traps.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
  7. * Copyright (C) 1995, 1996 Paul M. Antoine
  8. * Copyright (C) 1998 Ulf Carlsson
  9. * Copyright (C) 1999 Silicon Graphics, Inc.
  10. * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11. * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12. * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
  13. */
  14. #include <linux/init.h>
  15. #include <linux/mm.h>
  16. #include <linux/module.h>
  17. #include <linux/sched.h>
  18. #include <linux/smp.h>
  19. #include <linux/smp_lock.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/interrupt.h>
  24. #include <asm/bootinfo.h>
  25. #include <asm/branch.h>
  26. #include <asm/break.h>
  27. #include <asm/cpu.h>
  28. #include <asm/dsp.h>
  29. #include <asm/fpu.h>
  30. #include <asm/mipsregs.h>
  31. #include <asm/mipsmtregs.h>
  32. #include <asm/module.h>
  33. #include <asm/pgtable.h>
  34. #include <asm/ptrace.h>
  35. #include <asm/sections.h>
  36. #include <asm/system.h>
  37. #include <asm/tlbdebug.h>
  38. #include <asm/traps.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/watch.h>
  42. #include <asm/types.h>
  43. #include <asm/stacktrace.h>
  44. extern asmlinkage void handle_int(void);
  45. extern asmlinkage void handle_tlbm(void);
  46. extern asmlinkage void handle_tlbl(void);
  47. extern asmlinkage void handle_tlbs(void);
  48. extern asmlinkage void handle_adel(void);
  49. extern asmlinkage void handle_ades(void);
  50. extern asmlinkage void handle_ibe(void);
  51. extern asmlinkage void handle_dbe(void);
  52. extern asmlinkage void handle_sys(void);
  53. extern asmlinkage void handle_bp(void);
  54. extern asmlinkage void handle_ri(void);
  55. extern asmlinkage void handle_ri_rdhwr_vivt(void);
  56. extern asmlinkage void handle_ri_rdhwr(void);
  57. extern asmlinkage void handle_cpu(void);
  58. extern asmlinkage void handle_ov(void);
  59. extern asmlinkage void handle_tr(void);
  60. extern asmlinkage void handle_fpe(void);
  61. extern asmlinkage void handle_mdmx(void);
  62. extern asmlinkage void handle_watch(void);
  63. extern asmlinkage void handle_mt(void);
  64. extern asmlinkage void handle_dsp(void);
  65. extern asmlinkage void handle_mcheck(void);
  66. extern asmlinkage void handle_reserved(void);
  67. extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  68. struct mips_fpu_struct *ctx, int has_fpu);
  69. void (*board_be_init)(void);
  70. int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  71. void (*board_nmi_handler_setup)(void);
  72. void (*board_ejtag_handler_setup)(void);
  73. void (*board_bind_eic_interrupt)(int irq, int regset);
  74. static void show_raw_backtrace(unsigned long reg29)
  75. {
  76. unsigned long *sp = (unsigned long *)reg29;
  77. unsigned long addr;
  78. printk("Call Trace:");
  79. #ifdef CONFIG_KALLSYMS
  80. printk("\n");
  81. #endif
  82. while (!kstack_end(sp)) {
  83. addr = *sp++;
  84. if (__kernel_text_address(addr))
  85. print_ip_sym(addr);
  86. }
  87. printk("\n");
  88. }
  89. #ifdef CONFIG_KALLSYMS
  90. int raw_show_trace;
  91. static int __init set_raw_show_trace(char *str)
  92. {
  93. raw_show_trace = 1;
  94. return 1;
  95. }
  96. __setup("raw_show_trace", set_raw_show_trace);
  97. #endif
  98. static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
  99. {
  100. unsigned long sp = regs->regs[29];
  101. unsigned long ra = regs->regs[31];
  102. unsigned long pc = regs->cp0_epc;
  103. if (raw_show_trace || !__kernel_text_address(pc)) {
  104. show_raw_backtrace(sp);
  105. return;
  106. }
  107. printk("Call Trace:\n");
  108. do {
  109. print_ip_sym(pc);
  110. pc = unwind_stack(task, &sp, pc, &ra);
  111. } while (pc);
  112. printk("\n");
  113. }
  114. /*
  115. * This routine abuses get_user()/put_user() to reference pointers
  116. * with at least a bit of error checking ...
