aio.c 45 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/module.h>
  17. #include <linux/syscalls.h>
  18. #include <linux/uio.h>
  19. #define DEBUG 0
  20. #include <linux/sched.h>
  21. #include <linux/fs.h>
  22. #include <linux/file.h>
  23. #include <linux/mm.h>
  24. #include <linux/mman.h>
  25. #include <linux/slab.h>
  26. #include <linux/timer.h>
  27. #include <linux/aio.h>
  28. #include <linux/highmem.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/security.h>
  31. #include <asm/kmap_types.h>
  32. #include <asm/uaccess.h>
  33. #include <asm/mmu_context.h>
  34. #if DEBUG > 1
  35. #define dprintk printk
  36. #else
  37. #define dprintk(x...) do { ; } while (0)
  38. #endif
  39. /*------ sysctl variables----*/
  40. static DEFINE_SPINLOCK(aio_nr_lock);
  41. unsigned long aio_nr; /* current system wide number of aio requests */
  42. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  43. /*----end sysctl variables---*/
  44. static struct kmem_cache *kiocb_cachep;
  45. static struct kmem_cache *kioctx_cachep;
  46. static struct workqueue_struct *aio_wq;
  47. /* Used for rare fput completion. */
  48. static void aio_fput_routine(struct work_struct *);
  49. static DECLARE_WORK(fput_work, aio_fput_routine);
  50. static DEFINE_SPINLOCK(fput_lock);
  51. static LIST_HEAD(fput_head);
  52. static void aio_kick_handler(struct work_struct *);
  53. static void aio_queue_work(struct kioctx *);
  54. /* aio_setup
  55. * Creates the slab caches used by the aio routines, panic on
  56. * failure as this is done early during the boot sequence.
  57. */
  58. static int __init aio_setup(void)
  59. {
  60. kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
  61. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  62. kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
  63. 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  64. aio_wq = create_workqueue("aio");
  65. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  66. return 0;
  67. }
  68. static void aio_free_ring(struct kioctx *ctx)
  69. {
  70. struct aio_ring_info *info = &ctx->ring_info;
  71. long i;
  72. for (i=0; i<info->nr_pages; i++)
  73. put_page(info->ring_pages[i]);
  74. if (info->mmap_size) {
  75. down_write(&ctx->mm->mmap_sem);
  76. do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
  77. up_write(&ctx->mm->mmap_sem);
  78. }
  79. if (info->ring_pages && info->ring_pages != info->internal_pages)
  80. kfree(info->ring_pages);
  81. info->ring_pages = NULL;
  82. info->nr = 0;
  83. }
  84. static int aio_setup_ring(struct kioctx *ctx)
  85. {
  86. struct aio_ring *ring;
  87. struct aio_ring_info *info = &ctx->ring_info;
  88. unsigned nr_events = ctx->max_reqs;
  89. unsigned long size;
  90. int nr_pages;
  91. /* Compensate for the ring buffer's head/tail overlap entry */
  92. nr_events += 2; /* 1 is required, 2 for good luck */
  93. size = sizeof(struct aio_ring);
  94. size += sizeof(struct io_event) * nr_events;
  95. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  96. if (nr_pages < 0)
  97. return -EINVAL;
  98. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  99. info->nr = 0;
  100. info->ring_pages = info->internal_pages;
  101. if (nr_pages > AIO_RING_PAGES) {
  102. info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  103. if (!info->ring_pages)
  104. return -ENOMEM;
  105. }
  106. info->mmap_size = nr_pages * PAGE_SIZE;
  107. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  108. down_write(&ctx->mm->mmap_sem);
  109. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  110. PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
  111. 0);
  112. if (IS_ERR((void *)info->mmap_base)) {
  113. up_write(&ctx->mm->mmap_sem);
  114. printk("mmap err: %ld\n", -info->mmap_base);
  115. info->mmap_size = 0;
  116. aio_free_ring(ctx);
  117. return -EAGAIN;
  118. }
  119. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  120. info->nr_pages = get_user_pages(current, ctx->mm,
  121. info->mmap_base, nr_pages,
  122. 1, 0, info->ring_pages, NULL);
  123. up_write(&ctx->mm->mmap_sem);
  124. if (unlikely(info->nr_pages != nr_pages)) {
  125. aio_free_ring(ctx);
  126. return -EAGAIN;
  127. }
  128. ctx->user_id = info->mmap_base;
  129. info->nr = nr_events; /* trusted copy */
  130. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  131. ring->nr = nr_events; /* user copy */
  132. ring->id = ctx->user_id;
  133. ring->head = ring->tail = 0;
  134. ring->magic = AIO_RING_MAGIC;
  135. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  136. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  137. ring->header_length = sizeof(struct aio_ring);
  138. kunmap_atomic(ring, KM_USER0);
  139. return 0;
  140. }
  141. /* aio_ring_event: returns a pointer to the event at the given index from
  142. * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
  143. */
  144. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  145. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  146. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  147. #define aio_ring_event(info, nr, km) ({ \
  148. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  149. struct io_event *__event; \
  150. __event = kmap_atomic( \
  151. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
  152. __event += pos % AIO_EVENTS_PER_PAGE; \
  153. __event; \
  154. })
  155. #define put_aio_ring_event(event, km) do { \
  156. struct io_event *__event = (event); \
  157. (void)__event; \
  158. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
  159. } while(0)
  160. /* ioctx_alloc
  161. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  162. */
  163. static struct kioctx *ioctx_alloc(unsigned nr_events)
  164. {
  165. struct mm_struct *mm;
  166. struct kioctx *ctx;
  167. /* Prevent overflows */
  168. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  169. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  170. pr_debug("ENOMEM: nr_events too high\n");
  171. return ERR_PTR(-EINVAL);
  172. }
  173. if ((unsigned long)nr_events > aio_max_nr)
  174. return ERR_PTR(-EAGAIN);
  175. ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
  176. if (!ctx)
  177. return ERR_PTR(-ENOMEM);
  178. memset(ctx, 0, sizeof(*ctx));
  179. ctx->max_reqs = nr_events;
  180. mm = ctx->mm = current->mm;
  181. atomic_inc(&mm->mm_count);
  182. atomic_set(&ctx->users, 1);
  183. spin_lock_init(&ctx->ctx_lock);
  184. spin_lock_init(&ctx->ring_info.ring_lock);
  185. init_waitqueue_head(&ctx->wait);
  186. INIT_LIST_HEAD(&ctx->active_reqs);
  187. INIT_LIST_HEAD(&ctx->run_list);
  188. INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
  189. if (aio_setup_ring(ctx) < 0)
  190. goto out_freectx;
  191. /* limit the number of system wide aios */
  192. spin_lock(&aio_nr_lock);
  193. if (aio_nr + ctx->max_reqs > aio_max_nr ||
  194. aio_nr + ctx->max_reqs < aio_nr)
  195. ctx->max_reqs = 0;
  196. else
  197. aio_nr += ctx->max_reqs;
  198. spin_unlock(&aio_nr_lock);
  199. if (ctx->max_reqs == 0)
  200. goto out_cleanup;
  201. /* now link into global list. kludge. FIXME */
  202. write_lock(&mm->ioctx_list_lock);
  203. ctx->next = mm->ioctx_list;
  204. mm->ioctx_list = ctx;
  205. write_unlock(&mm->ioctx_list_lock);
  206. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  207. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  208. return ctx;
  209. out_cleanup:
  210. __put_ioctx(ctx);
  211. return ERR_PTR(-EAGAIN);
  212. out_freectx:
  213. mmdrop(mm);
  214. kmem_cache_free(kioctx_cachep, ctx);
  215. ctx = ERR_PTR(-ENOMEM);
  216. dprintk("aio: error allocating ioctx %p\n", ctx);
  217. return ctx;
  218. }
  219. /* aio_cancel_all
  220. * Cancels all outstanding aio requests on an aio context. Used
  221. * when the processes owning a context have all exited to encourage
  222. * the rapid destruction of the kioctx.
