setup.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241
  1. /*
  2. * linux/arch/x86-64/kernel/setup.c
  3. *
  4. * Copyright (C) 1995 Linus Torvalds
  5. *
  6. * Nov 2001 Dave Jones <davej@suse.de>
  7. * Forked from i386 setup code.
  8. */
  9. /*
  10. * This file handles the architecture-dependent parts of initialization
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/slab.h>
  20. #include <linux/user.h>
  21. #include <linux/a.out.h>
  22. #include <linux/screen_info.h>
  23. #include <linux/ioport.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/initrd.h>
  27. #include <linux/highmem.h>
  28. #include <linux/bootmem.h>
  29. #include <linux/module.h>
  30. #include <asm/processor.h>
  31. #include <linux/console.h>
  32. #include <linux/seq_file.h>
  33. #include <linux/crash_dump.h>
  34. #include <linux/root_dev.h>
  35. #include <linux/pci.h>
  36. #include <linux/acpi.h>
  37. #include <linux/kallsyms.h>
  38. #include <linux/edd.h>
  39. #include <linux/mmzone.h>
  40. #include <linux/kexec.h>
  41. #include <linux/cpufreq.h>
  42. #include <linux/dmi.h>
  43. #include <linux/dma-mapping.h>
  44. #include <linux/ctype.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/system.h>
  48. #include <asm/io.h>
  49. #include <asm/smp.h>
  50. #include <asm/msr.h>
  51. #include <asm/desc.h>
  52. #include <video/edid.h>
  53. #include <asm/e820.h>
  54. #include <asm/dma.h>
  55. #include <asm/mpspec.h>
  56. #include <asm/mmu_context.h>
  57. #include <asm/bootsetup.h>
  58. #include <asm/proto.h>
  59. #include <asm/setup.h>
  60. #include <asm/mach_apic.h>
  61. #include <asm/numa.h>
  62. #include <asm/sections.h>
  63. #include <asm/dmi.h>
  64. /*
  65. * Machine setup..
  66. */
  67. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  68. EXPORT_SYMBOL(boot_cpu_data);
  69. unsigned long mmu_cr4_features;
  70. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  71. int bootloader_type;
  72. unsigned long saved_video_mode;
  73. /*
  74. * Early DMI memory
  75. */
  76. int dmi_alloc_index;
  77. char dmi_alloc_data[DMI_MAX_DATA];
  78. /*
  79. * Setup options
  80. */
  81. struct screen_info screen_info;
  82. EXPORT_SYMBOL(screen_info);
  83. struct sys_desc_table_struct {
  84. unsigned short length;
  85. unsigned char table[0];
  86. };
  87. struct edid_info edid_info;
  88. EXPORT_SYMBOL_GPL(edid_info);
  89. extern int root_mountflags;
  90. char command_line[COMMAND_LINE_SIZE];
  91. struct resource standard_io_resources[] = {
  92. { .name = "dma1", .start = 0x00, .end = 0x1f,
  93. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  94. { .name = "pic1", .start = 0x20, .end = 0x21,
  95. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  96. { .name = "timer0", .start = 0x40, .end = 0x43,
  97. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  98. { .name = "timer1", .start = 0x50, .end = 0x53,
  99. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  100. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  101. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  102. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  103. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  104. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  105. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  106. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  107. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  108. { .name = "fpu", .start = 0xf0, .end = 0xff,
  109. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  110. };
  111. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  112. struct resource data_resource = {
  113. .name = "Kernel data",
  114. .start = 0,
  115. .end = 0,
  116. .flags = IORESOURCE_RAM,
  117. };
  118. struct resource code_resource = {
  119. .name = "Kernel code",
  120. .start = 0,
  121. .end = 0,
  122. .flags = IORESOURCE_RAM,
  123. };
  124. #define IORESOURCE_ROM (IORESOURCE_BUSY | IORESOURCE_READONLY | IORESOURCE_MEM)
  125. static struct resource system_rom_resource = {
  126. .name = "System ROM",
  127. .start = 0xf0000,
  128. .end = 0xfffff,
  129. .flags = IORESOURCE_ROM,
  130. };
  131. static struct resource extension_rom_resource = {
  132. .name = "Extension ROM",
  133. .start = 0xe0000,
  134. .end = 0xeffff,
  135. .flags = IORESOURCE_ROM,
  136. };
  137. static struct resource adapter_rom_resources[] = {
  138. { .name = "Adapter ROM", .start = 0xc8000, .end = 0,
  139. .flags = IORESOURCE_ROM },
