dt.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667
  1. /*
  2. * Copyright (C) 2005-2006 Michael Ellerman, IBM Corporation
  3. * Copyright (C) 2000-2004, IBM Corporation
  4. *
  5. * Description:
  6. * This file contains all the routines to build a flattened device
  7. * tree for a legacy iSeries machine.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #undef DEBUG
  15. #include <linux/types.h>
  16. #include <linux/init.h>
  17. #include <linux/pci.h>
  18. #include <linux/pci_regs.h>
  19. #include <linux/pci_ids.h>
  20. #include <linux/threads.h>
  21. #include <linux/bitops.h>
  22. #include <linux/string.h>
  23. #include <linux/kernel.h>
  24. #include <linux/if_ether.h> /* ETH_ALEN */
  25. #include <asm/machdep.h>
  26. #include <asm/prom.h>
  27. #include <asm/lppaca.h>
  28. #include <asm/cputable.h>
  29. #include <asm/abs_addr.h>
  30. #include <asm/system.h>
  31. #include <asm/iseries/hv_types.h>
  32. #include <asm/iseries/hv_lp_config.h>
  33. #include <asm/iseries/hv_call_xm.h>
  34. #include <asm/udbg.h>
  35. #include "processor_vpd.h"
  36. #include "call_hpt.h"
  37. #include "call_pci.h"
  38. #include "pci.h"
  39. #include "it_exp_vpd_panel.h"
  40. #include "naca.h"
  41. #ifdef DEBUG
  42. #define DBG(fmt...) udbg_printf(fmt)
  43. #else
  44. #define DBG(fmt...)
  45. #endif
  46. /*
  47. * These are created by the linker script at the start and end
  48. * of the section containing all the strings from this file.
  49. */
  50. extern char __dt_strings_start[];
  51. extern char __dt_strings_end[];
  52. struct iseries_flat_dt {
  53. struct boot_param_header header;
  54. u64 reserve_map[2];
  55. };
  56. static void * __initdata dt_data;
  57. /*
  58. * Putting these strings here keeps them out of the section
  59. * that we rename to .dt_strings using objcopy and capture
  60. * for the strings blob of the flattened device tree.
  61. */
  62. static char __initdata device_type_cpu[] = "cpu";
  63. static char __initdata device_type_memory[] = "memory";
  64. static char __initdata device_type_serial[] = "serial";
  65. static char __initdata device_type_network[] = "network";
  66. static char __initdata device_type_block[] = "block";
  67. static char __initdata device_type_byte[] = "byte";
  68. static char __initdata device_type_pci[] = "pci";
  69. static char __initdata device_type_vdevice[] = "vdevice";
  70. static char __initdata device_type_vscsi[] = "vscsi";
  71. /* EBCDIC to ASCII conversion routines */
  72. static unsigned char __init e2a(unsigned char x)
  73. {
  74. switch (x) {
  75. case 0x81 ... 0x89:
  76. return x - 0x81 + 'a';
  77. case 0x91 ... 0x99:
  78. return x - 0x91 + 'j';
  79. case 0xA2 ... 0xA9:
  80. return x - 0xA2 + 's';
  81. case 0xC1 ... 0xC9:
  82. return x - 0xC1 + 'A';
  83. case 0xD1 ... 0xD9:
  84. return x - 0xD1 + 'J';
  85. case 0xE2 ... 0xE9:
  86. return x - 0xE2 + 'S';
  87. case 0xF0 ... 0xF9:
  88. return x - 0xF0 + '0';
  89. }
  90. return ' ';
  91. }
  92. static unsigned char * __init strne2a(unsigned char *dest,
  93. const unsigned char *src, size_t n)
  94. {
  95. int i;
  96. n = strnlen(src, n);
  97. for (i = 0; i < n; i++)
  98. dest[i] = e2a(src[i]);
  99. return dest;
  100. }
