time.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190
  1. /*
  2. * linux/arch/v850/kernel/time.c -- Arch-dependent timer functions
  3. *
  4. * Copyright (C) 1991, 1992, 1995, 2001, 2002 Linus Torvalds
  5. *
  6. * This file contains the v850-specific time handling details.
  7. * Most of the stuff is located in the machine specific files.
  8. *
  9. * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
  10. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  11. */
  12. #include <linux/errno.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/param.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/time.h>
  20. #include <linux/timex.h>
  21. #include <linux/profile.h>
  22. #include <asm/io.h>
  23. #include "mach.h"
  24. #define TICK_SIZE (tick_nsec / 1000)
  25. /*
  26. * Scheduler clock - returns current time in nanosec units.
  27. */
  28. unsigned long long sched_clock(void)
  29. {
  30. return (unsigned long long)jiffies * (1000000000 / HZ);
  31. }
  32. /*
  33. * timer_interrupt() needs to keep up the real-time clock,
  34. * as well as call the "do_timer()" routine every clocktick
  35. */
  36. static irqreturn_t timer_interrupt (int irq, void *dummy, struct pt_regs *regs)
  37. {
  38. #if 0
  39. /* last time the cmos clock got updated */
  40. static long last_rtc_update=0;
  41. #endif
  42. /* may need to kick the hardware timer */
  43. if (mach_tick)
  44. mach_tick ();
  45. do_timer (1);
  46. #ifndef CONFIG_SMP
  47. update_process_times(user_mode(regs));
  48. #endif
  49. profile_tick(CPU_PROFILING, regs);
  50. #if 0
  51. /*
  52. * If we have an externally synchronized Linux clock, then update
  53. * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
  54. * called as close as possible to 500 ms before the new second starts.
  55. */
  56. if (ntp_synced() &&
  57. xtime.tv_sec > last_rtc_update + 660 &&
  58. (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
  59. (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
  60. if (set_rtc_mmss (xtime.tv_sec) == 0)
  61. last_rtc_update = xtime.tv_sec;
  62. else
  63. last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */
  64. }
  65. #ifdef CONFIG_HEARTBEAT
  66. /* use power LED as a heartbeat instead -- much more useful
  67. for debugging -- based on the version for PReP by Cort */
  68. /* acts like an actual heart beat -- ie thump-thump-pause... */
  69. if (mach_heartbeat) {
  70. static unsigned cnt = 0, period = 0, dist = 0;
  71. if (cnt == 0 || cnt == dist)
  72. mach_heartbeat ( 1 );
  73. else if (cnt == 7 || cnt == dist+7)
  74. mach_heartbeat ( 0 );
  75. if (++cnt > period) {
  76. cnt = 0;
  77. /* The hyperbolic function below modifies the heartbeat period
  78. * length in dependency of the current (5min) load. It goes
  79. * through the points f(0)=126, f(1)=86, f(5)=51,
  80. * f(inf)->30. */
  81. period = ((672<<FSHIFT)/(5*avenrun[0]+(7<<FSHIFT))) + 30;
  82. dist = period / 4;
  83. }
  84. }
  85. #endif /* CONFIG_HEARTBEAT */
  86. #endif /* 0 */
  87. return IRQ_HANDLED;
  88. }
  89. /*
  90. * This version of gettimeofday has near microsecond resolution.
  91. */
  92. void do_gettimeofday (struct timeval *tv)
  93. {
  94. #if 0 /* DAVIDM later if possible */
  95. extern volatile unsigned long lost_ticks;
  96. unsigned long lost;
  97. #endif
  98. unsigned long flags;
  99. unsigned long usec, sec;
  100. unsigned long seq;
  101. do {
  102. seq = read_seqbegin_irqsave(&xtime_lock, flags);
  103. #if 0
  104. usec = mach_gettimeoffset ? mach_gettimeoffset () : 0;
  105. #else
  106. usec = 0;
  107. #endif
  108. #if 0 /* DAVIDM later if possible */
  109. lost = lost_ticks;
  110. if (lost)
  111. usec += lost * (1000000/HZ);
  112. #endif
  113. sec = xtime.tv_sec;
  114. usec += xtime.tv_nsec / 1000;
  115. } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
  116. while (usec >= 1000000) {
  117. usec -= 1000000;
  118. sec++;
  119. }
  120. tv->tv_sec = sec;
  121. tv->tv_usec = usec;
  122. }
  123. EXPORT_SYMBOL(do_gettimeofday);
  124. int do_settimeofday(struct timespec *tv)
  125. {
  126. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  127. return -EINVAL;
  128. write_seqlock_irq (&xtime_lock);
  129. /* This is revolting. We need to set the xtime.tv_nsec
  130. * correctly. However, the value in this location is
  131. * is value at the last tick.
  132. * Discover what correction gettimeofday
  133. * would have done, and then undo it!
  134. */
  135. #if 0
  136. tv->tv_nsec -= mach_gettimeoffset() * 1000;
  137. #endif
  138. while (tv->tv_nsec < 0) {
  139. tv->tv_nsec += NSEC_PER_SEC;
  140. tv->tv_sec--;
  141. }
  142. xtime.tv_sec = tv->tv_sec;
  143. xtime.tv_nsec = tv->tv_nsec;
  144. ntp_clear();
  145. write_sequnlock_irq (&xtime_lock);
  146. clock_was_set();
  147. return 0;
  148. }
  149. EXPORT_SYMBOL(do_settimeofday);
  150. static int timer_dev_id;
  151. static struct irqaction timer_irqaction = {
  152. timer_interrupt,
  153. IRQF_DISABLED,
  154. CPU_MASK_NONE,
  155. "timer",
  156. &timer_dev_id,
  157. NULL
  158. };
  159. void time_init (void)
  160. {
  161. mach_gettimeofday (&xtime);
  162. mach_sched_init (&timer_irqaction);
  163. }