inode.c 95 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/highuid.h>
  31. #include <linux/pagemap.h>
  32. #include <linux/quotaops.h>
  33. #include <linux/string.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/writeback.h>
  36. #include <linux/mpage.h>
  37. #include <linux/uio.h>
  38. #include <linux/bio.h>
  39. #include "xattr.h"
  40. #include "acl.h"
  41. static int ext3_writepage_trans_blocks(struct inode *inode);
  42. /*
  43. * Test whether an inode is a fast symlink.
  44. */
  45. static int ext3_inode_is_fast_symlink(struct inode *inode)
  46. {
  47. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  48. (inode->i_sb->s_blocksize >> 9) : 0;
  49. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  50. }
  51. /*
  52. * The ext3 forget function must perform a revoke if we are freeing data
  53. * which has been journaled. Metadata (eg. indirect blocks) must be
  54. * revoked in all cases.
  55. *
  56. * "bh" may be NULL: a metadata block may have been freed from memory
  57. * but there may still be a record of it in the journal, and that record
  58. * still needs to be revoked.
  59. */
  60. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  61. struct buffer_head *bh, ext3_fsblk_t blocknr)
  62. {
  63. int err;
  64. might_sleep();
  65. BUFFER_TRACE(bh, "enter");
  66. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  67. "data mode %lx\n",
  68. bh, is_metadata, inode->i_mode,
  69. test_opt(inode->i_sb, DATA_FLAGS));
  70. /* Never use the revoke function if we are doing full data
  71. * journaling: there is no need to, and a V1 superblock won't
  72. * support it. Otherwise, only skip the revoke on un-journaled
  73. * data blocks. */
  74. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  75. (!is_metadata && !ext3_should_journal_data(inode))) {
  76. if (bh) {
  77. BUFFER_TRACE(bh, "call journal_forget");
  78. return ext3_journal_forget(handle, bh);
  79. }
  80. return 0;
  81. }
  82. /*
  83. * data!=journal && (is_metadata || should_journal_data(inode))
  84. */
  85. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  86. err = ext3_journal_revoke(handle, blocknr, bh);
  87. if (err)
  88. ext3_abort(inode->i_sb, __FUNCTION__,
  89. "error %d when attempting revoke", err);
  90. BUFFER_TRACE(bh, "exit");
  91. return err;
  92. }
  93. /*
  94. * Work out how many blocks we need to proceed with the next chunk of a
  95. * truncate transaction.
  96. */
  97. static unsigned long blocks_for_truncate(struct inode *inode)
  98. {
  99. unsigned long needed;
  100. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  101. /* Give ourselves just enough room to cope with inodes in which
  102. * i_blocks is corrupt: we've seen disk corruptions in the past
  103. * which resulted in random data in an inode which looked enough
  104. * like a regular file for ext3 to try to delete it. Things
  105. * will go a bit crazy if that happens, but at least we should
  106. * try not to panic the whole kernel. */
  107. if (needed < 2)
  108. needed = 2;
  109. /* But we need to bound the transaction so we don't overflow the
  110. * journal. */
  111. if (needed > EXT3_MAX_TRANS_DATA)
  112. needed = EXT3_MAX_TRANS_DATA;
  113. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  114. }
  115. /*
  116. * Truncate transactions can be complex and absolutely huge. So we need to
  117. * be able to restart the transaction at a conventient checkpoint to make
  118. * sure we don't overflow the journal.
  119. *
  120. * start_transaction gets us a new handle for a truncate transaction,
  121. * and extend_transaction tries to extend the existing one a bit. If
  122. * extend fails, we need to propagate the failure up and restart the
  123. * transaction in the top-level truncate loop. --sct
  124. */
  125. static handle_t *start_transaction(struct inode *inode)
  126. {
  127. handle_t *result;
  128. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  129. if (!IS_ERR(result))
  130. return result;
  131. ext3_std_error(inode->i_sb, PTR_ERR(result));
  132. return result;
  133. }
  134. /*
  135. * Try to extend this transaction for the purposes of truncation.
  136. *
  137. * Returns 0 if we managed to create more room. If we can't create more
  138. * room, and the transaction must be restarted we return 1.
  139. */
  140. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  141. {
  142. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  143. return 0;
  144. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  145. return 0;
  146. return 1;
  147. }
  148. /*
  149. * Restart the transaction associated with *handle. This does a commit,
  150. * so before we call here everything must be consistently dirtied against
  151. * this transaction.
  152. */
  153. static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
  154. {
  155. jbd_debug(2, "restarting handle %p\n", handle);
  156. return ext3_journal_restart(handle, blocks_for_truncate(inode));
  157. }
  158. /*
  159. * Called at the last iput() if i_nlink is zero.
  160. */
  161. void ext3_delete_inode (struct inode * inode)
  162. {
  163. handle_t *handle;
  164. truncate_inode_pages(&inode->i_data, 0);
  165. if (is_bad_inode(inode))
  166. goto no_delete;
  167. handle = start_transaction(inode);
  168. if (IS_ERR(handle)) {
  169. /*
  170. * If we're going to skip the normal cleanup, we still need to
  171. * make sure that the in-core orphan linked list is properly
  172. * cleaned up.
  173. */
  174. ext3_orphan_del(NULL, inode);
  175. goto no_delete;
  176. }
  177. if (IS_SYNC(inode))
  178. handle->h_sync = 1;
  179. inode->i_size = 0;
  180. if (inode->i_blocks)
  181. ext3_truncate(inode);
  182. /*
  183. * Kill off the orphan record which ext3_truncate created.
  184. * AKPM: I think this can be inside the above `if'.
  185. * Note that ext3_orphan_del() has to be able to cope with the
  186. * deletion of a non-existent orphan - this is because we don't
  187. * know if ext3_truncate() actually created an orphan record.
  188. * (Well, we could do this if we need to, but heck - it works)
  189. */
  190. ext3_orphan_del(handle, inode);
  191. EXT3_I(inode)->i_dtime = get_seconds();
  192. /*
  193. * One subtle ordering requirement: if anything has gone wrong
  194. * (transaction abort, IO errors, whatever), then we can still
  195. * do these next steps (the fs will already have been marked as
  196. * having errors), but we can't free the inode if the mark_dirty
  197. * fails.
  198. */
  199. if (ext3_mark_inode_dirty(handle, inode))
  200. /* If that failed, just do the required in-core inode clear. */
  201. clear_inode(inode);
  202. else
  203. ext3_free_inode(handle, inode);
  204. ext3_journal_stop(handle);
  205. return;
  206. no_delete:
  207. clear_inode(inode); /* We must guarantee clearing of inode... */
  208. }
  209. typedef struct {
  210. __le32 *p;
  211. __le32 key;
  212. struct buffer_head *bh;
  213. } Indirect;
  214. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  215. {
  216. p->key = *(p->p = v);
  217. p->bh = bh;
  218. }
  219. static int verify_chain(Indirect *from, Indirect *to)
  220. {
  221. while (from <= to && from->key == *from->p)
  222. from++;
  223. return (from > to);
  224. }
  225. /**
  226. * ext3_block_to_path - parse the block number into array of offsets
  227. * @inode: inode in question (we are only interested in its superblock)
  228. * @i_block: block number to be parsed
  229. * @offsets: array to store the offsets in
  230. * @boundary: set this non-zero if the referred-to block is likely to be
  231. * followed (on disk) by an indirect block.
  232. *
  233. * To store the locations of file's data ext3 uses a data structure common
  234. * for UNIX filesystems - tree of pointers anchored in the inode, with
  235. * data blocks at leaves and indirect blocks in intermediate nodes.
  236. * This function translates the block number into path in that tree -
  237. * return value is the path length and @offsets[n] is the offset of
  238. * pointer to (n+1)th node in the nth one. If @block is out of range
  239. * (negative or too large) warning is printed and zero returned.
  240. *
  241. * Note: function doesn't find node addresses, so no IO is needed. All
  242. * we need to know is the capacity of indirect blocks (taken from the
  243. * inode->i_sb).
  244. */
  245. /*
  246. * Portability note: the last comparison (check that we fit into triple
  247. * indirect block) is spelled differently, because otherwise on an
  248. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  249. * if our filesystem had 8Kb blocks. We might use long long, but that would
  250. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  251. * i_block would have to be negative in the very beginning, so we would not
  252. * get there at all.
  253. */
  254. static int ext3_block_to_path(struct inode *inode,
  255. long i_block, int offsets[4], int *boundary)
  256. {
  257. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  258. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  259. const long direct_blocks = EXT3_NDIR_BLOCKS,
  260. indirect_blocks = ptrs,
  261. double_blocks = (1 << (ptrs_bits * 2));
  262. int n = 0;
  263. int final = 0;
  264. if (i_block < 0) {
  265. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  266. } else if (i_block < direct_blocks) {
  267. offsets[n++] = i_block;
  268. final = direct_blocks;
  269. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  270. offsets[n++] = EXT3_IND_BLOCK;
  271. offsets[n++] = i_block;
  272. final = ptrs;
  273. } else if ((i_block -= indirect_blocks) < double_blocks) {
  274. offsets[n++] = EXT3_DIND_BLOCK;
  275. offsets[n++] = i_block >> ptrs_bits;
  276. offsets[n++] = i_block & (ptrs - 1);
  277. final = ptrs;
  278. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  279. offsets[n++] = EXT3_TIND_BLOCK;
  280. offsets[n++] = i_block >> (ptrs_bits * 2);
  281. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  282. offsets[n++] = i_block & (ptrs - 1);
  283. final = ptrs;
  284. } else {
  285. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  286. }
  287. if (boundary)
  288. *boundary = final - 1 - (i_block & (ptrs - 1));
  289. return n;
  290. }
  291. /**
  292. * ext3_get_branch - read the chain of indirect blocks leading to data
  293. * @inode: inode in question
  294. * @depth: depth of the chain (1 - direct pointer, etc.)
  295. * @offsets: offsets of pointers in inode/indirect blocks
  296. * @chain: place to store the result
  297. * @err: here we store the error value
  298. *
  299. * Function fills the array of triples <key, p, bh> and returns %NULL
  300. * if everything went OK or the pointer to the last filled triple
  301. * (incomplete one) otherwise. Upon the return chain[i].key contains
  302. * the number of (i+1)-th block in the chain (as it is stored in memory,
  303. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  304. * number (it points into struct inode for i==0 and into the bh->b_data
  305. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  306. * block for i>0 and NULL for i==0. In other words, it holds the block
  307. * numbers of the chain, addresses they were taken from (and where we can
  308. * verify that chain did not change) and buffer_heads hosting these
  309. * numbers.
  310. *
  311. * Function stops when it stumbles upon zero pointer (absent block)
  312. * (pointer to last triple returned, *@err == 0)
  313. * or when it gets an IO error reading an indirect block
  314. * (ditto, *@err == -EIO)
  315. * or when it notices that chain had been changed while it was reading
  316. * (ditto, *@err == -EAGAIN)
  317. * or when it reads all @depth-1 indirect blocks successfully and finds
  318. * the whole chain, all way to the data (returns %NULL, *err == 0).
  319. */
  320. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  321. Indirect chain[4], int *err)
  322. {
  323. struct super_block *sb = inode->i_sb;
  324. Indirect *p = chain;
  325. struct buffer_head *bh;
  326. *err = 0;
  327. /* i_data is not going away, no lock needed */
  328. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  329. if (!p->key)
  330. goto no_block;
  331. while (--depth) {
  332. bh = sb_bread(sb, le32_to_cpu(p->key));
  333. if (!bh)
  334. goto failure;
  335. /* Reader: pointers */
  336. if (!verify_chain(chain, p))
  337. goto changed;
  338. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  339. /* Reader: end */
  340. if (!p->key)
  341. goto no_block;
  342. }
  343. return NULL;
  344. changed:
  345. brelse(bh);
  346. *err = -EAGAIN;
  347. goto no_block;
  348. failure:
  349. *err = -EIO;
  350. no_block:
  351. return p;
  352. }
  353. /**
  354. * ext3_find_near - find a place for allocation with sufficient locality
  355. * @inode: owner
  356. * @ind: descriptor of indirect block.
  357. *
  358. * This function returns the prefered place for block allocation.
  359. * It is used when heuristic for sequential allocation fails.
  360. * Rules are:
  361. * + if there is a block to the left of our position - allocate near it.
  362. * + if pointer will live in indirect block - allocate near that block.
  363. * + if pointer will live in inode - allocate in the same
  364. * cylinder group.
  365. *
  366. * In the latter case we colour the starting block by the callers PID to
  367. * prevent it from clashing with concurrent allocations for a different inode
  368. * in the same block group. The PID is used here so that functionally related
  369. * files will be close-by on-disk.
  370. *
  371. * Caller must make sure that @ind is valid and will stay that way.
  372. */
  373. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  374. {
  375. struct ext3_inode_info *ei = EXT3_I(inode);
  376. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  377. __le32 *p;
  378. ext3_fsblk_t bg_start;
  379. ext3_grpblk_t colour;
  380. /* Try to find previous block */
  381. for (p = ind->p - 1; p >= start; p--) {
  382. if (*p)
  383. return le32_to_cpu(*p);
  384. }
  385. /* No such thing, so let's try location of indirect block */
  386. if (ind->bh)
  387. return ind->bh->b_blocknr;
  388. /*
  389. * It is going to be referred to from the inode itself? OK, just put it
  390. * into the same cylinder group then.
  391. */
  392. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  393. colour = (current->pid % 16) *
  394. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  395. return bg_start + colour;
  396. }
  397. /**
  398. * ext3_find_goal - find a prefered place for allocation.
