paging_tmpl.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_PTE_COPY_MASK PT64_PTE_COPY_MASK
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #else
  36. #define PT_MAX_FULL_LEVELS 2
  37. #endif
  38. #elif PTTYPE == 32
  39. #define pt_element_t u32
  40. #define guest_walker guest_walker32
  41. #define FNAME(name) paging##32_##name
  42. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  43. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  44. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  45. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  46. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  47. #define PT_PTE_COPY_MASK PT32_PTE_COPY_MASK
  48. #define PT_MAX_FULL_LEVELS 2
  49. #else
  50. #error Invalid PTTYPE value
  51. #endif
  52. /*
  53. * The guest_walker structure emulates the behavior of the hardware page
  54. * table walker.
  55. */
  56. struct guest_walker {
  57. int level;
  58. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  59. pt_element_t *table;
  60. pt_element_t *ptep;
  61. pt_element_t inherited_ar;
  62. gfn_t gfn;
  63. u32 error_code;
  64. };
  65. /*
  66. * Fetch a guest pte for a guest virtual address
  67. */
  68. static int FNAME(walk_addr)(struct guest_walker *walker,
  69. struct kvm_vcpu *vcpu, gva_t addr,
  70. int write_fault, int user_fault, int fetch_fault)
  71. {
  72. hpa_t hpa;
  73. struct kvm_memory_slot *slot;
  74. pt_element_t *ptep;
  75. pt_element_t root;
  76. gfn_t table_gfn;
  77. pgprintk("%s: addr %lx\n", __FUNCTION__, addr);
  78. walker->level = vcpu->mmu.root_level;
  79. walker->table = NULL;
  80. root = vcpu->cr3;
  81. #if PTTYPE == 64
  82. if (!is_long_mode(vcpu)) {
  83. walker->ptep = &vcpu->pdptrs[(addr >> 30) & 3];
  84. root = *walker->ptep;
  85. if (!(root & PT_PRESENT_MASK))
  86. goto not_present;
  87. --walker->level;
  88. }
  89. #endif
  90. table_gfn = (root & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  91. walker->table_gfn[walker->level - 1] = table_gfn;
  92. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  93. walker->level - 1, table_gfn);
  94. slot = gfn_to_memslot(vcpu->kvm, table_gfn);
  95. hpa = safe_gpa_to_hpa(vcpu, root & PT64_BASE_ADDR_MASK);
  96. walker->table = kmap_atomic(pfn_to_page(hpa >> PAGE_SHIFT), KM_USER0);
  97. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  98. (vcpu->cr3 & ~(PAGE_MASK | CR3_FLAGS_MASK)) == 0);
  99. walker->inherited_ar = PT_USER_MASK | PT_WRITABLE_MASK;
  100. for (;;) {
  101. int index = PT_INDEX(addr, walker->level);
  102. hpa_t paddr;
  103. ptep = &walker->table[index];
  104. ASSERT(((unsigned long)walker->table & PAGE_MASK) ==
  105. ((unsigned long)ptep & PAGE_MASK));
  106. if (!is_present_pte(*ptep))
  107. goto not_present;
  108. if (write_fault && !is_writeble_pte(*ptep))
  109. if (user_fault || is_write_protection(vcpu))
  110. goto access_error;
  111. if (user_fault && !(*ptep & PT_USER_MASK))