  117. */
  118. static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
  119. {
  120. const int field = 2 * sizeof(unsigned long);
  121. long stackdata;
  122. int i;
  123. unsigned long *sp = (unsigned long *)regs->regs[29];
  124. printk("Stack :");
  125. i = 0;
  126. while ((unsigned long) sp & (PAGE_SIZE - 1)) {
  127. if (i && ((i % (64 / field)) == 0))
  128. printk("\n ");
  129. if (i > 39) {
  130. printk(" ...");
  131. break;
  132. }
  133. if (__get_user(stackdata, sp++)) {
  134. printk(" (Bad stack address)");
  135. break;
  136. }
  137. printk(" %0*lx", field, stackdata);
  138. i++;
  139. }
  140. printk("\n");
  141. show_backtrace(task, regs);
  142. }
  143. void show_stack(struct task_struct *task, unsigned long *sp)
  144. {
  145. struct pt_regs regs;
  146. if (sp) {
  147. regs.regs[29] = (unsigned long)sp;
  148. regs.regs[31] = 0;
  149. regs.cp0_epc = 0;
  150. } else {
  151. if (task && task != current) {
  152. regs.regs[29] = task->thread.reg29;
  153. regs.regs[31] = 0;
  154. regs.cp0_epc = task->thread.reg31;
  155. } else {
  156. prepare_frametrace(&regs);
  157. }
  158. }
  159. show_stacktrace(task, &regs);
  160. }
  161. /*
  162. * The architecture-independent dump_stack generator
  163. */
  164. void dump_stack(void)
  165. {
  166. struct pt_regs regs;
  167. prepare_frametrace(&regs);
  168. show_backtrace(current, &regs);
  169. }
  170. EXPORT_SYMBOL(dump_stack);
  171. void show_code(unsigned int *pc)
  172. {
  173. long i;
  174. printk("\nCode:");
  175. for(i = -3 ; i < 6 ; i++) {
  176. unsigned int insn;
  177. if (__get_user(insn, pc + i)) {
  178. printk(" (Bad address in epc)\n");
  179. break;
  180. }
  181. printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
  182. }
  183. }
  184. void show_regs(struct pt_regs *regs)
  185. {
  186. const int field = 2 * sizeof(unsigned long);
  187. unsigned int cause = regs->cp0_cause;
  188. int i;
  189. printk("Cpu %d\n", smp_processor_id());
  190. /*
  191. * Saved main processor registers
  192. */
  193. for (i = 0; i < 32; ) {
  194. if ((i % 4) == 0)
  195. printk("$%2d :", i);
  196. if (i == 0)
  197. printk(" %0*lx", field, 0UL);
  198. else if (i == 26 || i == 27)
  199. printk(" %*s", field, "");
  200. else
  201. printk(" %0*lx", field, regs->regs[i]);
  202. i++;
  203. if ((i % 4) == 0)
  204. printk("\n");
  205. }
  206. printk("Hi : %0*lx\n", field, regs->hi);
  207. printk("Lo : %0*lx\n", field, regs->lo);
  208. /*
  209. * Saved cp0 registers
  210. */
  211. printk("epc : %0*lx ", field, regs->cp0_epc);
  212. print_symbol("%s ", regs->cp0_epc);
  213. printk(" %s\n", print_tainted());
  214. printk("ra : %0*lx ", field, regs->regs[31]);
  215. print_symbol("%s\n", regs->regs[31]);
  216. printk("Status: %08x ", (uint32_t) regs->cp0_status);
  217. if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
  218. if (regs->cp0_status & ST0_KUO)
  219. printk("KUo ");
  220. if (regs->cp0_status & ST0_IEO)
  221. printk("IEo ");
  222. if (regs->cp0_status & ST0_KUP)
  223. printk("KUp ");
  224. if (regs->cp0_status & ST0_IEP)
  225. printk("IEp ");
  226. if (regs->cp0_status & ST0_KUC)
  227. printk("KUc ");
  228. if (regs->cp0_status & ST0_IEC)
  229. printk("IEc ");
  230. } else {
  231. if (regs->cp0_status & ST0_KX)
  232. printk("KX ");
  233. if (regs->cp0_status & ST0_SX)
  234. printk("SX ");
  235. if (regs->cp0_status & ST0_UX)
  236. printk("UX ");
  237. switch (regs->cp0_status & ST0_KSU) {
  238. case KSU_USER:
  239. printk("USER ");
  240. break;
  241. case KSU_SUPERVISOR:
  242. printk("SUPERVISOR ");
  243. break;
  244. case KSU_KERNEL:
  245. printk("KERNEL ");
  246. break;
  247. default:
  248. printk("BAD_MODE ");
  249. break;
  250. }
  251. if (regs->cp0_status & ST0_ERL)
  252. printk("ERL ");
  253. if (regs->cp0_status & ST0_EXL)
  254. printk("EXL ");
  255. if (regs->cp0_status & ST0_IE)
  256. printk("IE ");
  257. }
  258. printk("\n");
  259. printk("Cause : %08x\n", cause);
  260. cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
  261. if (1 <= cause && cause <= 5)
  262. printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
  263. printk("PrId : %08x\n", read_c0_prid());
  264. }
  265. void show_registers(struct pt_regs *regs)
  266. {
  267. show_regs(regs);
  268. print_modules();
  269. printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
  270. current->comm, current->pid, current_thread_info(), current);
  271. show_stacktrace(current, regs);
  272. show_code((unsigned int *) regs->cp0_epc);
  273. printk("\n");
  274. }
  275. static DEFINE_SPINLOCK(die_lock);
  276. NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
  277. {
  278. static int die_counter;
  279. #ifdef CONFIG_MIPS_MT_SMTC
  280. unsigned long dvpret = dvpe();
  281. #endif /* CONFIG_MIPS_MT_SMTC */
  282. console_verbose();
  283. spin_lock_irq(&die_lock);
  284. bust_spinlocks(1);
  285. #ifdef CONFIG_MIPS_MT_SMTC
  286. mips_mt_regdump(dvpret);
  287. #endif /* CONFIG_MIPS_MT_SMTC */