  399. * @inode: owner
  400. * @block: block we want
  401. * @chain: chain of indirect blocks
  402. * @partial: pointer to the last triple within a chain
  403. * @goal: place to store the result.
  404. *
  405. * Normally this function find the prefered place for block allocation,
  406. * stores it in *@goal and returns zero.
  407. */
  408. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  409. Indirect chain[4], Indirect *partial)
  410. {
  411. struct ext3_block_alloc_info *block_i;
  412. block_i = EXT3_I(inode)->i_block_alloc_info;
  413. /*
  414. * try the heuristic for sequential allocation,
  415. * failing that at least try to get decent locality.
  416. */
  417. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  418. && (block_i->last_alloc_physical_block != 0)) {
  419. return block_i->last_alloc_physical_block + 1;
  420. }
  421. return ext3_find_near(inode, partial);
  422. }
  423. /**
  424. * ext3_blks_to_allocate: Look up the block map and count the number
  425. * of direct blocks need to be allocated for the given branch.
  426. *
  427. * @branch: chain of indirect blocks
  428. * @k: number of blocks need for indirect blocks
  429. * @blks: number of data blocks to be mapped.
  430. * @blocks_to_boundary: the offset in the indirect block
  431. *
  432. * return the total number of blocks to be allocate, including the
  433. * direct and indirect blocks.
  434. */
  435. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  436. int blocks_to_boundary)
  437. {
  438. unsigned long count = 0;
  439. /*
  440. * Simple case, [t,d]Indirect block(s) has not allocated yet
  441. * then it's clear blocks on that path have not allocated
  442. */
  443. if (k > 0) {
  444. /* right now we don't handle cross boundary allocation */
  445. if (blks < blocks_to_boundary + 1)
  446. count += blks;
  447. else
  448. count += blocks_to_boundary + 1;
  449. return count;
  450. }
  451. count++;
  452. while (count < blks && count <= blocks_to_boundary &&
  453. le32_to_cpu(*(branch[0].p + count)) == 0) {
  454. count++;
  455. }
  456. return count;
  457. }
  458. /**
  459. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  460. * @indirect_blks: the number of blocks need to allocate for indirect
  461. * blocks
  462. *
  463. * @new_blocks: on return it will store the new block numbers for
  464. * the indirect blocks(if needed) and the first direct block,
  465. * @blks: on return it will store the total number of allocated
  466. * direct blocks
  467. */
  468. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  469. ext3_fsblk_t goal, int indirect_blks, int blks,
  470. ext3_fsblk_t new_blocks[4], int *err)
  471. {
  472. int target, i;
  473. unsigned long count = 0;
  474. int index = 0;
  475. ext3_fsblk_t current_block = 0;
  476. int ret = 0;
  477. /*
  478. * Here we try to allocate the requested multiple blocks at once,
  479. * on a best-effort basis.
  480. * To build a branch, we should allocate blocks for
  481. * the indirect blocks(if not allocated yet), and at least
  482. * the first direct block of this branch. That's the
  483. * minimum number of blocks need to allocate(required)
  484. */
  485. target = blks + indirect_blks;
  486. while (1) {
  487. count = target;
  488. /* allocating blocks for indirect blocks and direct blocks */
  489. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  490. if (*err)
  491. goto failed_out;
  492. target -= count;
  493. /* allocate blocks for indirect blocks */
  494. while (index < indirect_blks && count) {
  495. new_blocks[index++] = current_block++;
  496. count--;
  497. }
  498. if (count > 0)
  499. break;
  500. }
  501. /* save the new block number for the first direct block */
  502. new_blocks[index] = current_block;
  503. /* total number of blocks allocated for direct blocks */
  504. ret = count;
  505. *err = 0;
  506. return ret;
  507. failed_out:
  508. for (i = 0; i <index; i++)
  509. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  510. return ret;
  511. }
  512. /**
  513. * ext3_alloc_branch - allocate and set up a chain of blocks.
  514. * @inode: owner
  515. * @indirect_blks: number of allocated indirect blocks
  516. * @blks: number of allocated direct blocks
  517. * @offsets: offsets (in the blocks) to store the pointers to next.
  518. * @branch: place to store the chain in.
  519. *
  520. * This function allocates blocks, zeroes out all but the last one,
  521. * links them into chain and (if we are synchronous) writes them to disk.
  522. * In other words, it prepares a branch that can be spliced onto the
  523. * inode. It stores the information about that chain in the branch[], in
  524. * the same format as ext3_get_branch() would do. We are calling it after
  525. * we had read the existing part of chain and partial points to the last
  526. * triple of that (one with zero ->key). Upon the exit we have the same
  527. * picture as after the successful ext3_get_block(), except that in one
  528. * place chain is disconnected - *branch->p is still zero (we did not
  529. * set the last link), but branch->key contains the number that should
  530. * be placed into *branch->p to fill that gap.
  531. *
  532. * If allocation fails we free all blocks we've allocated (and forget
  533. * their buffer_heads) and return the error value the from failed
  534. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  535. * as described above and return 0.
  536. */
  537. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  538. int indirect_blks, int *blks, ext3_fsblk_t goal,
  539. int *offsets, Indirect *branch)
  540. {
  541. int blocksize = inode->i_sb->s_blocksize;
  542. int i, n = 0;
  543. int err = 0;
  544. struct buffer_head *bh;
  545. int num;
  546. ext3_fsblk_t new_blocks[4];
  547. ext3_fsblk_t current_block;
  548. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  549. *blks, new_blocks, &err);
  550. if (err)
  551. return err;
  552. branch[0].key = cpu_to_le32(new_blocks[0]);
  553. /*
  554. * metadata blocks and data blocks are allocated.
  555. */
  556. for (n = 1; n <= indirect_blks; n++) {
  557. /*
  558. * Get buffer_head for parent block, zero it out
  559. * and set the pointer to new one, then send
  560. * parent to disk.
  561. */
  562. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  563. branch[n].bh = bh;
  564. lock_buffer(bh);
  565. BUFFER_TRACE(bh, "call get_create_access");
  566. err = ext3_journal_get_create_access(handle, bh);
  567. if (err) {
  568. unlock_buffer(bh);
  569. brelse(bh);
  570. goto failed;
  571. }
  572. memset(bh->b_data, 0, blocksize);
  573. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  574. branch[n].key = cpu_to_le32(new_blocks[n]);
  575. *branch[n].p = branch[n].key;
  576. if ( n == indirect_blks) {
  577. current_block = new_blocks[n];
  578. /*
  579. * End of chain, update the last new metablock of
  580. * the chain to point to the new allocated
  581. * data blocks numbers
  582. */
  583. for (i=1; i < num; i++)
  584. *(branch[n].p + i) = cpu_to_le32(++current_block);
  585. }
  586. BUFFER_TRACE(bh, "marking uptodate");
  587. set_buffer_uptodate(bh);
  588. unlock_buffer(bh);
  589. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  590. err = ext3_journal_dirty_metadata(handle, bh);
  591. if (err)
  592. goto failed;
  593. }
  594. *blks = num;
  595. return err;
  596. failed:
  597. /* Allocation failed, free what we already allocated */
  598. for (i = 1; i <= n ; i++) {
  599. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  600. ext3_journal_forget(handle, branch[i].bh);
  601. }
  602. for (i = 0; i <indirect_blks; i++)
  603. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  604. ext3_free_blocks(handle, inode, new_blocks[i], num);
  605. return err;
  606. }
  607. /**
  608. * ext3_splice_branch - splice the allocated branch onto inode.
  609. * @inode: owner
  610. * @block: (logical) number of block we are adding
  611. * @chain: chain of indirect blocks (with a missing link - see
  612. * ext3_alloc_branch)
  613. * @where: location of missing link
  614. * @num: number of indirect blocks we are adding
  615. * @blks: number of direct blocks we are adding
  616. *
  617. * This function fills the missing link and does all housekeeping needed in
  618. * inode (->i_blocks, etc.). In case of success we end up with the full
  619. * chain to new block and return 0.
  620. */
  621. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  622. long block, Indirect *where, int num, int blks)
  623. {
  624. int i;
  625. int err = 0;
  626. struct ext3_block_alloc_info *block_i;
  627. ext3_fsblk_t current_block;
  628. block_i = EXT3_I(inode)->i_block_alloc_info;
  629. /*
  630. * If we're splicing into a [td]indirect block (as opposed to the
  631. * inode) then we need to get write access to the [td]indirect block
  632. * before the splice.
  633. */
  634. if (where->bh) {
  635. BUFFER_TRACE(where->bh, "get_write_access");
  636. err = ext3_journal_get_write_access(handle, where->bh);
  637. if (err)
  638. goto err_out;
  639. }
  640. /* That's it */
  641. *where->p = where->key;
  642. /*
  643. * Update the host buffer_head or inode to point to more just allocated
  644. * direct blocks blocks
  645. */
  646. if (num == 0 && blks > 1) {
  647. current_block = le32_to_cpu(where->key) + 1;
  648. for (i = 1; i < blks; i++)
  649. *(where->p + i ) = cpu_to_le32(current_block++);
  650. }
  651. /*
  652. * update the most recently allocated logical & physical block
  653. * in i_block_alloc_info, to assist find the proper goal block for next
  654. * allocation
  655. */
  656. if (block_i) {
  657. block_i->last_alloc_logical_block = block + blks - 1;
  658. block_i->last_alloc_physical_block =
  659. le32_to_cpu(where[num].key) + blks - 1;
  660. }
  661. /* We are done with atomic stuff, now do the rest of housekeeping */
  662. inode->i_ctime = CURRENT_TIME_SEC;
  663. ext3_mark_inode_dirty(handle, inode);
  664. /* had we spliced it onto indirect block? */
  665. if (where->bh) {
  666. /*
  667. * If we spliced it onto an indirect block, we haven't
  668. * altered the inode. Note however that if it is being spliced
  669. * onto an indirect block at the very end of the file (the
  670. * file is growing) then we *will* alter the inode to reflect
  671. * the new i_size. But that is not done here - it is done in
  672. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  673. */
  674. jbd_debug(5, "splicing indirect only\n");
  675. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  676. err = ext3_journal_dirty_metadata(handle, where->bh);
  677. if (err)
  678. goto err_out;
  679. } else {
  680. /*
  681. * OK, we spliced it into the inode itself on a direct block.
  682. * Inode was dirtied above.
  683. */
  684. jbd_debug(5, "splicing direct\n");
  685. }
  686. return err;
  687. err_out:
  688. for (i = 1; i <= num; i++) {
  689. BUFFER_TRACE(where[i].bh, "call journal_forget");
  690. ext3_journal_forget(handle, where[i].bh);
  691. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  692. }
  693. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  694. return err;
  695. }
  696. /*
  697. * Allocation strategy is simple: if we have to allocate something, we will
  698. * have to go the whole way to leaf. So let's do it before attaching anything
  699. * to tree, set linkage between the newborn blocks, write them if sync is
  700. * required, recheck the path, free and repeat if check fails, otherwise
  701. * set the last missing link (that will protect us from any truncate-generated
  702. * removals - all blocks on the path are immune now) and possibly force the
  703. * write on the parent block.
  704. * That has a nice additional property: no special recovery from the failed
  705. * allocations is needed - we simply release blocks and do not touch anything
  706. * reachable from inode.
  707. *
  708. * `handle' can be NULL if create == 0.
  709. *
  710. * The BKL may not be held on entry here. Be sure to take it early.
  711. * return > 0, # of blocks mapped or allocated.
  712. * return = 0, if plain lookup failed.
  713. * return < 0, error case.
  714. */
  715. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  716. sector_t iblock, unsigned long maxblocks,
  717. struct buffer_head *bh_result,
  718. int create, int extend_disksize)
  719. {
  720. int err = -EIO;
  721. int offsets[4];
  722. Indirect chain[4];
  723. Indirect *partial;
  724. ext3_fsblk_t goal;
  725. int indirect_blks;
  726. int blocks_to_boundary = 0;
  727. int depth;
  728. struct ext3_inode_info *ei = EXT3_I(inode);
  729. int count = 0;
  730. ext3_fsblk_t first_block = 0;
  731. J_ASSERT(handle != NULL || create == 0);
  732. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  733. if (depth == 0)
  734. goto out;
  735. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  736. /* Simplest case - block found, no allocation needed */
  737. if (!partial) {
  738. first_block = le32_to_cpu(chain[depth - 1].key);
  739. clear_buffer_new(bh_result);
  740. count++;
  741. /*map more blocks*/
  742. while (count < maxblocks && count <= blocks_to_boundary) {
  743. ext3_fsblk_t blk;
  744. if (!verify_chain(chain, partial)) {
  745. /*
  746. * Indirect block might be removed by
  747. * truncate while we were reading it.
  748. * Handling of that case: forget what we've
  749. * got now. Flag the err as EAGAIN, so it
  750. * will reread.
  751. */
  752. err = -EAGAIN;
  753. count = 0;
  754. break;
  755. }
  756. blk = le32_to_cpu(*(chain[depth-1].p + count));
  757. if (blk == first_block + count)
  758. count++;
  759. else
  760. break;
  761. }
  762. if (err != -EAGAIN)
  763. goto got_it;
  764. }
  765. /* Next simple case - plain lookup or failed read of indirect block */
  766. if (!create || err == -EIO)
  767. goto cleanup;
  768. mutex_lock(&ei->truncate_mutex);
  769. /*
  770. * If the indirect block is missing while we are reading
  771. * the chain(ext3_get_branch() returns -EAGAIN err), or
  772. * if the chain has been changed after we grab the semaphore,
  773. * (either because another process truncated this branch, or
  774. * another get_block allocated this branch) re-grab the chain to see if
  775. * the request block has been allocated or not.
