libsrp.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441
  1. /*
  2. * SCSI RDAM Protocol lib functions
  3. *
  4. * Copyright (C) 2006 FUJITA Tomonori <tomof@acm.org>
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation; either version 2 of the
  9. * License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful, but
  12. * WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  19. * 02110-1301 USA
  20. */
  21. #include <linux/err.h>
  22. #include <linux/kfifo.h>
  23. #include <linux/scatterlist.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/pci.h>
  26. #include <scsi/scsi.h>
  27. #include <scsi/scsi_cmnd.h>
  28. #include <scsi/scsi_tcq.h>
  29. #include <scsi/scsi_tgt.h>
  30. #include <scsi/srp.h>
  31. #include <scsi/libsrp.h>
  32. enum srp_task_attributes {
  33. SRP_SIMPLE_TASK = 0,
  34. SRP_HEAD_TASK = 1,
  35. SRP_ORDERED_TASK = 2,
  36. SRP_ACA_TASK = 4
  37. };
  38. /* tmp - will replace with SCSI logging stuff */
  39. #define eprintk(fmt, args...) \
  40. do { \
  41. printk("%s(%d) " fmt, __FUNCTION__, __LINE__, ##args); \
  42. } while (0)
  43. /* #define dprintk eprintk */
  44. #define dprintk(fmt, args...)
  45. static int srp_iu_pool_alloc(struct srp_queue *q, size_t max,
  46. struct srp_buf **ring)
  47. {
  48. int i;
  49. struct iu_entry *iue;
  50. q->pool = kcalloc(max, sizeof(struct iu_entry *), GFP_KERNEL);
  51. if (!q->pool)
  52. return -ENOMEM;
  53. q->items = kcalloc(max, sizeof(struct iu_entry), GFP_KERNEL);
  54. if (!q->items)
  55. goto free_pool;
  56. spin_lock_init(&q->lock);
  57. q->queue = kfifo_init((void *) q->pool, max * sizeof(void *),
  58. GFP_KERNEL, &q->lock);
  59. if (IS_ERR(q->queue))
  60. goto free_item;
  61. for (i = 0, iue = q->items; i < max; i++) {
  62. __kfifo_put(q->queue, (void *) &iue, sizeof(void *));
  63. iue->sbuf = ring[i];
  64. iue++;
  65. }
  66. return 0;
  67. free_item:
  68. kfree(q->items);
  69. free_pool:
  70. kfree(q->pool);
  71. return -ENOMEM;
  72. }
  73. static void srp_iu_pool_free(struct srp_queue *q)
  74. {
  75. kfree(q->items);
  76. kfree(q->pool);
  77. }
  78. static struct srp_buf **srp_ring_alloc(struct device *dev,
  79. size_t max, size_t size)
  80. {
  81. int i;
  82. struct srp_buf **ring;
  83. ring = kcalloc(max, sizeof(struct srp_buf *), GFP_KERNEL);
  84. if (!ring)
  85. return NULL;
  86. for (i = 0; i < max; i++) {
  87. ring[i] = kzalloc(sizeof(struct srp_buf), GFP_KERNEL);
  88. if (!ring[i])
  89. goto out;
  90. ring[i]->buf = dma_alloc_coherent(dev, size, &ring[i]->dma,
  91. GFP_KERNEL);
  92. if (!ring[i]->buf)
  93. goto out;
  94. }
  95. return ring;
  96. out:
  97. for (i = 0; i < max && ring[i]; i++) {
  98. if (ring[i]->buf)
  99. dma_free_coherent(dev, size, ring[i]->buf, ring[i]->dma);
  100. kfree(ring[i]);
  101. }
  102. kfree(ring);
