sata_qstor.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689
  1. /*
  2. * sata_qstor.c - Pacific Digital Corporation QStor SATA
  3. *
  4. * Maintained by: Mark Lord <mlord@pobox.com>
  5. *
  6. * Copyright 2005 Pacific Digital Corporation.
  7. * (OSL/GPL code release authorized by Jalil Fadavi).
  8. *
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2, or (at your option)
  13. * any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; see the file COPYING. If not, write to
  22. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  23. *
  24. *
  25. * libata documentation is available via 'make {ps|pdf}docs',
  26. * as Documentation/DocBook/libata.*
  27. *
  28. */
  29. #include <linux/kernel.h>
  30. #include <linux/module.h>
  31. #include <linux/pci.h>
  32. #include <linux/init.h>
  33. #include <linux/blkdev.h>
  34. #include <linux/delay.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/sched.h>
  37. #include <linux/device.h>
  38. #include <scsi/scsi_host.h>
  39. #include <linux/libata.h>
  40. #define DRV_NAME "sata_qstor"
  41. #define DRV_VERSION "0.06"
  42. enum {
  43. QS_MMIO_BAR = 4,
  44. QS_PORTS = 4,
  45. QS_MAX_PRD = LIBATA_MAX_PRD,
  46. QS_CPB_ORDER = 6,
  47. QS_CPB_BYTES = (1 << QS_CPB_ORDER),
  48. QS_PRD_BYTES = QS_MAX_PRD * 16,
  49. QS_PKT_BYTES = QS_CPB_BYTES + QS_PRD_BYTES,
  50. /* global register offsets */
  51. QS_HCF_CNFG3 = 0x0003, /* host configuration offset */
  52. QS_HID_HPHY = 0x0004, /* host physical interface info */
  53. QS_HCT_CTRL = 0x00e4, /* global interrupt mask offset */
  54. QS_HST_SFF = 0x0100, /* host status fifo offset */
  55. QS_HVS_SERD3 = 0x0393, /* PHY enable offset */
  56. /* global control bits */
  57. QS_HPHY_64BIT = (1 << 1), /* 64-bit bus detected */
  58. QS_CNFG3_GSRST = 0x01, /* global chip reset */
  59. QS_SERD3_PHY_ENA = 0xf0, /* PHY detection ENAble*/
  60. /* per-channel register offsets */
  61. QS_CCF_CPBA = 0x0710, /* chan CPB base address */
  62. QS_CCF_CSEP = 0x0718, /* chan CPB separation factor */
  63. QS_CFC_HUFT = 0x0800, /* host upstream fifo threshold */
  64. QS_CFC_HDFT = 0x0804, /* host downstream fifo threshold */
  65. QS_CFC_DUFT = 0x0808, /* dev upstream fifo threshold */
  66. QS_CFC_DDFT = 0x080c, /* dev downstream fifo threshold */
  67. QS_CCT_CTR0 = 0x0900, /* chan control-0 offset */
  68. QS_CCT_CTR1 = 0x0901, /* chan control-1 offset */
  69. QS_CCT_CFF = 0x0a00, /* chan command fifo offset */
  70. /* channel control bits */
  71. QS_CTR0_REG = (1 << 1), /* register mode (vs. pkt mode) */
  72. QS_CTR0_CLER = (1 << 2), /* clear channel errors */
  73. QS_CTR1_RDEV = (1 << 1), /* sata phy/comms reset */
  74. QS_CTR1_RCHN = (1 << 4), /* reset channel logic */
  75. QS_CCF_RUN_PKT = 0x107, /* RUN a new dma PKT */
  76. /* pkt sub-field headers */
  77. QS_HCB_HDR = 0x01, /* Host Control Block header */
  78. QS_DCB_HDR = 0x02, /* Device Control Block header */
  79. /* pkt HCB flag bits */
  80. QS_HF_DIRO = (1 << 0), /* data DIRection Out */
