2762. ext4_journal_stop(handle);
  2763. }
  2764. rc = inode_setattr(inode, attr);
  2765. /* If inode_setattr's call to ext4_truncate failed to get a
  2766. * transaction handle at all, we need to clean up the in-core
  2767. * orphan list manually. */
  2768. if (inode->i_nlink)
  2769. ext4_orphan_del(NULL, inode);
  2770. if (!rc && (ia_valid & ATTR_MODE))
  2771. rc = ext4_acl_chmod(inode);
  2772. err_out:
  2773. ext4_std_error(inode->i_sb, error);
  2774. if (!error)
  2775. error = rc;
  2776. return error;
  2777. }
  2778. /*
  2779. * How many blocks doth make a writepage()?
  2780. *
  2781. * With N blocks per page, it may be:
  2782. * N data blocks
  2783. * 2 indirect block
  2784. * 2 dindirect
  2785. * 1 tindirect
  2786. * N+5 bitmap blocks (from the above)
  2787. * N+5 group descriptor summary blocks
  2788. * 1 inode block
  2789. * 1 superblock.
  2790. * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
  2791. *
  2792. * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
  2793. *
  2794. * With ordered or writeback data it's the same, less the N data blocks.
  2795. *
  2796. * If the inode's direct blocks can hold an integral number of pages then a
  2797. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2798. * and dindirect block, and the "5" above becomes "3".
  2799. *
  2800. * This still overestimates under most circumstances. If we were to pass the
  2801. * start and end offsets in here as well we could do block_to_path() on each
  2802. * block and work out the exact number of indirects which are touched. Pah.
  2803. */
  2804. int ext4_writepage_trans_blocks(struct inode *inode)
  2805. {
  2806. int bpp = ext4_journal_blocks_per_page(inode);
  2807. int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
  2808. int ret;
  2809. if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
  2810. return ext4_ext_writepage_trans_blocks(inode, bpp);
  2811. if (ext4_should_journal_data(inode))
  2812. ret = 3 * (bpp + indirects) + 2;
  2813. else
  2814. ret = 2 * (bpp + indirects) + 2;
  2815. #ifdef CONFIG_QUOTA
  2816. /* We know that structure was already allocated during DQUOT_INIT so
  2817. * we will be updating only the data blocks + inodes */
  2818. ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2819. #endif
  2820. return ret;
  2821. }
  2822. /*
  2823. * The caller must have previously called ext4_reserve_inode_write().
  2824. * Give this, we know that the caller already has write access to iloc->bh.
  2825. */
  2826. int ext4_mark_iloc_dirty(handle_t *handle,
  2827. struct inode *inode, struct ext4_iloc *iloc)
  2828. {
  2829. int err = 0;
  2830. /* the do_update_inode consumes one bh->b_count */
  2831. get_bh(iloc->bh);
  2832. /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
  2833. err = ext4_do_update_inode(handle, inode, iloc);
  2834. put_bh(iloc->bh);
  2835. return err;
  2836. }
  2837. /*
  2838. * On success, We end up with an outstanding reference count against
  2839. * iloc->bh. This _must_ be cleaned up later.
  2840. */
  2841. int
  2842. ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
  2843. struct ext4_iloc *iloc)
  2844. {
  2845. int err = 0;
  2846. if (handle) {
  2847. err = ext4_get_inode_loc(inode, iloc);
  2848. if (!err) {
  2849. BUFFER_TRACE(iloc->bh, "get_write_access");
  2850. err = ext4_journal_get_write_access(handle, iloc->bh);
  2851. if (err) {
  2852. brelse(iloc->bh);
  2853. iloc->bh = NULL;
  2854. }
  2855. }
  2856. }
  2857. ext4_std_error(inode->i_sb, err);
  2858. return err;
  2859. }
  2860. /*
  2861. * What we do here is to mark the in-core inode as clean with respect to inode
  2862. * dirtiness (it may still be data-dirty).
  2863. * This means that the in-core inode may be reaped by prune_icache
  2864. * without having to perform any I/O. This is a very good thing,
  2865. * because *any* task may call prune_icache - even ones which
  2866. * have a transaction open against a different journal.
  2867. *
  2868. * Is this cheating? Not really. Sure, we haven't written the
  2869. * inode out, but prune_icache isn't a user-visible syncing function.
  2870. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2871. * we start and wait on commits.
  2872. *
  2873. * Is this efficient/effective? Well, we're being nice to the system
  2874. * by cleaning up our inodes proactively so they can be reaped
  2875. * without I/O. But we are potentially leaving up to five seconds'
  2876. * worth of inodes floating about which prune_icache wants us to
  2877. * write out. One way to fix that would be to get prune_icache()
  2878. * to do a write_super() to free up some memory. It has the desired
  2879. * effect.
