vmem.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. unsigned long vmalloc_end;
  17. EXPORT_SYMBOL(vmalloc_end);
  18. static struct page *vmem_map;
  19. static DEFINE_MUTEX(vmem_mutex);
  20. struct memory_segment {
  21. struct list_head list;
  22. unsigned long start;
  23. unsigned long size;
  24. };
  25. static LIST_HEAD(mem_segs);
  26. void memmap_init(unsigned long size, int nid, unsigned long zone,
  27. unsigned long start_pfn)
  28. {
  29. struct page *start, *end;
  30. struct page *map_start, *map_end;
  31. int i;
  32. start = pfn_to_page(start_pfn);
  33. end = start + size;
  34. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  35. unsigned long cstart, cend;
  36. cstart = PFN_DOWN(memory_chunk[i].addr);
  37. cend = cstart + PFN_DOWN(memory_chunk[i].size);
  38. map_start = mem_map + cstart;
  39. map_end = mem_map + cend;
  40. if (map_start < start)
  41. map_start = start;
  42. if (map_end > end)
  43. map_end = end;
  44. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
  45. / sizeof(struct page);
  46. map_end += ((PFN_ALIGN((unsigned long) map_end)
  47. - (unsigned long) map_end)
  48. / sizeof(struct page));
  49. if (map_start < map_end)
  50. memmap_init_zone((unsigned long)(map_end - map_start),
  51. nid, zone, page_to_pfn(map_start),
  52. MEMMAP_EARLY);
  53. }
  54. }
  55. static inline void *vmem_alloc_pages(unsigned int order)
  56. {
  57. if (slab_is_available())
  58. return (void *)__get_free_pages(GFP_KERNEL, order);
  59. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  60. }
  61. static inline pmd_t *vmem_pmd_alloc(void)
  62. {
  63. pmd_t *pmd;
  64. int i;
  65. pmd = vmem_alloc_pages(PMD_ALLOC_ORDER);
  66. if (!pmd)
  67. return NULL;
  68. for (i = 0; i < PTRS_PER_PMD; i++)
  69. pmd_clear_kernel(pmd + i);
  70. return pmd;
  71. }
  72. static inline pte_t *vmem_pte_alloc(void)
  73. {
  74. pte_t *pte;
  75. pte_t empty_pte;
  76. int i;
  77. pte = vmem_alloc_pages(PTE_ALLOC_ORDER);
  78. if (!pte)
  79. return NULL;
  80. pte_val(empty_pte) = _PAGE_TYPE_EMPTY;
  81. for (i = 0; i < PTRS_PER_PTE; i++)
  82. pte[i] = empty_pte;
  83. return pte;
  84. }
  85. /*
  86. * Add a physical memory range to the 1:1 mapping.
  87. */
  88. static int vmem_add_range(unsigned long start, unsigned long size)
  89. {
  90. unsigned long address;
  91. pgd_t *pg_dir;
  92. pmd_t *pm_dir;
  93. pte_t *pt_dir;
  94. pte_t pte;
  95. int ret = -ENOMEM;
  96. for (address = start; address < start + size; address += PAGE_SIZE) {
  97. pg_dir = pgd_offset_k(address);
  98. if (pgd_none(*pg_dir)) {
  99. pm_dir = vmem_pmd_alloc();
  100. if (!pm_dir)
  101. goto out;
  102. pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
  103. }
  104. pm_dir = pmd_offset(pg_dir, address);
  105. if (pmd_none(*pm_dir)) {
  106. pt_dir = vmem_pte_alloc();
  107. if (!pt_dir)
  108. goto out;
  109. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  110. }
  111. pt_dir = pte_offset_kernel(pm_dir, address);
  112. pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
  113. *pt_dir = pte;
  114. }
  115. ret = 0;
  116. out:
  117. flush_tlb_kernel_range(start, start + size);
  118. return ret;
  119. }
  120. /*
  121. * Remove a physical memory range from the 1:1 mapping.
  122. * Currently only invalidates page table entries.
  123. */
  124. static void vmem_remove_range(unsigned long start, unsigned long size)
  125. {
  126. unsigned long address;
  127. pgd_t *pg_dir;
  128. pmd_t *pm_dir;
  129. pte_t *pt_dir;
  130. pte_t pte;
  131. pte_val(pte) = _PAGE_TYPE_EMPTY;
  132. for (address = start; address < start + size; address += PAGE_SIZE) {
  133. pg_dir = pgd_offset_k(address);
  134. if (pgd_none(*pg_dir))
  135. continue;
  136. pm_dir = pmd_offset(pg_dir, address);
  137. if (pmd_none(*pm_dir))
  138. continue;
  139. pt_dir = pte_offset_kernel(pm_dir, address);
  140. *pt_dir = pte;
  141. }
  142. flush_tlb_kernel_range(start, start + size);
  143. }
  144. /*
  145. * Add a backed mem_map array to the virtual mem_map array.
