iser_memory.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481
  1. /*
  2. * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. * $Id: iser_memory.c 6964 2006-05-07 11:11:43Z ogerlitz $
  33. */
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/slab.h>
  37. #include <linux/mm.h>
  38. #include <linux/highmem.h>
  39. #include <asm/io.h>
  40. #include <asm/scatterlist.h>
  41. #include <linux/scatterlist.h>
  42. #include "iscsi_iser.h"
  43. #define ISER_KMALLOC_THRESHOLD 0x20000 /* 128K - kmalloc limit */
  44. /**
  45. * Decrements the reference count for the
  46. * registered buffer & releases it
  47. *
  48. * returns 0 if released, 1 if deferred
  49. */
  50. int iser_regd_buff_release(struct iser_regd_buf *regd_buf)
  51. {
  52. struct ib_device *dev;
  53. if ((atomic_read(&regd_buf->ref_count) == 0) ||
  54. atomic_dec_and_test(&regd_buf->ref_count)) {
  55. /* if we used the dma mr, unreg is just NOP */
  56. if (regd_buf->reg.is_fmr)
  57. iser_unreg_mem(&regd_buf->reg);
  58. if (regd_buf->dma_addr) {
  59. dev = regd_buf->device->ib_device;
  60. ib_dma_unmap_single(dev,
  61. regd_buf->dma_addr,
  62. regd_buf->data_size,
  63. regd_buf->direction);
  64. }
  65. /* else this regd buf is associated with task which we */
  66. /* dma_unmap_single/sg later */
  67. return 0;
  68. } else {
  69. iser_dbg("Release deferred, regd.buff: 0x%p\n", regd_buf);
  70. return 1;
  71. }
  72. }
  73. /**
  74. * iser_reg_single - fills registered buffer descriptor with
  75. * registration information
  76. */
  77. void iser_reg_single(struct iser_device *device,
  78. struct iser_regd_buf *regd_buf,
  79. enum dma_data_direction direction)
  80. {
  81. u64 dma_addr;
  82. dma_addr = ib_dma_map_single(device->ib_device,
  83. regd_buf->virt_addr,
  84. regd_buf->data_size, direction);
  85. BUG_ON(ib_dma_mapping_error(device->ib_device, dma_addr));
  86. regd_buf->reg.lkey = device->mr->lkey;
  87. regd_buf->reg.len = regd_buf->data_size;
  88. regd_buf->reg.va = dma_addr;
  89. regd_buf->reg.is_fmr = 0;
  90. regd_buf->dma_addr = dma_addr;
  91. regd_buf->direction = direction;
  92. }
  93. /**
  94. * iser_start_rdma_unaligned_sg
  95. */
  96. int iser_start_rdma_unaligned_sg(struct iscsi_iser_cmd_task *iser_ctask,
  97. enum iser_data_dir cmd_dir)
  98. {
  99. int dma_nents;
  100. struct ib_device *dev;
  101. char *mem = NULL;
  102. struct iser_data_buf *data = &iser_ctask->data[cmd_dir];
  103. unsigned long cmd_data_len = data->data_len;
  104. if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
  105. mem = (void *)__get_free_pages(GFP_NOIO,
  106. ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
  107. else
  108. mem = kmalloc(cmd_data_len, GFP_NOIO);
  109. if (mem == NULL) {
  110. iser_err("Failed to allocate mem size %d %d for copying sglist\n",
  111. data->size,(int)cmd_data_len);
  112. return -ENOMEM;
  113. }
  114. if (cmd_dir == ISER_DIR_OUT) {
  115. /* copy the unaligned sg the buffer which is used for RDMA */
  116. struct scatterlist *sg = (struct scatterlist *)data->buf;
  117. int i;
  118. char *p, *from;
  119. for (p = mem, i = 0; i < data->size; i++) {
  120. from = kmap_atomic(sg[i].page, KM_USER0);
  121. memcpy(p,
  122. from + sg[i].offset,
  123. sg[i].length);
  124. kunmap_atomic(from, KM_USER0);
  125. p += sg[i].length;
  126. }
  127. }
  128. sg_init_one(&iser_ctask->data_copy[cmd_dir].sg_single, mem, cmd_data_len);
  129. iser_ctask->data_copy[cmd_dir].buf =
  130. &iser_ctask->data_copy[cmd_dir].sg_single;
  131. iser_ctask->data_copy[cmd_dir].size = 1;
  132. iser_ctask->data_copy[cmd_dir].copy_buf = mem;
  133. dev = iser_ctask->iser_conn->ib_conn->device->ib_device;
  134. dma_nents = ib_dma_map_sg(dev,
  135. &iser_ctask->data_copy[cmd_dir].sg_single,
  136. 1,
  137. (cmd_dir == ISER_DIR_OUT) ?