  223. */
  224. static void aio_cancel_all(struct kioctx *ctx)
  225. {
  226. int (*cancel)(struct kiocb *, struct io_event *);
  227. struct io_event res;
  228. spin_lock_irq(&ctx->ctx_lock);
  229. ctx->dead = 1;
  230. while (!list_empty(&ctx->active_reqs)) {
  231. struct list_head *pos = ctx->active_reqs.next;
  232. struct kiocb *iocb = list_kiocb(pos);
  233. list_del_init(&iocb->ki_list);
  234. cancel = iocb->ki_cancel;
  235. kiocbSetCancelled(iocb);
  236. if (cancel) {
  237. iocb->ki_users++;
  238. spin_unlock_irq(&ctx->ctx_lock);
  239. cancel(iocb, &res);
  240. spin_lock_irq(&ctx->ctx_lock);
  241. }
  242. }
  243. spin_unlock_irq(&ctx->ctx_lock);
  244. }
  245. static void wait_for_all_aios(struct kioctx *ctx)
  246. {
  247. struct task_struct *tsk = current;
  248. DECLARE_WAITQUEUE(wait, tsk);
  249. spin_lock_irq(&ctx->ctx_lock);
  250. if (!ctx->reqs_active)
  251. goto out;
  252. add_wait_queue(&ctx->wait, &wait);
  253. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  254. while (ctx->reqs_active) {
  255. spin_unlock_irq(&ctx->ctx_lock);
  256. schedule();
  257. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  258. spin_lock_irq(&ctx->ctx_lock);
  259. }
  260. __set_task_state(tsk, TASK_RUNNING);
  261. remove_wait_queue(&ctx->wait, &wait);
  262. out:
  263. spin_unlock_irq(&ctx->ctx_lock);
  264. }
  265. /* wait_on_sync_kiocb:
  266. * Waits on the given sync kiocb to complete.
  267. */
  268. ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
  269. {
  270. while (iocb->ki_users) {
  271. set_current_state(TASK_UNINTERRUPTIBLE);
  272. if (!iocb->ki_users)
  273. break;
  274. schedule();
  275. }
  276. __set_current_state(TASK_RUNNING);
  277. return iocb->ki_user_data;
  278. }
  279. /* exit_aio: called when the last user of mm goes away. At this point,
  280. * there is no way for any new requests to be submited or any of the
  281. * io_* syscalls to be called on the context. However, there may be
  282. * outstanding requests which hold references to the context; as they
  283. * go away, they will call put_ioctx and release any pinned memory
  284. * associated with the request (held via struct page * references).
  285. */
  286. void fastcall exit_aio(struct mm_struct *mm)
  287. {
  288. struct kioctx *ctx = mm->ioctx_list;
  289. mm->ioctx_list = NULL;
  290. while (ctx) {
  291. struct kioctx *next = ctx->next;
  292. ctx->next = NULL;
  293. aio_cancel_all(ctx);
  294. wait_for_all_aios(ctx);
  295. /*
  296. * this is an overkill, but ensures we don't leave
  297. * the ctx on the aio_wq
  298. */
  299. flush_workqueue(aio_wq);
  300. if (1 != atomic_read(&ctx->users))
  301. printk(KERN_DEBUG
  302. "exit_aio:ioctx still alive: %d %d %d\n",
  303. atomic_read(&ctx->users), ctx->dead,
  304. ctx->reqs_active);
  305. put_ioctx(ctx);
  306. ctx = next;
  307. }
  308. }
  309. /* __put_ioctx
  310. * Called when the last user of an aio context has gone away,
  311. * and the struct needs to be freed.
  312. */
  313. void fastcall __put_ioctx(struct kioctx *ctx)
  314. {
  315. unsigned nr_events = ctx->max_reqs;
  316. BUG_ON(ctx->reqs_active);
  317. cancel_delayed_work(&ctx->wq);
  318. flush_workqueue(aio_wq);
  319. aio_free_ring(ctx);
  320. mmdrop(ctx->mm);
  321. ctx->mm = NULL;
  322. pr_debug("__put_ioctx: freeing %p\n", ctx);
  323. kmem_cache_free(kioctx_cachep, ctx);
  324. if (nr_events) {
  325. spin_lock(&aio_nr_lock);
  326. BUG_ON(aio_nr - nr_events > aio_nr);
  327. aio_nr -= nr_events;
  328. spin_unlock(&aio_nr_lock);
  329. }
  330. }
  331. /* aio_get_req
  332. * Allocate a slot for an aio request. Increments the users count
  333. * of the kioctx so that the kioctx stays around until all requests are
  334. * complete. Returns NULL if no requests are free.
  335. *
  336. * Returns with kiocb->users set to 2. The io submit code path holds
  337. * an extra reference while submitting the i/o.
  338. * This prevents races between the aio code path referencing the
  339. * req (after submitting it) and aio_complete() freeing the req.
  340. */
  341. static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
  342. static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
  343. {
  344. struct kiocb *req = NULL;
  345. struct aio_ring *ring;
  346. int okay = 0;
  347. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  348. if (unlikely(!req))
  349. return NULL;
  350. req->ki_flags = 0;
  351. req->ki_users = 2;
  352. req->ki_key = 0;
  353. req->ki_ctx = ctx;
  354. req->ki_cancel = NULL;
  355. req->ki_retry = NULL;
  356. req->ki_dtor = NULL;
  357. req->private = NULL;
  358. req->ki_iovec = NULL;
  359. INIT_LIST_HEAD(&req->ki_run_list);
  360. /* Check if the completion queue has enough free space to
  361. * accept an event from this io.
  362. */
  363. spin_lock_irq(&ctx->ctx_lock);
  364. ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
  365. if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
  366. list_add(&req->ki_list, &ctx->active_reqs);
  367. ctx->reqs_active++;
  368. okay = 1;
  369. }
  370. kunmap_atomic(ring, KM_USER0);
  371. spin_unlock_irq(&ctx->ctx_lock);
  372. if (!okay) {
  373. kmem_cache_free(kiocb_cachep, req);
  374. req = NULL;
  375. }
  376. return req;
  377. }
  378. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  379. {
  380. struct kiocb *req;
  381. /* Handle a potential starvation case -- should be exceedingly rare as
  382. * requests will be stuck on fput_head only if the aio_fput_routine is
  383. * delayed and the requests were the last user of the struct file.