  101. static struct iseries_flat_dt * __init dt_init(void)
  102. {
  103. struct iseries_flat_dt *dt;
  104. unsigned long str_len;
  105. str_len = __dt_strings_end - __dt_strings_start;
  106. dt = (struct iseries_flat_dt *)ALIGN(klimit, 8);
  107. dt->header.off_mem_rsvmap =
  108. offsetof(struct iseries_flat_dt, reserve_map);
  109. dt->header.off_dt_strings = ALIGN(sizeof(*dt), 8);
  110. dt->header.off_dt_struct = dt->header.off_dt_strings
  111. + ALIGN(str_len, 8);
  112. dt_data = (void *)((unsigned long)dt + dt->header.off_dt_struct);
  113. dt->header.dt_strings_size = str_len;
  114. /* There is no notion of hardware cpu id on iSeries */
  115. dt->header.boot_cpuid_phys = smp_processor_id();
  116. memcpy((char *)dt + dt->header.off_dt_strings, __dt_strings_start,
  117. str_len);
  118. dt->header.magic = OF_DT_HEADER;
  119. dt->header.version = 0x10;
  120. dt->header.last_comp_version = 0x10;
  121. dt->reserve_map[0] = 0;
  122. dt->reserve_map[1] = 0;
  123. return dt;
  124. }
  125. static void __init dt_push_u32(struct iseries_flat_dt *dt, u32 value)
  126. {
  127. *((u32 *)dt_data) = value;
  128. dt_data += sizeof(u32);
  129. }
  130. #ifdef notyet
  131. static void __init dt_push_u64(struct iseries_flat_dt *dt, u64 value)
  132. {
  133. *((u64 *)dt_data) = value;
  134. dt_data += sizeof(u64);
  135. }
  136. #endif
  137. static void __init dt_push_bytes(struct iseries_flat_dt *dt, const char *data,
  138. int len)
  139. {
  140. memcpy(dt_data, data, len);
  141. dt_data += ALIGN(len, 4);
  142. }
  143. static void __init dt_start_node(struct iseries_flat_dt *dt, const char *name)
  144. {
  145. dt_push_u32(dt, OF_DT_BEGIN_NODE);
  146. dt_push_bytes(dt, name, strlen(name) + 1);
  147. }
  148. #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
  149. static void __init dt_prop(struct iseries_flat_dt *dt, const char *name,
  150. const void *data, int len)
  151. {
  152. unsigned long offset;
  153. dt_push_u32(dt, OF_DT_PROP);
  154. /* Length of the data */
  155. dt_push_u32(dt, len);
  156. offset = name - __dt_strings_start;
  157. /* The offset of the properties name in the string blob. */
  158. dt_push_u32(dt, (u32)offset);
  159. /* The actual data. */
  160. dt_push_bytes(dt, data, len);
  161. }
  162. static void __init dt_prop_str(struct iseries_flat_dt *dt, const char *name,
  163. const char *data)
  164. {
  165. dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
  166. }
  167. static void __init dt_prop_u32(struct iseries_flat_dt *dt, const char *name,
  168. u32 data)
  169. {
  170. dt_prop(dt, name, &data, sizeof(u32));
  171. }
  172. static void __init dt_prop_u64(struct iseries_flat_dt *dt, const char *name,
  173. u64 data)
  174. {
  175. dt_prop(dt, name, &data, sizeof(u64));
  176. }
  177. static void __init dt_prop_u64_list(struct iseries_flat_dt *dt,
  178. const char *name, u64 *data, int n)
  179. {
  180. dt_prop(dt, name, data, sizeof(u64) * n);
  181. }
  182. static void __init dt_prop_u32_list(struct iseries_flat_dt *dt,
  183. const char *name, u32 *data, int n)
  184. {
  185. dt_prop(dt, name, data, sizeof(u32) * n);
  186. }
  187. #ifdef notyet
  188. static void __init dt_prop_empty(struct iseries_flat_dt *dt, const char *name)
  189. {