  140. { .name = "Adapter ROM", .start = 0, .end = 0,
  141. .flags = IORESOURCE_ROM },
  142. { .name = "Adapter ROM", .start = 0, .end = 0,
  143. .flags = IORESOURCE_ROM },
  144. { .name = "Adapter ROM", .start = 0, .end = 0,
  145. .flags = IORESOURCE_ROM },
  146. { .name = "Adapter ROM", .start = 0, .end = 0,
  147. .flags = IORESOURCE_ROM },
  148. { .name = "Adapter ROM", .start = 0, .end = 0,
  149. .flags = IORESOURCE_ROM }
  150. };
  151. static struct resource video_rom_resource = {
  152. .name = "Video ROM",
  153. .start = 0xc0000,
  154. .end = 0xc7fff,
  155. .flags = IORESOURCE_ROM,
  156. };
  157. static struct resource video_ram_resource = {
  158. .name = "Video RAM area",
  159. .start = 0xa0000,
  160. .end = 0xbffff,
  161. .flags = IORESOURCE_RAM,
  162. };
  163. #define romsignature(x) (*(unsigned short *)(x) == 0xaa55)
  164. static int __init romchecksum(unsigned char *rom, unsigned long length)
  165. {
  166. unsigned char *p, sum = 0;
  167. for (p = rom; p < rom + length; p++)
  168. sum += *p;
  169. return sum == 0;
  170. }
  171. static void __init probe_roms(void)
  172. {
  173. unsigned long start, length, upper;
  174. unsigned char *rom;
  175. int i;
  176. /* video rom */
  177. upper = adapter_rom_resources[0].start;
  178. for (start = video_rom_resource.start; start < upper; start += 2048) {
  179. rom = isa_bus_to_virt(start);
  180. if (!romsignature(rom))
  181. continue;
  182. video_rom_resource.start = start;
  183. /* 0 < length <= 0x7f * 512, historically */
  184. length = rom[2] * 512;
  185. /* if checksum okay, trust length byte */
  186. if (length && romchecksum(rom, length))
  187. video_rom_resource.end = start + length - 1;
  188. request_resource(&iomem_resource, &video_rom_resource);
  189. break;
  190. }
  191. start = (video_rom_resource.end + 1 + 2047) & ~2047UL;
  192. if (start < upper)
  193. start = upper;
  194. /* system rom */
  195. request_resource(&iomem_resource, &system_rom_resource);
  196. upper = system_rom_resource.start;
  197. /* check for extension rom (ignore length byte!) */
  198. rom = isa_bus_to_virt(extension_rom_resource.start);
  199. if (romsignature(rom)) {
  200. length = extension_rom_resource.end - extension_rom_resource.start + 1;
  201. if (romchecksum(rom, length)) {
  202. request_resource(&iomem_resource, &extension_rom_resource);
  203. upper = extension_rom_resource.start;
  204. }
  205. }
  206. /* check for adapter roms on 2k boundaries */
  207. for (i = 0; i < ARRAY_SIZE(adapter_rom_resources) && start < upper;
  208. start += 2048) {
  209. rom = isa_bus_to_virt(start);
  210. if (!romsignature(rom))
  211. continue;
  212. /* 0 < length <= 0x7f * 512, historically */
  213. length = rom[2] * 512;
  214. /* but accept any length that fits if checksum okay */
  215. if (!length || start + length > upper || !romchecksum(rom, length))
  216. continue;
  217. adapter_rom_resources[i].start = start;
  218. adapter_rom_resources[i].end = start + length - 1;
  219. request_resource(&iomem_resource, &adapter_rom_resources[i]);
  220. start = adapter_rom_resources[i++].end & ~2047UL;
  221. }
  222. }
  223. #ifdef CONFIG_PROC_VMCORE
  224. /* elfcorehdr= specifies the location of elf core header
  225. * stored by the crashed kernel. This option will be passed
  226. * by kexec loader to the capture kernel.
  227. */
  228. static int __init setup_elfcorehdr(char *arg)
  229. {
  230. char *end;
  231. if (!arg)
  232. return -EINVAL;
  233. elfcorehdr_addr = memparse(arg, &end);
  234. return end > arg ? 0 : -EINVAL;
  235. }
  236. early_param("elfcorehdr", setup_elfcorehdr);
  237. #endif
  238. #ifndef CONFIG_NUMA
  239. static void __init
  240. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  241. {
  242. unsigned long bootmap_size, bootmap;
  243. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  244. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  245. if (bootmap == -1L)
  246. panic("Cannot find bootmem map of size %ld\n",bootmap_size);
  247. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  248. e820_register_active_regions(0, start_pfn, end_pfn);
  249. free_bootmem_with_active_regions(0, end_pfn);
  250. reserve_bootmem(bootmap, bootmap_size);
  251. }
  252. #endif
  253. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  254. struct edd edd;
  255. #ifdef CONFIG_EDD_MODULE
  256. EXPORT_SYMBOL(edd);
  257. #endif
  258. /**
  259. * copy_edd() - Copy the BIOS EDD information
  260. * from boot_params into a safe place.