  81. QS_HF_DAT = (1 << 3), /* DATa pkt */
  82. QS_HF_IEN = (1 << 4), /* Interrupt ENable */
  83. QS_HF_VLD = (1 << 5), /* VaLiD pkt */
  84. /* pkt DCB flag bits */
  85. QS_DF_PORD = (1 << 2), /* Pio OR Dma */
  86. QS_DF_ELBA = (1 << 3), /* Extended LBA (lba48) */
  87. /* PCI device IDs */
  88. board_2068_idx = 0, /* QStor 4-port SATA/RAID */
  89. };
  90. enum {
  91. QS_DMA_BOUNDARY = ~0UL
  92. };
  93. typedef enum { qs_state_idle, qs_state_pkt, qs_state_mmio } qs_state_t;
  94. struct qs_port_priv {
  95. u8 *pkt;
  96. dma_addr_t pkt_dma;
  97. qs_state_t state;
  98. };
  99. static u32 qs_scr_read (struct ata_port *ap, unsigned int sc_reg);
  100. static void qs_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val);
  101. static int qs_ata_init_one (struct pci_dev *pdev, const struct pci_device_id *ent);
  102. static irqreturn_t qs_intr (int irq, void *dev_instance);
  103. static int qs_port_start(struct ata_port *ap);
  104. static void qs_host_stop(struct ata_host *host);
  105. static void qs_phy_reset(struct ata_port *ap);
  106. static void qs_qc_prep(struct ata_queued_cmd *qc);
  107. static unsigned int qs_qc_issue(struct ata_queued_cmd *qc);
  108. static int qs_check_atapi_dma(struct ata_queued_cmd *qc);
  109. static void qs_bmdma_stop(struct ata_queued_cmd *qc);
  110. static u8 qs_bmdma_status(struct ata_port *ap);
  111. static void qs_irq_clear(struct ata_port *ap);
  112. static void qs_eng_timeout(struct ata_port *ap);
  113. static struct scsi_host_template qs_ata_sht = {
  114. .module = THIS_MODULE,
  115. .name = DRV_NAME,
  116. .ioctl = ata_scsi_ioctl,
  117. .queuecommand = ata_scsi_queuecmd,
  118. .can_queue = ATA_DEF_QUEUE,
  119. .this_id = ATA_SHT_THIS_ID,
  120. .sg_tablesize = QS_MAX_PRD,
  121. .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
  122. .emulated = ATA_SHT_EMULATED,
  123. //FIXME .use_clustering = ATA_SHT_USE_CLUSTERING,
  124. .use_clustering = ENABLE_CLUSTERING,
  125. .proc_name = DRV_NAME,
  126. .dma_boundary = QS_DMA_BOUNDARY,
  127. .slave_configure = ata_scsi_slave_config,
  128. .slave_destroy = ata_scsi_slave_destroy,
  129. .bios_param = ata_std_bios_param,
  130. };
  131. static const struct ata_port_operations qs_ata_ops = {
  132. .port_disable = ata_port_disable,
  133. .tf_load = ata_tf_load,
  134. .tf_read = ata_tf_read,
  135. .check_status = ata_check_status,
  136. .check_atapi_dma = qs_check_atapi_dma,
  137. .exec_command = ata_exec_command,
  138. .dev_select = ata_std_dev_select,
  139. .phy_reset = qs_phy_reset,
  140. .qc_prep = qs_qc_prep,
  141. .qc_issue = qs_qc_issue,
  142. .data_xfer = ata_data_xfer,
  143. .eng_timeout = qs_eng_timeout,
  144. .irq_handler = qs_intr,
  145. .irq_clear = qs_irq_clear,
  146. .irq_on = ata_irq_on,
  147. .irq_ack = ata_irq_ack,
  148. .scr_read = qs_scr_read,
  149. .scr_write = qs_scr_write,
  150. .port_start = qs_port_start,
  151. .host_stop = qs_host_stop,
  152. .bmdma_stop = qs_bmdma_stop,