  190. dt_prop(dt, name, NULL, 0);
  191. }
  192. #endif
  193. static void __init dt_cpus(struct iseries_flat_dt *dt)
  194. {
  195. unsigned char buf[32];
  196. unsigned char *p;
  197. unsigned int i, index;
  198. struct IoHriProcessorVpd *d;
  199. u32 pft_size[2];
  200. /* yuck */
  201. snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
  202. p = strchr(buf, ' ');
  203. if (!p) p = buf + strlen(buf);
  204. dt_start_node(dt, "cpus");
  205. dt_prop_u32(dt, "#address-cells", 1);
  206. dt_prop_u32(dt, "#size-cells", 0);
  207. pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
  208. pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
  209. for (i = 0; i < NR_CPUS; i++) {
  210. if (lppaca[i].dyn_proc_status >= 2)
  211. continue;
  212. snprintf(p, 32 - (p - buf), "@%d", i);
  213. dt_start_node(dt, buf);
  214. dt_prop_str(dt, "device_type", device_type_cpu);
  215. index = lppaca[i].dyn_hv_phys_proc_index;
  216. d = &xIoHriProcessorVpd[index];
  217. dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
  218. dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
  219. dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
  220. dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
  221. /* magic conversions to Hz copied from old code */
  222. dt_prop_u32(dt, "clock-frequency",
  223. ((1UL << 34) * 1000000) / d->xProcFreq);
  224. dt_prop_u32(dt, "timebase-frequency",
  225. ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
  226. dt_prop_u32(dt, "reg", i);
  227. dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
  228. dt_end_node(dt);
  229. }
  230. dt_end_node(dt);
  231. }
  232. static void __init dt_model(struct iseries_flat_dt *dt)
  233. {
  234. char buf[16] = "IBM,";
  235. /* N.B. lparcfg.c knows about the "IBM," prefixes ... */
  236. /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
  237. strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
  238. strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
  239. buf[11] = '\0';
  240. dt_prop_str(dt, "system-id", buf);
  241. /* "IBM," + machineType[0:4] */
  242. strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
  243. buf[8] = '\0';
  244. dt_prop_str(dt, "model", buf);
  245. dt_prop_str(dt, "compatible", "IBM,iSeries");
  246. dt_prop_u32(dt, "ibm,partition-no", HvLpConfig_getLpIndex());
  247. }
  248. static void __init dt_initrd(struct iseries_flat_dt *dt)
  249. {
  250. #ifdef CONFIG_BLK_DEV_INITRD
  251. if (naca.xRamDisk) {
  252. dt_prop_u64(dt, "linux,initrd-start", (u64)naca.xRamDisk);
  253. dt_prop_u64(dt, "linux,initrd-end",
  254. (u64)naca.xRamDisk + naca.xRamDiskSize * HW_PAGE_SIZE);
  255. }
  256. #endif
  257. }
  258. static void __init dt_do_vdevice(struct iseries_flat_dt *dt,
  259. const char *name, u32 reg, int unit,
  260. const char *type, const char *compat, int end)
  261. {
  262. char buf[32];
  263. snprintf(buf, 32, "%s@%08x", name, reg + ((unit >= 0) ? unit : 0));
  264. dt_start_node(dt, buf);
  265. dt_prop_str(dt, "device_type", type);
  266. if (compat)
  267. dt_prop_str(dt, "compatible", compat);
  268. dt_prop_u32(dt, "reg", reg + ((unit >= 0) ? unit : 0));
  269. if (unit >= 0)
  270. dt_prop_u32(dt, "linux,unit_address", unit);
  271. if (end)
  272. dt_end_node(dt);