  261. *
  262. */
  263. static inline void copy_edd(void)
  264. {
  265. memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature));
  266. memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info));
  267. edd.mbr_signature_nr = EDD_MBR_SIG_NR;
  268. edd.edd_info_nr = EDD_NR;
  269. }
  270. #else
  271. static inline void copy_edd(void)
  272. {
  273. }
  274. #endif
  275. #define EBDA_ADDR_POINTER 0x40E
  276. unsigned __initdata ebda_addr;
  277. unsigned __initdata ebda_size;
  278. static void discover_ebda(void)
  279. {
  280. /*
  281. * there is a real-mode segmented pointer pointing to the
  282. * 4K EBDA area at 0x40E
  283. */
  284. ebda_addr = *(unsigned short *)EBDA_ADDR_POINTER;
  285. ebda_addr <<= 4;
  286. ebda_size = *(unsigned short *)(unsigned long)ebda_addr;
  287. /* Round EBDA up to pages */
  288. if (ebda_size == 0)
  289. ebda_size = 1;
  290. ebda_size <<= 10;
  291. ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE);
  292. if (ebda_size > 64*1024)
  293. ebda_size = 64*1024;
  294. }
  295. void __init setup_arch(char **cmdline_p)
  296. {
  297. printk(KERN_INFO "Command line: %s\n", saved_command_line);
  298. ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
  299. screen_info = SCREEN_INFO;
  300. edid_info = EDID_INFO;
  301. saved_video_mode = SAVED_VIDEO_MODE;
  302. bootloader_type = LOADER_TYPE;
  303. #ifdef CONFIG_BLK_DEV_RAM
  304. rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
  305. rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
  306. rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
  307. #endif
  308. setup_memory_region();
  309. copy_edd();
  310. if (!MOUNT_ROOT_RDONLY)
  311. root_mountflags &= ~MS_RDONLY;
  312. init_mm.start_code = (unsigned long) &_text;
  313. init_mm.end_code = (unsigned long) &_etext;
  314. init_mm.end_data = (unsigned long) &_edata;
  315. init_mm.brk = (unsigned long) &_end;
  316. code_resource.start = virt_to_phys(&_text);
  317. code_resource.end = virt_to_phys(&_etext)-1;
  318. data_resource.start = virt_to_phys(&_etext);
  319. data_resource.end = virt_to_phys(&_edata)-1;
  320. early_identify_cpu(&boot_cpu_data);
  321. strlcpy(command_line, saved_command_line, COMMAND_LINE_SIZE);
  322. *cmdline_p = command_line;
  323. parse_early_param();
  324. finish_e820_parsing();
  325. e820_register_active_regions(0, 0, -1UL);
  326. /*
  327. * partially used pages are not usable - thus
  328. * we are rounding upwards:
  329. */
  330. end_pfn = e820_end_of_ram();
  331. num_physpages = end_pfn;
  332. check_efer();
  333. discover_ebda();
  334. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  335. dmi_scan_machine();
  336. zap_low_mappings(0);
  337. #ifdef CONFIG_ACPI
  338. /*
  339. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  340. * Call this early for SRAT node setup.
  341. */
  342. acpi_boot_table_init();
  343. #endif
  344. /* How many end-of-memory variables you have, grandma! */
  345. max_low_pfn = end_pfn;
  346. max_pfn = end_pfn;
  347. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  348. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  349. remove_all_active_ranges();
  350. #ifdef CONFIG_ACPI_NUMA
  351. /*
  352. * Parse SRAT to discover nodes.
  353. */
  354. acpi_numa_init();
  355. #endif
  356. #ifdef CONFIG_NUMA
  357. numa_initmem_init(0, end_pfn);
  358. #else
  359. contig_initmem_init(0, end_pfn);
  360. #endif
  361. /* Reserve direct mapping */
  362. reserve_bootmem_generic(table_start << PAGE_SHIFT,
  363. (table_end - table_start) << PAGE_SHIFT);
  364. /* reserve kernel */
  365. reserve_bootmem_generic(__pa_symbol(&_text),
  366. __pa_symbol(&_end) - __pa_symbol(&_text));
  367. /*
  368. * reserve physical page 0 - it's a special BIOS page on many boxes,
  369. * enabling clean reboots, SMP operation, laptop functions.
  370. */
  371. reserve_bootmem_generic(0, PAGE_SIZE);
  372. /* reserve ebda region */
  373. if (ebda_addr)
  374. reserve_bootmem_generic(ebda_addr, ebda_size);
  375. #ifdef CONFIG_SMP
  376. /*
  377. * But first pinch a few for the stack/trampoline stuff
  378. * FIXME: Don't need the extra page at 4K, but need to fix
  379. * trampoline before removing it. (see the GDT stuff)
  380. */
  381. reserve_bootmem_generic(PAGE_SIZE, PAGE_SIZE);
  382. /* Reserve SMP trampoline */
  383. reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, PAGE_SIZE);
  384. #endif
  385. #ifdef CONFIG_ACPI_SLEEP
  386. /*
  387. * Reserve low memory region for sleep support.