  153. .bmdma_status = qs_bmdma_status,
  154. };
  155. static const struct ata_port_info qs_port_info[] = {
  156. /* board_2068_idx */
  157. {
  158. .sht = &qs_ata_sht,
  159. .flags = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
  160. ATA_FLAG_SATA_RESET |
  161. //FIXME ATA_FLAG_SRST |
  162. ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
  163. .pio_mask = 0x10, /* pio4 */
  164. .udma_mask = 0x7f, /* udma0-6 */
  165. .port_ops = &qs_ata_ops,
  166. },
  167. };
  168. static const struct pci_device_id qs_ata_pci_tbl[] = {
  169. { PCI_VDEVICE(PDC, 0x2068), board_2068_idx },
  170. { } /* terminate list */
  171. };
  172. static struct pci_driver qs_ata_pci_driver = {
  173. .name = DRV_NAME,
  174. .id_table = qs_ata_pci_tbl,
  175. .probe = qs_ata_init_one,
  176. .remove = ata_pci_remove_one,
  177. };
  178. static void __iomem *qs_mmio_base(struct ata_host *host)
  179. {
  180. return host->iomap[QS_MMIO_BAR];
  181. }
  182. static int qs_check_atapi_dma(struct ata_queued_cmd *qc)
  183. {
  184. return 1; /* ATAPI DMA not supported */
  185. }
  186. static void qs_bmdma_stop(struct ata_queued_cmd *qc)
  187. {
  188. /* nothing */
  189. }
  190. static u8 qs_bmdma_status(struct ata_port *ap)
  191. {
  192. return 0;
  193. }
  194. static void qs_irq_clear(struct ata_port *ap)
  195. {
  196. /* nothing */
  197. }
  198. static inline void qs_enter_reg_mode(struct ata_port *ap)
  199. {
  200. u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
  201. writeb(QS_CTR0_REG, chan + QS_CCT_CTR0);
  202. readb(chan + QS_CCT_CTR0); /* flush */
  203. }
  204. static inline void qs_reset_channel_logic(struct ata_port *ap)
  205. {
  206. u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
  207. writeb(QS_CTR1_RCHN, chan + QS_CCT_CTR1);
  208. readb(chan + QS_CCT_CTR0); /* flush */
  209. qs_enter_reg_mode(ap);
  210. }
  211. static void qs_phy_reset(struct ata_port *ap)
  212. {
  213. struct qs_port_priv *pp = ap->private_data;
  214. pp->state = qs_state_idle;
  215. qs_reset_channel_logic(ap);
  216. sata_phy_reset(ap);
  217. }
  218. static void qs_eng_timeout(struct ata_port *ap)
  219. {
  220. struct qs_port_priv *pp = ap->private_data;
  221. if (pp->state != qs_state_idle) /* healthy paranoia */
  222. pp->state = qs_state_mmio;
  223. qs_reset_channel_logic(ap);
  224. ata_eng_timeout(ap);
  225. }
  226. static u32 qs_scr_read (struct ata_port *ap, unsigned int sc_reg)
  227. {
  228. if (sc_reg > SCR_CONTROL)
  229. return ~0U;
  230. return readl(ap->ioaddr.scr_addr + (sc_reg * 8));
  231. }
  232. static void qs_scr_write (struct ata_port *ap, unsigned int sc_reg, u32 val)
  233. {
  234. if (sc_reg > SCR_CONTROL)
  235. return;
  236. writel(val, ap->ioaddr.scr_addr + (sc_reg * 8));
  237. }
  238. static unsigned int qs_fill_sg(struct ata_queued_cmd *qc)
  239. {
  240. struct scatterlist *sg;
  241. struct ata_port *ap = qc->ap;
  242. struct qs_port_priv *pp = ap->private_data;