  776. *
  777. * Since we already block the truncate/other get_block
  778. * at this point, we will have the current copy of the chain when we
  779. * splice the branch into the tree.
  780. */
  781. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  782. while (partial > chain) {
  783. brelse(partial->bh);
  784. partial--;
  785. }
  786. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  787. if (!partial) {
  788. count++;
  789. mutex_unlock(&ei->truncate_mutex);
  790. if (err)
  791. goto cleanup;
  792. clear_buffer_new(bh_result);
  793. goto got_it;
  794. }
  795. }
  796. /*
  797. * Okay, we need to do block allocation. Lazily initialize the block
  798. * allocation info here if necessary
  799. */
  800. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  801. ext3_init_block_alloc_info(inode);
  802. goal = ext3_find_goal(inode, iblock, chain, partial);
  803. /* the number of blocks need to allocate for [d,t]indirect blocks */
  804. indirect_blks = (chain + depth) - partial - 1;
  805. /*
  806. * Next look up the indirect map to count the totoal number of
  807. * direct blocks to allocate for this branch.
  808. */
  809. count = ext3_blks_to_allocate(partial, indirect_blks,
  810. maxblocks, blocks_to_boundary);
  811. /*
  812. * Block out ext3_truncate while we alter the tree
  813. */
  814. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  815. offsets + (partial - chain), partial);
  816. /*
  817. * The ext3_splice_branch call will free and forget any buffers
  818. * on the new chain if there is a failure, but that risks using
  819. * up transaction credits, especially for bitmaps where the
  820. * credits cannot be returned. Can we handle this somehow? We
  821. * may need to return -EAGAIN upwards in the worst case. --sct
  822. */
  823. if (!err)
  824. err = ext3_splice_branch(handle, inode, iblock,
  825. partial, indirect_blks, count);
  826. /*
  827. * i_disksize growing is protected by truncate_mutex. Don't forget to
  828. * protect it if you're about to implement concurrent
  829. * ext3_get_block() -bzzz
  830. */
  831. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  832. ei->i_disksize = inode->i_size;
  833. mutex_unlock(&ei->truncate_mutex);
  834. if (err)
  835. goto cleanup;
  836. set_buffer_new(bh_result);
  837. got_it:
  838. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  839. if (count > blocks_to_boundary)
  840. set_buffer_boundary(bh_result);
  841. err = count;
  842. /* Clean up and exit */
  843. partial = chain + depth - 1; /* the whole chain */
  844. cleanup:
  845. while (partial > chain) {
  846. BUFFER_TRACE(partial->bh, "call brelse");
  847. brelse(partial->bh);
  848. partial--;
  849. }
  850. BUFFER_TRACE(bh_result, "returned");
  851. out:
  852. return err;
  853. }
  854. #define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
  855. static int ext3_get_block(struct inode *inode, sector_t iblock,
  856. struct buffer_head *bh_result, int create)
  857. {
  858. handle_t *handle = journal_current_handle();
  859. int ret = 0;
  860. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  861. if (!create)
  862. goto get_block; /* A read */
  863. if (max_blocks == 1)
  864. goto get_block; /* A single block get */
  865. if (handle->h_transaction->t_state == T_LOCKED) {
  866. /*
  867. * Huge direct-io writes can hold off commits for long
  868. * periods of time. Let this commit run.
  869. */
  870. ext3_journal_stop(handle);
  871. handle = ext3_journal_start(inode, DIO_CREDITS);
  872. if (IS_ERR(handle))
  873. ret = PTR_ERR(handle);
  874. goto get_block;
  875. }
  876. if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
  877. /*
  878. * Getting low on buffer credits...
  879. */
  880. ret = ext3_journal_extend(handle, DIO_CREDITS);
  881. if (ret > 0) {
  882. /*
  883. * Couldn't extend the transaction. Start a new one.
  884. */
  885. ret = ext3_journal_restart(handle, DIO_CREDITS);
  886. }
  887. }
  888. get_block:
  889. if (ret == 0) {
  890. ret = ext3_get_blocks_handle(handle, inode, iblock,
  891. max_blocks, bh_result, create, 0);
  892. if (ret > 0) {
  893. bh_result->b_size = (ret << inode->i_blkbits);
  894. ret = 0;
  895. }
  896. }
  897. return ret;
  898. }
  899. /*
  900. * `handle' can be NULL if create is zero
  901. */
  902. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  903. long block, int create, int *errp)
  904. {
  905. struct buffer_head dummy;
  906. int fatal = 0, err;
  907. J_ASSERT(handle != NULL || create == 0);
  908. dummy.b_state = 0;
  909. dummy.b_blocknr = -1000;
  910. buffer_trace_init(&dummy.b_history);
  911. err = ext3_get_blocks_handle(handle, inode, block, 1,
  912. &dummy, create, 1);
  913. /*
  914. * ext3_get_blocks_handle() returns number of blocks
  915. * mapped. 0 in case of a HOLE.
  916. */
  917. if (err > 0) {
  918. if (err > 1)
  919. WARN_ON(1);
  920. err = 0;
  921. }
  922. *errp = err;
  923. if (!err && buffer_mapped(&dummy)) {
  924. struct buffer_head *bh;
  925. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  926. if (!bh) {
  927. *errp = -EIO;
  928. goto err;
  929. }
  930. if (buffer_new(&dummy)) {
  931. J_ASSERT(create != 0);
  932. J_ASSERT(handle != 0);
  933. /*
  934. * Now that we do not always journal data, we should
  935. * keep in mind whether this should always journal the
  936. * new buffer as metadata. For now, regular file
  937. * writes use ext3_get_block instead, so it's not a
  938. * problem.
  939. */
  940. lock_buffer(bh);
  941. BUFFER_TRACE(bh, "call get_create_access");
  942. fatal = ext3_journal_get_create_access(handle, bh);
  943. if (!fatal && !buffer_uptodate(bh)) {
  944. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  945. set_buffer_uptodate(bh);
  946. }
  947. unlock_buffer(bh);
  948. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  949. err = ext3_journal_dirty_metadata(handle, bh);
  950. if (!fatal)
  951. fatal = err;
  952. } else {
  953. BUFFER_TRACE(bh, "not a new buffer");
  954. }
  955. if (fatal) {
  956. *errp = fatal;
  957. brelse(bh);
  958. bh = NULL;
  959. }
  960. return bh;
  961. }
  962. err:
  963. return NULL;
  964. }
  965. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  966. int block, int create, int *err)
  967. {
  968. struct buffer_head * bh;
  969. bh = ext3_getblk(handle, inode, block, create, err);
  970. if (!bh)
  971. return bh;
  972. if (buffer_uptodate(bh))
  973. return bh;
  974. ll_rw_block(READ_META, 1, &bh);
  975. wait_on_buffer(bh);
  976. if (buffer_uptodate(bh))
  977. return bh;
  978. put_bh(bh);
  979. *err = -EIO;
  980. return NULL;
  981. }
  982. static int walk_page_buffers( handle_t *handle,
  983. struct buffer_head *head,
  984. unsigned from,
  985. unsigned to,
  986. int *partial,
  987. int (*fn)( handle_t *handle,
  988. struct buffer_head *bh))
  989. {
  990. struct buffer_head *bh;
  991. unsigned block_start, block_end;
  992. unsigned blocksize = head->b_size;
  993. int err, ret = 0;
  994. struct buffer_head *next;
  995. for ( bh = head, block_start = 0;
  996. ret == 0 && (bh != head || !block_start);
  997. block_start = block_end, bh = next)
  998. {
  999. next = bh->b_this_page;
  1000. block_end = block_start + blocksize;
  1001. if (block_end <= from || block_start >= to) {
  1002. if (partial && !buffer_uptodate(bh))
  1003. *partial = 1;
  1004. continue;
  1005. }
  1006. err = (*fn)(handle, bh);
  1007. if (!ret)
  1008. ret = err;
  1009. }
  1010. return ret;
  1011. }
  1012. /*
  1013. * To preserve ordering, it is essential that the hole instantiation and
  1014. * the data write be encapsulated in a single transaction. We cannot
  1015. * close off a transaction and start a new one between the ext3_get_block()
  1016. * and the commit_write(). So doing the journal_start at the start of
  1017. * prepare_write() is the right place.
  1018. *
  1019. * Also, this function can nest inside ext3_writepage() ->
  1020. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1021. * has generated enough buffer credits to do the whole page. So we won't
  1022. * block on the journal in that case, which is good, because the caller may
  1023. * be PF_MEMALLOC.
  1024. *
  1025. * By accident, ext3 can be reentered when a transaction is open via
  1026. * quota file writes. If we were to commit the transaction while thus
  1027. * reentered, there can be a deadlock - we would be holding a quota
  1028. * lock, and the commit would never complete if another thread had a
  1029. * transaction open and was blocking on the quota lock - a ranking
  1030. * violation.
  1031. *
  1032. * So what we do is to rely on the fact that journal_stop/journal_start
  1033. * will _not_ run commit under these circumstances because handle->h_ref
  1034. * is elevated. We'll still have enough credits for the tiny quotafile
  1035. * write.
  1036. */
  1037. static int do_journal_get_write_access(handle_t *handle,
  1038. struct buffer_head *bh)
  1039. {
  1040. if (!buffer_mapped(bh) || buffer_freed(bh))
  1041. return 0;
  1042. return ext3_journal_get_write_access(handle, bh);
  1043. }
  1044. /*
  1045. * The idea of this helper function is following:
  1046. * if prepare_write has allocated some blocks, but not all of them, the
  1047. * transaction must include the content of the newly allocated blocks.
  1048. * This content is expected to be set to zeroes by block_prepare_write().
  1049. * 2006/10/14 SAW
  1050. */
  1051. static int ext3_prepare_failure(struct file *file, struct page *page,
  1052. unsigned from, unsigned to)
  1053. {
  1054. struct address_space *mapping;
  1055. struct buffer_head *bh, *head, *next;
  1056. unsigned block_start, block_end;
  1057. unsigned blocksize;
  1058. int ret;
  1059. handle_t *handle = ext3_journal_current_handle();
  1060. mapping = page->mapping;
  1061. if (ext3_should_writeback_data(mapping->host)) {
  1062. /* optimization: no constraints about data */
  1063. skip:
  1064. return ext3_journal_stop(handle);
  1065. }
  1066. head = page_buffers(page);
  1067. blocksize = head->b_size;
  1068. for ( bh = head, block_start = 0;
  1069. bh != head || !block_start;
  1070. block_start = block_end, bh = next)
  1071. {
  1072. next = bh->b_this_page;
  1073. block_end = block_start + blocksize;
  1074. if (block_end <= from)
  1075. continue;
  1076. if (block_start >= to) {
  1077. block_start = to;
  1078. break;
  1079. }
  1080. if (!buffer_mapped(bh))
  1081. /* prepare_write failed on this bh */
  1082. break;
  1083. if (ext3_should_journal_data(mapping->host)) {
  1084. ret = do_journal_get_write_access(handle, bh);
  1085. if (ret) {
  1086. ext3_journal_stop(handle);
  1087. return ret;
  1088. }
  1089. }
  1090. /*
  1091. * block_start here becomes the first block where the current iteration
  1092. * of prepare_write failed.
  1093. */
  1094. }
  1095. if (block_start <= from)
  1096. goto skip;
  1097. /* commit allocated and zeroed buffers */
  1098. return mapping->a_ops->commit_write(file, page, from, block_start);
  1099. }
  1100. static int ext3_prepare_write(struct file *file, struct page *page,
  1101. unsigned from, unsigned to)
  1102. {
  1103. struct inode *inode = page->mapping->host;
  1104. int ret, ret2;
  1105. int needed_blocks = ext3_writepage_trans_blocks(inode);
  1106. handle_t *handle;
  1107. int retries = 0;
  1108. retry:
  1109. handle = ext3_journal_start(inode, needed_blocks);
  1110. if (IS_ERR(handle))
  1111. return PTR_ERR(handle);
  1112. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1113. ret = nobh_prepare_write(page, from, to, ext3_get_block);
  1114. else
  1115. ret = block_prepare_write(page, from, to, ext3_get_block);
  1116. if (ret)
  1117. goto failure;
  1118. if (ext3_should_journal_data(inode)) {
  1119. ret = walk_page_buffers(handle, page_buffers(page),
  1120. from, to, NULL, do_journal_get_write_access);
  1121. if (ret)
  1122. /* fatal error, just put the handle and return */
  1123. journal_stop(handle);
  1124. }
  1125. return ret;
  1126. failure:
  1127. ret2 = ext3_prepare_failure(file, page, from, to);
  1128. if (ret2 < 0)
  1129. return ret2;
  1130. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1131. goto retry;
  1132. /* retry number exceeded, or other error like -EDQUOT */
  1133. return ret;
  1134. }
  1135. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1136. {
  1137. int err = journal_dirty_data(handle, bh);
  1138. if (err)
  1139. ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1140. bh, handle,err);
  1141. return err;
  1142. }
  1143. /* For commit_write() in data=journal mode */
  1144. static int commit_write_fn(handle_t *handle, struct buffer_head *bh)
  1145. {
  1146. if (!buffer_mapped(bh) || buffer_freed(bh))
  1147. return 0;
  1148. set_buffer_uptodate(bh);
  1149. return ext3_journal_dirty_metadata(handle, bh);
  1150. }
  1151. /*
  1152. * We need to pick up the new inode size which generic_commit_write gave us
  1153. * `file' can be NULL - eg, when called from page_symlink().
  1154. *
  1155. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1156. * buffers are managed internally.