  384. */
  385. req = __aio_get_req(ctx);
  386. if (unlikely(NULL == req)) {
  387. aio_fput_routine(NULL);
  388. req = __aio_get_req(ctx);
  389. }
  390. return req;
  391. }
  392. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  393. {
  394. assert_spin_locked(&ctx->ctx_lock);
  395. if (req->ki_dtor)
  396. req->ki_dtor(req);
  397. if (req->ki_iovec != &req->ki_inline_vec)
  398. kfree(req->ki_iovec);
  399. kmem_cache_free(kiocb_cachep, req);
  400. ctx->reqs_active--;
  401. if (unlikely(!ctx->reqs_active && ctx->dead))
  402. wake_up(&ctx->wait);
  403. }
  404. static void aio_fput_routine(struct work_struct *data)
  405. {
  406. spin_lock_irq(&fput_lock);
  407. while (likely(!list_empty(&fput_head))) {
  408. struct kiocb *req = list_kiocb(fput_head.next);
  409. struct kioctx *ctx = req->ki_ctx;
  410. list_del(&req->ki_list);
  411. spin_unlock_irq(&fput_lock);
  412. /* Complete the fput */
  413. __fput(req->ki_filp);
  414. /* Link the iocb into the context's free list */
  415. spin_lock_irq(&ctx->ctx_lock);
  416. really_put_req(ctx, req);
  417. spin_unlock_irq(&ctx->ctx_lock);
  418. put_ioctx(ctx);
  419. spin_lock_irq(&fput_lock);
  420. }
  421. spin_unlock_irq(&fput_lock);
  422. }
  423. /* __aio_put_req
  424. * Returns true if this put was the last user of the request.
  425. */
  426. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  427. {
  428. dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
  429. req, atomic_read(&req->ki_filp->f_count));
  430. assert_spin_locked(&ctx->ctx_lock);
  431. req->ki_users --;
  432. BUG_ON(req->ki_users < 0);
  433. if (likely(req->ki_users))
  434. return 0;
  435. list_del(&req->ki_list); /* remove from active_reqs */
  436. req->ki_cancel = NULL;
  437. req->ki_retry = NULL;
  438. /* Must be done under the lock to serialise against cancellation.
  439. * Call this aio_fput as it duplicates fput via the fput_work.
  440. */
  441. if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
  442. get_ioctx(ctx);
  443. spin_lock(&fput_lock);
  444. list_add(&req->ki_list, &fput_head);
  445. spin_unlock(&fput_lock);
  446. queue_work(aio_wq, &fput_work);
  447. } else
  448. really_put_req(ctx, req);
  449. return 1;
  450. }
  451. /* aio_put_req
  452. * Returns true if this put was the last user of the kiocb,
  453. * false if the request is still in use.
  454. */
  455. int fastcall aio_put_req(struct kiocb *req)
  456. {
  457. struct kioctx *ctx = req->ki_ctx;
  458. int ret;
  459. spin_lock_irq(&ctx->ctx_lock);
  460. ret = __aio_put_req(ctx, req);
  461. spin_unlock_irq(&ctx->ctx_lock);
  462. return ret;
  463. }
  464. /* Lookup an ioctx id. ioctx_list is lockless for reads.
  465. * FIXME: this is O(n) and is only suitable for development.
  466. */
  467. struct kioctx *lookup_ioctx(unsigned long ctx_id)
  468. {
  469. struct kioctx *ioctx;
  470. struct mm_struct *mm;
  471. mm = current->mm;
  472. read_lock(&mm->ioctx_list_lock);
  473. for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
  474. if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
  475. get_ioctx(ioctx);
  476. break;
  477. }
  478. read_unlock(&mm->ioctx_list_lock);
  479. return ioctx;
  480. }
  481. /*
  482. * use_mm
  483. * Makes the calling kernel thread take on the specified
  484. * mm context.
  485. * Called by the retry thread execute retries within the
  486. * iocb issuer's mm context, so that copy_from/to_user
  487. * operations work seamlessly for aio.
  488. * (Note: this routine is intended to be called only
  489. * from a kernel thread context)
  490. */
  491. static void use_mm(struct mm_struct *mm)
  492. {
  493. struct mm_struct *active_mm;
  494. struct task_struct *tsk = current;
  495. task_lock(tsk);
  496. tsk->flags |= PF_BORROWED_MM;
  497. active_mm = tsk->active_mm;
  498. atomic_inc(&mm->mm_count);
  499. tsk->mm = mm;
  500. tsk->active_mm = mm;
  501. /*
  502. * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
  503. * it won't work. Update it accordingly if you change it here
  504. */
  505. switch_mm(active_mm, mm, tsk);
  506. task_unlock(tsk);
  507. mmdrop(active_mm);
  508. }
  509. /*
  510. * unuse_mm
  511. * Reverses the effect of use_mm, i.e. releases the
  512. * specified mm context which was earlier taken on
  513. * by the calling kernel thread
  514. * (Note: this routine is intended to be called only
  515. * from a kernel thread context)
  516. */
  517. static void unuse_mm(struct mm_struct *mm)
  518. {
  519. struct task_struct *tsk = current;
  520. task_lock(tsk);
  521. tsk->flags &= ~PF_BORROWED_MM;
  522. tsk->mm = NULL;
  523. /* active_mm is still 'mm' */
  524. enter_lazy_tlb(mm, tsk);
  525. task_unlock(tsk);
  526. }
  527. /*
  528. * Queue up a kiocb to be retried. Assumes that the kiocb
  529. * has already been marked as kicked, and places it on
  530. * the retry run list for the corresponding ioctx, if it
  531. * isn't already queued. Returns 1 if it actually queued
  532. * the kiocb (to tell the caller to activate the work
  533. * queue to process it), or 0, if it found that it was
  534. * already queued.
  535. */
  536. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  537. {
  538. struct kioctx *ctx = iocb->ki_ctx;
  539. assert_spin_locked(&ctx->ctx_lock);
  540. if (list_empty(&iocb->ki_run_list)) {
  541. list_add_tail(&iocb->ki_run_list,
  542. &ctx->run_list);
  543. return 1;
  544. }
  545. return 0;
  546. }
  547. /* aio_run_iocb
  548. * This is the core aio execution routine. It is
  549. * invoked both for initial i/o submission and
  550. * subsequent retries via the aio_kick_handler.
  551. * Expects to be invoked with iocb->ki_ctx->lock
  552. * already held. The lock is released and reacquired
  553. * as needed during processing.
  554. *
  555. * Calls the iocb retry method (already setup for the
  556. * iocb on initial submission) for operation specific
  557. * handling, but takes care of most of common retry
  558. * execution details for a given iocb. The retry method
  559. * needs to be non-blocking as far as possible, to avoid
  560. * holding up other iocbs waiting to be serviced by the
  561. * retry kernel thread.
  562. *
  563. * The trickier parts in this code have to do with
  564. * ensuring that only one retry instance is in progress
  565. * for a given iocb at any time. Providing that guarantee
  566. * simplifies the coding of individual aio operations as
  567. * it avoids various potential races.