  288. printk("%s[#%d]:\n", str, ++die_counter);
  289. show_registers(regs);
  290. spin_unlock_irq(&die_lock);
  291. if (in_interrupt())
  292. panic("Fatal exception in interrupt");
  293. if (panic_on_oops) {
  294. printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
  295. ssleep(5);
  296. panic("Fatal exception");
  297. }
  298. do_exit(SIGSEGV);
  299. }
  300. extern const struct exception_table_entry __start___dbe_table[];
  301. extern const struct exception_table_entry __stop___dbe_table[];
  302. void __declare_dbe_table(void)
  303. {
  304. __asm__ __volatile__(
  305. ".section\t__dbe_table,\"a\"\n\t"
  306. ".previous"
  307. );
  308. }
  309. /* Given an address, look for it in the exception tables. */
  310. static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
  311. {
  312. const struct exception_table_entry *e;
  313. e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
  314. if (!e)
  315. e = search_module_dbetables(addr);
  316. return e;
  317. }
  318. asmlinkage void do_be(struct pt_regs *regs)
  319. {
  320. const int field = 2 * sizeof(unsigned long);
  321. const struct exception_table_entry *fixup = NULL;
  322. int data = regs->cp0_cause & 4;
  323. int action = MIPS_BE_FATAL;
  324. /* XXX For now. Fixme, this searches the wrong table ... */
  325. if (data && !user_mode(regs))
  326. fixup = search_dbe_tables(exception_epc(regs));
  327. if (fixup)
  328. action = MIPS_BE_FIXUP;
  329. if (board_be_handler)
  330. action = board_be_handler(regs, fixup != 0);
  331. switch (action) {
  332. case MIPS_BE_DISCARD:
  333. return;
  334. case MIPS_BE_FIXUP:
  335. if (fixup) {
  336. regs->cp0_epc = fixup->nextinsn;
  337. return;
  338. }
  339. break;
  340. default:
  341. break;
  342. }
  343. /*
  344. * Assume it would be too dangerous to continue ...
  345. */
  346. printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
  347. data ? "Data" : "Instruction",
  348. field, regs->cp0_epc, field, regs->regs[31]);
  349. die_if_kernel("Oops", regs);
  350. force_sig(SIGBUS, current);
  351. }
  352. /*
  353. * ll/sc emulation
  354. */
  355. #define OPCODE 0xfc000000
  356. #define BASE 0x03e00000
  357. #define RT 0x001f0000
  358. #define OFFSET 0x0000ffff
  359. #define LL 0xc0000000
  360. #define SC 0xe0000000
  361. #define SPEC3 0x7c000000
  362. #define RD 0x0000f800
  363. #define FUNC 0x0000003f
  364. #define RDHWR 0x0000003b
  365. /*
  366. * The ll_bit is cleared by r*_switch.S
  367. */
  368. unsigned long ll_bit;
  369. static struct task_struct *ll_task = NULL;
  370. static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
  371. {
  372. unsigned long value, __user *vaddr;
  373. long offset;
  374. int signal = 0;
  375. /*
  376. * analyse the ll instruction that just caused a ri exception
  377. * and put the referenced address to addr.
  378. */
  379. /* sign extend offset */
  380. offset = opcode & OFFSET;
  381. offset <<= 16;
  382. offset >>= 16;
  383. vaddr = (unsigned long __user *)
  384. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  385. if ((unsigned long)vaddr & 3) {
  386. signal = SIGBUS;
  387. goto sig;
  388. }
  389. if (get_user(value, vaddr)) {
  390. signal = SIGSEGV;
  391. goto sig;
  392. }
  393. preempt_disable();
  394. if (ll_task == NULL || ll_task == current) {
  395. ll_bit = 1;
  396. } else {
  397. ll_bit = 0;
  398. }
  399. ll_task = current;
  400. preempt_enable();
  401. compute_return_epc(regs);
  402. regs->regs[(opcode & RT) >> 16] = value;
  403. return;
  404. sig:
  405. force_sig(signal, current);
  406. }
  407. static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
  408. {
  409. unsigned long __user *vaddr;
  410. unsigned long reg;
  411. long offset;
  412. int signal = 0;
  413. /*
  414. * analyse the sc instruction that just caused a ri exception
  415. * and put the referenced address to addr.
  416. */
  417. /* sign extend offset */
  418. offset = opcode & OFFSET;
  419. offset <<= 16;
  420. offset >>= 16;
  421. vaddr = (unsigned long __user *)
  422. ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
  423. reg = (opcode & RT) >> 16;
  424. if ((unsigned long)vaddr & 3) {
  425. signal = SIGBUS;
  426. goto sig;
  427. }
  428. preempt_disable();
  429. if (ll_bit == 0 || ll_task != current) {
  430. compute_return_epc(regs);
  431. regs->regs[reg] = 0;
  432. preempt_enable();
  433. return;
  434. }
  435. preempt_enable();
  436. if (put_user(regs->regs[reg], vaddr)) {
  437. signal = SIGSEGV;
  438. goto sig;
  439. }
  440. compute_return_epc(regs);
  441. regs->regs[reg] = 1;
  442. return;
  443. sig:
  444. force_sig(signal, current);
  445. }
  446. /*
  447. * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
  448. * opcodes are supposed to result in coprocessor unusable exceptions if
  449. * executed on ll/sc-less processors. That's the theory. In practice a
  450. * few processors such as NEC's VR4100 throw reserved instruction exceptions
  451. * instead, so we're doing the emulation thing in both exception handlers.