  273. }
  274. static void __init dt_vdevices(struct iseries_flat_dt *dt)
  275. {
  276. u32 reg = 0;
  277. HvLpIndexMap vlan_map;
  278. int i;
  279. dt_start_node(dt, "vdevice");
  280. dt_prop_str(dt, "device_type", device_type_vdevice);
  281. dt_prop_str(dt, "compatible", "IBM,iSeries-vdevice");
  282. dt_prop_u32(dt, "#address-cells", 1);
  283. dt_prop_u32(dt, "#size-cells", 0);
  284. dt_do_vdevice(dt, "vty", reg, -1, device_type_serial,
  285. "IBM,iSeries-vty", 1);
  286. reg++;
  287. dt_do_vdevice(dt, "v-scsi", reg, -1, device_type_vscsi,
  288. "IBM,v-scsi", 1);
  289. reg++;
  290. vlan_map = HvLpConfig_getVirtualLanIndexMap();
  291. for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
  292. unsigned char mac_addr[ETH_ALEN];
  293. if ((vlan_map & (0x8000 >> i)) == 0)
  294. continue;
  295. dt_do_vdevice(dt, "l-lan", reg, i, device_type_network,
  296. "IBM,iSeries-l-lan", 0);
  297. mac_addr[0] = 0x02;
  298. mac_addr[1] = 0x01;
  299. mac_addr[2] = 0xff;
  300. mac_addr[3] = i;
  301. mac_addr[4] = 0xff;
  302. mac_addr[5] = HvLpConfig_getLpIndex_outline();
  303. dt_prop(dt, "local-mac-address", (char *)mac_addr, ETH_ALEN);
  304. dt_prop(dt, "mac-address", (char *)mac_addr, ETH_ALEN);
  305. dt_prop_u32(dt, "max-frame-size", 9000);
  306. dt_prop_u32(dt, "address-bits", 48);
  307. dt_end_node(dt);
  308. }
  309. reg += HVMAXARCHITECTEDVIRTUALLANS;
  310. for (i = 0; i < HVMAXARCHITECTEDVIRTUALDISKS; i++)
  311. dt_do_vdevice(dt, "viodasd", reg, i, device_type_block,
  312. "IBM,iSeries-viodasd", 1);
  313. reg += HVMAXARCHITECTEDVIRTUALDISKS;
  314. for (i = 0; i < HVMAXARCHITECTEDVIRTUALCDROMS; i++)
  315. dt_do_vdevice(dt, "viocd", reg, i, device_type_block,
  316. "IBM,iSeries-viocd", 1);
  317. reg += HVMAXARCHITECTEDVIRTUALCDROMS;
  318. for (i = 0; i < HVMAXARCHITECTEDVIRTUALTAPES; i++)
  319. dt_do_vdevice(dt, "viotape", reg, i, device_type_byte,
  320. "IBM,iSeries-viotape", 1);
  321. dt_end_node(dt);
  322. }
  323. struct pci_class_name {
  324. u16 code;
  325. const char *name;
  326. const char *type;
  327. };
  328. static struct pci_class_name __initdata pci_class_name[] = {
  329. { PCI_CLASS_NETWORK_ETHERNET, "ethernet", device_type_network },
  330. };
  331. static struct pci_class_name * __init dt_find_pci_class_name(u16 class_code)
  332. {
  333. struct pci_class_name *cp;
  334. for (cp = pci_class_name;
  335. cp < &pci_class_name[ARRAY_SIZE(pci_class_name)]; cp++)
  336. if (cp->code == class_code)
  337. return cp;
  338. return NULL;
  339. }
  340. /*
  341. * This assumes that the node slot is always on the primary bus!
  342. */
  343. static void __init scan_bridge_slot(struct iseries_flat_dt *dt,
  344. HvBusNumber bus, struct HvCallPci_BridgeInfo *bridge_info)
  345. {
  346. HvSubBusNumber sub_bus = bridge_info->subBusNumber;
  347. u16 vendor_id;
  348. u16 device_id;
  349. u32 class_id;
  350. int err;
  351. char buf[32];
  352. u32 reg[5];
  353. int id_sel = ISERIES_GET_DEVICE_FROM_SUBBUS(sub_bus);
  354. int function = ISERIES_GET_FUNCTION_FROM_SUBBUS(sub_bus);
  355. HvAgentId eads_id_sel = ISERIES_PCI_AGENTID(id_sel, function);
  356. u8 devfn;
  357. struct pci_class_name *cp;
  358. /*
  359. * Connect all functions of any device found.