  112. goto access_error;
  113. #if PTTYPE == 64
  114. if (fetch_fault && is_nx(vcpu) && (*ptep & PT64_NX_MASK))
  115. goto access_error;
  116. #endif
  117. if (!(*ptep & PT_ACCESSED_MASK))
  118. *ptep |= PT_ACCESSED_MASK; /* avoid rmw */
  119. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  120. walker->gfn = (*ptep & PT_BASE_ADDR_MASK)
  121. >> PAGE_SHIFT;
  122. break;
  123. }
  124. if (walker->level == PT_DIRECTORY_LEVEL
  125. && (*ptep & PT_PAGE_SIZE_MASK)
  126. && (PTTYPE == 64 || is_pse(vcpu))) {
  127. walker->gfn = (*ptep & PT_DIR_BASE_ADDR_MASK)
  128. >> PAGE_SHIFT;
  129. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  130. break;
  131. }
  132. if (walker->level != 3 || is_long_mode(vcpu))
  133. walker->inherited_ar &= walker->table[index];
  134. table_gfn = (*ptep & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  135. paddr = safe_gpa_to_hpa(vcpu, *ptep & PT_BASE_ADDR_MASK);
  136. kunmap_atomic(walker->table, KM_USER0);
  137. walker->table = kmap_atomic(pfn_to_page(paddr >> PAGE_SHIFT),
  138. KM_USER0);
  139. --walker->level;
  140. walker->table_gfn[walker->level - 1 ] = table_gfn;
  141. pgprintk("%s: table_gfn[%d] %lx\n", __FUNCTION__,
  142. walker->level - 1, table_gfn);
  143. }
  144. walker->ptep = ptep;
  145. pgprintk("%s: pte %llx\n", __FUNCTION__, (u64)*ptep);
  146. return 1;
  147. not_present:
  148. walker->error_code = 0;
  149. goto err;
  150. access_error:
  151. walker->error_code = PFERR_PRESENT_MASK;
  152. err:
  153. if (write_fault)
  154. walker->error_code |= PFERR_WRITE_MASK;
  155. if (user_fault)
  156. walker->error_code |= PFERR_USER_MASK;
  157. if (fetch_fault)
  158. walker->error_code |= PFERR_FETCH_MASK;
  159. return 0;
  160. }
  161. static void FNAME(release_walker)(struct guest_walker *walker)
  162. {
  163. if (walker->table)
  164. kunmap_atomic(walker->table, KM_USER0);
  165. }
  166. static void FNAME(set_pte)(struct kvm_vcpu *vcpu, u64 guest_pte,
  167. u64 *shadow_pte, u64 access_bits, gfn_t gfn)
  168. {
  169. ASSERT(*shadow_pte == 0);
  170. access_bits &= guest_pte;
  171. *shadow_pte = (guest_pte & PT_PTE_COPY_MASK);
  172. set_pte_common(vcpu, shadow_pte, guest_pte & PT_BASE_ADDR_MASK,
  173. guest_pte & PT_DIRTY_MASK, access_bits, gfn);
  174. }
  175. static void FNAME(set_pde)(struct kvm_vcpu *vcpu, u64 guest_pde,
  176. u64 *shadow_pte, u64 access_bits, gfn_t gfn)
  177. {
  178. gpa_t gaddr;
  179. ASSERT(*shadow_pte == 0);
  180. access_bits &= guest_pde;
  181. gaddr = (gpa_t)gfn << PAGE_SHIFT;
  182. if (PTTYPE == 32 && is_cpuid_PSE36())
  183. gaddr |= (guest_pde & PT32_DIR_PSE36_MASK) <<
  184. (32 - PT32_DIR_PSE36_SHIFT);
  185. *shadow_pte = guest_pde & PT_PTE_COPY_MASK;
  186. set_pte_common(vcpu, shadow_pte, gaddr,
  187. guest_pde & PT_DIRTY_MASK, access_bits, gfn);
  188. }
  189. /*
  190. * Fetch a shadow pte for a specific level in the paging hierarchy.