  452. */
  453. static inline int simulate_llsc(struct pt_regs *regs)
  454. {
  455. unsigned int opcode;
  456. if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
  457. goto out_sigsegv;
  458. if ((opcode & OPCODE) == LL) {
  459. simulate_ll(regs, opcode);
  460. return 0;
  461. }
  462. if ((opcode & OPCODE) == SC) {
  463. simulate_sc(regs, opcode);
  464. return 0;
  465. }
  466. return -EFAULT; /* Strange things going on ... */
  467. out_sigsegv:
  468. force_sig(SIGSEGV, current);
  469. return -EFAULT;
  470. }
  471. /*
  472. * Simulate trapping 'rdhwr' instructions to provide user accessible
  473. * registers not implemented in hardware. The only current use of this
  474. * is the thread area pointer.
  475. */
  476. static inline int simulate_rdhwr(struct pt_regs *regs)
  477. {
  478. struct thread_info *ti = task_thread_info(current);
  479. unsigned int opcode;
  480. if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
  481. goto out_sigsegv;
  482. if (unlikely(compute_return_epc(regs)))
  483. return -EFAULT;
  484. if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
  485. int rd = (opcode & RD) >> 11;
  486. int rt = (opcode & RT) >> 16;
  487. switch (rd) {
  488. case 29:
  489. regs->regs[rt] = ti->tp_value;
  490. return 0;
  491. default:
  492. return -EFAULT;
  493. }
  494. }
  495. /* Not ours. */
  496. return -EFAULT;
  497. out_sigsegv:
  498. force_sig(SIGSEGV, current);
  499. return -EFAULT;
  500. }
  501. asmlinkage void do_ov(struct pt_regs *regs)
  502. {
  503. siginfo_t info;
  504. die_if_kernel("Integer overflow", regs);
  505. info.si_code = FPE_INTOVF;
  506. info.si_signo = SIGFPE;
  507. info.si_errno = 0;
  508. info.si_addr = (void __user *) regs->cp0_epc;
  509. force_sig_info(SIGFPE, &info, current);
  510. }
  511. /*
  512. * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
  513. */
  514. asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
  515. {
  516. die_if_kernel("FP exception in kernel code", regs);
  517. if (fcr31 & FPU_CSR_UNI_X) {
  518. int sig;
  519. preempt_disable();
  520. #ifdef CONFIG_PREEMPT
  521. if (!is_fpu_owner()) {
  522. /* We might lose fpu before disabling preempt... */
  523. own_fpu();
  524. BUG_ON(!used_math());
  525. restore_fp(current);
  526. }
  527. #endif
  528. /*
  529. * Unimplemented operation exception. If we've got the full
  530. * software emulator on-board, let's use it...
  531. *
  532. * Force FPU to dump state into task/thread context. We're
  533. * moving a lot of data here for what is probably a single
  534. * instruction, but the alternative is to pre-decode the FP
  535. * register operands before invoking the emulator, which seems
  536. * a bit extreme for what should be an infrequent event.
  537. */
  538. save_fp(current);
  539. /* Ensure 'resume' not overwrite saved fp context again. */
  540. lose_fpu();
  541. preempt_enable();
  542. /* Run the emulator */
  543. sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
  544. preempt_disable();
  545. own_fpu(); /* Using the FPU again. */
  546. /*
  547. * We can't allow the emulated instruction to leave any of
  548. * the cause bit set in $fcr31.
  549. */
  550. current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
  551. /* Restore the hardware register state */
  552. restore_fp(current);
  553. preempt_enable();
  554. /* If something went wrong, signal */
  555. if (sig)
  556. force_sig(sig, current);
  557. return;
  558. }
  559. force_sig(SIGFPE, current);
  560. }
  561. asmlinkage void do_bp(struct pt_regs *regs)
  562. {
  563. unsigned int opcode, bcode;
  564. siginfo_t info;
  565. if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
  566. goto out_sigsegv;
  567. /*
  568. * There is the ancient bug in the MIPS assemblers that the break
  569. * code starts left to bit 16 instead to bit 6 in the opcode.
  570. * Gas is bug-compatible, but not always, grrr...
  571. * We handle both cases with a simple heuristics. --macro
  572. */
  573. bcode = ((opcode >> 6) & ((1 << 20) - 1));
  574. if (bcode < (1 << 10))
  575. bcode <<= 10;
  576. /*
  577. * (A short test says that IRIX 5.3 sends SIGTRAP for all break
  578. * insns, even for break codes that indicate arithmetic failures.
  579. * Weird ...)
  580. * But should we continue the brokenness??? --macro
  581. */
  582. switch (bcode) {
  583. case BRK_OVERFLOW << 10:
  584. case BRK_DIVZERO << 10:
  585. die_if_kernel("Break instruction in kernel code", regs);
  586. if (bcode == (BRK_DIVZERO << 10))
  587. info.si_code = FPE_INTDIV;
  588. else
  589. info.si_code = FPE_INTOVF;
  590. info.si_signo = SIGFPE;
  591. info.si_errno = 0;
  592. info.si_addr = (void __user *) regs->cp0_epc;
  593. force_sig_info(SIGFPE, &info, current);
  594. break;
  595. case BRK_BUG:
  596. die("Kernel bug detected", regs);
  597. break;
  598. default:
  599. die_if_kernel("Break instruction in kernel code", regs);
  600. force_sig(SIGTRAP, current);
  601. }
  602. out_sigsegv:
  603. force_sig(SIGSEGV, current);
  604. }
  605. asmlinkage void do_tr(struct pt_regs *regs)
  606. {
  607. unsigned int opcode, tcode = 0;
  608. siginfo_t info;
  609. if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
  610. goto out_sigsegv;
  611. /* Immediate versions don't provide a code. */
  612. if (!(opcode & OPCODE))
  613. tcode = ((opcode >> 6) & ((1 << 10) - 1));
  614. /*
  615. * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
  616. * insns, even for trap codes that indicate arithmetic failures.