  360. */
  361. for (id_sel = 1; id_sel <= bridge_info->maxAgents; id_sel++) {
  362. for (function = 0; function < 8; function++) {
  363. HvAgentId agent_id = ISERIES_PCI_AGENTID(id_sel,
  364. function);
  365. err = HvCallXm_connectBusUnit(bus, sub_bus,
  366. agent_id, 0);
  367. if (err) {
  368. if (err != 0x302)
  369. DBG("connectBusUnit(%x, %x, %x) %x\n",
  370. bus, sub_bus, agent_id, err);
  371. continue;
  372. }
  373. err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
  374. PCI_VENDOR_ID, &vendor_id);
  375. if (err) {
  376. DBG("ReadVendor(%x, %x, %x) %x\n",
  377. bus, sub_bus, agent_id, err);
  378. continue;
  379. }
  380. err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
  381. PCI_DEVICE_ID, &device_id);
  382. if (err) {
  383. DBG("ReadDevice(%x, %x, %x) %x\n",
  384. bus, sub_bus, agent_id, err);
  385. continue;
  386. }
  387. err = HvCallPci_configLoad32(bus, sub_bus, agent_id,
  388. PCI_CLASS_REVISION , &class_id);
  389. if (err) {
  390. DBG("ReadClass(%x, %x, %x) %x\n",
  391. bus, sub_bus, agent_id, err);
  392. continue;
  393. }
  394. devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(eads_id_sel),
  395. function);
  396. cp = dt_find_pci_class_name(class_id >> 16);
  397. if (cp && cp->name)
  398. strncpy(buf, cp->name, sizeof(buf) - 1);
  399. else
  400. snprintf(buf, sizeof(buf), "pci%x,%x",
  401. vendor_id, device_id);
  402. buf[sizeof(buf) - 1] = '\0';
  403. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
  404. "@%x", PCI_SLOT(devfn));
  405. buf[sizeof(buf) - 1] = '\0';
  406. if (function != 0)
  407. snprintf(buf + strlen(buf),
  408. sizeof(buf) - strlen(buf),
  409. ",%x", function);
  410. dt_start_node(dt, buf);
  411. reg[0] = (bus << 16) | (devfn << 8);
  412. reg[1] = 0;
  413. reg[2] = 0;
  414. reg[3] = 0;
  415. reg[4] = 0;
  416. dt_prop_u32_list(dt, "reg", reg, 5);
  417. if (cp && (cp->type || cp->name))
  418. dt_prop_str(dt, "device_type",
  419. cp->type ? cp->type : cp->name);
  420. dt_prop_u32(dt, "vendor-id", vendor_id);
  421. dt_prop_u32(dt, "device-id", device_id);
  422. dt_prop_u32(dt, "class-code", class_id >> 8);
  423. dt_prop_u32(dt, "revision-id", class_id & 0xff);
  424. dt_prop_u32(dt, "linux,subbus", sub_bus);
  425. dt_prop_u32(dt, "linux,agent-id", agent_id);
  426. dt_prop_u32(dt, "linux,logical-slot-number",
  427. bridge_info->logicalSlotNumber);
  428. dt_end_node(dt);
  429. }
  430. }
  431. }
  432. static void __init scan_bridge(struct iseries_flat_dt *dt, HvBusNumber bus,
  433. HvSubBusNumber sub_bus, int id_sel)
  434. {
  435. struct HvCallPci_BridgeInfo bridge_info;
  436. HvAgentId agent_id;
  437. int function;
  438. int ret;
  439. /* Note: hvSubBus and irq is always be 0 at this level! */
  440. for (function = 0; function < 8; ++function) {
  441. agent_id = ISERIES_PCI_AGENTID(id_sel, function);
  442. ret = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0);
  443. if (ret != 0) {
  444. if (ret != 0xb)
  445. DBG("connectBusUnit(%x, %x, %x) %x\n",
  446. bus, sub_bus, agent_id, ret);
  447. continue;
  448. }
  449. DBG("found device at bus %d idsel %d func %d (AgentId %x)\n",
  450. bus, id_sel, function, agent_id);
  451. ret = HvCallPci_getBusUnitInfo(bus, sub_bus, agent_id,
  452. iseries_hv_addr(&bridge_info),
  453. sizeof(struct HvCallPci_BridgeInfo));
  454. if (ret != 0)
  455. continue;
  456. DBG("bridge info: type %x subbus %x "
  457. "maxAgents %x maxsubbus %x logslot %x\n",
  458. bridge_info.busUnitInfo.deviceType,
  459. bridge_info.subBusNumber,