  568. */
  569. static ssize_t aio_run_iocb(struct kiocb *iocb)
  570. {
  571. struct kioctx *ctx = iocb->ki_ctx;
  572. ssize_t (*retry)(struct kiocb *);
  573. ssize_t ret;
  574. if (!(retry = iocb->ki_retry)) {
  575. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  576. return 0;
  577. }
  578. /*
  579. * We don't want the next retry iteration for this
  580. * operation to start until this one has returned and
  581. * updated the iocb state. However, wait_queue functions
  582. * can trigger a kick_iocb from interrupt context in the
  583. * meantime, indicating that data is available for the next
  584. * iteration. We want to remember that and enable the
  585. * next retry iteration _after_ we are through with
  586. * this one.
  587. *
  588. * So, in order to be able to register a "kick", but
  589. * prevent it from being queued now, we clear the kick
  590. * flag, but make the kick code *think* that the iocb is
  591. * still on the run list until we are actually done.
  592. * When we are done with this iteration, we check if
  593. * the iocb was kicked in the meantime and if so, queue
  594. * it up afresh.
  595. */
  596. kiocbClearKicked(iocb);
  597. /*
  598. * This is so that aio_complete knows it doesn't need to
  599. * pull the iocb off the run list (We can't just call
  600. * INIT_LIST_HEAD because we don't want a kick_iocb to
  601. * queue this on the run list yet)
  602. */
  603. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  604. spin_unlock_irq(&ctx->ctx_lock);
  605. /* Quit retrying if the i/o has been cancelled */
  606. if (kiocbIsCancelled(iocb)) {
  607. ret = -EINTR;
  608. aio_complete(iocb, ret, 0);
  609. /* must not access the iocb after this */
  610. goto out;
  611. }
  612. /*
  613. * Now we are all set to call the retry method in async
  614. * context. By setting this thread's io_wait context
  615. * to point to the wait queue entry inside the currently
  616. * running iocb for the duration of the retry, we ensure
  617. * that async notification wakeups are queued by the
  618. * operation instead of blocking waits, and when notified,
  619. * cause the iocb to be kicked for continuation (through
  620. * the aio_wake_function callback).
  621. */
  622. BUG_ON(current->io_wait != NULL);
  623. current->io_wait = &iocb->ki_wait;
  624. ret = retry(iocb);
  625. current->io_wait = NULL;
  626. if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
  627. BUG_ON(!list_empty(&iocb->ki_wait.task_list));
  628. aio_complete(iocb, ret, 0);
  629. }
  630. out:
  631. spin_lock_irq(&ctx->ctx_lock);
  632. if (-EIOCBRETRY == ret) {
  633. /*
  634. * OK, now that we are done with this iteration
  635. * and know that there is more left to go,
  636. * this is where we let go so that a subsequent
  637. * "kick" can start the next iteration
  638. */
  639. /* will make __queue_kicked_iocb succeed from here on */
  640. INIT_LIST_HEAD(&iocb->ki_run_list);
  641. /* we must queue the next iteration ourselves, if it
  642. * has already been kicked */
  643. if (kiocbIsKicked(iocb)) {
  644. __queue_kicked_iocb(iocb);
  645. /*
  646. * __queue_kicked_iocb will always return 1 here, because
  647. * iocb->ki_run_list is empty at this point so it should
  648. * be safe to unconditionally queue the context into the
  649. * work queue.
  650. */
  651. aio_queue_work(ctx);
  652. }
  653. }
  654. return ret;
  655. }
  656. /*
  657. * __aio_run_iocbs:
  658. * Process all pending retries queued on the ioctx
  659. * run list.
  660. * Assumes it is operating within the aio issuer's mm
  661. * context.
  662. */
  663. static int __aio_run_iocbs(struct kioctx *ctx)
  664. {
  665. struct kiocb *iocb;
  666. struct list_head run_list;
  667. assert_spin_locked(&ctx->ctx_lock);
  668. list_replace_init(&ctx->run_list, &run_list);
  669. while (!list_empty(&run_list)) {
  670. iocb = list_entry(run_list.next, struct kiocb,
  671. ki_run_list);
  672. list_del(&iocb->ki_run_list);
  673. /*
  674. * Hold an extra reference while retrying i/o.
  675. */
  676. iocb->ki_users++; /* grab extra reference */
  677. aio_run_iocb(iocb);
  678. __aio_put_req(ctx, iocb);
  679. }
  680. if (!list_empty(&ctx->run_list))
  681. return 1;
  682. return 0;
  683. }
  684. static void aio_queue_work(struct kioctx * ctx)
  685. {
  686. unsigned long timeout;
  687. /*
  688. * if someone is waiting, get the work started right
  689. * away, otherwise, use a longer delay
  690. */
  691. smp_mb();
  692. if (waitqueue_active(&ctx->wait))
  693. timeout = 1;
  694. else
  695. timeout = HZ/10;
  696. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  697. }
  698. /*
  699. * aio_run_iocbs:
  700. * Process all pending retries queued on the ioctx
  701. * run list.
  702. * Assumes it is operating within the aio issuer's mm
  703. * context.
  704. */
  705. static inline void aio_run_iocbs(struct kioctx *ctx)
  706. {
  707. int requeue;
  708. spin_lock_irq(&ctx->ctx_lock);
  709. requeue = __aio_run_iocbs(ctx);
  710. spin_unlock_irq(&ctx->ctx_lock);
  711. if (requeue)
  712. aio_queue_work(ctx);
  713. }
  714. /*
  715. * just like aio_run_iocbs, but keeps running them until
  716. * the list stays empty
  717. */
  718. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  719. {
  720. spin_lock_irq(&ctx->ctx_lock);
  721. while (__aio_run_iocbs(ctx))
  722. ;
  723. spin_unlock_irq(&ctx->ctx_lock);
  724. }
  725. /*
  726. * aio_kick_handler:
  727. * Work queue handler triggered to process pending
  728. * retries on an ioctx. Takes on the aio issuer's
  729. * mm context before running the iocbs, so that
  730. * copy_xxx_user operates on the issuer's address
  731. * space.
  732. * Run on aiod's context.
  733. */
  734. static void aio_kick_handler(struct work_struct *work)
  735. {
  736. struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
  737. mm_segment_t oldfs = get_fs();
  738. struct mm_struct *mm;
  739. int requeue;
  740. set_fs(USER_DS);
  741. use_mm(ctx->mm);
  742. spin_lock_irq(&ctx->ctx_lock);
  743. requeue =__aio_run_iocbs(ctx);
  744. mm = ctx->mm;
  745. spin_unlock_irq(&ctx->ctx_lock);
  746. unuse_mm(mm);
  747. set_fs(oldfs);
  748. /*
  749. * we're in a worker thread already, don't use queue_delayed_work,
  750. */
  751. if (requeue)
  752. queue_delayed_work(aio_wq, &ctx->wq, 0);
  753. }
  754. /*
  755. * Called by kick_iocb to queue the kiocb for retry
  756. * and if required activate the aio work queue to process
  757. * it
  758. */
  759. static void try_queue_kicked_iocb(struct kiocb *iocb)
  760. {
  761. struct kioctx *ctx = iocb->ki_ctx;
  762. unsigned long flags;
  763. int run = 0;
  764. /* We're supposed to be the only path putting the iocb back on the run
  765. * list. If we find that the iocb is *back* on a wait queue already
  766. * than retry has happened before we could queue the iocb. This also
  767. * means that the retry could have completed and freed our iocb, no
  768. * good. */
  769. BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
  770. spin_lock_irqsave(&ctx->ctx_lock, flags);
  771. /* set this inside the lock so that we can't race with aio_run_iocb()
  772. * testing it and putting the iocb on the run list under the lock */
  773. if (!kiocbTryKick(iocb))
  774. run = __queue_kicked_iocb(iocb);
  775. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  776. if (run)
  777. aio_queue_work(ctx);
  778. }
  779. /*
  780. * kick_iocb:
  781. * Called typically from a wait queue callback context
  782. * (aio_wake_function) to trigger a retry of the iocb.