  617. * Weird ...)
  618. * But should we continue the brokenness??? --macro
  619. */
  620. switch (tcode) {
  621. case BRK_OVERFLOW:
  622. case BRK_DIVZERO:
  623. die_if_kernel("Trap instruction in kernel code", regs);
  624. if (tcode == BRK_DIVZERO)
  625. info.si_code = FPE_INTDIV;
  626. else
  627. info.si_code = FPE_INTOVF;
  628. info.si_signo = SIGFPE;
  629. info.si_errno = 0;
  630. info.si_addr = (void __user *) regs->cp0_epc;
  631. force_sig_info(SIGFPE, &info, current);
  632. break;
  633. case BRK_BUG:
  634. die("Kernel bug detected", regs);
  635. break;
  636. default:
  637. die_if_kernel("Trap instruction in kernel code", regs);
  638. force_sig(SIGTRAP, current);
  639. }
  640. out_sigsegv:
  641. force_sig(SIGSEGV, current);
  642. }
  643. asmlinkage void do_ri(struct pt_regs *regs)
  644. {
  645. die_if_kernel("Reserved instruction in kernel code", regs);
  646. if (!cpu_has_llsc)
  647. if (!simulate_llsc(regs))
  648. return;
  649. if (!simulate_rdhwr(regs))
  650. return;
  651. force_sig(SIGILL, current);
  652. }
  653. asmlinkage void do_cpu(struct pt_regs *regs)
  654. {
  655. unsigned int cpid;
  656. die_if_kernel("do_cpu invoked from kernel context!", regs);
  657. cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
  658. switch (cpid) {
  659. case 0:
  660. if (!cpu_has_llsc)
  661. if (!simulate_llsc(regs))
  662. return;
  663. if (!simulate_rdhwr(regs))
  664. return;
  665. break;
  666. case 1:
  667. preempt_disable();
  668. own_fpu();
  669. if (used_math()) { /* Using the FPU again. */
  670. restore_fp(current);
  671. } else { /* First time FPU user. */
  672. init_fpu();
  673. set_used_math();
  674. }
  675. if (cpu_has_fpu) {
  676. preempt_enable();
  677. } else {
  678. int sig;
  679. preempt_enable();
  680. sig = fpu_emulator_cop1Handler(regs,
  681. &current->thread.fpu, 0);
  682. if (sig)
  683. force_sig(sig, current);
  684. #ifdef CONFIG_MIPS_MT_FPAFF
  685. else {
  686. /*
  687. * MIPS MT processors may have fewer FPU contexts
  688. * than CPU threads. If we've emulated more than
  689. * some threshold number of instructions, force
  690. * migration to a "CPU" that has FP support.
  691. */
  692. if(mt_fpemul_threshold > 0
  693. && ((current->thread.emulated_fp++
  694. > mt_fpemul_threshold))) {
  695. /*
  696. * If there's no FPU present, or if the
  697. * application has already restricted
  698. * the allowed set to exclude any CPUs
  699. * with FPUs, we'll skip the procedure.
  700. */
  701. if (cpus_intersects(current->cpus_allowed,
  702. mt_fpu_cpumask)) {
  703. cpumask_t tmask;
  704. cpus_and(tmask,
  705. current->thread.user_cpus_allowed,
  706. mt_fpu_cpumask);
  707. set_cpus_allowed(current, tmask);
  708. current->thread.mflags |= MF_FPUBOUND;
  709. }
  710. }
  711. }
  712. #endif /* CONFIG_MIPS_MT_FPAFF */
  713. }
  714. return;
  715. case 2:
  716. case 3:
  717. die_if_kernel("do_cpu invoked from kernel context!", regs);
  718. break;
  719. }
  720. force_sig(SIGILL, current);
  721. }
  722. asmlinkage void do_mdmx(struct pt_regs *regs)
  723. {
  724. force_sig(SIGILL, current);
  725. }
  726. asmlinkage void do_watch(struct pt_regs *regs)
  727. {
  728. /*
  729. * We use the watch exception where available to detect stack
  730. * overflows.