  191. */
  192. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  193. struct guest_walker *walker)
  194. {
  195. hpa_t shadow_addr;
  196. int level;
  197. u64 *prev_shadow_ent = NULL;
  198. pt_element_t *guest_ent = walker->ptep;
  199. if (!is_present_pte(*guest_ent))
  200. return NULL;
  201. shadow_addr = vcpu->mmu.root_hpa;
  202. level = vcpu->mmu.shadow_root_level;
  203. if (level == PT32E_ROOT_LEVEL) {
  204. shadow_addr = vcpu->mmu.pae_root[(addr >> 30) & 3];
  205. shadow_addr &= PT64_BASE_ADDR_MASK;
  206. --level;
  207. }
  208. for (; ; level--) {
  209. u32 index = SHADOW_PT_INDEX(addr, level);
  210. u64 *shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  211. struct kvm_mmu_page *shadow_page;
  212. u64 shadow_pte;
  213. int metaphysical;
  214. gfn_t table_gfn;
  215. if (is_present_pte(*shadow_ent) || is_io_pte(*shadow_ent)) {
  216. if (level == PT_PAGE_TABLE_LEVEL)
  217. return shadow_ent;
  218. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  219. prev_shadow_ent = shadow_ent;
  220. continue;
  221. }
  222. if (level == PT_PAGE_TABLE_LEVEL) {
  223. if (walker->level == PT_DIRECTORY_LEVEL) {
  224. if (prev_shadow_ent)
  225. *prev_shadow_ent |= PT_SHADOW_PS_MARK;
  226. FNAME(set_pde)(vcpu, *guest_ent, shadow_ent,
  227. walker->inherited_ar,
  228. walker->gfn);
  229. } else {
  230. ASSERT(walker->level == PT_PAGE_TABLE_LEVEL);
  231. FNAME(set_pte)(vcpu, *guest_ent, shadow_ent,
  232. walker->inherited_ar,
  233. walker->gfn);
  234. }
  235. return shadow_ent;
  236. }
  237. if (level - 1 == PT_PAGE_TABLE_LEVEL
  238. && walker->level == PT_DIRECTORY_LEVEL) {
  239. metaphysical = 1;
  240. table_gfn = (*guest_ent & PT_BASE_ADDR_MASK)
  241. >> PAGE_SHIFT;
  242. } else {
  243. metaphysical = 0;
  244. table_gfn = walker->table_gfn[level - 2];
  245. }
  246. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  247. metaphysical, shadow_ent);
  248. shadow_addr = shadow_page->page_hpa;
  249. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  250. | PT_WRITABLE_MASK | PT_USER_MASK;
  251. *shadow_ent = shadow_pte;
  252. prev_shadow_ent = shadow_ent;
  253. }
  254. }
  255. /*
  256. * The guest faulted for write. We need to
  257. *
  258. * - check write permissions
  259. * - update the guest pte dirty bit
  260. * - update our own dirty page tracking structures
  261. */
  262. static int FNAME(fix_write_pf)(struct kvm_vcpu *vcpu,
  263. u64 *shadow_ent,
  264. struct guest_walker *walker,
  265. gva_t addr,
  266. int user,
  267. int *write_pt)
  268. {
  269. pt_element_t *guest_ent;
  270. int writable_shadow;
  271. gfn_t gfn;
  272. struct kvm_mmu_page *page;
  273. if (is_writeble_pte(*shadow_ent))
  274. return !user || (*shadow_ent & PT_USER_MASK);
  275. writable_shadow = *shadow_ent & PT_SHADOW_WRITABLE_MASK;
  276. if (user) {
  277. /*
  278. * User mode access. Fail if it's a kernel page or a read-only
  279. * page.
  280. */
  281. if (!(*shadow_ent & PT_SHADOW_USER_MASK) || !writable_shadow)
  282. return 0;
  283. ASSERT(*shadow_ent & PT_USER_MASK);
  284. } else
  285. /*
  286. * Kernel mode access. Fail if it's a read-only page and
  287. * supervisor write protection is enabled.
  288. */
  289. if (!writable_shadow) {
  290. if (is_write_protection(vcpu))
  291. return 0;
  292. *shadow_ent &= ~PT_USER_MASK;
  293. }
  294. guest_ent = walker->ptep;
  295. if (!is_present_pte(*guest_ent)) {
  296. *shadow_ent = 0;
  297. return 0;
  298. }
  299. gfn = walker->gfn;
  300. if (user) {
  301. /*
  302. * Usermode page faults won't be for page table updates.
  303. */
  304. while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
  305. pgprintk("%s: zap %lx %x\n",
  306. __FUNCTION__, gfn, page->role.word);
  307. kvm_mmu_zap_page(vcpu, page);
  308. }
  309. } else if (kvm_mmu_lookup_page(vcpu, gfn)) {
  310. pgprintk("%s: found shadow page for %lx, marking ro\n",
  311. __FUNCTION__, gfn);
  312. *guest_ent |= PT_DIRTY_MASK;
  313. *write_pt = 1;
  314. return 0;
  315. }
  316. mark_page_dirty(vcpu->kvm, gfn);
  317. *shadow_ent |= PT_WRITABLE_MASK;
  318. *guest_ent |= PT_DIRTY_MASK;
  319. rmap_add(vcpu, shadow_ent);
  320. return 1;
  321. }
  322. /*
  323. * Page fault handler. There are several causes for a page fault:
  324. * - there is no shadow pte for the guest pte
  325. * - write access through a shadow pte marked read only so that we can set
  326. * the dirty bit
  327. * - write access to a shadow pte marked read only so we can update the page
  328. * dirty bitmap, when userspace requests it
  329. * - mmio access; in this case we will never install a present shadow pte
  330. * - normal guest page fault due to the guest pte marked not present, not
  331. * writable, or not executable
  332. *
  333. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  334. * a negative value on error.