  388. */
  389. acpi_reserve_bootmem();
  390. #endif
  391. /*
  392. * Find and reserve possible boot-time SMP configuration:
  393. */
  394. find_smp_config();
  395. #ifdef CONFIG_BLK_DEV_INITRD
  396. if (LOADER_TYPE && INITRD_START) {
  397. if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) {
  398. reserve_bootmem_generic(INITRD_START, INITRD_SIZE);
  399. initrd_start = INITRD_START + PAGE_OFFSET;
  400. initrd_end = initrd_start+INITRD_SIZE;
  401. }
  402. else {
  403. printk(KERN_ERR "initrd extends beyond end of memory "
  404. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  405. (unsigned long)(INITRD_START + INITRD_SIZE),
  406. (unsigned long)(end_pfn << PAGE_SHIFT));
  407. initrd_start = 0;
  408. }
  409. }
  410. #endif
  411. #ifdef CONFIG_KEXEC
  412. if (crashk_res.start != crashk_res.end) {
  413. reserve_bootmem_generic(crashk_res.start,
  414. crashk_res.end - crashk_res.start + 1);
  415. }
  416. #endif
  417. paging_init();
  418. #ifdef CONFIG_PCI
  419. early_quirks();
  420. #endif
  421. /*
  422. * set this early, so we dont allocate cpu0
  423. * if MADT list doesnt list BSP first
  424. * mpparse.c/MP_processor_info() allocates logical cpu numbers.
  425. */
  426. cpu_set(0, cpu_present_map);
  427. #ifdef CONFIG_ACPI
  428. /*
  429. * Read APIC and some other early information from ACPI tables.
  430. */
  431. acpi_boot_init();
  432. #endif
  433. init_cpu_to_node();
  434. /*
  435. * get boot-time SMP configuration:
  436. */
  437. if (smp_found_config)
  438. get_smp_config();
  439. init_apic_mappings();
  440. /*
  441. * Request address space for all standard RAM and ROM resources
  442. * and also for regions reported as reserved by the e820.
  443. */
  444. probe_roms();
  445. e820_reserve_resources();
  446. e820_mark_nosave_regions();
  447. request_resource(&iomem_resource, &video_ram_resource);
  448. {
  449. unsigned i;
  450. /* request I/O space for devices used on all i[345]86 PCs */
  451. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  452. request_resource(&ioport_resource, &standard_io_resources[i]);
  453. }
  454. e820_setup_gap();
  455. #ifdef CONFIG_VT
  456. #if defined(CONFIG_VGA_CONSOLE)
  457. conswitchp = &vga_con;
  458. #elif defined(CONFIG_DUMMY_CONSOLE)
  459. conswitchp = &dummy_con;
  460. #endif
  461. #endif
  462. }
  463. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  464. {
  465. unsigned int *v;
  466. if (c->extended_cpuid_level < 0x80000004)
  467. return 0;
  468. v = (unsigned int *) c->x86_model_id;
  469. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  470. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  471. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  472. c->x86_model_id[48] = 0;
  473. return 1;
  474. }
  475. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  476. {
  477. unsigned int n, dummy, eax, ebx, ecx, edx;
  478. n = c->extended_cpuid_level;
  479. if (n >= 0x80000005) {
  480. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  481. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  482. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  483. c->x86_cache_size=(ecx>>24)+(edx>>24);
  484. /* On K8 L1 TLB is inclusive, so don't count it */
  485. c->x86_tlbsize = 0;
  486. }
  487. if (n >= 0x80000006) {
  488. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  489. ecx = cpuid_ecx(0x80000006);
  490. c->x86_cache_size = ecx >> 16;
  491. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  492. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  493. c->x86_cache_size, ecx & 0xFF);
  494. }
  495. if (n >= 0x80000007)
  496. cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);
  497. if (n >= 0x80000008) {
  498. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  499. c->x86_virt_bits = (eax >> 8) & 0xff;
  500. c->x86_phys_bits = eax & 0xff;
  501. }
  502. }
  503. #ifdef CONFIG_NUMA
  504. static int nearby_node(int apicid)
  505. {
  506. int i;
  507. for (i = apicid - 1; i >= 0; i--) {
  508. int node = apicid_to_node[i];
  509. if (node != NUMA_NO_NODE && node_online(node))
  510. return node;
  511. }
  512. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  513. int node = apicid_to_node[i];
  514. if (node != NUMA_NO_NODE && node_online(node))
  515. return node;
  516. }
  517. return first_node(node_online_map); /* Shouldn't happen */
  518. }
  519. #endif
  520. /*
  521. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  522. * Assumes number of cores is a power of two.