  731. */
  732. dump_tlb_all();
  733. show_regs(regs);
  734. panic("Caught WATCH exception - probably caused by stack overflow.");
  735. }
  736. asmlinkage void do_mcheck(struct pt_regs *regs)
  737. {
  738. const int field = 2 * sizeof(unsigned long);
  739. int multi_match = regs->cp0_status & ST0_TS;
  740. show_regs(regs);
  741. if (multi_match) {
  742. printk("Index : %0x\n", read_c0_index());
  743. printk("Pagemask: %0x\n", read_c0_pagemask());
  744. printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
  745. printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
  746. printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
  747. printk("\n");
  748. dump_tlb_all();
  749. }
  750. show_code((unsigned int *) regs->cp0_epc);
  751. /*
  752. * Some chips may have other causes of machine check (e.g. SB1
  753. * graduation timer)
  754. */
  755. panic("Caught Machine Check exception - %scaused by multiple "
  756. "matching entries in the TLB.",
  757. (multi_match) ? "" : "not ");
  758. }
  759. asmlinkage void do_mt(struct pt_regs *regs)
  760. {
  761. int subcode;
  762. subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
  763. >> VPECONTROL_EXCPT_SHIFT;
  764. switch (subcode) {
  765. case 0:
  766. printk(KERN_DEBUG "Thread Underflow\n");
  767. break;
  768. case 1:
  769. printk(KERN_DEBUG "Thread Overflow\n");
  770. break;
  771. case 2:
  772. printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
  773. break;
  774. case 3:
  775. printk(KERN_DEBUG "Gating Storage Exception\n");
  776. break;
  777. case 4:
  778. printk(KERN_DEBUG "YIELD Scheduler Exception\n");
  779. break;
  780. case 5:
  781. printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
  782. break;
  783. default:
  784. printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
  785. subcode);
  786. break;
  787. }
  788. die_if_kernel("MIPS MT Thread exception in kernel", regs);
  789. force_sig(SIGILL, current);
  790. }
  791. asmlinkage void do_dsp(struct pt_regs *regs)
  792. {
  793. if (cpu_has_dsp)
  794. panic("Unexpected DSP exception\n");
  795. force_sig(SIGILL, current);
  796. }
  797. asmlinkage void do_reserved(struct pt_regs *regs)
  798. {
  799. /*
  800. * Game over - no way to handle this if it ever occurs. Most probably
  801. * caused by a new unknown cpu type or after another deadly
  802. * hard/software error.
  803. */
  804. show_regs(regs);
  805. panic("Caught reserved exception %ld - should not happen.",
  806. (regs->cp0_cause & 0x7f) >> 2);
  807. }
  808. asmlinkage void do_default_vi(struct pt_regs *regs)
  809. {
  810. show_regs(regs);
  811. panic("Caught unexpected vectored interrupt.");
  812. }
  813. /*
  814. * Some MIPS CPUs can enable/disable for cache parity detection, but do
  815. * it different ways.
  816. */
  817. static inline void parity_protection_init(void)
  818. {
  819. switch (current_cpu_data.cputype) {
  820. case CPU_24K:
  821. case CPU_34K:
  822. case CPU_5KC:
  823. write_c0_ecc(0x80000000);
  824. back_to_back_c0_hazard();
  825. /* Set the PE bit (bit 31) in the c0_errctl register. */
  826. printk(KERN_INFO "Cache parity protection %sabled\n",
  827. (read_c0_ecc() & 0x80000000) ? "en" : "dis");
  828. break;
  829. case CPU_20KC:
  830. case CPU_25KF:
  831. /* Clear the DE bit (bit 16) in the c0_status register. */
  832. printk(KERN_INFO "Enable cache parity protection for "
  833. "MIPS 20KC/25KF CPUs.\n");
  834. clear_c0_status(ST0_DE);
  835. break;
  836. default:
  837. break;
  838. }
  839. }
  840. asmlinkage void cache_parity_error(void)
  841. {
  842. const int field = 2 * sizeof(unsigned long);
  843. unsigned int reg_val;
  844. /* For the moment, report the problem and hang. */
  845. printk("Cache error exception:\n");
  846. printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
  847. reg_val = read_c0_cacheerr();
  848. printk("c0_cacheerr == %08x\n", reg_val);
  849. printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
  850. reg_val & (1<<30) ? "secondary" : "primary",
  851. reg_val & (1<<31) ? "data" : "insn");
  852. printk("Error bits: %s%s%s%s%s%s%s\n",
  853. reg_val & (1<<29) ? "ED " : "",
  854. reg_val & (1<<28) ? "ET " : "",
  855. reg_val & (1<<26) ? "EE " : "",
  856. reg_val & (1<<25) ? "EB " : "",
  857. reg_val & (1<<24) ? "EI " : "",
  858. reg_val & (1<<23) ? "E1 " : "",
  859. reg_val & (1<<22) ? "E0 " : "");
  860. printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
  861. #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
  862. if (reg_val & (1<<22))
  863. printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
  864. if (reg_val & (1<<23))
  865. printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
  866. #endif
  867. panic("Can't handle the cache error!");
  868. }
  869. /*
  870. * SDBBP EJTAG debug exception handler.
  871. * We skip the instruction and return to the next instruction.
  872. */
  873. void ejtag_exception_handler(struct pt_regs *regs)
  874. {
  875. const int field = 2 * sizeof(unsigned long);
  876. unsigned long depc, old_epc;
  877. unsigned int debug;
  878. printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
  879. depc = read_c0_depc();
  880. debug = read_c0_debug();
  881. printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
  882. if (debug & 0x80000000) {
  883. /*
  884. * In branch delay slot.
  885. * We cheat a little bit here and use EPC to calculate the
  886. * debug return address (DEPC). EPC is restored after the
  887. * calculation.