  335. */
  336. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  337. u32 error_code)
  338. {
  339. int write_fault = error_code & PFERR_WRITE_MASK;
  340. int user_fault = error_code & PFERR_USER_MASK;
  341. int fetch_fault = error_code & PFERR_FETCH_MASK;
  342. struct guest_walker walker;
  343. u64 *shadow_pte;
  344. int fixed;
  345. int write_pt = 0;
  346. int r;
  347. pgprintk("%s: addr %lx err %x\n", __FUNCTION__, addr, error_code);
  348. kvm_mmu_audit(vcpu, "pre page fault");
  349. r = mmu_topup_memory_caches(vcpu);
  350. if (r)
  351. return r;
  352. /*
  353. * Look up the shadow pte for the faulting address.
  354. */
  355. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  356. fetch_fault);
  357. /*
  358. * The page is not mapped by the guest. Let the guest handle it.
  359. */
  360. if (!r) {
  361. pgprintk("%s: guest page fault\n", __FUNCTION__);
  362. inject_page_fault(vcpu, addr, walker.error_code);
  363. FNAME(release_walker)(&walker);
  364. return 0;
  365. }
  366. shadow_pte = FNAME(fetch)(vcpu, addr, &walker);
  367. pgprintk("%s: shadow pte %p %llx\n", __FUNCTION__,
  368. shadow_pte, *shadow_pte);
  369. /*
  370. * Update the shadow pte.
  371. */
  372. if (write_fault)
  373. fixed = FNAME(fix_write_pf)(vcpu, shadow_pte, &walker, addr,
  374. user_fault, &write_pt);
  375. else
  376. fixed = fix_read_pf(shadow_pte);
  377. pgprintk("%s: updated shadow pte %p %llx\n", __FUNCTION__,
  378. shadow_pte, *shadow_pte);
  379. FNAME(release_walker)(&walker);
  380. /*
  381. * mmio: emulate if accessible, otherwise its a guest fault.
  382. */
  383. if (is_io_pte(*shadow_pte)) {
  384. return 1;
  385. }
  386. ++kvm_stat.pf_fixed;
  387. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  388. return write_pt;
  389. }
  390. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  391. {
  392. struct guest_walker walker;
  393. pt_element_t guest_pte;
  394. gpa_t gpa;
  395. FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  396. guest_pte = *walker.ptep;
  397. FNAME(release_walker)(&walker);
  398. if (!is_present_pte(guest_pte))
  399. return UNMAPPED_GVA;
  400. if (walker.level == PT_DIRECTORY_LEVEL) {
  401. ASSERT((guest_pte & PT_PAGE_SIZE_MASK));
  402. ASSERT(PTTYPE == 64 || is_pse(vcpu));
  403. gpa = (guest_pte & PT_DIR_BASE_ADDR_MASK) | (vaddr &
  404. (PT_LEVEL_MASK(PT_PAGE_TABLE_LEVEL) | ~PAGE_MASK));
  405. if (PTTYPE == 32 && is_cpuid_PSE36())
  406. gpa |= (guest_pte & PT32_DIR_PSE36_MASK) <<
  407. (32 - PT32_DIR_PSE36_SHIFT);
  408. } else {
  409. gpa = (guest_pte & PT_BASE_ADDR_MASK);
  410. gpa |= (vaddr & ~PAGE_MASK);
  411. }
  412. return gpa;
  413. }
  414. #undef pt_element_t
  415. #undef guest_walker
  416. #undef FNAME
  417. #undef PT_BASE_ADDR_MASK
  418. #undef PT_INDEX
  419. #undef SHADOW_PT_INDEX
  420. #undef PT_LEVEL_MASK
  421. #undef PT_PTE_COPY_MASK
  422. #undef PT_NON_PTE_COPY_MASK
  423. #undef PT_DIR_BASE_ADDR_MASK
  424. #undef PT_MAX_FULL_LEVELS