  523. */
  524. static void __init amd_detect_cmp(struct cpuinfo_x86 *c)
  525. {
  526. #ifdef CONFIG_SMP
  527. unsigned bits;
  528. #ifdef CONFIG_NUMA
  529. int cpu = smp_processor_id();
  530. int node = 0;
  531. unsigned apicid = hard_smp_processor_id();
  532. #endif
  533. unsigned ecx = cpuid_ecx(0x80000008);
  534. c->x86_max_cores = (ecx & 0xff) + 1;
  535. /* CPU telling us the core id bits shift? */
  536. bits = (ecx >> 12) & 0xF;
  537. /* Otherwise recompute */
  538. if (bits == 0) {
  539. while ((1 << bits) < c->x86_max_cores)
  540. bits++;
  541. }
  542. /* Low order bits define the core id (index of core in socket) */
  543. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  544. /* Convert the APIC ID into the socket ID */
  545. c->phys_proc_id = phys_pkg_id(bits);
  546. #ifdef CONFIG_NUMA
  547. node = c->phys_proc_id;
  548. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  549. node = apicid_to_node[apicid];
  550. if (!node_online(node)) {
  551. /* Two possibilities here:
  552. - The CPU is missing memory and no node was created.
  553. In that case try picking one from a nearby CPU
  554. - The APIC IDs differ from the HyperTransport node IDs
  555. which the K8 northbridge parsing fills in.
  556. Assume they are all increased by a constant offset,
  557. but in the same order as the HT nodeids.
  558. If that doesn't result in a usable node fall back to the
  559. path for the previous case. */
  560. int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits);
  561. if (ht_nodeid >= 0 &&
  562. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  563. node = apicid_to_node[ht_nodeid];
  564. /* Pick a nearby node */
  565. if (!node_online(node))
  566. node = nearby_node(apicid);
  567. }
  568. numa_set_node(cpu, node);
  569. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  570. #endif
  571. #endif
  572. }
  573. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  574. {
  575. unsigned level;
  576. #ifdef CONFIG_SMP
  577. unsigned long value;
  578. /*
  579. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  580. * bit 6 of msr C001_0015
  581. *
  582. * Errata 63 for SH-B3 steppings
  583. * Errata 122 for all steppings (F+ have it disabled by default)
  584. */
  585. if (c->x86 == 15) {
  586. rdmsrl(MSR_K8_HWCR, value);
  587. value |= 1 << 6;
  588. wrmsrl(MSR_K8_HWCR, value);
  589. }
  590. #endif
  591. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  592. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  593. clear_bit(0*32+31, &c->x86_capability);
  594. /* On C+ stepping K8 rep microcode works well for copy/memset */
  595. level = cpuid_eax(1);
  596. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58))
  597. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  598. /* Enable workaround for FXSAVE leak */
  599. if (c->x86 >= 6)
  600. set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability);
  601. level = get_model_name(c);
  602. if (!level) {
  603. switch (c->x86) {
  604. case 15:
  605. /* Should distinguish Models here, but this is only
  606. a fallback anyways. */
  607. strcpy(c->x86_model_id, "Hammer");
  608. break;
  609. }
  610. }
  611. display_cacheinfo(c);
  612. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  613. if (c->x86_power & (1<<8))
  614. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  615. /* Multi core CPU? */
  616. if (c->extended_cpuid_level >= 0x80000008)
  617. amd_detect_cmp(c);
  618. /* Fix cpuid4 emulation for more */
  619. num_cache_leaves = 3;
  620. /* RDTSC can be speculated around */
  621. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  622. }
  623. static void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  624. {
  625. #ifdef CONFIG_SMP
  626. u32 eax, ebx, ecx, edx;
  627. int index_msb, core_bits;
  628. cpuid(1, &eax, &ebx, &ecx, &edx);
  629. if (!cpu_has(c, X86_FEATURE_HT))
  630. return;
  631. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  632. goto out;
  633. smp_num_siblings = (ebx & 0xff0000) >> 16;
  634. if (smp_num_siblings == 1) {
  635. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  636. } else if (smp_num_siblings > 1 ) {
  637. if (smp_num_siblings > NR_CPUS) {
  638. printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings);
  639. smp_num_siblings = 1;
  640. return;
  641. }
  642. index_msb = get_count_order(smp_num_siblings);
  643. c->phys_proc_id = phys_pkg_id(index_msb);
  644. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  645. index_msb = get_count_order(smp_num_siblings) ;
  646. core_bits = get_count_order(c->x86_max_cores);
  647. c->cpu_core_id = phys_pkg_id(index_msb) &
  648. ((1 << core_bits) - 1);
  649. }
  650. out:
  651. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  652. printk(KERN_INFO "CPU: Physical Processor ID: %d\n", c->phys_proc_id);
  653. printk(KERN_INFO "CPU: Processor Core ID: %d\n", c->cpu_core_id);
  654. }
  655. #endif
  656. }