  888. */
  889. old_epc = regs->cp0_epc;
  890. regs->cp0_epc = depc;
  891. __compute_return_epc(regs);
  892. depc = regs->cp0_epc;
  893. regs->cp0_epc = old_epc;
  894. } else
  895. depc += 4;
  896. write_c0_depc(depc);
  897. #if 0
  898. printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
  899. write_c0_debug(debug | 0x100);
  900. #endif
  901. }
  902. /*
  903. * NMI exception handler.
  904. */
  905. void nmi_exception_handler(struct pt_regs *regs)
  906. {
  907. #ifdef CONFIG_MIPS_MT_SMTC
  908. unsigned long dvpret = dvpe();
  909. bust_spinlocks(1);
  910. printk("NMI taken!!!!\n");
  911. mips_mt_regdump(dvpret);
  912. #else
  913. bust_spinlocks(1);
  914. printk("NMI taken!!!!\n");
  915. #endif /* CONFIG_MIPS_MT_SMTC */
  916. die("NMI", regs);
  917. while(1) ;
  918. }
  919. #define VECTORSPACING 0x100 /* for EI/VI mode */
  920. unsigned long ebase;
  921. unsigned long exception_handlers[32];
  922. unsigned long vi_handlers[64];
  923. /*
  924. * As a side effect of the way this is implemented we're limited
  925. * to interrupt handlers in the address range from
  926. * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
  927. */
  928. void *set_except_vector(int n, void *addr)
  929. {
  930. unsigned long handler = (unsigned long) addr;
  931. unsigned long old_handler = exception_handlers[n];
  932. exception_handlers[n] = handler;
  933. if (n == 0 && cpu_has_divec) {
  934. *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
  935. (0x03ffffff & (handler >> 2));
  936. flush_icache_range(ebase + 0x200, ebase + 0x204);
  937. }
  938. return (void *)old_handler;
  939. }
  940. #ifdef CONFIG_CPU_MIPSR2_SRS
  941. /*
  942. * MIPSR2 shadow register set allocation
  943. * FIXME: SMP...
  944. */
  945. static struct shadow_registers {
  946. /*
  947. * Number of shadow register sets supported
  948. */
  949. unsigned long sr_supported;
  950. /*
  951. * Bitmap of allocated shadow registers
  952. */
  953. unsigned long sr_allocated;
  954. } shadow_registers;
  955. static void mips_srs_init(void)
  956. {
  957. shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
  958. printk(KERN_INFO "%ld MIPSR2 register sets available\n",
  959. shadow_registers.sr_supported);
  960. shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
  961. }
  962. int mips_srs_max(void)
  963. {
  964. return shadow_registers.sr_supported;
  965. }
  966. int mips_srs_alloc(void)
  967. {
  968. struct shadow_registers *sr = &shadow_registers;
  969. int set;
  970. again:
  971. set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
  972. if (set >= sr->sr_supported)
  973. return -1;
  974. if (test_and_set_bit(set, &sr->sr_allocated))
  975. goto again;
  976. return set;
  977. }
  978. void mips_srs_free(int set)
  979. {
  980. struct shadow_registers *sr = &shadow_registers;
  981. clear_bit(set, &sr->sr_allocated);
  982. }
  983. static void *set_vi_srs_handler(int n, void *addr, int srs)
  984. {
  985. unsigned long handler;
  986. unsigned long old_handler = vi_handlers[n];
  987. u32 *w;
  988. unsigned char *b;
  989. if (!cpu_has_veic && !cpu_has_vint)
  990. BUG();
  991. if (addr == NULL) {
  992. handler = (unsigned long) do_default_vi;
  993. srs = 0;
  994. } else
  995. handler = (unsigned long) addr;
  996. vi_handlers[n] = (unsigned long) addr;
  997. b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
  998. if (srs >= mips_srs_max())
  999. panic("Shadow register set %d not supported", srs);
  1000. if (cpu_has_veic) {
  1001. if (board_bind_eic_interrupt)
  1002. board_bind_eic_interrupt (n, srs);
  1003. } else if (cpu_has_vint) {
  1004. /* SRSMap is only defined if shadow sets are implemented */
  1005. if (mips_srs_max() > 1)
  1006. change_c0_srsmap (0xf << n*4, srs << n*4);
  1007. }
  1008. if (srs == 0) {
  1009. /*
  1010. * If no shadow set is selected then use the default handler
  1011. * that does normal register saving and a standard interrupt exit
  1012. */
  1013. extern char except_vec_vi, except_vec_vi_lui;
  1014. extern char except_vec_vi_ori, except_vec_vi_end;
  1015. #ifdef CONFIG_MIPS_MT_SMTC
  1016. /*
  1017. * We need to provide the SMTC vectored interrupt handler
  1018. * not only with the address of the handler, but with the
  1019. * Status.IM bit to be masked before going there.