  138. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  139. BUG_ON(dma_nents == 0);
  140. iser_ctask->data_copy[cmd_dir].dma_nents = dma_nents;
  141. return 0;
  142. }
  143. /**
  144. * iser_finalize_rdma_unaligned_sg
  145. */
  146. void iser_finalize_rdma_unaligned_sg(struct iscsi_iser_cmd_task *iser_ctask,
  147. enum iser_data_dir cmd_dir)
  148. {
  149. struct ib_device *dev;
  150. struct iser_data_buf *mem_copy;
  151. unsigned long cmd_data_len;
  152. dev = iser_ctask->iser_conn->ib_conn->device->ib_device;
  153. mem_copy = &iser_ctask->data_copy[cmd_dir];
  154. ib_dma_unmap_sg(dev, &mem_copy->sg_single, 1,
  155. (cmd_dir == ISER_DIR_OUT) ?
  156. DMA_TO_DEVICE : DMA_FROM_DEVICE);
  157. if (cmd_dir == ISER_DIR_IN) {
  158. char *mem;
  159. struct scatterlist *sg;
  160. unsigned char *p, *to;
  161. unsigned int sg_size;
  162. int i;
  163. /* copy back read RDMA to unaligned sg */
  164. mem = mem_copy->copy_buf;
  165. sg = (struct scatterlist *)iser_ctask->data[ISER_DIR_IN].buf;
  166. sg_size = iser_ctask->data[ISER_DIR_IN].size;
  167. for (p = mem, i = 0; i < sg_size; i++){
  168. to = kmap_atomic(sg[i].page, KM_SOFTIRQ0);
  169. memcpy(to + sg[i].offset,
  170. p,
  171. sg[i].length);
  172. kunmap_atomic(to, KM_SOFTIRQ0);
  173. p += sg[i].length;
  174. }
  175. }
  176. cmd_data_len = iser_ctask->data[cmd_dir].data_len;
  177. if (cmd_data_len > ISER_KMALLOC_THRESHOLD)
  178. free_pages((unsigned long)mem_copy->copy_buf,
  179. ilog2(roundup_pow_of_two(cmd_data_len)) - PAGE_SHIFT);
  180. else
  181. kfree(mem_copy->copy_buf);
  182. mem_copy->copy_buf = NULL;
  183. }
  184. /**
  185. * iser_sg_to_page_vec - Translates scatterlist entries to physical addresses
  186. * and returns the length of resulting physical address array (may be less than
  187. * the original due to possible compaction).
  188. *
  189. * we build a "page vec" under the assumption that the SG meets the RDMA
  190. * alignment requirements. Other then the first and last SG elements, all
  191. * the "internal" elements can be compacted into a list whose elements are
  192. * dma addresses of physical pages. The code supports also the weird case
  193. * where --few fragments of the same page-- are present in the SG as
  194. * consecutive elements. Also, it handles one entry SG.
  195. */
  196. static int iser_sg_to_page_vec(struct iser_data_buf *data,
  197. struct iser_page_vec *page_vec,
  198. struct ib_device *ibdev)
  199. {
  200. struct scatterlist *sg = (struct scatterlist *)data->buf;
  201. u64 first_addr, last_addr, page;
  202. int end_aligned;
  203. unsigned int cur_page = 0;
  204. unsigned long total_sz = 0;
  205. int i;
  206. /* compute the offset of first element */
  207. page_vec->offset = (u64) sg[0].offset & ~MASK_4K;
  208. for (i = 0; i < data->dma_nents; i++) {
  209. unsigned int dma_len = ib_sg_dma_len(ibdev, &sg[i]);
  210. total_sz += dma_len;
  211. first_addr = ib_sg_dma_address(ibdev, &sg[i]);
  212. last_addr = first_addr + dma_len;
  213. end_aligned = !(last_addr & ~MASK_4K);
  214. /* continue to collect page fragments till aligned or SG ends */
  215. while (!end_aligned && (i + 1 < data->dma_nents)) {
  216. i++;
  217. dma_len = ib_sg_dma_len(ibdev, &sg[i]);
  218. total_sz += dma_len;
  219. last_addr = ib_sg_dma_address(ibdev, &sg[i]) + dma_len;
  220. end_aligned = !(last_addr & ~MASK_4K);
  221. }
  222. /* handle the 1st page in the 1st DMA element */
  223. if (cur_page == 0) {
  224. page = first_addr & MASK_4K;
  225. page_vec->pages[cur_page] = page;
  226. cur_page++;
  227. page += SIZE_4K;
  228. } else
  229. page = first_addr;
  230. for (; page < last_addr; page += SIZE_4K) {
  231. page_vec->pages[cur_page] = page;
  232. cur_page++;
  233. }
  234. }
  235. page_vec->data_size = total_sz;
  236. iser_dbg("page_vec->data_size:%d cur_page %d\n", page_vec->data_size,cur_page);
  237. return cur_page;
  238. }
  239. #define IS_4K_ALIGNED(addr) ((((unsigned long)addr) & ~MASK_4K) == 0)
  240. /**
  241. * iser_data_buf_aligned_len - Tries to determine the maximal correctly aligned
  242. * for RDMA sub-list of a scatter-gather list of memory buffers, and returns
  243. * the number of entries which are aligned correctly. Supports the case where
  244. * consecutive SG elements are actually fragments of the same physcial page.