  783. * The retry is usually executed by aio workqueue
  784. * threads (See aio_kick_handler).
  785. */
  786. void fastcall kick_iocb(struct kiocb *iocb)
  787. {
  788. /* sync iocbs are easy: they can only ever be executing from a
  789. * single context. */
  790. if (is_sync_kiocb(iocb)) {
  791. kiocbSetKicked(iocb);
  792. wake_up_process(iocb->ki_obj.tsk);
  793. return;
  794. }
  795. try_queue_kicked_iocb(iocb);
  796. }
  797. EXPORT_SYMBOL(kick_iocb);
  798. /* aio_complete
  799. * Called when the io request on the given iocb is complete.
  800. * Returns true if this is the last user of the request. The
  801. * only other user of the request can be the cancellation code.
  802. */
  803. int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
  804. {
  805. struct kioctx *ctx = iocb->ki_ctx;
  806. struct aio_ring_info *info;
  807. struct aio_ring *ring;
  808. struct io_event *event;
  809. unsigned long flags;
  810. unsigned long tail;
  811. int ret;
  812. /*
  813. * Special case handling for sync iocbs:
  814. * - events go directly into the iocb for fast handling
  815. * - the sync task with the iocb in its stack holds the single iocb
  816. * ref, no other paths have a way to get another ref
  817. * - the sync task helpfully left a reference to itself in the iocb
  818. */
  819. if (is_sync_kiocb(iocb)) {
  820. BUG_ON(iocb->ki_users != 1);
  821. iocb->ki_user_data = res;
  822. iocb->ki_users = 0;
  823. wake_up_process(iocb->ki_obj.tsk);
  824. return 1;
  825. }
  826. info = &ctx->ring_info;
  827. /* add a completion event to the ring buffer.
  828. * must be done holding ctx->ctx_lock to prevent
  829. * other code from messing with the tail
  830. * pointer since we might be called from irq
  831. * context.
  832. */
  833. spin_lock_irqsave(&ctx->ctx_lock, flags);
  834. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  835. list_del_init(&iocb->ki_run_list);
  836. /*
  837. * cancelled requests don't get events, userland was given one
  838. * when the event got cancelled.
  839. */
  840. if (kiocbIsCancelled(iocb))
  841. goto put_rq;
  842. ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
  843. tail = info->tail;
  844. event = aio_ring_event(info, tail, KM_IRQ0);
  845. if (++tail >= info->nr)
  846. tail = 0;
  847. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  848. event->data = iocb->ki_user_data;
  849. event->res = res;
  850. event->res2 = res2;
  851. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  852. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  853. res, res2);
  854. /* after flagging the request as done, we
  855. * must never even look at it again
  856. */
  857. smp_wmb(); /* make event visible before updating tail */
  858. info->tail = tail;
  859. ring->tail = tail;
  860. put_aio_ring_event(event, KM_IRQ0);
  861. kunmap_atomic(ring, KM_IRQ1);
  862. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  863. put_rq:
  864. /* everything turned out well, dispose of the aiocb. */
  865. ret = __aio_put_req(ctx, iocb);
  866. if (waitqueue_active(&ctx->wait))
  867. wake_up(&ctx->wait);
  868. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  869. return ret;
  870. }
  871. /* aio_read_evt
  872. * Pull an event off of the ioctx's event ring. Returns the number of
  873. * events fetched (0 or 1 ;-)
  874. * FIXME: make this use cmpxchg.
  875. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  876. */
  877. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  878. {
  879. struct aio_ring_info *info = &ioctx->ring_info;
  880. struct aio_ring *ring;
  881. unsigned long head;
  882. int ret = 0;
  883. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  884. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  885. (unsigned long)ring->head, (unsigned long)ring->tail,
  886. (unsigned long)ring->nr);
  887. if (ring->head == ring->tail)
  888. goto out;
  889. spin_lock(&info->ring_lock);
  890. head = ring->head % info->nr;
  891. if (head != ring->tail) {
  892. struct io_event *evp = aio_ring_event(info, head, KM_USER1);
  893. *ent = *evp;
  894. head = (head + 1) % info->nr;
  895. smp_mb(); /* finish reading the event before updatng the head */
  896. ring->head = head;
  897. ret = 1;
  898. put_aio_ring_event(evp, KM_USER1);
  899. }
  900. spin_unlock(&info->ring_lock);
  901. out:
  902. kunmap_atomic(ring, KM_USER0);
  903. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  904. (unsigned long)ring->head, (unsigned long)ring->tail);
  905. return ret;
  906. }
  907. struct aio_timeout {
  908. struct timer_list timer;
  909. int timed_out;
  910. struct task_struct *p;
  911. };
  912. static void timeout_func(unsigned long data)
  913. {
  914. struct aio_timeout *to = (struct aio_timeout *)data;
  915. to->timed_out = 1;
  916. wake_up_process(to->p);
  917. }
  918. static inline void init_timeout(struct aio_timeout *to)
  919. {
  920. init_timer(&to->timer);
  921. to->timer.data = (unsigned long)to;
  922. to->timer.function = timeout_func;
  923. to->timed_out = 0;
  924. to->p = current;
  925. }
  926. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  927. const struct timespec *ts)
  928. {
  929. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  930. if (time_after(to->timer.expires, jiffies))
  931. add_timer(&to->timer);
  932. else
  933. to->timed_out = 1;
  934. }
  935. static inline void clear_timeout(struct aio_timeout *to)
  936. {
  937. del_singleshot_timer_sync(&to->timer);
  938. }
  939. static int read_events(struct kioctx *ctx,
  940. long min_nr, long nr,
  941. struct io_event __user *event,
  942. struct timespec __user *timeout)
  943. {
  944. long start_jiffies = jiffies;
  945. struct task_struct *tsk = current;
  946. DECLARE_WAITQUEUE(wait, tsk);
  947. int ret;
  948. int i = 0;
  949. struct io_event ent;
  950. struct aio_timeout to;
  951. int retry = 0;
  952. /* needed to zero any padding within an entry (there shouldn't be
  953. * any, but C is fun!