  146. */
  147. static int vmem_add_mem_map(unsigned long start, unsigned long size)
  148. {
  149. unsigned long address, start_addr, end_addr;
  150. struct page *map_start, *map_end;
  151. pgd_t *pg_dir;
  152. pmd_t *pm_dir;
  153. pte_t *pt_dir;
  154. pte_t pte;
  155. int ret = -ENOMEM;
  156. map_start = vmem_map + PFN_DOWN(start);
  157. map_end = vmem_map + PFN_DOWN(start + size);
  158. start_addr = (unsigned long) map_start & PAGE_MASK;
  159. end_addr = PFN_ALIGN((unsigned long) map_end);
  160. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  161. pg_dir = pgd_offset_k(address);
  162. if (pgd_none(*pg_dir)) {
  163. pm_dir = vmem_pmd_alloc();
  164. if (!pm_dir)
  165. goto out;
  166. pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
  167. }
  168. pm_dir = pmd_offset(pg_dir, address);
  169. if (pmd_none(*pm_dir)) {
  170. pt_dir = vmem_pte_alloc();
  171. if (!pt_dir)
  172. goto out;
  173. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  174. }
  175. pt_dir = pte_offset_kernel(pm_dir, address);
  176. if (pte_none(*pt_dir)) {
  177. unsigned long new_page;
  178. new_page =__pa(vmem_alloc_pages(0));
  179. if (!new_page)
  180. goto out;
  181. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  182. *pt_dir = pte;
  183. }
  184. }
  185. ret = 0;
  186. out:
  187. flush_tlb_kernel_range(start_addr, end_addr);
  188. return ret;
  189. }
  190. static int vmem_add_mem(unsigned long start, unsigned long size)
  191. {
  192. int ret;
  193. ret = vmem_add_range(start, size);
  194. if (ret)
  195. return ret;
  196. return vmem_add_mem_map(start, size);
  197. }
  198. /*
  199. * Add memory segment to the segment list if it doesn't overlap with
  200. * an already present segment.
  201. */
  202. static int insert_memory_segment(struct memory_segment *seg)
  203. {
  204. struct memory_segment *tmp;
  205. if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
  206. seg->start + seg->size < seg->start)
  207. return -ERANGE;
  208. list_for_each_entry(tmp, &mem_segs, list) {
  209. if (seg->start >= tmp->start + tmp->size)
  210. continue;
  211. if (seg->start + seg->size <= tmp->start)
  212. continue;
  213. return -ENOSPC;
  214. }
  215. list_add(&seg->list, &mem_segs);
  216. return 0;
  217. }
  218. /*
  219. * Remove memory segment from the segment list.
  220. */
  221. static void remove_memory_segment(struct memory_segment *seg)
  222. {
  223. list_del(&seg->list);
  224. }
  225. static void __remove_shared_memory(struct memory_segment *seg)
  226. {
  227. remove_memory_segment(seg);
  228. vmem_remove_range(seg->start, seg->size);
  229. }
  230. int remove_shared_memory(unsigned long start, unsigned long size)
  231. {
  232. struct memory_segment *seg;
  233. int ret;
  234. mutex_lock(&vmem_mutex);
  235. ret = -ENOENT;
  236. list_for_each_entry(seg, &mem_segs, list) {
  237. if (seg->start == start && seg->size == size)
  238. break;
  239. }
  240. if (seg->start != start || seg->size != size)
  241. goto out;
  242. ret = 0;
  243. __remove_shared_memory(seg);
  244. kfree(seg);
  245. out:
  246. mutex_unlock(&vmem_mutex);
  247. return ret;
  248. }
  249. int add_shared_memory(unsigned long start, unsigned long size)
  250. {
  251. struct memory_segment *seg;
  252. struct page *page;
  253. unsigned long pfn, num_pfn, end_pfn;
  254. int ret;
  255. mutex_lock(&vmem_mutex);
  256. ret = -ENOMEM;
  257. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  258. if (!seg)
  259. goto out;
  260. seg->start = start;
  261. seg->size = size;
  262. ret = insert_memory_segment(seg);
  263. if (ret)
  264. goto out_free;
  265. ret = vmem_add_mem(start, size);
  266. if (ret)
  267. goto out_remove;
  268. pfn = PFN_DOWN(start);
  269. num_pfn = PFN_DOWN(size);
  270. end_pfn = pfn + num_pfn;
  271. page = pfn_to_page(pfn);
  272. memset(page, 0, num_pfn * sizeof(struct page));
  273. for (; pfn < end_pfn; pfn++) {
  274. page = pfn_to_page(pfn);
  275. init_page_count(page);
  276. reset_page_mapcount(page);
  277. SetPageReserved(page);
  278. INIT_LIST_HEAD(&page->lru);
  279. }
  280. goto out;
  281. out_remove:
  282. __remove_shared_memory(seg);
  283. out_free:
  284. kfree(seg);
  285. out:
  286. mutex_unlock(&vmem_mutex);
  287. return ret;
  288. }
  289. /*
  290. * map whole physical memory to virtual memory (identity mapping)
  291. */
  292. void __init vmem_map_init(void)
  293. {
  294. unsigned long map_size;
  295. int i;
  296. map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
  297. vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
  298. vmem_map = (struct page *) vmalloc_end;
  299. NODE_DATA(0)->node_mem_map = vmem_map;
  300. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
  301. vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
  302. }
  303. /*
  304. * Convert memory chunk array to a memory segment list so there is a single
  305. * list that contains both r/w memory and shared memory segments.
  306. */
  307. static int __init vmem_convert_memory_chunk(void)
  308. {
  309. struct memory_segment *seg;
  310. int i;
  311. mutex_lock(&vmem_mutex);
  312. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  313. if (!memory_chunk[i].size)
  314. continue;
  315. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  316. if (!seg)
  317. panic("Out of memory...\n");
  318. seg->start = memory_chunk[i].addr;
  319. seg->size = memory_chunk[i].size;
  320. insert_memory_segment(seg);
  321. }
  322. mutex_unlock(&vmem_mutex);
  323. return 0;
  324. }
  325. core_initcall(vmem_convert_memory_chunk);