  245. */
  246. static unsigned int iser_data_buf_aligned_len(struct iser_data_buf *data,
  247. struct ib_device *ibdev)
  248. {
  249. struct scatterlist *sg;
  250. u64 end_addr, next_addr;
  251. int i, cnt;
  252. unsigned int ret_len = 0;
  253. sg = (struct scatterlist *)data->buf;
  254. for (cnt = 0, i = 0; i < data->dma_nents; i++, cnt++) {
  255. /* iser_dbg("Checking sg iobuf [%d]: phys=0x%08lX "
  256. "offset: %ld sz: %ld\n", i,
  257. (unsigned long)page_to_phys(sg[i].page),
  258. (unsigned long)sg[i].offset,
  259. (unsigned long)sg[i].length); */
  260. end_addr = ib_sg_dma_address(ibdev, &sg[i]) +
  261. ib_sg_dma_len(ibdev, &sg[i]);
  262. /* iser_dbg("Checking sg iobuf end address "
  263. "0x%08lX\n", end_addr); */
  264. if (i + 1 < data->dma_nents) {
  265. next_addr = ib_sg_dma_address(ibdev, &sg[i+1]);
  266. /* are i, i+1 fragments of the same page? */
  267. if (end_addr == next_addr)
  268. continue;
  269. else if (!IS_4K_ALIGNED(end_addr)) {
  270. ret_len = cnt + 1;
  271. break;
  272. }
  273. }
  274. }
  275. if (i == data->dma_nents)
  276. ret_len = cnt; /* loop ended */
  277. iser_dbg("Found %d aligned entries out of %d in sg:0x%p\n",
  278. ret_len, data->dma_nents, data);
  279. return ret_len;
  280. }
  281. static void iser_data_buf_dump(struct iser_data_buf *data,
  282. struct ib_device *ibdev)
  283. {
  284. struct scatterlist *sg = (struct scatterlist *)data->buf;
  285. int i;
  286. for (i = 0; i < data->dma_nents; i++)
  287. iser_err("sg[%d] dma_addr:0x%lX page:0x%p "
  288. "off:0x%x sz:0x%x dma_len:0x%x\n",
  289. i, (unsigned long)ib_sg_dma_address(ibdev, &sg[i]),
  290. sg[i].page, sg[i].offset,
  291. sg[i].length, ib_sg_dma_len(ibdev, &sg[i]));
  292. }
  293. static void iser_dump_page_vec(struct iser_page_vec *page_vec)
  294. {
  295. int i;
  296. iser_err("page vec length %d data size %d\n",
  297. page_vec->length, page_vec->data_size);
  298. for (i = 0; i < page_vec->length; i++)
  299. iser_err("%d %lx\n",i,(unsigned long)page_vec->pages[i]);
  300. }
  301. static void iser_page_vec_build(struct iser_data_buf *data,
  302. struct iser_page_vec *page_vec,
  303. struct ib_device *ibdev)
  304. {
  305. int page_vec_len = 0;
  306. page_vec->length = 0;
  307. page_vec->offset = 0;
  308. iser_dbg("Translating sg sz: %d\n", data->dma_nents);
  309. page_vec_len = iser_sg_to_page_vec(data, page_vec, ibdev);
  310. iser_dbg("sg len %d page_vec_len %d\n", data->dma_nents,page_vec_len);
  311. page_vec->length = page_vec_len;
  312. if (page_vec_len * SIZE_4K < page_vec->data_size) {
  313. iser_err("page_vec too short to hold this SG\n");
  314. iser_data_buf_dump(data, ibdev);
  315. iser_dump_page_vec(page_vec);
  316. BUG();
  317. }
  318. }
  319. int iser_dma_map_task_data(struct iscsi_iser_cmd_task *iser_ctask,
  320. struct iser_data_buf *data,
  321. enum iser_data_dir iser_dir,
  322. enum dma_data_direction dma_dir)
  323. {
  324. struct ib_device *dev;
  325. iser_ctask->dir[iser_dir] = 1;
  326. dev = iser_ctask->iser_conn->ib_conn->device->ib_device;
  327. data->dma_nents = ib_dma_map_sg(dev, data->buf, data->size, dma_dir);
  328. if (data->dma_nents == 0) {
  329. iser_err("dma_map_sg failed!!!\n");
  330. return -EINVAL;
  331. }
  332. return 0;
  333. }
  334. void iser_dma_unmap_task_data(struct iscsi_iser_cmd_task *iser_ctask)