  243. unsigned int nelem;
  244. u8 *prd = pp->pkt + QS_CPB_BYTES;
  245. WARN_ON(qc->__sg == NULL);
  246. WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
  247. nelem = 0;
  248. ata_for_each_sg(sg, qc) {
  249. u64 addr;
  250. u32 len;
  251. addr = sg_dma_address(sg);
  252. *(__le64 *)prd = cpu_to_le64(addr);
  253. prd += sizeof(u64);
  254. len = sg_dma_len(sg);
  255. *(__le32 *)prd = cpu_to_le32(len);
  256. prd += sizeof(u64);
  257. VPRINTK("PRD[%u] = (0x%llX, 0x%X)\n", nelem,
  258. (unsigned long long)addr, len);
  259. nelem++;
  260. }
  261. return nelem;
  262. }
  263. static void qs_qc_prep(struct ata_queued_cmd *qc)
  264. {
  265. struct qs_port_priv *pp = qc->ap->private_data;
  266. u8 dflags = QS_DF_PORD, *buf = pp->pkt;
  267. u8 hflags = QS_HF_DAT | QS_HF_IEN | QS_HF_VLD;
  268. u64 addr;
  269. unsigned int nelem;
  270. VPRINTK("ENTER\n");
  271. qs_enter_reg_mode(qc->ap);
  272. if (qc->tf.protocol != ATA_PROT_DMA) {
  273. ata_qc_prep(qc);
  274. return;
  275. }
  276. nelem = qs_fill_sg(qc);
  277. if ((qc->tf.flags & ATA_TFLAG_WRITE))
  278. hflags |= QS_HF_DIRO;
  279. if ((qc->tf.flags & ATA_TFLAG_LBA48))
  280. dflags |= QS_DF_ELBA;
  281. /* host control block (HCB) */
  282. buf[ 0] = QS_HCB_HDR;
  283. buf[ 1] = hflags;
  284. *(__le32 *)(&buf[ 4]) = cpu_to_le32(qc->nbytes);
  285. *(__le32 *)(&buf[ 8]) = cpu_to_le32(nelem);
  286. addr = ((u64)pp->pkt_dma) + QS_CPB_BYTES;
  287. *(__le64 *)(&buf[16]) = cpu_to_le64(addr);
  288. /* device control block (DCB) */
  289. buf[24] = QS_DCB_HDR;
  290. buf[28] = dflags;
  291. /* frame information structure (FIS) */
  292. ata_tf_to_fis(&qc->tf, &buf[32], 0);
  293. }
  294. static inline void qs_packet_start(struct ata_queued_cmd *qc)
  295. {
  296. struct ata_port *ap = qc->ap;
  297. u8 __iomem *chan = qs_mmio_base(ap->host) + (ap->port_no * 0x4000);
  298. VPRINTK("ENTER, ap %p\n", ap);
  299. writeb(QS_CTR0_CLER, chan + QS_CCT_CTR0);
  300. wmb(); /* flush PRDs and pkt to memory */
  301. writel(QS_CCF_RUN_PKT, chan + QS_CCT_CFF);
  302. readl(chan + QS_CCT_CFF); /* flush */
  303. }
  304. static unsigned int qs_qc_issue(struct ata_queued_cmd *qc)
  305. {
  306. struct qs_port_priv *pp = qc->ap->private_data;
  307. switch (qc->tf.protocol) {
  308. case ATA_PROT_DMA:
  309. pp->state = qs_state_pkt;
  310. qs_packet_start(qc);
  311. return 0;
  312. case ATA_PROT_ATAPI_DMA:
  313. BUG();
  314. break;
  315. default:
  316. break;
  317. }
  318. pp->state = qs_state_mmio;
  319. return ata_qc_issue_prot(qc);
  320. }
  321. static inline unsigned int qs_intr_pkt(struct ata_host *host)
  322. {
  323. unsigned int handled = 0;
  324. u8 sFFE;
  325. u8 __iomem *mmio_base = qs_mmio_base(host);
  326. do {
  327. u32 sff0 = readl(mmio_base + QS_HST_SFF);
  328. u32 sff1 = readl(mmio_base + QS_HST_SFF + 4);
  329. u8 sEVLD = (sff1 >> 30) & 0x01; /* valid flag */
  330. sFFE = sff1 >> 31; /* empty flag */
  331. if (sEVLD) {
  332. u8 sDST = sff0 >> 16; /* dev status */