  657. /*
  658. * find out the number of processor cores on the die
  659. */
  660. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  661. {
  662. unsigned int eax, t;
  663. if (c->cpuid_level < 4)
  664. return 1;
  665. cpuid_count(4, 0, &eax, &t, &t, &t);
  666. if (eax & 0x1f)
  667. return ((eax >> 26) + 1);
  668. else
  669. return 1;
  670. }
  671. static void srat_detect_node(void)
  672. {
  673. #ifdef CONFIG_NUMA
  674. unsigned node;
  675. int cpu = smp_processor_id();
  676. int apicid = hard_smp_processor_id();
  677. /* Don't do the funky fallback heuristics the AMD version employs
  678. for now. */
  679. node = apicid_to_node[apicid];
  680. if (node == NUMA_NO_NODE)
  681. node = first_node(node_online_map);
  682. numa_set_node(cpu, node);
  683. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  684. #endif
  685. }
  686. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  687. {
  688. /* Cache sizes */
  689. unsigned n;
  690. init_intel_cacheinfo(c);
  691. if (c->cpuid_level > 9 ) {
  692. unsigned eax = cpuid_eax(10);
  693. /* Check for version and the number of counters */
  694. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  695. set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability);
  696. }
  697. if (cpu_has_ds) {
  698. unsigned int l1, l2;
  699. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  700. if (!(l1 & (1<<11)))
  701. set_bit(X86_FEATURE_BTS, c->x86_capability);
  702. if (!(l1 & (1<<12)))
  703. set_bit(X86_FEATURE_PEBS, c->x86_capability);
  704. }
  705. n = c->extended_cpuid_level;
  706. if (n >= 0x80000008) {
  707. unsigned eax = cpuid_eax(0x80000008);
  708. c->x86_virt_bits = (eax >> 8) & 0xff;
  709. c->x86_phys_bits = eax & 0xff;
  710. /* CPUID workaround for Intel 0F34 CPU */
  711. if (c->x86_vendor == X86_VENDOR_INTEL &&
  712. c->x86 == 0xF && c->x86_model == 0x3 &&
  713. c->x86_mask == 0x4)
  714. c->x86_phys_bits = 36;
  715. }
  716. if (c->x86 == 15)
  717. c->x86_cache_alignment = c->x86_clflush_size * 2;
  718. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  719. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  720. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  721. if (c->x86 == 6)
  722. set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability);
  723. if (c->x86 == 15)
  724. set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  725. else
  726. clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability);
  727. c->x86_max_cores = intel_num_cpu_cores(c);
  728. srat_detect_node();
  729. }
  730. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  731. {
  732. char *v = c->x86_vendor_id;
  733. if (!strcmp(v, "AuthenticAMD"))
  734. c->x86_vendor = X86_VENDOR_AMD;
  735. else if (!strcmp(v, "GenuineIntel"))
  736. c->x86_vendor = X86_VENDOR_INTEL;
  737. else
  738. c->x86_vendor = X86_VENDOR_UNKNOWN;
  739. }
  740. struct cpu_model_info {
  741. int vendor;
  742. int family;
  743. char *model_names[16];
  744. };
  745. /* Do some early cpuid on the boot CPU to get some parameter that are
  746. needed before check_bugs. Everything advanced is in identify_cpu
  747. below. */
  748. void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  749. {
  750. u32 tfms;
  751. c->loops_per_jiffy = loops_per_jiffy;
  752. c->x86_cache_size = -1;
  753. c->x86_vendor = X86_VENDOR_UNKNOWN;
  754. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  755. c->x86_vendor_id[0] = '\0'; /* Unset */
  756. c->x86_model_id[0] = '\0'; /* Unset */
  757. c->x86_clflush_size = 64;
  758. c->x86_cache_alignment = c->x86_clflush_size;
  759. c->x86_max_cores = 1;
  760. c->extended_cpuid_level = 0;
  761. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  762. /* Get vendor name */
  763. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  764. (unsigned int *)&c->x86_vendor_id[0],
  765. (unsigned int *)&c->x86_vendor_id[8],
  766. (unsigned int *)&c->x86_vendor_id[4]);
  767. get_cpu_vendor(c);
  768. /* Initialize the standard set of capabilities */
  769. /* Note that the vendor-specific code below might override */
  770. /* Intel-defined flags: level 0x00000001 */
  771. if (c->cpuid_level >= 0x00000001) {
  772. __u32 misc;
  773. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  774. &c->x86_capability[0]);
  775. c->x86 = (tfms >> 8) & 0xf;
  776. c->x86_model = (tfms >> 4) & 0xf;
  777. c->x86_mask = tfms & 0xf;
  778. if (c->x86 == 0xf)
  779. c->x86 += (tfms >> 20) & 0xff;
  780. if (c->x86 >= 0x6)
  781. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  782. if (c->x86_capability[0] & (1<<19))
  783. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  784. } else {
  785. /* Have CPUID level 0 only - unheard of */
  786. c->x86 = 4;
  787. }
  788. #ifdef CONFIG_SMP
  789. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  790. #endif
  791. }
  792. /*
  793. * This does the hard work of actually picking apart the CPU stuff...