  1157. */
  1158. static int ext3_ordered_commit_write(struct file *file, struct page *page,
  1159. unsigned from, unsigned to)
  1160. {
  1161. handle_t *handle = ext3_journal_current_handle();
  1162. struct inode *inode = page->mapping->host;
  1163. int ret = 0, ret2;
  1164. ret = walk_page_buffers(handle, page_buffers(page),
  1165. from, to, NULL, ext3_journal_dirty_data);
  1166. if (ret == 0) {
  1167. /*
  1168. * generic_commit_write() will run mark_inode_dirty() if i_size
  1169. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1170. * into that.
  1171. */
  1172. loff_t new_i_size;
  1173. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1174. if (new_i_size > EXT3_I(inode)->i_disksize)
  1175. EXT3_I(inode)->i_disksize = new_i_size;
  1176. ret = generic_commit_write(file, page, from, to);
  1177. }
  1178. ret2 = ext3_journal_stop(handle);
  1179. if (!ret)
  1180. ret = ret2;
  1181. return ret;
  1182. }
  1183. static int ext3_writeback_commit_write(struct file *file, struct page *page,
  1184. unsigned from, unsigned to)
  1185. {
  1186. handle_t *handle = ext3_journal_current_handle();
  1187. struct inode *inode = page->mapping->host;
  1188. int ret = 0, ret2;
  1189. loff_t new_i_size;
  1190. new_i_size = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1191. if (new_i_size > EXT3_I(inode)->i_disksize)
  1192. EXT3_I(inode)->i_disksize = new_i_size;
  1193. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1194. ret = nobh_commit_write(file, page, from, to);
  1195. else
  1196. ret = generic_commit_write(file, page, from, to);
  1197. ret2 = ext3_journal_stop(handle);
  1198. if (!ret)
  1199. ret = ret2;
  1200. return ret;
  1201. }
  1202. static int ext3_journalled_commit_write(struct file *file,
  1203. struct page *page, unsigned from, unsigned to)
  1204. {
  1205. handle_t *handle = ext3_journal_current_handle();
  1206. struct inode *inode = page->mapping->host;
  1207. int ret = 0, ret2;
  1208. int partial = 0;
  1209. loff_t pos;
  1210. /*
  1211. * Here we duplicate the generic_commit_write() functionality
  1212. */
  1213. pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
  1214. ret = walk_page_buffers(handle, page_buffers(page), from,
  1215. to, &partial, commit_write_fn);
  1216. if (!partial)
  1217. SetPageUptodate(page);
  1218. if (pos > inode->i_size)
  1219. i_size_write(inode, pos);
  1220. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1221. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1222. EXT3_I(inode)->i_disksize = inode->i_size;
  1223. ret2 = ext3_mark_inode_dirty(handle, inode);
  1224. if (!ret)
  1225. ret = ret2;
  1226. }
  1227. ret2 = ext3_journal_stop(handle);
  1228. if (!ret)
  1229. ret = ret2;
  1230. return ret;
  1231. }
  1232. /*
  1233. * bmap() is special. It gets used by applications such as lilo and by
  1234. * the swapper to find the on-disk block of a specific piece of data.
  1235. *
  1236. * Naturally, this is dangerous if the block concerned is still in the
  1237. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1238. * filesystem and enables swap, then they may get a nasty shock when the
  1239. * data getting swapped to that swapfile suddenly gets overwritten by
  1240. * the original zero's written out previously to the journal and
  1241. * awaiting writeback in the kernel's buffer cache.
  1242. *
  1243. * So, if we see any bmap calls here on a modified, data-journaled file,
  1244. * take extra steps to flush any blocks which might be in the cache.
  1245. */
  1246. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1247. {
  1248. struct inode *inode = mapping->host;
  1249. journal_t *journal;
  1250. int err;
  1251. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1252. /*
  1253. * This is a REALLY heavyweight approach, but the use of
  1254. * bmap on dirty files is expected to be extremely rare:
  1255. * only if we run lilo or swapon on a freshly made file
  1256. * do we expect this to happen.
  1257. *
  1258. * (bmap requires CAP_SYS_RAWIO so this does not
  1259. * represent an unprivileged user DOS attack --- we'd be
  1260. * in trouble if mortal users could trigger this path at
  1261. * will.)
  1262. *
  1263. * NB. EXT3_STATE_JDATA is not set on files other than
  1264. * regular files. If somebody wants to bmap a directory
  1265. * or symlink and gets confused because the buffer
  1266. * hasn't yet been flushed to disk, they deserve
  1267. * everything they get.
  1268. */
  1269. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1270. journal = EXT3_JOURNAL(inode);
  1271. journal_lock_updates(journal);
  1272. err = journal_flush(journal);
  1273. journal_unlock_updates(journal);
  1274. if (err)
  1275. return 0;
  1276. }
  1277. return generic_block_bmap(mapping,block,ext3_get_block);
  1278. }
  1279. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1280. {
  1281. get_bh(bh);
  1282. return 0;
  1283. }
  1284. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1285. {
  1286. put_bh(bh);
  1287. return 0;
  1288. }
  1289. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1290. {
  1291. if (buffer_mapped(bh))
  1292. return ext3_journal_dirty_data(handle, bh);
  1293. return 0;
  1294. }
  1295. /*
  1296. * Note that we always start a transaction even if we're not journalling
  1297. * data. This is to preserve ordering: any hole instantiation within
  1298. * __block_write_full_page -> ext3_get_block() should be journalled
  1299. * along with the data so we don't crash and then get metadata which
  1300. * refers to old data.
  1301. *
  1302. * In all journalling modes block_write_full_page() will start the I/O.
  1303. *
  1304. * Problem:
  1305. *
  1306. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1307. * ext3_writepage()
  1308. *
  1309. * Similar for:
  1310. *
  1311. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1312. *
  1313. * Same applies to ext3_get_block(). We will deadlock on various things like
  1314. * lock_journal and i_truncate_mutex.
  1315. *
  1316. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1317. * allocations fail.
  1318. *
  1319. * 16May01: If we're reentered then journal_current_handle() will be
  1320. * non-zero. We simply *return*.
  1321. *
  1322. * 1 July 2001: @@@ FIXME:
  1323. * In journalled data mode, a data buffer may be metadata against the
  1324. * current transaction. But the same file is part of a shared mapping
  1325. * and someone does a writepage() on it.
  1326. *
  1327. * We will move the buffer onto the async_data list, but *after* it has
  1328. * been dirtied. So there's a small window where we have dirty data on
  1329. * BJ_Metadata.
  1330. *
  1331. * Note that this only applies to the last partial page in the file. The
  1332. * bit which block_write_full_page() uses prepare/commit for. (That's
  1333. * broken code anyway: it's wrong for msync()).
  1334. *
  1335. * It's a rare case: affects the final partial page, for journalled data
  1336. * where the file is subject to bith write() and writepage() in the same
  1337. * transction. To fix it we'll need a custom block_write_full_page().
  1338. * We'll probably need that anyway for journalling writepage() output.
  1339. *
  1340. * We don't honour synchronous mounts for writepage(). That would be
  1341. * disastrous. Any write() or metadata operation will sync the fs for
  1342. * us.
  1343. *
  1344. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1345. * we don't need to open a transaction here.
  1346. */
  1347. static int ext3_ordered_writepage(struct page *page,
  1348. struct writeback_control *wbc)
  1349. {
  1350. struct inode *inode = page->mapping->host;
  1351. struct buffer_head *page_bufs;
  1352. handle_t *handle = NULL;
  1353. int ret = 0;
  1354. int err;
  1355. J_ASSERT(PageLocked(page));
  1356. /*
  1357. * We give up here if we're reentered, because it might be for a
  1358. * different filesystem.
  1359. */
  1360. if (ext3_journal_current_handle())
  1361. goto out_fail;
  1362. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1363. if (IS_ERR(handle)) {
  1364. ret = PTR_ERR(handle);
  1365. goto out_fail;
  1366. }
  1367. if (!page_has_buffers(page)) {
  1368. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1369. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1370. }
  1371. page_bufs = page_buffers(page);
  1372. walk_page_buffers(handle, page_bufs, 0,
  1373. PAGE_CACHE_SIZE, NULL, bget_one);
  1374. ret = block_write_full_page(page, ext3_get_block, wbc);
  1375. /*
  1376. * The page can become unlocked at any point now, and
  1377. * truncate can then come in and change things. So we
  1378. * can't touch *page from now on. But *page_bufs is
  1379. * safe due to elevated refcount.
  1380. */
  1381. /*
  1382. * And attach them to the current transaction. But only if
  1383. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1384. * and generally junk.
  1385. */
  1386. if (ret == 0) {
  1387. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1388. NULL, journal_dirty_data_fn);
  1389. if (!ret)
  1390. ret = err;
  1391. }
  1392. walk_page_buffers(handle, page_bufs, 0,
  1393. PAGE_CACHE_SIZE, NULL, bput_one);
  1394. err = ext3_journal_stop(handle);
  1395. if (!ret)
  1396. ret = err;
  1397. return ret;
  1398. out_fail:
  1399. redirty_page_for_writepage(wbc, page);
  1400. unlock_page(page);
  1401. return ret;
  1402. }
  1403. static int ext3_writeback_writepage(struct page *page,
  1404. struct writeback_control *wbc)
  1405. {
  1406. struct inode *inode = page->mapping->host;
  1407. handle_t *handle = NULL;
  1408. int ret = 0;
  1409. int err;
  1410. if (ext3_journal_current_handle())
  1411. goto out_fail;
  1412. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1413. if (IS_ERR(handle)) {
  1414. ret = PTR_ERR(handle);
  1415. goto out_fail;
  1416. }
  1417. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1418. ret = nobh_writepage(page, ext3_get_block, wbc);
  1419. else
  1420. ret = block_write_full_page(page, ext3_get_block, wbc);
  1421. err = ext3_journal_stop(handle);
  1422. if (!ret)
  1423. ret = err;
  1424. return ret;
  1425. out_fail:
  1426. redirty_page_for_writepage(wbc, page);
  1427. unlock_page(page);
  1428. return ret;
  1429. }
  1430. static int ext3_journalled_writepage(struct page *page,
  1431. struct writeback_control *wbc)
  1432. {
  1433. struct inode *inode = page->mapping->host;
  1434. handle_t *handle = NULL;
  1435. int ret = 0;
  1436. int err;
  1437. if (ext3_journal_current_handle())
  1438. goto no_write;
  1439. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1440. if (IS_ERR(handle)) {
  1441. ret = PTR_ERR(handle);
  1442. goto no_write;
  1443. }
  1444. if (!page_has_buffers(page) || PageChecked(page)) {
  1445. /*
  1446. * It's mmapped pagecache. Add buffers and journal it. There
  1447. * doesn't seem much point in redirtying the page here.
  1448. */
  1449. ClearPageChecked(page);
  1450. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1451. ext3_get_block);
  1452. if (ret != 0) {
  1453. ext3_journal_stop(handle);
  1454. goto out_unlock;
  1455. }
  1456. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1457. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1458. err = walk_page_buffers(handle, page_buffers(page), 0,
  1459. PAGE_CACHE_SIZE, NULL, commit_write_fn);
  1460. if (ret == 0)
  1461. ret = err;
  1462. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1463. unlock_page(page);
  1464. } else {
  1465. /*
  1466. * It may be a page full of checkpoint-mode buffers. We don't
  1467. * really know unless we go poke around in the buffer_heads.
  1468. * But block_write_full_page will do the right thing.
  1469. */
  1470. ret = block_write_full_page(page, ext3_get_block, wbc);
  1471. }
  1472. err = ext3_journal_stop(handle);
  1473. if (!ret)
  1474. ret = err;
  1475. out:
  1476. return ret;
  1477. no_write:
  1478. redirty_page_for_writepage(wbc, page);
  1479. out_unlock:
  1480. unlock_page(page);
  1481. goto out;
  1482. }
  1483. static int ext3_readpage(struct file *file, struct page *page)
  1484. {
  1485. return mpage_readpage(page, ext3_get_block);
  1486. }
  1487. static int
  1488. ext3_readpages(struct file *file, struct address_space *mapping,
  1489. struct list_head *pages, unsigned nr_pages)
  1490. {
  1491. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1492. }
  1493. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1494. {
  1495. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1496. /*
  1497. * If it's a full truncate we just forget about the pending dirtying
  1498. */
  1499. if (offset == 0)
  1500. ClearPageChecked(page);
  1501. journal_invalidatepage(journal, page, offset);
  1502. }
  1503. static int ext3_releasepage(struct page *page, gfp_t wait)
  1504. {
  1505. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1506. WARN_ON(PageChecked(page));
  1507. if (!page_has_buffers(page))
  1508. return 0;
  1509. return journal_try_to_free_buffers(journal, page, wait);
  1510. }
  1511. /*
  1512. * If the O_DIRECT write will extend the file then add this inode to the
  1513. * orphan list. So recovery will truncate it back to the original size
  1514. * if the machine crashes during the write.
  1515. *
  1516. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1517. * crashes then stale disk data _may_ be exposed inside the file.