  333. u8 sHST = sff1 & 0x3f; /* host status */
  334. unsigned int port_no = (sff1 >> 8) & 0x03;
  335. struct ata_port *ap = host->ports[port_no];
  336. DPRINTK("SFF=%08x%08x: sCHAN=%u sHST=%d sDST=%02x\n",
  337. sff1, sff0, port_no, sHST, sDST);
  338. handled = 1;
  339. if (ap && !(ap->flags & ATA_FLAG_DISABLED)) {
  340. struct ata_queued_cmd *qc;
  341. struct qs_port_priv *pp = ap->private_data;
  342. if (!pp || pp->state != qs_state_pkt)
  343. continue;
  344. qc = ata_qc_from_tag(ap, ap->active_tag);
  345. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  346. switch (sHST) {
  347. case 0: /* successful CPB */
  348. case 3: /* device error */
  349. pp->state = qs_state_idle;
  350. qs_enter_reg_mode(qc->ap);
  351. qc->err_mask |= ac_err_mask(sDST);
  352. ata_qc_complete(qc);
  353. break;
  354. default:
  355. break;
  356. }
  357. }
  358. }
  359. }
  360. } while (!sFFE);
  361. return handled;
  362. }
  363. static inline unsigned int qs_intr_mmio(struct ata_host *host)
  364. {
  365. unsigned int handled = 0, port_no;
  366. for (port_no = 0; port_no < host->n_ports; ++port_no) {
  367. struct ata_port *ap;
  368. ap = host->ports[port_no];
  369. if (ap &&
  370. !(ap->flags & ATA_FLAG_DISABLED)) {
  371. struct ata_queued_cmd *qc;
  372. struct qs_port_priv *pp = ap->private_data;
  373. if (!pp || pp->state != qs_state_mmio)
  374. continue;
  375. qc = ata_qc_from_tag(ap, ap->active_tag);
  376. if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING))) {
  377. /* check main status, clearing INTRQ */
  378. u8 status = ata_check_status(ap);
  379. if ((status & ATA_BUSY))
  380. continue;
  381. DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
  382. ap->id, qc->tf.protocol, status);
  383. /* complete taskfile transaction */
  384. pp->state = qs_state_idle;
  385. qc->err_mask |= ac_err_mask(status);
  386. ata_qc_complete(qc);
  387. handled = 1;
  388. }
  389. }
  390. }
  391. return handled;
  392. }
  393. static irqreturn_t qs_intr(int irq, void *dev_instance)
  394. {
  395. struct ata_host *host = dev_instance;
  396. unsigned int handled = 0;
  397. VPRINTK("ENTER\n");
  398. spin_lock(&host->lock);
  399. handled = qs_intr_pkt(host) | qs_intr_mmio(host);
  400. spin_unlock(&host->lock);
  401. VPRINTK("EXIT\n");
  402. return IRQ_RETVAL(handled);
  403. }
  404. static void qs_ata_setup_port(struct ata_ioports *port, void __iomem *base)
  405. {
  406. port->cmd_addr =
  407. port->data_addr = base + 0x400;
  408. port->error_addr =
  409. port->feature_addr = base + 0x408; /* hob_feature = 0x409 */
  410. port->nsect_addr = base + 0x410; /* hob_nsect = 0x411 */
  411. port->lbal_addr = base + 0x418; /* hob_lbal = 0x419 */
  412. port->lbam_addr = base + 0x420; /* hob_lbam = 0x421 */
  413. port->lbah_addr = base + 0x428; /* hob_lbah = 0x429 */
  414. port->device_addr = base + 0x430;
  415. port->status_addr =
  416. port->command_addr = base + 0x438;
  417. port->altstatus_addr =