  460. bridge_info.maxAgents,
  461. bridge_info.maxSubBusNumber,
  462. bridge_info.logicalSlotNumber);
  463. if (bridge_info.busUnitInfo.deviceType ==
  464. HvCallPci_BridgeDevice)
  465. scan_bridge_slot(dt, bus, &bridge_info);
  466. else
  467. DBG("PCI: Invalid Bridge Configuration(0x%02X)",
  468. bridge_info.busUnitInfo.deviceType);
  469. }
  470. }
  471. static void __init scan_phb(struct iseries_flat_dt *dt, HvBusNumber bus)
  472. {
  473. struct HvCallPci_DeviceInfo dev_info;
  474. const HvSubBusNumber sub_bus = 0; /* EADs is always 0. */
  475. int err;
  476. int id_sel;
  477. const int max_agents = 8;
  478. /*
  479. * Probe for EADs Bridges
  480. */
  481. for (id_sel = 1; id_sel < max_agents; ++id_sel) {
  482. err = HvCallPci_getDeviceInfo(bus, sub_bus, id_sel,
  483. iseries_hv_addr(&dev_info),
  484. sizeof(struct HvCallPci_DeviceInfo));
  485. if (err) {
  486. if (err != 0x302)
  487. DBG("getDeviceInfo(%x, %x, %x) %x\n",
  488. bus, sub_bus, id_sel, err);
  489. continue;
  490. }
  491. if (dev_info.deviceType != HvCallPci_NodeDevice) {
  492. DBG("PCI: Invalid System Configuration"
  493. "(0x%02X) for bus 0x%02x id 0x%02x.\n",
  494. dev_info.deviceType, bus, id_sel);
  495. continue;
  496. }
  497. scan_bridge(dt, bus, sub_bus, id_sel);
  498. }
  499. }
  500. static void __init dt_pci_devices(struct iseries_flat_dt *dt)
  501. {
  502. HvBusNumber bus;
  503. char buf[32];
  504. u32 buses[2];
  505. int phb_num = 0;
  506. /* Check all possible buses. */
  507. for (bus = 0; bus < 256; bus++) {
  508. int err = HvCallXm_testBus(bus);
  509. if (err) {
  510. /*
  511. * Check for Unexpected Return code, a clue that
  512. * something has gone wrong.
  513. */
  514. if (err != 0x0301)
  515. DBG("Unexpected Return on Probe(0x%02X) "
  516. "0x%04X\n", bus, err);
  517. continue;
  518. }
  519. DBG("bus %d appears to exist\n", bus);
  520. snprintf(buf, 32, "pci@%d", phb_num);
  521. dt_start_node(dt, buf);
  522. dt_prop_str(dt, "device_type", device_type_pci);
  523. dt_prop_str(dt, "compatible", "IBM,iSeries-Logical-PHB");
  524. dt_prop_u32(dt, "#address-cells", 3);
  525. dt_prop_u32(dt, "#size-cells", 2);
  526. buses[0] = buses[1] = bus;
  527. dt_prop_u32_list(dt, "bus-range", buses, 2);
  528. scan_phb(dt, bus);
  529. dt_end_node(dt);
  530. phb_num++;
  531. }
  532. }
  533. static void dt_finish(struct iseries_flat_dt *dt)
  534. {
  535. dt_push_u32(dt, OF_DT_END);
  536. dt->header.totalsize = (unsigned long)dt_data - (unsigned long)dt;
  537. klimit = ALIGN((unsigned long)dt_data, 8);
  538. }
  539. void * __init build_flat_dt(unsigned long phys_mem_size)
  540. {
  541. struct iseries_flat_dt *iseries_dt;
  542. u64 tmp[2];
  543. iseries_dt = dt_init();
  544. dt_start_node(iseries_dt, "");
  545. dt_prop_u32(iseries_dt, "#address-cells", 2);
  546. dt_prop_u32(iseries_dt, "#size-cells", 2);
  547. dt_model(iseries_dt);
  548. /* /memory */
  549. dt_start_node(iseries_dt, "memory@0");
  550. dt_prop_str(iseries_dt, "device_type", device_type_memory);
  551. tmp[0] = 0;
  552. tmp[1] = phys_mem_size;
  553. dt_prop_u64_list(iseries_dt, "reg", tmp, 2);
  554. dt_end_node(iseries_dt);
  555. /* /chosen */
  556. dt_start_node(iseries_dt, "chosen");
  557. dt_prop_str(iseries_dt, "bootargs", cmd_line);
  558. dt_initrd(iseries_dt);
  559. dt_end_node(iseries_dt);
  560. dt_cpus(iseries_dt);
  561. dt_vdevices(iseries_dt);
  562. dt_pci_devices(iseries_dt);
  563. dt_end_node(iseries_dt);
  564. dt_finish(iseries_dt);
  565. return iseries_dt;
  566. }