  1518. */
  1519. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1520. const struct iovec *iov, loff_t offset,
  1521. unsigned long nr_segs)
  1522. {
  1523. struct file *file = iocb->ki_filp;
  1524. struct inode *inode = file->f_mapping->host;
  1525. struct ext3_inode_info *ei = EXT3_I(inode);
  1526. handle_t *handle = NULL;
  1527. ssize_t ret;
  1528. int orphan = 0;
  1529. size_t count = iov_length(iov, nr_segs);
  1530. if (rw == WRITE) {
  1531. loff_t final_size = offset + count;
  1532. handle = ext3_journal_start(inode, DIO_CREDITS);
  1533. if (IS_ERR(handle)) {
  1534. ret = PTR_ERR(handle);
  1535. goto out;
  1536. }
  1537. if (final_size > inode->i_size) {
  1538. ret = ext3_orphan_add(handle, inode);
  1539. if (ret)
  1540. goto out_stop;
  1541. orphan = 1;
  1542. ei->i_disksize = inode->i_size;
  1543. }
  1544. }
  1545. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1546. offset, nr_segs,
  1547. ext3_get_block, NULL);
  1548. /*
  1549. * Reacquire the handle: ext3_get_block() can restart the transaction
  1550. */
  1551. handle = journal_current_handle();
  1552. out_stop:
  1553. if (handle) {
  1554. int err;
  1555. if (orphan && inode->i_nlink)
  1556. ext3_orphan_del(handle, inode);
  1557. if (orphan && ret > 0) {
  1558. loff_t end = offset + ret;
  1559. if (end > inode->i_size) {
  1560. ei->i_disksize = end;
  1561. i_size_write(inode, end);
  1562. /*
  1563. * We're going to return a positive `ret'
  1564. * here due to non-zero-length I/O, so there's
  1565. * no way of reporting error returns from
  1566. * ext3_mark_inode_dirty() to userspace. So
  1567. * ignore it.
  1568. */
  1569. ext3_mark_inode_dirty(handle, inode);
  1570. }
  1571. }
  1572. err = ext3_journal_stop(handle);
  1573. if (ret == 0)
  1574. ret = err;
  1575. }
  1576. out:
  1577. return ret;
  1578. }
  1579. /*
  1580. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1581. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1582. * much here because ->set_page_dirty is called under VFS locks. The page is
  1583. * not necessarily locked.
  1584. *
  1585. * We cannot just dirty the page and leave attached buffers clean, because the
  1586. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1587. * or jbddirty because all the journalling code will explode.
  1588. *
  1589. * So what we do is to mark the page "pending dirty" and next time writepage
  1590. * is called, propagate that into the buffers appropriately.
  1591. */
  1592. static int ext3_journalled_set_page_dirty(struct page *page)
  1593. {
  1594. SetPageChecked(page);
  1595. return __set_page_dirty_nobuffers(page);
  1596. }
  1597. static const struct address_space_operations ext3_ordered_aops = {
  1598. .readpage = ext3_readpage,
  1599. .readpages = ext3_readpages,
  1600. .writepage = ext3_ordered_writepage,
  1601. .sync_page = block_sync_page,
  1602. .prepare_write = ext3_prepare_write,
  1603. .commit_write = ext3_ordered_commit_write,
  1604. .bmap = ext3_bmap,
  1605. .invalidatepage = ext3_invalidatepage,
  1606. .releasepage = ext3_releasepage,
  1607. .direct_IO = ext3_direct_IO,
  1608. .migratepage = buffer_migrate_page,
  1609. };
  1610. static const struct address_space_operations ext3_writeback_aops = {
  1611. .readpage = ext3_readpage,
  1612. .readpages = ext3_readpages,
  1613. .writepage = ext3_writeback_writepage,
  1614. .sync_page = block_sync_page,
  1615. .prepare_write = ext3_prepare_write,
  1616. .commit_write = ext3_writeback_commit_write,
  1617. .bmap = ext3_bmap,
  1618. .invalidatepage = ext3_invalidatepage,
  1619. .releasepage = ext3_releasepage,
  1620. .direct_IO = ext3_direct_IO,
  1621. .migratepage = buffer_migrate_page,
  1622. };
  1623. static const struct address_space_operations ext3_journalled_aops = {
  1624. .readpage = ext3_readpage,
  1625. .readpages = ext3_readpages,
  1626. .writepage = ext3_journalled_writepage,
  1627. .sync_page = block_sync_page,
  1628. .prepare_write = ext3_prepare_write,
  1629. .commit_write = ext3_journalled_commit_write,
  1630. .set_page_dirty = ext3_journalled_set_page_dirty,
  1631. .bmap = ext3_bmap,
  1632. .invalidatepage = ext3_invalidatepage,
  1633. .releasepage = ext3_releasepage,
  1634. };
  1635. void ext3_set_aops(struct inode *inode)
  1636. {
  1637. if (ext3_should_order_data(inode))
  1638. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1639. else if (ext3_should_writeback_data(inode))
  1640. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1641. else
  1642. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1643. }
  1644. /*
  1645. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1646. * up to the end of the block which corresponds to `from'.
  1647. * This required during truncate. We need to physically zero the tail end
  1648. * of that block so it doesn't yield old data if the file is later grown.
  1649. */
  1650. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1651. struct address_space *mapping, loff_t from)
  1652. {
  1653. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1654. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1655. unsigned blocksize, iblock, length, pos;
  1656. struct inode *inode = mapping->host;
  1657. struct buffer_head *bh;
  1658. int err = 0;
  1659. void *kaddr;
  1660. blocksize = inode->i_sb->s_blocksize;
  1661. length = blocksize - (offset & (blocksize - 1));
  1662. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1663. /*
  1664. * For "nobh" option, we can only work if we don't need to
  1665. * read-in the page - otherwise we create buffers to do the IO.
  1666. */
  1667. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1668. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1669. kaddr = kmap_atomic(page, KM_USER0);
  1670. memset(kaddr + offset, 0, length);
  1671. flush_dcache_page(page);
  1672. kunmap_atomic(kaddr, KM_USER0);
  1673. set_page_dirty(page);
  1674. goto unlock;
  1675. }
  1676. if (!page_has_buffers(page))
  1677. create_empty_buffers(page, blocksize, 0);
  1678. /* Find the buffer that contains "offset" */
  1679. bh = page_buffers(page);
  1680. pos = blocksize;
  1681. while (offset >= pos) {
  1682. bh = bh->b_this_page;
  1683. iblock++;
  1684. pos += blocksize;
  1685. }
  1686. err = 0;
  1687. if (buffer_freed(bh)) {
  1688. BUFFER_TRACE(bh, "freed: skip");
  1689. goto unlock;
  1690. }
  1691. if (!buffer_mapped(bh)) {
  1692. BUFFER_TRACE(bh, "unmapped");
  1693. ext3_get_block(inode, iblock, bh, 0);
  1694. /* unmapped? It's a hole - nothing to do */
  1695. if (!buffer_mapped(bh)) {
  1696. BUFFER_TRACE(bh, "still unmapped");
  1697. goto unlock;
  1698. }
  1699. }
  1700. /* Ok, it's mapped. Make sure it's up-to-date */
  1701. if (PageUptodate(page))
  1702. set_buffer_uptodate(bh);
  1703. if (!buffer_uptodate(bh)) {
  1704. err = -EIO;
  1705. ll_rw_block(READ, 1, &bh);
  1706. wait_on_buffer(bh);
  1707. /* Uhhuh. Read error. Complain and punt. */
  1708. if (!buffer_uptodate(bh))
  1709. goto unlock;
  1710. }
  1711. if (ext3_should_journal_data(inode)) {
  1712. BUFFER_TRACE(bh, "get write access");
  1713. err = ext3_journal_get_write_access(handle, bh);
  1714. if (err)
  1715. goto unlock;
  1716. }
  1717. kaddr = kmap_atomic(page, KM_USER0);
  1718. memset(kaddr + offset, 0, length);
  1719. flush_dcache_page(page);
  1720. kunmap_atomic(kaddr, KM_USER0);
  1721. BUFFER_TRACE(bh, "zeroed end of block");
  1722. err = 0;
  1723. if (ext3_should_journal_data(inode)) {
  1724. err = ext3_journal_dirty_metadata(handle, bh);
  1725. } else {
  1726. if (ext3_should_order_data(inode))
  1727. err = ext3_journal_dirty_data(handle, bh);
  1728. mark_buffer_dirty(bh);
  1729. }
  1730. unlock:
  1731. unlock_page(page);
  1732. page_cache_release(page);
  1733. return err;
  1734. }
  1735. /*
  1736. * Probably it should be a library function... search for first non-zero word
  1737. * or memcmp with zero_page, whatever is better for particular architecture.
  1738. * Linus?
  1739. */
  1740. static inline int all_zeroes(__le32 *p, __le32 *q)
  1741. {
  1742. while (p < q)
  1743. if (*p++)
  1744. return 0;
  1745. return 1;
  1746. }
  1747. /**
  1748. * ext3_find_shared - find the indirect blocks for partial truncation.
  1749. * @inode: inode in question
  1750. * @depth: depth of the affected branch
  1751. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1752. * @chain: place to store the pointers to partial indirect blocks
  1753. * @top: place to the (detached) top of branch
  1754. *
  1755. * This is a helper function used by ext3_truncate().
  1756. *
  1757. * When we do truncate() we may have to clean the ends of several
  1758. * indirect blocks but leave the blocks themselves alive. Block is
  1759. * partially truncated if some data below the new i_size is refered
  1760. * from it (and it is on the path to the first completely truncated
  1761. * data block, indeed). We have to free the top of that path along
  1762. * with everything to the right of the path. Since no allocation
  1763. * past the truncation point is possible until ext3_truncate()
  1764. * finishes, we may safely do the latter, but top of branch may
  1765. * require special attention - pageout below the truncation point
  1766. * might try to populate it.
  1767. *
  1768. * We atomically detach the top of branch from the tree, store the
  1769. * block number of its root in *@top, pointers to buffer_heads of
  1770. * partially truncated blocks - in @chain[].bh and pointers to
  1771. * their last elements that should not be removed - in
  1772. * @chain[].p. Return value is the pointer to last filled element
  1773. * of @chain.
  1774. *
  1775. * The work left to caller to do the actual freeing of subtrees:
  1776. * a) free the subtree starting from *@top
  1777. * b) free the subtrees whose roots are stored in
  1778. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1779. * c) free the subtrees growing from the inode past the @chain[0].
  1780. * (no partially truncated stuff there). */
  1781. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1782. int offsets[4], Indirect chain[4], __le32 *top)
  1783. {
  1784. Indirect *partial, *p;
  1785. int k, err;
  1786. *top = 0;
  1787. /* Make k index the deepest non-null offest + 1 */
  1788. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1789. ;
  1790. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1791. /* Writer: pointers */
  1792. if (!partial)
  1793. partial = chain + k-1;
  1794. /*
  1795. * If the branch acquired continuation since we've looked at it -
  1796. * fine, it should all survive and (new) top doesn't belong to us.
  1797. */
  1798. if (!partial->key && *partial->p)
  1799. /* Writer: end */
  1800. goto no_top;
  1801. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1802. ;
  1803. /*
  1804. * OK, we've found the last block that must survive. The rest of our
  1805. * branch should be detached before unlocking. However, if that rest
  1806. * of branch is all ours and does not grow immediately from the inode
  1807. * it's easier to cheat and just decrement partial->p.
  1808. */
  1809. if (p == chain + k - 1 && p > chain) {
  1810. p->p--;
  1811. } else {
  1812. *top = *p->p;
  1813. /* Nope, don't do this in ext3. Must leave the tree intact */
  1814. #if 0
  1815. *p->p = 0;
  1816. #endif
  1817. }
  1818. /* Writer: end */
  1819. while(partial > p) {
  1820. brelse(partial->bh);
  1821. partial--;
  1822. }
  1823. no_top:
  1824. return partial;
  1825. }
  1826. /*
  1827. * Zero a number of block pointers in either an inode or an indirect block.
  1828. * If we restart the transaction we must again get write access to the
  1829. * indirect block for further modification.
  1830. *
  1831. * We release `count' blocks on disk, but (last - first) may be greater
  1832. * than `count' because there can be holes in there.
  1833. */
  1834. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1835. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1836. unsigned long count, __le32 *first, __le32 *last)
  1837. {
  1838. __le32 *p;
  1839. if (try_to_extend_transaction(handle, inode)) {
  1840. if (bh) {
  1841. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1842. ext3_journal_dirty_metadata(handle, bh);
  1843. }
  1844. ext3_mark_inode_dirty(handle, inode);
  1845. ext3_journal_test_restart(handle, inode);
  1846. if (bh) {
  1847. BUFFER_TRACE(bh, "retaking write access");
  1848. ext3_journal_get_write_access(handle, bh);
  1849. }
  1850. }
  1851. /*
  1852. * Any buffers which are on the journal will be in memory. We find
  1853. * them on the hash table so journal_revoke() will run journal_forget()
  1854. * on them. We've already detached each block from the file, so
  1855. * bforget() in journal_forget() should be safe.
  1856. *
  1857. * AKPM: turn on bforget in journal_forget()!!!
  1858. */
  1859. for (p = first; p < last; p++) {
  1860. u32 nr = le32_to_cpu(*p);
  1861. if (nr) {
  1862. struct buffer_head *bh;
  1863. *p = 0;
  1864. bh = sb_find_get_block(inode->i_sb, nr);
  1865. ext3_forget(handle, 0, inode, bh, nr);
  1866. }
  1867. }
  1868. ext3_free_blocks(handle, inode, block_to_free, count);
  1869. }
  1870. /**
  1871. * ext3_free_data - free a list of data blocks
  1872. * @handle: handle for this transaction
  1873. * @inode: inode we are dealing with
  1874. * @this_bh: indirect buffer_head which contains *@first and *@last
  1875. * @first: array of block numbers
  1876. * @last: points immediately past the end of array
  1877. *
  1878. * We are freeing all blocks refered from that array (numbers are stored as
  1879. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1880. *
  1881. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1882. * blocks are contiguous then releasing them at one time will only affect one
  1883. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1884. * actually use a lot of journal space.
  1885. *
  1886. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1887. * block pointers.