  418. port->ctl_addr = base + 0x440;
  419. port->scr_addr = base + 0xc00;
  420. }
  421. static int qs_port_start(struct ata_port *ap)
  422. {
  423. struct device *dev = ap->host->dev;
  424. struct qs_port_priv *pp;
  425. void __iomem *mmio_base = qs_mmio_base(ap->host);
  426. void __iomem *chan = mmio_base + (ap->port_no * 0x4000);
  427. u64 addr;
  428. int rc;
  429. rc = ata_port_start(ap);
  430. if (rc)
  431. return rc;
  432. qs_enter_reg_mode(ap);
  433. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  434. if (!pp)
  435. return -ENOMEM;
  436. pp->pkt = dmam_alloc_coherent(dev, QS_PKT_BYTES, &pp->pkt_dma,
  437. GFP_KERNEL);
  438. if (!pp->pkt)
  439. return -ENOMEM;
  440. memset(pp->pkt, 0, QS_PKT_BYTES);
  441. ap->private_data = pp;
  442. addr = (u64)pp->pkt_dma;
  443. writel((u32) addr, chan + QS_CCF_CPBA);
  444. writel((u32)(addr >> 32), chan + QS_CCF_CPBA + 4);
  445. return 0;
  446. }
  447. static void qs_host_stop(struct ata_host *host)
  448. {
  449. void __iomem *mmio_base = qs_mmio_base(host);
  450. writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */
  451. writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */
  452. }
  453. static void qs_host_init(unsigned int chip_id, struct ata_probe_ent *pe)
  454. {
  455. void __iomem *mmio_base = pe->iomap[QS_MMIO_BAR];
  456. unsigned int port_no;
  457. writeb(0, mmio_base + QS_HCT_CTRL); /* disable host interrupts */
  458. writeb(QS_CNFG3_GSRST, mmio_base + QS_HCF_CNFG3); /* global reset */
  459. /* reset each channel in turn */
  460. for (port_no = 0; port_no < pe->n_ports; ++port_no) {
  461. u8 __iomem *chan = mmio_base + (port_no * 0x4000);
  462. writeb(QS_CTR1_RDEV|QS_CTR1_RCHN, chan + QS_CCT_CTR1);
  463. writeb(QS_CTR0_REG, chan + QS_CCT_CTR0);
  464. readb(chan + QS_CCT_CTR0); /* flush */
  465. }
  466. writeb(QS_SERD3_PHY_ENA, mmio_base + QS_HVS_SERD3); /* enable phy */
  467. for (port_no = 0; port_no < pe->n_ports; ++port_no) {
  468. u8 __iomem *chan = mmio_base + (port_no * 0x4000);
  469. /* set FIFO depths to same settings as Windows driver */
  470. writew(32, chan + QS_CFC_HUFT);
  471. writew(32, chan + QS_CFC_HDFT);
  472. writew(10, chan + QS_CFC_DUFT);
  473. writew( 8, chan + QS_CFC_DDFT);
  474. /* set CPB size in bytes, as a power of two */
  475. writeb(QS_CPB_ORDER, chan + QS_CCF_CSEP);
  476. }
  477. writeb(1, mmio_base + QS_HCT_CTRL); /* enable host interrupts */
  478. }
  479. /*
  480. * The QStor understands 64-bit buses, and uses 64-bit fields
  481. * for DMA pointers regardless of bus width. We just have to
  482. * make sure our DMA masks are set appropriately for whatever
  483. * bridge lies between us and the QStor, and then the DMA mapping
  484. * code will ensure we only ever "see" appropriate buffer addresses.
  485. * If we're 32-bit limited somewhere, then our 64-bit fields will
  486. * just end up with zeros in the upper 32-bits, without any special
  487. * logic required outside of this routine (below).