  103. return NULL;
  104. }
  105. static void srp_ring_free(struct device *dev, struct srp_buf **ring, size_t max,
  106. size_t size)
  107. {
  108. int i;
  109. for (i = 0; i < max; i++) {
  110. dma_free_coherent(dev, size, ring[i]->buf, ring[i]->dma);
  111. kfree(ring[i]);
  112. }
  113. }
  114. int srp_target_alloc(struct srp_target *target, struct device *dev,
  115. size_t nr, size_t iu_size)
  116. {
  117. int err;
  118. spin_lock_init(&target->lock);
  119. INIT_LIST_HEAD(&target->cmd_queue);
  120. target->dev = dev;
  121. target->dev->driver_data = target;
  122. target->srp_iu_size = iu_size;
  123. target->rx_ring_size = nr;
  124. target->rx_ring = srp_ring_alloc(target->dev, nr, iu_size);
  125. if (!target->rx_ring)
  126. return -ENOMEM;
  127. err = srp_iu_pool_alloc(&target->iu_queue, nr, target->rx_ring);
  128. if (err)
  129. goto free_ring;
  130. return 0;
  131. free_ring:
  132. srp_ring_free(target->dev, target->rx_ring, nr, iu_size);
  133. return -ENOMEM;
  134. }
  135. EXPORT_SYMBOL_GPL(srp_target_alloc);
  136. void srp_target_free(struct srp_target *target)
  137. {
  138. srp_ring_free(target->dev, target->rx_ring, target->rx_ring_size,
  139. target->srp_iu_size);
  140. srp_iu_pool_free(&target->iu_queue);
  141. }
  142. EXPORT_SYMBOL_GPL(srp_target_free);
  143. struct iu_entry *srp_iu_get(struct srp_target *target)
  144. {
  145. struct iu_entry *iue = NULL;
  146. kfifo_get(target->iu_queue.queue, (void *) &iue, sizeof(void *));
  147. if (!iue)
  148. return iue;
  149. iue->target = target;
  150. INIT_LIST_HEAD(&iue->ilist);
  151. iue->flags = 0;
  152. return iue;
  153. }
  154. EXPORT_SYMBOL_GPL(srp_iu_get);
  155. void srp_iu_put(struct iu_entry *iue)
  156. {
  157. kfifo_put(iue->target->iu_queue.queue, (void *) &iue, sizeof(void *));
  158. }
  159. EXPORT_SYMBOL_GPL(srp_iu_put);
  160. static int srp_direct_data(struct scsi_cmnd *sc, struct srp_direct_buf *md,
  161. enum dma_data_direction dir, srp_rdma_t rdma_io,
  162. int dma_map, int ext_desc)
  163. {
  164. struct iu_entry *iue = NULL;
  165. struct scatterlist *sg = NULL;
  166. int err, nsg = 0, len;
  167. if (dma_map) {
  168. iue = (struct iu_entry *) sc->SCp.ptr;
  169. sg = sc->request_buffer;
  170. dprintk("%p %u %u %d\n", iue, sc->request_bufflen,
  171. md->len, sc->use_sg);
  172. nsg = dma_map_sg(iue->target->dev, sg, sc->use_sg,
  173. DMA_BIDIRECTIONAL);
  174. if (!nsg) {
  175. printk("fail to map %p %d\n", iue, sc->use_sg);
  176. return 0;
  177. }
  178. len = min(sc->request_bufflen, md->len);
  179. } else
  180. len = md->len;
  181. err = rdma_io(sc, sg, nsg, md, 1, dir, len);
  182. if (dma_map)
  183. dma_unmap_sg(iue->target->dev, sg, nsg, DMA_BIDIRECTIONAL);
  184. return err;
  185. }
  186. static int srp_indirect_data(struct scsi_cmnd *sc, struct srp_cmd *cmd,