  1888. */
  1889. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1890. struct buffer_head *this_bh,
  1891. __le32 *first, __le32 *last)
  1892. {
  1893. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1894. unsigned long count = 0; /* Number of blocks in the run */
  1895. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1896. corresponding to
  1897. block_to_free */
  1898. ext3_fsblk_t nr; /* Current block # */
  1899. __le32 *p; /* Pointer into inode/ind
  1900. for current block */
  1901. int err;
  1902. if (this_bh) { /* For indirect block */
  1903. BUFFER_TRACE(this_bh, "get_write_access");
  1904. err = ext3_journal_get_write_access(handle, this_bh);
  1905. /* Important: if we can't update the indirect pointers
  1906. * to the blocks, we can't free them. */
  1907. if (err)
  1908. return;
  1909. }
  1910. for (p = first; p < last; p++) {
  1911. nr = le32_to_cpu(*p);
  1912. if (nr) {
  1913. /* accumulate blocks to free if they're contiguous */
  1914. if (count == 0) {
  1915. block_to_free = nr;
  1916. block_to_free_p = p;
  1917. count = 1;
  1918. } else if (nr == block_to_free + count) {
  1919. count++;
  1920. } else {
  1921. ext3_clear_blocks(handle, inode, this_bh,
  1922. block_to_free,
  1923. count, block_to_free_p, p);
  1924. block_to_free = nr;
  1925. block_to_free_p = p;
  1926. count = 1;
  1927. }
  1928. }
  1929. }
  1930. if (count > 0)
  1931. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1932. count, block_to_free_p, p);
  1933. if (this_bh) {
  1934. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1935. ext3_journal_dirty_metadata(handle, this_bh);
  1936. }
  1937. }
  1938. /**
  1939. * ext3_free_branches - free an array of branches
  1940. * @handle: JBD handle for this transaction
  1941. * @inode: inode we are dealing with
  1942. * @parent_bh: the buffer_head which contains *@first and *@last
  1943. * @first: array of block numbers
  1944. * @last: pointer immediately past the end of array
  1945. * @depth: depth of the branches to free
  1946. *
  1947. * We are freeing all blocks refered from these branches (numbers are
  1948. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1949. * appropriately.
  1950. */
  1951. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  1952. struct buffer_head *parent_bh,
  1953. __le32 *first, __le32 *last, int depth)
  1954. {
  1955. ext3_fsblk_t nr;
  1956. __le32 *p;
  1957. if (is_handle_aborted(handle))
  1958. return;
  1959. if (depth--) {
  1960. struct buffer_head *bh;
  1961. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  1962. p = last;
  1963. while (--p >= first) {
  1964. nr = le32_to_cpu(*p);
  1965. if (!nr)
  1966. continue; /* A hole */
  1967. /* Go read the buffer for the next level down */
  1968. bh = sb_bread(inode->i_sb, nr);
  1969. /*
  1970. * A read failure? Report error and clear slot
  1971. * (should be rare).
  1972. */
  1973. if (!bh) {
  1974. ext3_error(inode->i_sb, "ext3_free_branches",
  1975. "Read failure, inode=%lu, block="E3FSBLK,
  1976. inode->i_ino, nr);
  1977. continue;
  1978. }
  1979. /* This zaps the entire block. Bottom up. */
  1980. BUFFER_TRACE(bh, "free child branches");
  1981. ext3_free_branches(handle, inode, bh,
  1982. (__le32*)bh->b_data,
  1983. (__le32*)bh->b_data + addr_per_block,
  1984. depth);
  1985. /*
  1986. * We've probably journalled the indirect block several
  1987. * times during the truncate. But it's no longer
  1988. * needed and we now drop it from the transaction via
  1989. * journal_revoke().
  1990. *
  1991. * That's easy if it's exclusively part of this
  1992. * transaction. But if it's part of the committing
  1993. * transaction then journal_forget() will simply
  1994. * brelse() it. That means that if the underlying
  1995. * block is reallocated in ext3_get_block(),
  1996. * unmap_underlying_metadata() will find this block
  1997. * and will try to get rid of it. damn, damn.
  1998. *
  1999. * If this block has already been committed to the
  2000. * journal, a revoke record will be written. And
  2001. * revoke records must be emitted *before* clearing
  2002. * this block's bit in the bitmaps.
  2003. */
  2004. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  2005. /*
  2006. * Everything below this this pointer has been
  2007. * released. Now let this top-of-subtree go.
  2008. *
  2009. * We want the freeing of this indirect block to be
  2010. * atomic in the journal with the updating of the
  2011. * bitmap block which owns it. So make some room in
  2012. * the journal.
  2013. *
  2014. * We zero the parent pointer *after* freeing its
  2015. * pointee in the bitmaps, so if extend_transaction()
  2016. * for some reason fails to put the bitmap changes and
  2017. * the release into the same transaction, recovery
  2018. * will merely complain about releasing a free block,
  2019. * rather than leaking blocks.
  2020. */
  2021. if (is_handle_aborted(handle))
  2022. return;
  2023. if (try_to_extend_transaction(handle, inode)) {
  2024. ext3_mark_inode_dirty(handle, inode);
  2025. ext3_journal_test_restart(handle, inode);
  2026. }
  2027. ext3_free_blocks(handle, inode, nr, 1);
  2028. if (parent_bh) {
  2029. /*
  2030. * The block which we have just freed is
  2031. * pointed to by an indirect block: journal it
  2032. */
  2033. BUFFER_TRACE(parent_bh, "get_write_access");
  2034. if (!ext3_journal_get_write_access(handle,
  2035. parent_bh)){
  2036. *p = 0;
  2037. BUFFER_TRACE(parent_bh,
  2038. "call ext3_journal_dirty_metadata");
  2039. ext3_journal_dirty_metadata(handle,
  2040. parent_bh);
  2041. }
  2042. }
  2043. }
  2044. } else {
  2045. /* We have reached the bottom of the tree. */
  2046. BUFFER_TRACE(parent_bh, "free data blocks");
  2047. ext3_free_data(handle, inode, parent_bh, first, last);
  2048. }
  2049. }
  2050. /*
  2051. * ext3_truncate()
  2052. *
  2053. * We block out ext3_get_block() block instantiations across the entire
  2054. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2055. * simultaneously on behalf of the same inode.
  2056. *
  2057. * As we work through the truncate and commmit bits of it to the journal there
  2058. * is one core, guiding principle: the file's tree must always be consistent on
  2059. * disk. We must be able to restart the truncate after a crash.
  2060. *
  2061. * The file's tree may be transiently inconsistent in memory (although it
  2062. * probably isn't), but whenever we close off and commit a journal transaction,
  2063. * the contents of (the filesystem + the journal) must be consistent and
  2064. * restartable. It's pretty simple, really: bottom up, right to left (although
  2065. * left-to-right works OK too).
  2066. *
  2067. * Note that at recovery time, journal replay occurs *before* the restart of
  2068. * truncate against the orphan inode list.
  2069. *
  2070. * The committed inode has the new, desired i_size (which is the same as
  2071. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2072. * that this inode's truncate did not complete and it will again call
  2073. * ext3_truncate() to have another go. So there will be instantiated blocks
  2074. * to the right of the truncation point in a crashed ext3 filesystem. But
  2075. * that's fine - as long as they are linked from the inode, the post-crash
  2076. * ext3_truncate() run will find them and release them.
  2077. */
  2078. void ext3_truncate(struct inode *inode)
  2079. {
  2080. handle_t *handle;
  2081. struct ext3_inode_info *ei = EXT3_I(inode);
  2082. __le32 *i_data = ei->i_data;
  2083. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2084. struct address_space *mapping = inode->i_mapping;
  2085. int offsets[4];
  2086. Indirect chain[4];
  2087. Indirect *partial;
  2088. __le32 nr = 0;
  2089. int n;
  2090. long last_block;
  2091. unsigned blocksize = inode->i_sb->s_blocksize;
  2092. struct page *page;
  2093. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2094. S_ISLNK(inode->i_mode)))
  2095. return;
  2096. if (ext3_inode_is_fast_symlink(inode))
  2097. return;
  2098. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2099. return;
  2100. /*
  2101. * We have to lock the EOF page here, because lock_page() nests
  2102. * outside journal_start().
  2103. */
  2104. if ((inode->i_size & (blocksize - 1)) == 0) {
  2105. /* Block boundary? Nothing to do */
  2106. page = NULL;
  2107. } else {
  2108. page = grab_cache_page(mapping,
  2109. inode->i_size >> PAGE_CACHE_SHIFT);
  2110. if (!page)
  2111. return;
  2112. }
  2113. handle = start_transaction(inode);
  2114. if (IS_ERR(handle)) {
  2115. if (page) {
  2116. clear_highpage(page);
  2117. flush_dcache_page(page);
  2118. unlock_page(page);
  2119. page_cache_release(page);
  2120. }
  2121. return; /* AKPM: return what? */
  2122. }
  2123. last_block = (inode->i_size + blocksize-1)
  2124. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2125. if (page)
  2126. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2127. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2128. if (n == 0)
  2129. goto out_stop; /* error */
  2130. /*
  2131. * OK. This truncate is going to happen. We add the inode to the
  2132. * orphan list, so that if this truncate spans multiple transactions,
  2133. * and we crash, we will resume the truncate when the filesystem
  2134. * recovers. It also marks the inode dirty, to catch the new size.
  2135. *
  2136. * Implication: the file must always be in a sane, consistent
  2137. * truncatable state while each transaction commits.
  2138. */
  2139. if (ext3_orphan_add(handle, inode))
  2140. goto out_stop;
  2141. /*
  2142. * The orphan list entry will now protect us from any crash which
  2143. * occurs before the truncate completes, so it is now safe to propagate
  2144. * the new, shorter inode size (held for now in i_size) into the
  2145. * on-disk inode. We do this via i_disksize, which is the value which
  2146. * ext3 *really* writes onto the disk inode.
  2147. */
  2148. ei->i_disksize = inode->i_size;
  2149. /*
  2150. * From here we block out all ext3_get_block() callers who want to
  2151. * modify the block allocation tree.
  2152. */
  2153. mutex_lock(&ei->truncate_mutex);
  2154. if (n == 1) { /* direct blocks */
  2155. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2156. i_data + EXT3_NDIR_BLOCKS);
  2157. goto do_indirects;
  2158. }
  2159. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2160. /* Kill the top of shared branch (not detached) */
  2161. if (nr) {
  2162. if (partial == chain) {
  2163. /* Shared branch grows from the inode */
  2164. ext3_free_branches(handle, inode, NULL,
  2165. &nr, &nr+1, (chain+n-1) - partial);
  2166. *partial->p = 0;
  2167. /*
  2168. * We mark the inode dirty prior to restart,
  2169. * and prior to stop. No need for it here.
  2170. */
  2171. } else {
  2172. /* Shared branch grows from an indirect block */
  2173. BUFFER_TRACE(partial->bh, "get_write_access");
  2174. ext3_free_branches(handle, inode, partial->bh,
  2175. partial->p,
  2176. partial->p+1, (chain+n-1) - partial);
  2177. }
  2178. }
  2179. /* Clear the ends of indirect blocks on the shared branch */
  2180. while (partial > chain) {
  2181. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2182. (__le32*)partial->bh->b_data+addr_per_block,
  2183. (chain+n-1) - partial);
  2184. BUFFER_TRACE(partial->bh, "call brelse");
  2185. brelse (partial->bh);
  2186. partial--;
  2187. }
  2188. do_indirects:
  2189. /* Kill the remaining (whole) subtrees */
  2190. switch (offsets[0]) {
  2191. default:
  2192. nr = i_data[EXT3_IND_BLOCK];
  2193. if (nr) {
  2194. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2195. i_data[EXT3_IND_BLOCK] = 0;
  2196. }
  2197. case EXT3_IND_BLOCK:
  2198. nr = i_data[EXT3_DIND_BLOCK];
  2199. if (nr) {
  2200. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2201. i_data[EXT3_DIND_BLOCK] = 0;
  2202. }
  2203. case EXT3_DIND_BLOCK:
  2204. nr = i_data[EXT3_TIND_BLOCK];
  2205. if (nr) {
  2206. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2207. i_data[EXT3_TIND_BLOCK] = 0;
  2208. }
  2209. case EXT3_TIND_BLOCK:
  2210. ;
  2211. }
  2212. ext3_discard_reservation(inode);
  2213. mutex_unlock(&ei->truncate_mutex);
  2214. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2215. ext3_mark_inode_dirty(handle, inode);
  2216. /*
  2217. * In a multi-transaction truncate, we only make the final transaction
  2218. * synchronous
  2219. */
  2220. if (IS_SYNC(inode))
  2221. handle->h_sync = 1;
  2222. out_stop:
  2223. /*
  2224. * If this was a simple ftruncate(), and the file will remain alive
  2225. * then we need to clear up the orphan record which we created above.
  2226. * However, if this was a real unlink then we were called by
  2227. * ext3_delete_inode(), and we allow that function to clean up the
  2228. * orphan info for us.