  488. */
  489. static int qs_set_dma_masks(struct pci_dev *pdev, void __iomem *mmio_base)
  490. {
  491. u32 bus_info = readl(mmio_base + QS_HID_HPHY);
  492. int rc, have_64bit_bus = (bus_info & QS_HPHY_64BIT);
  493. if (have_64bit_bus &&
  494. !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  495. rc = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  496. if (rc) {
  497. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  498. if (rc) {
  499. dev_printk(KERN_ERR, &pdev->dev,
  500. "64-bit DMA enable failed\n");
  501. return rc;
  502. }
  503. }
  504. } else {
  505. rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  506. if (rc) {
  507. dev_printk(KERN_ERR, &pdev->dev,
  508. "32-bit DMA enable failed\n");
  509. return rc;
  510. }
  511. rc = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  512. if (rc) {
  513. dev_printk(KERN_ERR, &pdev->dev,
  514. "32-bit consistent DMA enable failed\n");
  515. return rc;
  516. }
  517. }
  518. return 0;
  519. }
  520. static int qs_ata_init_one(struct pci_dev *pdev,
  521. const struct pci_device_id *ent)
  522. {
  523. static int printed_version;
  524. struct ata_probe_ent *probe_ent;
  525. void __iomem * const *iomap;
  526. unsigned int board_idx = (unsigned int) ent->driver_data;
  527. int rc, port_no;
  528. if (!printed_version++)
  529. dev_printk(KERN_DEBUG, &pdev->dev, "version " DRV_VERSION "\n");
  530. rc = pcim_enable_device(pdev);
  531. if (rc)
  532. return rc;
  533. if ((pci_resource_flags(pdev, QS_MMIO_BAR) & IORESOURCE_MEM) == 0)
  534. return -ENODEV;
  535. rc = pcim_iomap_regions(pdev, 1 << QS_MMIO_BAR, DRV_NAME);
  536. if (rc)
  537. return rc;
  538. iomap = pcim_iomap_table(pdev);
  539. rc = qs_set_dma_masks(pdev, iomap[QS_MMIO_BAR]);
  540. if (rc)
  541. return rc;
  542. probe_ent = devm_kzalloc(&pdev->dev, sizeof(*probe_ent), GFP_KERNEL);
  543. if (probe_ent == NULL)
  544. return -ENOMEM;
  545. probe_ent->dev = pci_dev_to_dev(pdev);
  546. INIT_LIST_HEAD(&probe_ent->node);
  547. probe_ent->sht = qs_port_info[board_idx].sht;
  548. probe_ent->port_flags = qs_port_info[board_idx].flags;
  549. probe_ent->pio_mask = qs_port_info[board_idx].pio_mask;
  550. probe_ent->mwdma_mask = qs_port_info[board_idx].mwdma_mask;
  551. probe_ent->udma_mask = qs_port_info[board_idx].udma_mask;
  552. probe_ent->port_ops = qs_port_info[board_idx].port_ops;
  553. probe_ent->irq = pdev->irq;
  554. probe_ent->irq_flags = IRQF_SHARED;
  555. probe_ent->iomap = iomap;
  556. probe_ent->n_ports = QS_PORTS;
  557. for (port_no = 0; port_no < probe_ent->n_ports; ++port_no) {
  558. void __iomem *chan =
  559. probe_ent->iomap[QS_MMIO_BAR] + (port_no * 0x4000);
  560. qs_ata_setup_port(&probe_ent->port[port_no], chan);
  561. }
  562. pci_set_master(pdev);
  563. /* initialize adapter */
  564. qs_host_init(board_idx, probe_ent);
  565. if (ata_device_add(probe_ent) != QS_PORTS)
  566. return -EIO;
  567. devm_kfree(&pdev->dev, probe_ent);
  568. return 0;
  569. }
  570. static int __init qs_ata_init(void)
  571. {
  572. return pci_register_driver(&qs_ata_pci_driver);
  573. }
  574. static void __exit qs_ata_exit(void)
  575. {
  576. pci_unregister_driver(&qs_ata_pci_driver);
  577. }
  578. MODULE_AUTHOR("Mark Lord");
  579. MODULE_DESCRIPTION("Pacific Digital Corporation QStor SATA low-level driver");
  580. MODULE_LICENSE("GPL");
  581. MODULE_DEVICE_TABLE(pci, qs_ata_pci_tbl);
  582. MODULE_VERSION(DRV_VERSION);
  583. module_init(qs_ata_init);
  584. module_exit(qs_ata_exit);