  187. struct srp_indirect_buf *id,
  188. enum dma_data_direction dir, srp_rdma_t rdma_io,
  189. int dma_map, int ext_desc)
  190. {
  191. struct iu_entry *iue = NULL;
  192. struct srp_direct_buf *md = NULL;
  193. struct scatterlist dummy, *sg = NULL;
  194. dma_addr_t token = 0;
  195. long err;
  196. unsigned int done = 0;
  197. int nmd, nsg = 0, len;
  198. if (dma_map || ext_desc) {
  199. iue = (struct iu_entry *) sc->SCp.ptr;
  200. sg = sc->request_buffer;
  201. dprintk("%p %u %u %d %d\n",
  202. iue, sc->request_bufflen, id->len,
  203. cmd->data_in_desc_cnt, cmd->data_out_desc_cnt);
  204. }
  205. nmd = id->table_desc.len / sizeof(struct srp_direct_buf);
  206. if ((dir == DMA_FROM_DEVICE && nmd == cmd->data_in_desc_cnt) ||
  207. (dir == DMA_TO_DEVICE && nmd == cmd->data_out_desc_cnt)) {
  208. md = &id->desc_list[0];
  209. goto rdma;
  210. }
  211. if (ext_desc && dma_map) {
  212. md = dma_alloc_coherent(iue->target->dev, id->table_desc.len,
  213. &token, GFP_KERNEL);
  214. if (!md) {
  215. eprintk("Can't get dma memory %u\n", id->table_desc.len);
  216. return -ENOMEM;
  217. }
  218. sg_init_one(&dummy, md, id->table_desc.len);
  219. sg_dma_address(&dummy) = token;
  220. err = rdma_io(sc, &dummy, 1, &id->table_desc, 1, DMA_TO_DEVICE,
  221. id->table_desc.len);
  222. if (err < 0) {
  223. eprintk("Error copying indirect table %ld\n", err);
  224. goto free_mem;
  225. }
  226. } else {
  227. eprintk("This command uses external indirect buffer\n");
  228. return -EINVAL;
  229. }
  230. rdma:
  231. if (dma_map) {
  232. nsg = dma_map_sg(iue->target->dev, sg, sc->use_sg, DMA_BIDIRECTIONAL);
  233. if (!nsg) {
  234. eprintk("fail to map %p %d\n", iue, sc->use_sg);
  235. goto free_mem;
  236. }
  237. len = min(sc->request_bufflen, id->len);
  238. } else
  239. len = id->len;
  240. err = rdma_io(sc, sg, nsg, md, nmd, dir, len);
  241. if (dma_map)
  242. dma_unmap_sg(iue->target->dev, sg, nsg, DMA_BIDIRECTIONAL);
  243. free_mem:
  244. if (token && dma_map)
  245. dma_free_coherent(iue->target->dev, id->table_desc.len, md, token);
  246. return done;
  247. }
  248. static int data_out_desc_size(struct srp_cmd *cmd)
  249. {
  250. int size = 0;
  251. u8 fmt = cmd->buf_fmt >> 4;
  252. switch (fmt) {
  253. case SRP_NO_DATA_DESC:
  254. break;
  255. case SRP_DATA_DESC_DIRECT:
  256. size = sizeof(struct srp_direct_buf);
  257. break;
  258. case SRP_DATA_DESC_INDIRECT:
  259. size = sizeof(struct srp_indirect_buf) +
  260. sizeof(struct srp_direct_buf) * cmd->data_out_desc_cnt;
  261. break;
  262. default:
  263. eprintk("client error. Invalid data_out_format %x\n", fmt);
  264. break;
  265. }
  266. return size;
  267. }
  268. /*
  269. * TODO: this can be called multiple times for a single command if it
  270. * has very long data.