  2229. */
  2230. if (inode->i_nlink)
  2231. ext3_orphan_del(handle, inode);
  2232. ext3_journal_stop(handle);
  2233. }
  2234. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2235. unsigned long ino, struct ext3_iloc *iloc)
  2236. {
  2237. unsigned long desc, group_desc, block_group;
  2238. unsigned long offset;
  2239. ext3_fsblk_t block;
  2240. struct buffer_head *bh;
  2241. struct ext3_group_desc * gdp;
  2242. if (!ext3_valid_inum(sb, ino)) {
  2243. /*
  2244. * This error is already checked for in namei.c unless we are
  2245. * looking at an NFS filehandle, in which case no error
  2246. * report is needed
  2247. */
  2248. return 0;
  2249. }
  2250. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2251. if (block_group >= EXT3_SB(sb)->s_groups_count) {
  2252. ext3_error(sb,"ext3_get_inode_block","group >= groups count");
  2253. return 0;
  2254. }
  2255. smp_rmb();
  2256. group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
  2257. desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
  2258. bh = EXT3_SB(sb)->s_group_desc[group_desc];
  2259. if (!bh) {
  2260. ext3_error (sb, "ext3_get_inode_block",
  2261. "Descriptor not loaded");
  2262. return 0;
  2263. }
  2264. gdp = (struct ext3_group_desc *)bh->b_data;
  2265. /*
  2266. * Figure out the offset within the block group inode table
  2267. */
  2268. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2269. EXT3_INODE_SIZE(sb);
  2270. block = le32_to_cpu(gdp[desc].bg_inode_table) +
  2271. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2272. iloc->block_group = block_group;
  2273. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2274. return block;
  2275. }
  2276. /*
  2277. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2278. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2279. * data in memory that is needed to recreate the on-disk version of this
  2280. * inode.
  2281. */
  2282. static int __ext3_get_inode_loc(struct inode *inode,
  2283. struct ext3_iloc *iloc, int in_mem)
  2284. {
  2285. ext3_fsblk_t block;
  2286. struct buffer_head *bh;
  2287. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2288. if (!block)
  2289. return -EIO;
  2290. bh = sb_getblk(inode->i_sb, block);
  2291. if (!bh) {
  2292. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2293. "unable to read inode block - "
  2294. "inode=%lu, block="E3FSBLK,
  2295. inode->i_ino, block);
  2296. return -EIO;
  2297. }
  2298. if (!buffer_uptodate(bh)) {
  2299. lock_buffer(bh);
  2300. if (buffer_uptodate(bh)) {
  2301. /* someone brought it uptodate while we waited */
  2302. unlock_buffer(bh);
  2303. goto has_buffer;
  2304. }
  2305. /*
  2306. * If we have all information of the inode in memory and this
  2307. * is the only valid inode in the block, we need not read the
  2308. * block.
  2309. */
  2310. if (in_mem) {
  2311. struct buffer_head *bitmap_bh;
  2312. struct ext3_group_desc *desc;
  2313. int inodes_per_buffer;
  2314. int inode_offset, i;
  2315. int block_group;
  2316. int start;
  2317. block_group = (inode->i_ino - 1) /
  2318. EXT3_INODES_PER_GROUP(inode->i_sb);
  2319. inodes_per_buffer = bh->b_size /
  2320. EXT3_INODE_SIZE(inode->i_sb);
  2321. inode_offset = ((inode->i_ino - 1) %
  2322. EXT3_INODES_PER_GROUP(inode->i_sb));
  2323. start = inode_offset & ~(inodes_per_buffer - 1);
  2324. /* Is the inode bitmap in cache? */
  2325. desc = ext3_get_group_desc(inode->i_sb,
  2326. block_group, NULL);
  2327. if (!desc)
  2328. goto make_io;
  2329. bitmap_bh = sb_getblk(inode->i_sb,
  2330. le32_to_cpu(desc->bg_inode_bitmap));
  2331. if (!bitmap_bh)
  2332. goto make_io;
  2333. /*
  2334. * If the inode bitmap isn't in cache then the
  2335. * optimisation may end up performing two reads instead
  2336. * of one, so skip it.
  2337. */
  2338. if (!buffer_uptodate(bitmap_bh)) {
  2339. brelse(bitmap_bh);
  2340. goto make_io;
  2341. }
  2342. for (i = start; i < start + inodes_per_buffer; i++) {
  2343. if (i == inode_offset)
  2344. continue;
  2345. if (ext3_test_bit(i, bitmap_bh->b_data))
  2346. break;
  2347. }
  2348. brelse(bitmap_bh);
  2349. if (i == start + inodes_per_buffer) {
  2350. /* all other inodes are free, so skip I/O */
  2351. memset(bh->b_data, 0, bh->b_size);
  2352. set_buffer_uptodate(bh);
  2353. unlock_buffer(bh);
  2354. goto has_buffer;
  2355. }
  2356. }
  2357. make_io:
  2358. /*
  2359. * There are other valid inodes in the buffer, this inode
  2360. * has in-inode xattrs, or we don't have this inode in memory.
  2361. * Read the block from disk.
  2362. */
  2363. get_bh(bh);
  2364. bh->b_end_io = end_buffer_read_sync;
  2365. submit_bh(READ_META, bh);
  2366. wait_on_buffer(bh);
  2367. if (!buffer_uptodate(bh)) {
  2368. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2369. "unable to read inode block - "
  2370. "inode=%lu, block="E3FSBLK,
  2371. inode->i_ino, block);
  2372. brelse(bh);
  2373. return -EIO;
  2374. }
  2375. }
  2376. has_buffer:
  2377. iloc->bh = bh;
  2378. return 0;
  2379. }
  2380. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2381. {
  2382. /* We have all inode data except xattrs in memory here. */
  2383. return __ext3_get_inode_loc(inode, iloc,
  2384. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2385. }
  2386. void ext3_set_inode_flags(struct inode *inode)
  2387. {
  2388. unsigned int flags = EXT3_I(inode)->i_flags;
  2389. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2390. if (flags & EXT3_SYNC_FL)
  2391. inode->i_flags |= S_SYNC;
  2392. if (flags & EXT3_APPEND_FL)
  2393. inode->i_flags |= S_APPEND;
  2394. if (flags & EXT3_IMMUTABLE_FL)
  2395. inode->i_flags |= S_IMMUTABLE;
  2396. if (flags & EXT3_NOATIME_FL)
  2397. inode->i_flags |= S_NOATIME;
  2398. if (flags & EXT3_DIRSYNC_FL)
  2399. inode->i_flags |= S_DIRSYNC;
  2400. }
  2401. void ext3_read_inode(struct inode * inode)
  2402. {
  2403. struct ext3_iloc iloc;
  2404. struct ext3_inode *raw_inode;
  2405. struct ext3_inode_info *ei = EXT3_I(inode);
  2406. struct buffer_head *bh;
  2407. int block;
  2408. #ifdef CONFIG_EXT3_FS_POSIX_ACL
  2409. ei->i_acl = EXT3_ACL_NOT_CACHED;
  2410. ei->i_default_acl = EXT3_ACL_NOT_CACHED;
  2411. #endif
  2412. ei->i_block_alloc_info = NULL;
  2413. if (__ext3_get_inode_loc(inode, &iloc, 0))
  2414. goto bad_inode;
  2415. bh = iloc.bh;
  2416. raw_inode = ext3_raw_inode(&iloc);
  2417. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2418. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2419. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2420. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2421. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2422. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2423. }
  2424. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2425. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2426. inode->i_atime.tv_sec = le32_to_cpu(raw_inode->i_atime);
  2427. inode->i_ctime.tv_sec = le32_to_cpu(raw_inode->i_ctime);
  2428. inode->i_mtime.tv_sec = le32_to_cpu(raw_inode->i_mtime);
  2429. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2430. ei->i_state = 0;
  2431. ei->i_dir_start_lookup = 0;
  2432. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2433. /* We now have enough fields to check if the inode was active or not.
  2434. * This is needed because nfsd might try to access dead inodes
  2435. * the test is that same one that e2fsck uses
  2436. * NeilBrown 1999oct15
  2437. */
  2438. if (inode->i_nlink == 0) {
  2439. if (inode->i_mode == 0 ||
  2440. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2441. /* this inode is deleted */
  2442. brelse (bh);
  2443. goto bad_inode;
  2444. }
  2445. /* The only unlinked inodes we let through here have
  2446. * valid i_mode and are being read by the orphan
  2447. * recovery code: that's fine, we're about to complete
  2448. * the process of deleting those. */
  2449. }
  2450. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2451. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2452. #ifdef EXT3_FRAGMENTS
  2453. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2454. ei->i_frag_no = raw_inode->i_frag;
  2455. ei->i_frag_size = raw_inode->i_fsize;
  2456. #endif
  2457. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2458. if (!S_ISREG(inode->i_mode)) {
  2459. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2460. } else {
  2461. inode->i_size |=
  2462. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2463. }
  2464. ei->i_disksize = inode->i_size;
  2465. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2466. ei->i_block_group = iloc.block_group;
  2467. /*
  2468. * NOTE! The in-memory inode i_data array is in little-endian order
  2469. * even on big-endian machines: we do NOT byteswap the block numbers!
  2470. */
  2471. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2472. ei->i_data[block] = raw_inode->i_block[block];
  2473. INIT_LIST_HEAD(&ei->i_orphan);
  2474. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2475. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2476. /*
  2477. * When mke2fs creates big inodes it does not zero out
  2478. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2479. * so ignore those first few inodes.
  2480. */
  2481. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2482. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2483. EXT3_INODE_SIZE(inode->i_sb))
  2484. goto bad_inode;
  2485. if (ei->i_extra_isize == 0) {
  2486. /* The extra space is currently unused. Use it. */
  2487. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2488. EXT3_GOOD_OLD_INODE_SIZE;
  2489. } else {
  2490. __le32 *magic = (void *)raw_inode +
  2491. EXT3_GOOD_OLD_INODE_SIZE +
  2492. ei->i_extra_isize;
  2493. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2494. ei->i_state |= EXT3_STATE_XATTR;
  2495. }
  2496. } else
  2497. ei->i_extra_isize = 0;
  2498. if (S_ISREG(inode->i_mode)) {
  2499. inode->i_op = &ext3_file_inode_operations;
  2500. inode->i_fop = &ext3_file_operations;
  2501. ext3_set_aops(inode);
  2502. } else if (S_ISDIR(inode->i_mode)) {
  2503. inode->i_op = &ext3_dir_inode_operations;
  2504. inode->i_fop = &ext3_dir_operations;
  2505. } else if (S_ISLNK(inode->i_mode)) {
  2506. if (ext3_inode_is_fast_symlink(inode))
  2507. inode->i_op = &ext3_fast_symlink_inode_operations;
  2508. else {
  2509. inode->i_op = &ext3_symlink_inode_operations;
  2510. ext3_set_aops(inode);
  2511. }
  2512. } else {
  2513. inode->i_op = &ext3_special_inode_operations;
  2514. if (raw_inode->i_block[0])
  2515. init_special_inode(inode, inode->i_mode,
  2516. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2517. else
  2518. init_special_inode(inode, inode->i_mode,
  2519. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2520. }
  2521. brelse (iloc.bh);
  2522. ext3_set_inode_flags(inode);
  2523. return;
  2524. bad_inode:
  2525. make_bad_inode(inode);
  2526. return;
  2527. }
  2528. /*
  2529. * Post the struct inode info into an on-disk inode location in the
  2530. * buffer-cache. This gobbles the caller's reference to the
  2531. * buffer_head in the inode location struct.
  2532. *
  2533. * The caller must have write access to iloc->bh.
  2534. */
  2535. static int ext3_do_update_inode(handle_t *handle,
  2536. struct inode *inode,
  2537. struct ext3_iloc *iloc)
  2538. {
  2539. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2540. struct ext3_inode_info *ei = EXT3_I(inode);
  2541. struct buffer_head *bh = iloc->bh;
  2542. int err = 0, rc, block;
  2543. /* For fields not not tracking in the in-memory inode,
  2544. * initialise them to zero for new inodes. */
  2545. if (ei->i_state & EXT3_STATE_NEW)
  2546. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2547. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2548. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2549. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2550. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2551. /*
  2552. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2553. * re-used with the upper 16 bits of the uid/gid intact
  2554. */
  2555. if(!ei->i_dtime) {
  2556. raw_inode->i_uid_high =
  2557. cpu_to_le16(high_16_bits(inode->i_uid));
  2558. raw_inode->i_gid_high =
  2559. cpu_to_le16(high_16_bits(inode->i_gid));
  2560. } else {
  2561. raw_inode->i_uid_high = 0;
  2562. raw_inode->i_gid_high = 0;
  2563. }
  2564. } else {
  2565. raw_inode->i_uid_low =
  2566. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2567. raw_inode->i_gid_low =
  2568. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2569. raw_inode->i_uid_high = 0;
  2570. raw_inode->i_gid_high = 0;
  2571. }
  2572. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2573. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2574. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2575. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2576. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2577. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2578. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2579. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2580. #ifdef EXT3_FRAGMENTS
  2581. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2582. raw_inode->i_frag = ei->i_frag_no;
  2583. raw_inode->i_fsize = ei->i_frag_size;
  2584. #endif
  2585. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2586. if (!S_ISREG(inode->i_mode)) {
  2587. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2588. } else {
  2589. raw_inode->i_size_high =
  2590. cpu_to_le32(ei->i_disksize >> 32);
  2591. if (ei->i_disksize > 0x7fffffffULL) {
  2592. struct super_block *sb = inode->i_sb;
  2593. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2594. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2595. EXT3_SB(sb)->s_es->s_rev_level ==
  2596. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2597. /* If this is the first large file
  2598. * created, add a flag to the superblock.