  954. */
  955. memset(&ent, 0, sizeof(ent));
  956. retry:
  957. ret = 0;
  958. while (likely(i < nr)) {
  959. ret = aio_read_evt(ctx, &ent);
  960. if (unlikely(ret <= 0))
  961. break;
  962. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  963. ent.data, ent.obj, ent.res, ent.res2);
  964. /* Could we split the check in two? */
  965. ret = -EFAULT;
  966. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  967. dprintk("aio: lost an event due to EFAULT.\n");
  968. break;
  969. }
  970. ret = 0;
  971. /* Good, event copied to userland, update counts. */
  972. event ++;
  973. i ++;
  974. }
  975. if (min_nr <= i)
  976. return i;
  977. if (ret)
  978. return ret;
  979. /* End fast path */
  980. /* racey check, but it gets redone */
  981. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  982. retry = 1;
  983. aio_run_all_iocbs(ctx);
  984. goto retry;
  985. }
  986. init_timeout(&to);
  987. if (timeout) {
  988. struct timespec ts;
  989. ret = -EFAULT;
  990. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  991. goto out;
  992. set_timeout(start_jiffies, &to, &ts);
  993. }
  994. while (likely(i < nr)) {
  995. add_wait_queue_exclusive(&ctx->wait, &wait);
  996. do {
  997. set_task_state(tsk, TASK_INTERRUPTIBLE);
  998. ret = aio_read_evt(ctx, &ent);
  999. if (ret)
  1000. break;
  1001. if (min_nr <= i)
  1002. break;
  1003. ret = 0;
  1004. if (to.timed_out) /* Only check after read evt */
  1005. break;
  1006. schedule();
  1007. if (signal_pending(tsk)) {
  1008. ret = -EINTR;
  1009. break;
  1010. }
  1011. /*ret = aio_read_evt(ctx, &ent);*/
  1012. } while (1) ;
  1013. set_task_state(tsk, TASK_RUNNING);
  1014. remove_wait_queue(&ctx->wait, &wait);
  1015. if (unlikely(ret <= 0))
  1016. break;
  1017. ret = -EFAULT;
  1018. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1019. dprintk("aio: lost an event due to EFAULT.\n");
  1020. break;
  1021. }
  1022. /* Good, event copied to userland, update counts. */
  1023. event ++;
  1024. i ++;
  1025. }
  1026. if (timeout)
  1027. clear_timeout(&to);
  1028. out:
  1029. return i ? i : ret;
  1030. }
  1031. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1032. * against races with itself via ->dead.
  1033. */
  1034. static void io_destroy(struct kioctx *ioctx)
  1035. {
  1036. struct mm_struct *mm = current->mm;
  1037. struct kioctx **tmp;
  1038. int was_dead;
  1039. /* delete the entry from the list is someone else hasn't already */
  1040. write_lock(&mm->ioctx_list_lock);
  1041. was_dead = ioctx->dead;
  1042. ioctx->dead = 1;
  1043. for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
  1044. tmp = &(*tmp)->next)
  1045. ;
  1046. if (*tmp)
  1047. *tmp = ioctx->next;
  1048. write_unlock(&mm->ioctx_list_lock);
  1049. dprintk("aio_release(%p)\n", ioctx);
  1050. if (likely(!was_dead))
  1051. put_ioctx(ioctx); /* twice for the list */
  1052. aio_cancel_all(ioctx);
  1053. wait_for_all_aios(ioctx);
  1054. put_ioctx(ioctx); /* once for the lookup */
  1055. }
  1056. /* sys_io_setup:
  1057. * Create an aio_context capable of receiving at least nr_events.
  1058. * ctxp must not point to an aio_context that already exists, and
  1059. * must be initialized to 0 prior to the call. On successful
  1060. * creation of the aio_context, *ctxp is filled in with the resulting
  1061. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1062. * if the specified nr_events exceeds internal limits. May fail
  1063. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1064. * of available events. May fail with -ENOMEM if insufficient kernel
  1065. * resources are available. May fail with -EFAULT if an invalid
  1066. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1067. * implemented.
  1068. */
  1069. asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
  1070. {
  1071. struct kioctx *ioctx = NULL;
  1072. unsigned long ctx;
  1073. long ret;
  1074. ret = get_user(ctx, ctxp);
  1075. if (unlikely(ret))
  1076. goto out;
  1077. ret = -EINVAL;
  1078. if (unlikely(ctx || nr_events == 0)) {
  1079. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  1080. ctx, nr_events);
  1081. goto out;
  1082. }
  1083. ioctx = ioctx_alloc(nr_events);
  1084. ret = PTR_ERR(ioctx);
  1085. if (!IS_ERR(ioctx)) {
  1086. ret = put_user(ioctx->user_id, ctxp);
  1087. if (!ret)
  1088. return 0;
  1089. get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
  1090. io_destroy(ioctx);
  1091. }
  1092. out:
  1093. return ret;
  1094. }
  1095. /* sys_io_destroy:
  1096. * Destroy the aio_context specified. May cancel any outstanding
  1097. * AIOs and block on completion. Will fail with -ENOSYS if not
  1098. * implemented. May fail with -EFAULT if the context pointed to
  1099. * is invalid.
  1100. */
  1101. asmlinkage long sys_io_destroy(aio_context_t ctx)
  1102. {
  1103. struct kioctx *ioctx = lookup_ioctx(ctx);
  1104. if (likely(NULL != ioctx)) {
  1105. io_destroy(ioctx);
  1106. return 0;
  1107. }
  1108. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1109. return -EINVAL;
  1110. }
  1111. static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
  1112. {
  1113. struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
  1114. BUG_ON(ret <= 0);
  1115. while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
  1116. ssize_t this = min((ssize_t)iov->iov_len, ret);
  1117. iov->iov_base += this;
  1118. iov->iov_len -= this;
  1119. iocb->ki_left -= this;
  1120. ret -= this;
  1121. if (iov->iov_len == 0) {
  1122. iocb->ki_cur_seg++;
  1123. iov++;
  1124. }
  1125. }
  1126. /* the caller should not have done more io than what fit in
  1127. * the remaining iovecs */
  1128. BUG_ON(ret > 0 && iocb->ki_left == 0);
  1129. }
  1130. static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
  1131. {
  1132. struct file *file = iocb->ki_filp;
  1133. struct address_space *mapping = file->f_mapping;
  1134. struct inode *inode = mapping->host;
  1135. ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
  1136. unsigned long, loff_t);
  1137. ssize_t ret = 0;
  1138. unsigned short opcode;
  1139. if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
  1140. (iocb->ki_opcode == IOCB_CMD_PREAD)) {
  1141. rw_op = file->f_op->aio_read;
  1142. opcode = IOCB_CMD_PREADV;
  1143. } else {
  1144. rw_op = file->f_op->aio_write;
  1145. opcode = IOCB_CMD_PWRITEV;
  1146. }
  1147. do {
  1148. ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
  1149. iocb->ki_nr_segs - iocb->ki_cur_seg,
  1150. iocb->ki_pos);
  1151. if (ret > 0)
  1152. aio_advance_iovec(iocb, ret);
  1153. /* retry all partial writes. retry partial reads as long as its a
  1154. * regular file. */
  1155. } while (ret > 0 && iocb->ki_left > 0 &&
  1156. (opcode == IOCB_CMD_PWRITEV ||
  1157. (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
  1158. /* This means we must have transferred all that we could */
  1159. /* No need to retry anymore */
  1160. if ((ret == 0) || (iocb->ki_left == 0))
  1161. ret = iocb->ki_nbytes - iocb->ki_left;
  1162. return ret;
  1163. }
  1164. static ssize_t aio_fdsync(struct kiocb *iocb)
  1165. {
  1166. struct file *file = iocb->ki_filp;
  1167. ssize_t ret = -EINVAL;
  1168. if (file->f_op->aio_fsync)
  1169. ret = file->f_op->aio_fsync(iocb, 1);
  1170. return ret;
  1171. }
  1172. static ssize_t aio_fsync(struct kiocb *iocb)
  1173. {
  1174. struct file *file = iocb->ki_filp;
  1175. ssize_t ret = -EINVAL;
  1176. if (file->f_op->aio_fsync)
  1177. ret = file->f_op->aio_fsync(iocb, 0);
  1178. return ret;
  1179. }
  1180. static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
  1181. {
  1182. ssize_t ret;
  1183. ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
  1184. kiocb->ki_nbytes, 1,
  1185. &kiocb->ki_inline_vec, &kiocb->ki_iovec);
  1186. if (ret < 0)
  1187. goto out;
  1188. kiocb->ki_nr_segs = kiocb->ki_nbytes;
  1189. kiocb->ki_cur_seg = 0;
  1190. /* ki_nbytes/left now reflect bytes instead of segs */
  1191. kiocb->ki_nbytes = ret;
  1192. kiocb->ki_left = ret;
  1193. ret = 0;
  1194. out:
  1195. return ret;
  1196. }
  1197. static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
  1198. {
  1199. kiocb->ki_iovec = &kiocb->ki_inline_vec;
  1200. kiocb->ki_iovec->iov_base = kiocb->ki_buf;
  1201. kiocb->ki_iovec->iov_len = kiocb->ki_left;
  1202. kiocb->ki_nr_segs = 1;
  1203. kiocb->ki_cur_seg = 0;
  1204. return 0;
  1205. }
  1206. /*
  1207. * aio_setup_iocb:
  1208. * Performs the initial checks and aio retry method
  1209. * setup for the kiocb at the time of io submission.