  794. */
  795. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  796. {
  797. int i;
  798. u32 xlvl;
  799. early_identify_cpu(c);
  800. /* AMD-defined flags: level 0x80000001 */
  801. xlvl = cpuid_eax(0x80000000);
  802. c->extended_cpuid_level = xlvl;
  803. if ((xlvl & 0xffff0000) == 0x80000000) {
  804. if (xlvl >= 0x80000001) {
  805. c->x86_capability[1] = cpuid_edx(0x80000001);
  806. c->x86_capability[6] = cpuid_ecx(0x80000001);
  807. }
  808. if (xlvl >= 0x80000004)
  809. get_model_name(c); /* Default name */
  810. }
  811. /* Transmeta-defined flags: level 0x80860001 */
  812. xlvl = cpuid_eax(0x80860000);
  813. if ((xlvl & 0xffff0000) == 0x80860000) {
  814. /* Don't set x86_cpuid_level here for now to not confuse. */
  815. if (xlvl >= 0x80860001)
  816. c->x86_capability[2] = cpuid_edx(0x80860001);
  817. }
  818. c->apicid = phys_pkg_id(0);
  819. /*
  820. * Vendor-specific initialization. In this section we
  821. * canonicalize the feature flags, meaning if there are
  822. * features a certain CPU supports which CPUID doesn't
  823. * tell us, CPUID claiming incorrect flags, or other bugs,
  824. * we handle them here.
  825. *
  826. * At the end of this section, c->x86_capability better
  827. * indicate the features this CPU genuinely supports!
  828. */
  829. switch (c->x86_vendor) {
  830. case X86_VENDOR_AMD:
  831. init_amd(c);
  832. break;
  833. case X86_VENDOR_INTEL:
  834. init_intel(c);
  835. break;
  836. case X86_VENDOR_UNKNOWN:
  837. default:
  838. display_cacheinfo(c);
  839. break;
  840. }
  841. select_idle_routine(c);
  842. detect_ht(c);
  843. /*
  844. * On SMP, boot_cpu_data holds the common feature set between
  845. * all CPUs; so make sure that we indicate which features are
  846. * common between the CPUs. The first time this routine gets
  847. * executed, c == &boot_cpu_data.
  848. */
  849. if (c != &boot_cpu_data) {
  850. /* AND the already accumulated flags with these */
  851. for (i = 0 ; i < NCAPINTS ; i++)
  852. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  853. }
  854. #ifdef CONFIG_X86_MCE
  855. mcheck_init(c);
  856. #endif
  857. if (c == &boot_cpu_data)
  858. mtrr_bp_init();
  859. else
  860. mtrr_ap_init();
  861. #ifdef CONFIG_NUMA
  862. numa_add_cpu(smp_processor_id());
  863. #endif
  864. }
  865. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  866. {
  867. if (c->x86_model_id[0])
  868. printk("%s", c->x86_model_id);
  869. if (c->x86_mask || c->cpuid_level >= 0)
  870. printk(" stepping %02x\n", c->x86_mask);
  871. else
  872. printk("\n");
  873. }
  874. /*
  875. * Get CPU information for use by the procfs.
  876. */
  877. static int show_cpuinfo(struct seq_file *m, void *v)
  878. {
  879. struct cpuinfo_x86 *c = v;
  880. /*
  881. * These flag bits must match the definitions in <asm/cpufeature.h>.
  882. * NULL means this bit is undefined or reserved; either way it doesn't
  883. * have meaning as far as Linux is concerned. Note that it's important
  884. * to realize there is a difference between this table and CPUID -- if
  885. * applications want to get the raw CPUID data, they should access
  886. * /dev/cpu/<cpu_nr>/cpuid instead.