  2599. */
  2600. err = ext3_journal_get_write_access(handle,
  2601. EXT3_SB(sb)->s_sbh);
  2602. if (err)
  2603. goto out_brelse;
  2604. ext3_update_dynamic_rev(sb);
  2605. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2606. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2607. sb->s_dirt = 1;
  2608. handle->h_sync = 1;
  2609. err = ext3_journal_dirty_metadata(handle,
  2610. EXT3_SB(sb)->s_sbh);
  2611. }
  2612. }
  2613. }
  2614. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2615. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2616. if (old_valid_dev(inode->i_rdev)) {
  2617. raw_inode->i_block[0] =
  2618. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2619. raw_inode->i_block[1] = 0;
  2620. } else {
  2621. raw_inode->i_block[0] = 0;
  2622. raw_inode->i_block[1] =
  2623. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2624. raw_inode->i_block[2] = 0;
  2625. }
  2626. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2627. raw_inode->i_block[block] = ei->i_data[block];
  2628. if (ei->i_extra_isize)
  2629. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2630. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2631. rc = ext3_journal_dirty_metadata(handle, bh);
  2632. if (!err)
  2633. err = rc;
  2634. ei->i_state &= ~EXT3_STATE_NEW;
  2635. out_brelse:
  2636. brelse (bh);
  2637. ext3_std_error(inode->i_sb, err);
  2638. return err;
  2639. }
  2640. /*
  2641. * ext3_write_inode()
  2642. *
  2643. * We are called from a few places:
  2644. *
  2645. * - Within generic_file_write() for O_SYNC files.
  2646. * Here, there will be no transaction running. We wait for any running
  2647. * trasnaction to commit.
  2648. *
  2649. * - Within sys_sync(), kupdate and such.
  2650. * We wait on commit, if tol to.
  2651. *
  2652. * - Within prune_icache() (PF_MEMALLOC == true)
  2653. * Here we simply return. We can't afford to block kswapd on the
  2654. * journal commit.
  2655. *
  2656. * In all cases it is actually safe for us to return without doing anything,
  2657. * because the inode has been copied into a raw inode buffer in
  2658. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2659. * knfsd.
  2660. *
  2661. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2662. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2663. * which we are interested.
  2664. *
  2665. * It would be a bug for them to not do this. The code:
  2666. *
  2667. * mark_inode_dirty(inode)
  2668. * stuff();
  2669. * inode->i_size = expr;
  2670. *
  2671. * is in error because a kswapd-driven write_inode() could occur while
  2672. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2673. * will no longer be on the superblock's dirty inode list.
  2674. */
  2675. int ext3_write_inode(struct inode *inode, int wait)
  2676. {
  2677. if (current->flags & PF_MEMALLOC)
  2678. return 0;
  2679. if (ext3_journal_current_handle()) {
  2680. jbd_debug(0, "called recursively, non-PF_MEMALLOC!\n");
  2681. dump_stack();
  2682. return -EIO;
  2683. }
  2684. if (!wait)
  2685. return 0;
  2686. return ext3_force_commit(inode->i_sb);
  2687. }
  2688. /*
  2689. * ext3_setattr()
  2690. *
  2691. * Called from notify_change.
  2692. *
  2693. * We want to trap VFS attempts to truncate the file as soon as
  2694. * possible. In particular, we want to make sure that when the VFS
  2695. * shrinks i_size, we put the inode on the orphan list and modify
  2696. * i_disksize immediately, so that during the subsequent flushing of
  2697. * dirty pages and freeing of disk blocks, we can guarantee that any
  2698. * commit will leave the blocks being flushed in an unused state on
  2699. * disk. (On recovery, the inode will get truncated and the blocks will
  2700. * be freed, so we have a strong guarantee that no future commit will
  2701. * leave these blocks visible to the user.)
  2702. *
  2703. * Called with inode->sem down.
  2704. */
  2705. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2706. {
  2707. struct inode *inode = dentry->d_inode;
  2708. int error, rc = 0;
  2709. const unsigned int ia_valid = attr->ia_valid;
  2710. error = inode_change_ok(inode, attr);
  2711. if (error)
  2712. return error;
  2713. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2714. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2715. handle_t *handle;
  2716. /* (user+group)*(old+new) structure, inode write (sb,
  2717. * inode block, ? - but truncate inode update has it) */
  2718. handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2719. EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2720. if (IS_ERR(handle)) {
  2721. error = PTR_ERR(handle);
  2722. goto err_out;
  2723. }
  2724. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2725. if (error) {
  2726. ext3_journal_stop(handle);
  2727. return error;
  2728. }
  2729. /* Update corresponding info in inode so that everything is in
  2730. * one transaction */
  2731. if (attr->ia_valid & ATTR_UID)
  2732. inode->i_uid = attr->ia_uid;
  2733. if (attr->ia_valid & ATTR_GID)
  2734. inode->i_gid = attr->ia_gid;
  2735. error = ext3_mark_inode_dirty(handle, inode);
  2736. ext3_journal_stop(handle);
  2737. }
  2738. if (S_ISREG(inode->i_mode) &&
  2739. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2740. handle_t *handle;
  2741. handle = ext3_journal_start(inode, 3);
  2742. if (IS_ERR(handle)) {
  2743. error = PTR_ERR(handle);
  2744. goto err_out;
  2745. }
  2746. error = ext3_orphan_add(handle, inode);
  2747. EXT3_I(inode)->i_disksize = attr->ia_size;
  2748. rc = ext3_mark_inode_dirty(handle, inode);
  2749. if (!error)
  2750. error = rc;
  2751. ext3_journal_stop(handle);
  2752. }
  2753. rc = inode_setattr(inode, attr);
  2754. /* If inode_setattr's call to ext3_truncate failed to get a
  2755. * transaction handle at all, we need to clean up the in-core
  2756. * orphan list manually. */
  2757. if (inode->i_nlink)
  2758. ext3_orphan_del(NULL, inode);
  2759. if (!rc && (ia_valid & ATTR_MODE))
  2760. rc = ext3_acl_chmod(inode);
  2761. err_out:
  2762. ext3_std_error(inode->i_sb, error);
  2763. if (!error)
  2764. error = rc;
  2765. return error;
  2766. }
  2767. /*
  2768. * How many blocks doth make a writepage()?
  2769. *
  2770. * With N blocks per page, it may be:
  2771. * N data blocks
  2772. * 2 indirect block
  2773. * 2 dindirect
  2774. * 1 tindirect
  2775. * N+5 bitmap blocks (from the above)
  2776. * N+5 group descriptor summary blocks
  2777. * 1 inode block
  2778. * 1 superblock.
  2779. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2780. *
  2781. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2782. *
  2783. * With ordered or writeback data it's the same, less the N data blocks.
  2784. *
  2785. * If the inode's direct blocks can hold an integral number of pages then a
  2786. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2787. * and dindirect block, and the "5" above becomes "3".
  2788. *
  2789. * This still overestimates under most circumstances. If we were to pass the
  2790. * start and end offsets in here as well we could do block_to_path() on each
  2791. * block and work out the exact number of indirects which are touched. Pah.
  2792. */
  2793. static int ext3_writepage_trans_blocks(struct inode *inode)
  2794. {
  2795. int bpp = ext3_journal_blocks_per_page(inode);
  2796. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2797. int ret;
  2798. if (ext3_should_journal_data(inode))
  2799. ret = 3 * (bpp + indirects) + 2;
  2800. else
  2801. ret = 2 * (bpp + indirects) + 2;
  2802. #ifdef CONFIG_QUOTA
  2803. /* We know that structure was already allocated during DQUOT_INIT so
  2804. * we will be updating only the data blocks + inodes */
  2805. ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2806. #endif
  2807. return ret;
  2808. }
  2809. /*
  2810. * The caller must have previously called ext3_reserve_inode_write().
  2811. * Give this, we know that the caller already has write access to iloc->bh.
  2812. */
  2813. int ext3_mark_iloc_dirty(handle_t *handle,
  2814. struct inode *inode, struct ext3_iloc *iloc)
  2815. {
  2816. int err = 0;
  2817. /* the do_update_inode consumes one bh->b_count */
  2818. get_bh(iloc->bh);
  2819. /* ext3_do_update_inode() does journal_dirty_metadata */
  2820. err = ext3_do_update_inode(handle, inode, iloc);
  2821. put_bh(iloc->bh);
  2822. return err;
  2823. }
  2824. /*
  2825. * On success, We end up with an outstanding reference count against
  2826. * iloc->bh. This _must_ be cleaned up later.
  2827. */
  2828. int
  2829. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2830. struct ext3_iloc *iloc)
  2831. {
  2832. int err = 0;
  2833. if (handle) {
  2834. err = ext3_get_inode_loc(inode, iloc);
  2835. if (!err) {
  2836. BUFFER_TRACE(iloc->bh, "get_write_access");
  2837. err = ext3_journal_get_write_access(handle, iloc->bh);
  2838. if (err) {
  2839. brelse(iloc->bh);
  2840. iloc->bh = NULL;
  2841. }
  2842. }
  2843. }
  2844. ext3_std_error(inode->i_sb, err);
  2845. return err;
  2846. }
  2847. /*
  2848. * What we do here is to mark the in-core inode as clean with respect to inode
  2849. * dirtiness (it may still be data-dirty).
  2850. * This means that the in-core inode may be reaped by prune_icache
  2851. * without having to perform any I/O. This is a very good thing,
  2852. * because *any* task may call prune_icache - even ones which
  2853. * have a transaction open against a different journal.
  2854. *
  2855. * Is this cheating? Not really. Sure, we haven't written the
  2856. * inode out, but prune_icache isn't a user-visible syncing function.
  2857. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2858. * we start and wait on commits.
  2859. *
  2860. * Is this efficient/effective? Well, we're being nice to the system
  2861. * by cleaning up our inodes proactively so they can be reaped
  2862. * without I/O. But we are potentially leaving up to five seconds'
  2863. * worth of inodes floating about which prune_icache wants us to
  2864. * write out. One way to fix that would be to get prune_icache()
  2865. * to do a write_super() to free up some memory. It has the desired
  2866. * effect.
  2867. */
  2868. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2869. {
  2870. struct ext3_iloc iloc;
  2871. int err;
  2872. might_sleep();
  2873. err = ext3_reserve_inode_write(handle, inode, &iloc);
  2874. if (!err)
  2875. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  2876. return err;
  2877. }
  2878. /*
  2879. * ext3_dirty_inode() is called from __mark_inode_dirty()
  2880. *
  2881. * We're really interested in the case where a file is being extended.
  2882. * i_size has been changed by generic_commit_write() and we thus need
  2883. * to include the updated inode in the current transaction.
  2884. *
  2885. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  2886. * are allocated to the file.
  2887. *
  2888. * If the inode is marked synchronous, we don't honour that here - doing
  2889. * so would cause a commit on atime updates, which we don't bother doing.
  2890. * We handle synchronous inodes at the highest possible level.
  2891. */
  2892. void ext3_dirty_inode(struct inode *inode)
  2893. {
  2894. handle_t *current_handle = ext3_journal_current_handle();
  2895. handle_t *handle;
  2896. handle = ext3_journal_start(inode, 2);
  2897. if (IS_ERR(handle))
  2898. goto out;
  2899. if (current_handle &&
  2900. current_handle->h_transaction != handle->h_transaction) {
  2901. /* This task has a transaction open against a different fs */
  2902. printk(KERN_EMERG "%s: transactions do not match!\n",
  2903. __FUNCTION__);
  2904. } else {
  2905. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2906. current_handle);
  2907. ext3_mark_inode_dirty(handle, inode);
  2908. }
  2909. ext3_journal_stop(handle);
  2910. out:
  2911. return;
  2912. }
  2913. #if 0
  2914. /*
  2915. * Bind an inode's backing buffer_head into this transaction, to prevent
  2916. * it from being flushed to disk early. Unlike
  2917. * ext3_reserve_inode_write, this leaves behind no bh reference and
  2918. * returns no iloc structure, so the caller needs to repeat the iloc
  2919. * lookup to mark the inode dirty later.
  2920. */
  2921. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  2922. {
  2923. struct ext3_iloc iloc;
  2924. int err = 0;
  2925. if (handle) {
  2926. err = ext3_get_inode_loc(inode, &iloc);
  2927. if (!err) {
  2928. BUFFER_TRACE(iloc.bh, "get_write_access");
  2929. err = journal_get_write_access(handle, iloc.bh);
  2930. if (!err)
  2931. err = ext3_journal_dirty_metadata(handle,
  2932. iloc.bh);
  2933. brelse(iloc.bh);
  2934. }
  2935. }
  2936. ext3_std_error(inode->i_sb, err);
  2937. return err;
  2938. }
  2939. #endif
  2940. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  2941. {
  2942. journal_t *journal;
  2943. handle_t *handle;
  2944. int err;
  2945. /*
  2946. * We have to be very careful here: changing a data block's
  2947. * journaling status dynamically is dangerous. If we write a
  2948. * data block to the journal, change the status and then delete
  2949. * that block, we risk forgetting to revoke the old log record
  2950. * from the journal and so a subsequent replay can corrupt data.
  2951. * So, first we make sure that the journal is empty and that
  2952. * nobody is changing anything.
  2953. */
  2954. journal = EXT3_JOURNAL(inode);
  2955. if (is_journal_aborted(journal) || IS_RDONLY(inode))
  2956. return -EROFS;
  2957. journal_lock_updates(journal);
  2958. journal_flush(journal);
  2959. /*
  2960. * OK, there are no updates running now, and all cached data is
  2961. * synced to disk. We are now in a completely consistent state
  2962. * which doesn't have anything in the journal, and we know that
  2963. * no filesystem updates are running, so it is safe to modify
  2964. * the inode's in-core data-journaling state flag now.
  2965. */
  2966. if (val)
  2967. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  2968. else
  2969. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  2970. ext3_set_aops(inode);
  2971. journal_unlock_updates(journal);
  2972. /* Finally we can mark the inode as dirty. */
  2973. handle = ext3_journal_start(inode, 1);
  2974. if (IS_ERR(handle))
  2975. return PTR_ERR(handle);
  2976. err = ext3_mark_inode_dirty(handle, inode);
  2977. handle->h_sync = 1;
  2978. ext3_journal_stop(handle);
  2979. ext3_std_error(inode->i_sb, err);
  2980. return err;
  2981. }