  271. */
  272. int srp_transfer_data(struct scsi_cmnd *sc, struct srp_cmd *cmd,
  273. srp_rdma_t rdma_io, int dma_map, int ext_desc)
  274. {
  275. struct srp_direct_buf *md;
  276. struct srp_indirect_buf *id;
  277. enum dma_data_direction dir;
  278. int offset, err = 0;
  279. u8 format;
  280. offset = cmd->add_cdb_len * 4;
  281. dir = srp_cmd_direction(cmd);
  282. if (dir == DMA_FROM_DEVICE)
  283. offset += data_out_desc_size(cmd);
  284. if (dir == DMA_TO_DEVICE)
  285. format = cmd->buf_fmt >> 4;
  286. else
  287. format = cmd->buf_fmt & ((1U << 4) - 1);
  288. switch (format) {
  289. case SRP_NO_DATA_DESC:
  290. break;
  291. case SRP_DATA_DESC_DIRECT:
  292. md = (struct srp_direct_buf *)
  293. (cmd->add_data + offset);
  294. err = srp_direct_data(sc, md, dir, rdma_io, dma_map, ext_desc);
  295. break;
  296. case SRP_DATA_DESC_INDIRECT:
  297. id = (struct srp_indirect_buf *)
  298. (cmd->add_data + offset);
  299. err = srp_indirect_data(sc, cmd, id, dir, rdma_io, dma_map,
  300. ext_desc);
  301. break;
  302. default:
  303. eprintk("Unknown format %d %x\n", dir, format);
  304. break;
  305. }
  306. return err;
  307. }
  308. EXPORT_SYMBOL_GPL(srp_transfer_data);
  309. static int vscsis_data_length(struct srp_cmd *cmd, enum dma_data_direction dir)
  310. {
  311. struct srp_direct_buf *md;
  312. struct srp_indirect_buf *id;
  313. int len = 0, offset = cmd->add_cdb_len * 4;
  314. u8 fmt;
  315. if (dir == DMA_TO_DEVICE)
  316. fmt = cmd->buf_fmt >> 4;
  317. else {
  318. fmt = cmd->buf_fmt & ((1U << 4) - 1);
  319. offset += data_out_desc_size(cmd);
  320. }
  321. switch (fmt) {
  322. case SRP_NO_DATA_DESC:
  323. break;
  324. case SRP_DATA_DESC_DIRECT:
  325. md = (struct srp_direct_buf *) (cmd->add_data + offset);
  326. len = md->len;
  327. break;
  328. case SRP_DATA_DESC_INDIRECT:
  329. id = (struct srp_indirect_buf *) (cmd->add_data + offset);
  330. len = id->len;
  331. break;
  332. default:
  333. eprintk("invalid data format %x\n", fmt);
  334. break;
  335. }
  336. return len;
  337. }
  338. int srp_cmd_queue(struct Scsi_Host *shost, struct srp_cmd *cmd, void *info,
  339. u64 addr)
  340. {
  341. enum dma_data_direction dir;
  342. struct scsi_cmnd *sc;
  343. int tag, len, err;
  344. switch (cmd->task_attr) {
  345. case SRP_SIMPLE_TASK:
  346. tag = MSG_SIMPLE_TAG;
  347. break;
  348. case SRP_ORDERED_TASK:
  349. tag = MSG_ORDERED_TAG;
  350. break;
  351. case SRP_HEAD_TASK:
  352. tag = MSG_HEAD_TAG;
  353. break;
  354. default:
  355. eprintk("Task attribute %d not supported\n", cmd->task_attr);
  356. tag = MSG_ORDERED_TAG;
  357. }
  358. dir = srp_cmd_direction(cmd);
  359. len = vscsis_data_length(cmd, dir);
  360. dprintk("%p %x %lx %d %d %d %llx\n", info, cmd->cdb[0],
  361. cmd->lun, dir, len, tag, (unsigned long long) cmd->tag);
  362. sc = scsi_host_get_command(shost, dir, GFP_KERNEL);
  363. if (!sc)
  364. return -ENOMEM;
  365. sc->SCp.ptr = info;
  366. memcpy(sc->cmnd, cmd->cdb, MAX_COMMAND_SIZE);
  367. sc->request_bufflen = len;
  368. sc->request_buffer = (void *) (unsigned long) addr;
  369. sc->tag = tag;
  370. err = scsi_tgt_queue_command(sc, (struct scsi_lun *) &cmd->lun, cmd->tag);
  371. if (err)
  372. scsi_host_put_command(shost, sc);
  373. return err;
  374. }
  375. EXPORT_SYMBOL_GPL(srp_cmd_queue);
  376. MODULE_DESCRIPTION("SCSI RDAM Protocol lib functions");
  377. MODULE_AUTHOR("FUJITA Tomonori");
  378. MODULE_LICENSE("GPL");