  887. */
  888. static char *x86_cap_flags[] = {
  889. /* Intel-defined */
  890. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  891. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  892. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  893. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL,
  894. /* AMD-defined */
  895. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  896. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  897. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  898. NULL, "fxsr_opt", NULL, "rdtscp", NULL, "lm", "3dnowext", "3dnow",
  899. /* Transmeta-defined */
  900. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  901. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  902. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  903. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  904. /* Other (Linux-defined) */
  905. "cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL,
  906. "constant_tsc", NULL, NULL,
  907. "up", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  908. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  909. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  910. /* Intel-defined (#2) */
  911. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  912. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  913. NULL, NULL, "dca", NULL, NULL, NULL, NULL, NULL,
  914. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  915. /* VIA/Cyrix/Centaur-defined */
  916. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  917. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  918. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  919. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  920. /* AMD-defined (#2) */
  921. "lahf_lm", "cmp_legacy", "svm", NULL, "cr8_legacy", NULL, NULL, NULL,
  922. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  923. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  924. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  925. };
  926. static char *x86_power_flags[] = {
  927. "ts", /* temperature sensor */
  928. "fid", /* frequency id control */
  929. "vid", /* voltage id control */
  930. "ttp", /* thermal trip */
  931. "tm",
  932. "stc",
  933. NULL,
  934. /* nothing */ /* constant_tsc - moved to flags */
  935. };
  936. #ifdef CONFIG_SMP
  937. if (!cpu_online(c-cpu_data))
  938. return 0;
  939. #endif
  940. seq_printf(m,"processor\t: %u\n"
  941. "vendor_id\t: %s\n"
  942. "cpu family\t: %d\n"
  943. "model\t\t: %d\n"
  944. "model name\t: %s\n",
  945. (unsigned)(c-cpu_data),
  946. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  947. c->x86,
  948. (int)c->x86_model,
  949. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  950. if (c->x86_mask || c->cpuid_level >= 0)
  951. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  952. else
  953. seq_printf(m, "stepping\t: unknown\n");
  954. if (cpu_has(c,X86_FEATURE_TSC)) {
  955. unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data));
  956. if (!freq)
  957. freq = cpu_khz;
  958. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  959. freq / 1000, (freq % 1000));
  960. }
  961. /* Cache size */
  962. if (c->x86_cache_size >= 0)
  963. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  964. #ifdef CONFIG_SMP
  965. if (smp_num_siblings * c->x86_max_cores > 1) {
  966. int cpu = c - cpu_data;
  967. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  968. seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu]));
  969. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  970. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  971. }
  972. #endif
  973. seq_printf(m,
  974. "fpu\t\t: yes\n"
  975. "fpu_exception\t: yes\n"
  976. "cpuid level\t: %d\n"
  977. "wp\t\t: yes\n"
  978. "flags\t\t:",
  979. c->cpuid_level);
  980. {
  981. int i;
  982. for ( i = 0 ; i < 32*NCAPINTS ; i++ )
  983. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  984. seq_printf(m, " %s", x86_cap_flags[i]);
  985. }
  986. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  987. c->loops_per_jiffy/(500000/HZ),
  988. (c->loops_per_jiffy/(5000/HZ)) % 100);
  989. if (c->x86_tlbsize > 0)
  990. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  991. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  992. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  993. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  994. c->x86_phys_bits, c->x86_virt_bits);
  995. seq_printf(m, "power management:");
  996. {
  997. unsigned i;
  998. for (i = 0; i < 32; i++)
  999. if (c->x86_power & (1 << i)) {
  1000. if (i < ARRAY_SIZE(x86_power_flags) &&
  1001. x86_power_flags[i])
  1002. seq_printf(m, "%s%s",
  1003. x86_power_flags[i][0]?" ":"",
  1004. x86_power_flags[i]);
  1005. else
  1006. seq_printf(m, " [%d]", i);
  1007. }
  1008. }
  1009. seq_printf(m, "\n\n");
  1010. return 0;
  1011. }
  1012. static void *c_start(struct seq_file *m, loff_t *pos)
  1013. {
  1014. return *pos < NR_CPUS ? cpu_data + *pos : NULL;
  1015. }
  1016. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1017. {
  1018. ++*pos;
  1019. return c_start(m, pos);
  1020. }
  1021. static void c_stop(struct seq_file *m, void *v)
  1022. {
  1023. }
  1024. struct seq_operations cpuinfo_op = {
  1025. .start =c_start,
  1026. .next = c_next,
  1027. .stop = c_stop,
  1028. .show = show_cpuinfo,
  1029. };
  1030. #if defined(CONFIG_INPUT_PCSPKR) || defined(CONFIG_INPUT_PCSPKR_MODULE)
  1031. #include <linux/platform_device.h>
  1032. static __init int add_pcspkr(void)
  1033. {
  1034. struct platform_device *pd;
  1035. int ret;
  1036. pd = platform_device_alloc("pcspkr", -1);
  1037. if (!pd)
  1038. return -ENOMEM;
  1039. ret = platform_device_add(pd);
  1040. if (ret)
  1041. platform_device_put(pd);
  1042. return ret;
  1043. }
  1044. device_initcall(add_pcspkr);
  1045. #endif