  335. {
  336. struct ib_device *dev;
  337. struct iser_data_buf *data;
  338. dev = iser_ctask->iser_conn->ib_conn->device->ib_device;
  339. if (iser_ctask->dir[ISER_DIR_IN]) {
  340. data = &iser_ctask->data[ISER_DIR_IN];
  341. ib_dma_unmap_sg(dev, data->buf, data->size, DMA_FROM_DEVICE);
  342. }
  343. if (iser_ctask->dir[ISER_DIR_OUT]) {
  344. data = &iser_ctask->data[ISER_DIR_OUT];
  345. ib_dma_unmap_sg(dev, data->buf, data->size, DMA_TO_DEVICE);
  346. }
  347. }
  348. /**
  349. * iser_reg_rdma_mem - Registers memory intended for RDMA,
  350. * obtaining rkey and va
  351. *
  352. * returns 0 on success, errno code on failure
  353. */
  354. int iser_reg_rdma_mem(struct iscsi_iser_cmd_task *iser_ctask,
  355. enum iser_data_dir cmd_dir)
  356. {
  357. struct iser_conn *ib_conn = iser_ctask->iser_conn->ib_conn;
  358. struct iser_device *device = ib_conn->device;
  359. struct ib_device *ibdev = device->ib_device;
  360. struct iser_data_buf *mem = &iser_ctask->data[cmd_dir];
  361. struct iser_regd_buf *regd_buf;
  362. int aligned_len;
  363. int err;
  364. int i;
  365. struct scatterlist *sg;
  366. regd_buf = &iser_ctask->rdma_regd[cmd_dir];
  367. aligned_len = iser_data_buf_aligned_len(mem, ibdev);
  368. if (aligned_len != mem->dma_nents) {
  369. iser_err("rdma alignment violation %d/%d aligned\n",
  370. aligned_len, mem->size);
  371. iser_data_buf_dump(mem, ibdev);
  372. /* unmap the command data before accessing it */
  373. iser_dma_unmap_task_data(iser_ctask);
  374. /* allocate copy buf, if we are writing, copy the */
  375. /* unaligned scatterlist, dma map the copy */
  376. if (iser_start_rdma_unaligned_sg(iser_ctask, cmd_dir) != 0)
  377. return -ENOMEM;
  378. mem = &iser_ctask->data_copy[cmd_dir];
  379. }
  380. /* if there a single dma entry, FMR is not needed */
  381. if (mem->dma_nents == 1) {
  382. sg = (struct scatterlist *)mem->buf;
  383. regd_buf->reg.lkey = device->mr->lkey;
  384. regd_buf->reg.rkey = device->mr->rkey;
  385. regd_buf->reg.len = ib_sg_dma_len(ibdev, &sg[0]);
  386. regd_buf->reg.va = ib_sg_dma_address(ibdev, &sg[0]);
  387. regd_buf->reg.is_fmr = 0;
  388. iser_dbg("PHYSICAL Mem.register: lkey: 0x%08X rkey: 0x%08X "
  389. "va: 0x%08lX sz: %ld]\n",
  390. (unsigned int)regd_buf->reg.lkey,
  391. (unsigned int)regd_buf->reg.rkey,
  392. (unsigned long)regd_buf->reg.va,
  393. (unsigned long)regd_buf->reg.len);
  394. } else { /* use FMR for multiple dma entries */
  395. iser_page_vec_build(mem, ib_conn->page_vec, ibdev);
  396. err = iser_reg_page_vec(ib_conn, ib_conn->page_vec, &regd_buf->reg);
  397. if (err) {
  398. iser_data_buf_dump(mem, ibdev);
  399. iser_err("mem->dma_nents = %d (dlength = 0x%x)\n", mem->dma_nents,
  400. ntoh24(iser_ctask->desc.iscsi_header.dlength));
  401. iser_err("page_vec: data_size = 0x%x, length = %d, offset = 0x%x\n",
  402. ib_conn->page_vec->data_size, ib_conn->page_vec->length,
  403. ib_conn->page_vec->offset);
  404. for (i=0 ; i<ib_conn->page_vec->length ; i++)
  405. iser_err("page_vec[%d] = 0x%llx\n", i,
  406. (unsigned long long) ib_conn->page_vec->pages[i]);
  407. return err;
  408. }
  409. }
  410. /* take a reference on this regd buf such that it will not be released *
  411. * (eg in send dto completion) before we get the scsi response */
  412. atomic_inc(&regd_buf->ref_count);
  413. return 0;
  414. }