  1210. */
  1211. static ssize_t aio_setup_iocb(struct kiocb *kiocb)
  1212. {
  1213. struct file *file = kiocb->ki_filp;
  1214. ssize_t ret = 0;
  1215. switch (kiocb->ki_opcode) {
  1216. case IOCB_CMD_PREAD:
  1217. ret = -EBADF;
  1218. if (unlikely(!(file->f_mode & FMODE_READ)))
  1219. break;
  1220. ret = -EFAULT;
  1221. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1222. kiocb->ki_left)))
  1223. break;
  1224. ret = security_file_permission(file, MAY_READ);
  1225. if (unlikely(ret))
  1226. break;
  1227. ret = aio_setup_single_vector(kiocb);
  1228. if (ret)
  1229. break;
  1230. ret = -EINVAL;
  1231. if (file->f_op->aio_read)
  1232. kiocb->ki_retry = aio_rw_vect_retry;
  1233. break;
  1234. case IOCB_CMD_PWRITE:
  1235. ret = -EBADF;
  1236. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1237. break;
  1238. ret = -EFAULT;
  1239. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1240. kiocb->ki_left)))
  1241. break;
  1242. ret = security_file_permission(file, MAY_WRITE);
  1243. if (unlikely(ret))
  1244. break;
  1245. ret = aio_setup_single_vector(kiocb);
  1246. if (ret)
  1247. break;
  1248. ret = -EINVAL;
  1249. if (file->f_op->aio_write)
  1250. kiocb->ki_retry = aio_rw_vect_retry;
  1251. break;
  1252. case IOCB_CMD_PREADV:
  1253. ret = -EBADF;
  1254. if (unlikely(!(file->f_mode & FMODE_READ)))
  1255. break;
  1256. ret = security_file_permission(file, MAY_READ);
  1257. if (unlikely(ret))
  1258. break;
  1259. ret = aio_setup_vectored_rw(READ, kiocb);
  1260. if (ret)
  1261. break;
  1262. ret = -EINVAL;
  1263. if (file->f_op->aio_read)
  1264. kiocb->ki_retry = aio_rw_vect_retry;
  1265. break;
  1266. case IOCB_CMD_PWRITEV:
  1267. ret = -EBADF;
  1268. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1269. break;
  1270. ret = security_file_permission(file, MAY_WRITE);
  1271. if (unlikely(ret))
  1272. break;
  1273. ret = aio_setup_vectored_rw(WRITE, kiocb);
  1274. if (ret)
  1275. break;
  1276. ret = -EINVAL;
  1277. if (file->f_op->aio_write)
  1278. kiocb->ki_retry = aio_rw_vect_retry;
  1279. break;
  1280. case IOCB_CMD_FDSYNC:
  1281. ret = -EINVAL;
  1282. if (file->f_op->aio_fsync)
  1283. kiocb->ki_retry = aio_fdsync;
  1284. break;
  1285. case IOCB_CMD_FSYNC:
  1286. ret = -EINVAL;
  1287. if (file->f_op->aio_fsync)
  1288. kiocb->ki_retry = aio_fsync;
  1289. break;
  1290. default:
  1291. dprintk("EINVAL: io_submit: no operation provided\n");
  1292. ret = -EINVAL;
  1293. }
  1294. if (!kiocb->ki_retry)
  1295. return ret;
  1296. return 0;
  1297. }
  1298. /*
  1299. * aio_wake_function:
  1300. * wait queue callback function for aio notification,
  1301. * Simply triggers a retry of the operation via kick_iocb.
  1302. *
  1303. * This callback is specified in the wait queue entry in
  1304. * a kiocb (current->io_wait points to this wait queue
  1305. * entry when an aio operation executes; it is used
  1306. * instead of a synchronous wait when an i/o blocking
  1307. * condition is encountered during aio).
  1308. *
  1309. * Note:
  1310. * This routine is executed with the wait queue lock held.