  2880. */
  2881. int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2882. {
  2883. struct ext4_iloc iloc;
  2884. int err;
  2885. might_sleep();
  2886. err = ext4_reserve_inode_write(handle, inode, &iloc);
  2887. if (!err)
  2888. err = ext4_mark_iloc_dirty(handle, inode, &iloc);
  2889. return err;
  2890. }
  2891. /*
  2892. * ext4_dirty_inode() is called from __mark_inode_dirty()
  2893. *
  2894. * We're really interested in the case where a file is being extended.
  2895. * i_size has been changed by generic_commit_write() and we thus need
  2896. * to include the updated inode in the current transaction.
  2897. *
  2898. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  2899. * are allocated to the file.
  2900. *
  2901. * If the inode is marked synchronous, we don't honour that here - doing
  2902. * so would cause a commit on atime updates, which we don't bother doing.
  2903. * We handle synchronous inodes at the highest possible level.
  2904. */
  2905. void ext4_dirty_inode(struct inode *inode)
  2906. {
  2907. handle_t *current_handle = ext4_journal_current_handle();
  2908. handle_t *handle;
  2909. handle = ext4_journal_start(inode, 2);
  2910. if (IS_ERR(handle))
  2911. goto out;
  2912. if (current_handle &&
  2913. current_handle->h_transaction != handle->h_transaction) {
  2914. /* This task has a transaction open against a different fs */
  2915. printk(KERN_EMERG "%s: transactions do not match!\n",
  2916. __FUNCTION__);
  2917. } else {
  2918. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2919. current_handle);
  2920. ext4_mark_inode_dirty(handle, inode);
  2921. }
  2922. ext4_journal_stop(handle);
  2923. out:
  2924. return;
  2925. }
  2926. #if 0
  2927. /*
  2928. * Bind an inode's backing buffer_head into this transaction, to prevent
  2929. * it from being flushed to disk early. Unlike
  2930. * ext4_reserve_inode_write, this leaves behind no bh reference and
  2931. * returns no iloc structure, so the caller needs to repeat the iloc
  2932. * lookup to mark the inode dirty later.
  2933. */
  2934. static int ext4_pin_inode(handle_t *handle, struct inode *inode)
  2935. {
  2936. struct ext4_iloc iloc;
  2937. int err = 0;
  2938. if (handle) {
  2939. err = ext4_get_inode_loc(inode, &iloc);
  2940. if (!err) {
  2941. BUFFER_TRACE(iloc.bh, "get_write_access");
  2942. err = jbd2_journal_get_write_access(handle, iloc.bh);
  2943. if (!err)
  2944. err = ext4_journal_dirty_metadata(handle,
  2945. iloc.bh);
  2946. brelse(iloc.bh);
  2947. }
  2948. }
  2949. ext4_std_error(inode->i_sb, err);
  2950. return err;
  2951. }
  2952. #endif
  2953. int ext4_change_inode_journal_flag(struct inode *inode, int val)
  2954. {
  2955. journal_t *journal;
  2956. handle_t *handle;
  2957. int err;
  2958. /*
  2959. * We have to be very careful here: changing a data block's
  2960. * journaling status dynamically is dangerous. If we write a
  2961. * data block to the journal, change the status and then delete
  2962. * that block, we risk forgetting to revoke the old log record
  2963. * from the journal and so a subsequent replay can corrupt data.
  2964. * So, first we make sure that the journal is empty and that
  2965. * nobody is changing anything.
  2966. */
  2967. journal = EXT4_JOURNAL(inode);
  2968. if (is_journal_aborted(journal) || IS_RDONLY(inode))
  2969. return -EROFS;
  2970. jbd2_journal_lock_updates(journal);
  2971. jbd2_journal_flush(journal);
  2972. /*
  2973. * OK, there are no updates running now, and all cached data is
  2974. * synced to disk. We are now in a completely consistent state
  2975. * which doesn't have anything in the journal, and we know that
  2976. * no filesystem updates are running, so it is safe to modify
  2977. * the inode's in-core data-journaling state flag now.
  2978. */
  2979. if (val)
  2980. EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
  2981. else
  2982. EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
  2983. ext4_set_aops(inode);
  2984. jbd2_journal_unlock_updates(journal);
  2985. /* Finally we can mark the inode as dirty. */
  2986. handle = ext4_journal_start(inode, 1);
  2987. if (IS_ERR(handle))
  2988. return PTR_ERR(handle);
  2989. err = ext4_mark_inode_dirty(handle, inode);
  2990. handle->h_sync = 1;
  2991. ext4_journal_stop(handle);
  2992. ext4_std_error(inode->i_sb, err);
  2993. return err;
  2994. }