  1311. * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
  1312. * the ioctx lock inside the wait queue lock. This is safe
  1313. * because this callback isn't used for wait queues which
  1314. * are nested inside ioctx lock (i.e. ctx->wait)
  1315. */
  1316. static int aio_wake_function(wait_queue_t *wait, unsigned mode,
  1317. int sync, void *key)
  1318. {
  1319. struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
  1320. list_del_init(&wait->task_list);
  1321. kick_iocb(iocb);
  1322. return 1;
  1323. }
  1324. int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1325. struct iocb *iocb)
  1326. {
  1327. struct kiocb *req;
  1328. struct file *file;
  1329. ssize_t ret;
  1330. /* enforce forwards compatibility on users */
  1331. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
  1332. iocb->aio_reserved3)) {
  1333. pr_debug("EINVAL: io_submit: reserve field set\n");
  1334. return -EINVAL;
  1335. }
  1336. /* prevent overflows */
  1337. if (unlikely(
  1338. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1339. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1340. ((ssize_t)iocb->aio_nbytes < 0)
  1341. )) {
  1342. pr_debug("EINVAL: io_submit: overflow check\n");
  1343. return -EINVAL;
  1344. }
  1345. file = fget(iocb->aio_fildes);
  1346. if (unlikely(!file))
  1347. return -EBADF;
  1348. req = aio_get_req(ctx); /* returns with 2 references to req */
  1349. if (unlikely(!req)) {
  1350. fput(file);
  1351. return -EAGAIN;
  1352. }
  1353. req->ki_filp = file;
  1354. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1355. if (unlikely(ret)) {
  1356. dprintk("EFAULT: aio_key\n");
  1357. goto out_put_req;
  1358. }
  1359. req->ki_obj.user = user_iocb;
  1360. req->ki_user_data = iocb->aio_data;
  1361. req->ki_pos = iocb->aio_offset;
  1362. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1363. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1364. req->ki_opcode = iocb->aio_lio_opcode;
  1365. init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
  1366. INIT_LIST_HEAD(&req->ki_wait.task_list);
  1367. ret = aio_setup_iocb(req);
  1368. if (ret)
  1369. goto out_put_req;
  1370. spin_lock_irq(&ctx->ctx_lock);
  1371. aio_run_iocb(req);
  1372. if (!list_empty(&ctx->run_list)) {
  1373. /* drain the run list */
  1374. while (__aio_run_iocbs(ctx))
  1375. ;
  1376. }
  1377. spin_unlock_irq(&ctx->ctx_lock);
  1378. aio_put_req(req); /* drop extra ref to req */
  1379. return 0;
  1380. out_put_req:
  1381. aio_put_req(req); /* drop extra ref to req */
  1382. aio_put_req(req); /* drop i/o ref to req */
  1383. return ret;
  1384. }
  1385. /* sys_io_submit:
  1386. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1387. * the number of iocbs queued. May return -EINVAL if the aio_context
  1388. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1389. * *iocbpp[0] is not properly initialized, if the operation specified
  1390. * is invalid for the file descriptor in the iocb. May fail with
  1391. * -EFAULT if any of the data structures point to invalid data. May
  1392. * fail with -EBADF if the file descriptor specified in the first
  1393. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1394. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1395. * fail with -ENOSYS if not implemented.
  1396. */
  1397. asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
  1398. struct iocb __user * __user *iocbpp)
  1399. {
  1400. struct kioctx *ctx;
  1401. long ret = 0;
  1402. int i;
  1403. if (unlikely(nr < 0))
  1404. return -EINVAL;
  1405. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1406. return -EFAULT;
  1407. ctx = lookup_ioctx(ctx_id);
  1408. if (unlikely(!ctx)) {
  1409. pr_debug("EINVAL: io_submit: invalid context id\n");
  1410. return -EINVAL;
  1411. }
  1412. /*
  1413. * AKPM: should this return a partial result if some of the IOs were
  1414. * successfully submitted?
  1415. */
  1416. for (i=0; i<nr; i++) {
  1417. struct iocb __user *user_iocb;
  1418. struct iocb tmp;
  1419. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1420. ret = -EFAULT;
  1421. break;
  1422. }
  1423. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1424. ret = -EFAULT;
  1425. break;
  1426. }
  1427. ret = io_submit_one(ctx, user_iocb, &tmp);
  1428. if (ret)
  1429. break;
  1430. }
  1431. put_ioctx(ctx);
  1432. return i ? i : ret;
  1433. }
  1434. /* lookup_kiocb
  1435. * Finds a given iocb for cancellation.
  1436. */
  1437. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1438. u32 key)
  1439. {
  1440. struct list_head *pos;
  1441. assert_spin_locked(&ctx->ctx_lock);
  1442. /* TODO: use a hash or array, this sucks. */
  1443. list_for_each(pos, &ctx->active_reqs) {
  1444. struct kiocb *kiocb = list_kiocb(pos);
  1445. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1446. return kiocb;
  1447. }
  1448. return NULL;
  1449. }
  1450. /* sys_io_cancel:
  1451. * Attempts to cancel an iocb previously passed to io_submit. If
  1452. * the operation is successfully cancelled, the resulting event is
  1453. * copied into the memory pointed to by result without being placed
  1454. * into the completion queue and 0 is returned. May fail with
  1455. * -EFAULT if any of the data structures pointed to are invalid.
  1456. * May fail with -EINVAL if aio_context specified by ctx_id is
  1457. * invalid. May fail with -EAGAIN if the iocb specified was not
  1458. * cancelled. Will fail with -ENOSYS if not implemented.
  1459. */
  1460. asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
  1461. struct io_event __user *result)
  1462. {
  1463. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1464. struct kioctx *ctx;
  1465. struct kiocb *kiocb;
  1466. u32 key;
  1467. int ret;
  1468. ret = get_user(key, &iocb->aio_key);
  1469. if (unlikely(ret))
  1470. return -EFAULT;
  1471. ctx = lookup_ioctx(ctx_id);
  1472. if (unlikely(!ctx))
  1473. return -EINVAL;
  1474. spin_lock_irq(&ctx->ctx_lock);
  1475. ret = -EAGAIN;
  1476. kiocb = lookup_kiocb(ctx, iocb, key);
  1477. if (kiocb && kiocb->ki_cancel) {
  1478. cancel = kiocb->ki_cancel;
  1479. kiocb->ki_users ++;
  1480. kiocbSetCancelled(kiocb);
  1481. } else
  1482. cancel = NULL;
  1483. spin_unlock_irq(&ctx->ctx_lock);
  1484. if (NULL != cancel) {
  1485. struct io_event tmp;
  1486. pr_debug("calling cancel\n");
  1487. memset(&tmp, 0, sizeof(tmp));
  1488. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1489. tmp.data = kiocb->ki_user_data;
  1490. ret = cancel(kiocb, &tmp);
  1491. if (!ret) {
  1492. /* Cancellation succeeded -- copy the result
  1493. * into the user's buffer.
  1494. */
  1495. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1496. ret = -EFAULT;
  1497. }
  1498. } else
  1499. ret = -EINVAL;
  1500. put_ioctx(ctx);
  1501. return ret;
  1502. }
  1503. /* io_getevents:
  1504. * Attempts to read at least min_nr events and up to nr events from
  1505. * the completion queue for the aio_context specified by ctx_id. May
  1506. * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
  1507. * if nr is out of range, if when is out of range. May fail with
  1508. * -EFAULT if any of the memory specified to is invalid. May return
  1509. * 0 or < min_nr if no events are available and the timeout specified
  1510. * by when has elapsed, where when == NULL specifies an infinite
  1511. * timeout. Note that the timeout pointed to by when is relative and
  1512. * will be updated if not NULL and the operation blocks. Will fail
  1513. * with -ENOSYS if not implemented.
  1514. */
  1515. asmlinkage long sys_io_getevents(aio_context_t ctx_id,
  1516. long min_nr,
  1517. long nr,
  1518. struct io_event __user *events,
  1519. struct timespec __user *timeout)
  1520. {
  1521. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1522. long ret = -EINVAL;
  1523. if (likely(ioctx)) {
  1524. if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
  1525. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1526. put_ioctx(ioctx);
  1527. }
  1528. return ret;
  1529. }
  1530. __initcall(aio_setup);
  1531. EXPORT_SYMBOL(aio_complete);
  1532. EXPORT_SYMBOL(aio_put_req);
  1533. EXPORT_SYMBOL(wait_on_sync_kiocb);