  1020. */
  1021. extern char except_vec_vi_mori;
  1022. const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
  1023. #endif /* CONFIG_MIPS_MT_SMTC */
  1024. const int handler_len = &except_vec_vi_end - &except_vec_vi;
  1025. const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
  1026. const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
  1027. if (handler_len > VECTORSPACING) {
  1028. /*
  1029. * Sigh... panicing won't help as the console
  1030. * is probably not configured :(
  1031. */
  1032. panic ("VECTORSPACING too small");
  1033. }
  1034. memcpy (b, &except_vec_vi, handler_len);
  1035. #ifdef CONFIG_MIPS_MT_SMTC
  1036. if (n > 7)
  1037. printk("Vector index %d exceeds SMTC maximum\n", n);
  1038. w = (u32 *)(b + mori_offset);
  1039. *w = (*w & 0xffff0000) | (0x100 << n);
  1040. #endif /* CONFIG_MIPS_MT_SMTC */
  1041. w = (u32 *)(b + lui_offset);
  1042. *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
  1043. w = (u32 *)(b + ori_offset);
  1044. *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
  1045. flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
  1046. }
  1047. else {
  1048. /*
  1049. * In other cases jump directly to the interrupt handler
  1050. *
  1051. * It is the handlers responsibility to save registers if required
  1052. * (eg hi/lo) and return from the exception using "eret"
  1053. */
  1054. w = (u32 *)b;
  1055. *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
  1056. *w = 0;
  1057. flush_icache_range((unsigned long)b, (unsigned long)(b+8));
  1058. }
  1059. return (void *)old_handler;
  1060. }
  1061. void *set_vi_handler(int n, void *addr)
  1062. {
  1063. return set_vi_srs_handler(n, addr, 0);
  1064. }
  1065. #else
  1066. static inline void mips_srs_init(void)
  1067. {
  1068. }
  1069. #endif /* CONFIG_CPU_MIPSR2_SRS */
  1070. /*
  1071. * This is used by native signal handling
  1072. */
  1073. asmlinkage int (*save_fp_context)(struct sigcontext *sc);
  1074. asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
  1075. extern asmlinkage int _save_fp_context(struct sigcontext *sc);
  1076. extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
  1077. extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
  1078. extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
  1079. #ifdef CONFIG_SMP
  1080. static int smp_save_fp_context(struct sigcontext *sc)
  1081. {
  1082. return cpu_has_fpu
  1083. ? _save_fp_context(sc)
  1084. : fpu_emulator_save_context(sc);
  1085. }
  1086. static int smp_restore_fp_context(struct sigcontext *sc)
  1087. {
  1088. return cpu_has_fpu
  1089. ? _restore_fp_context(sc)
  1090. : fpu_emulator_restore_context(sc);
  1091. }
  1092. #endif
  1093. static inline void signal_init(void)
  1094. {
  1095. #ifdef CONFIG_SMP
  1096. /* For now just do the cpu_has_fpu check when the functions are invoked */
  1097. save_fp_context = smp_save_fp_context;
  1098. restore_fp_context = smp_restore_fp_context;
  1099. #else
  1100. if (cpu_has_fpu) {
  1101. save_fp_context = _save_fp_context;
  1102. restore_fp_context = _restore_fp_context;
  1103. } else {
  1104. save_fp_context = fpu_emulator_save_context;
  1105. restore_fp_context = fpu_emulator_restore_context;
  1106. }
  1107. #endif
  1108. }
  1109. #ifdef CONFIG_MIPS32_COMPAT
  1110. /*
  1111. * This is used by 32-bit signal stuff on the 64-bit kernel
  1112. */
  1113. asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
  1114. asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
  1115. extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
  1116. extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
  1117. extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
  1118. extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
  1119. static inline void signal32_init(void)
  1120. {
  1121. if (cpu_has_fpu) {
  1122. save_fp_context32 = _save_fp_context32;
  1123. restore_fp_context32 = _restore_fp_context32;
  1124. } else {
  1125. save_fp_context32 = fpu_emulator_save_context32;
  1126. restore_fp_context32 = fpu_emulator_restore_context32;
  1127. }
  1128. }
  1129. #endif
  1130. extern void cpu_cache_init(void);
  1131. extern void tlb_init(void);
  1132. extern void flush_tlb_handlers(void);
  1133. void __init per_cpu_trap_init(void)
  1134. {
  1135. unsigned int cpu = smp_processor_id();
  1136. unsigned int status_set = ST0_CU0;
  1137. #ifdef CONFIG_MIPS_MT_SMTC
  1138. int secondaryTC = 0;
  1139. int bootTC = (cpu == 0);
  1140. /*
  1141. * Only do per_cpu_trap_init() for first TC of Each VPE.
  1142. * Note that this hack assumes that the SMTC init code
  1143. * assigns TCs consecutively and in ascending order.
  1144. */
  1145. if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
  1146. ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
  1147. secondaryTC = 1;
  1148. #endif /* CONFIG_MIPS_MT_SMTC */
  1149. /*
  1150. * Disable coprocessors and select 32-bit or 64-bit addressing
  1151. * and the 16/32 or 32/32 FPR register model. Reset the BEV
  1152. * flag that some firmware may have left set and the TS bit (for
  1153. * IP27). Set XX for ISA IV code to work.
  1154. */
  1155. #ifdef CONFIG_64BIT
  1156. status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
  1157. #endif
  1158. if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
  1159. status_set |= ST0_XX;
  1160. change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
  1161. status_set);
  1162. if (cpu_has_dsp)
  1163. set_c0_status(ST0_MX);
  1164. #ifdef CONFIG_CPU_MIPSR2
  1165. write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
  1166. #endif
  1167. #ifdef CONFIG_MIPS_MT_SMTC
  1168. if (!secondaryTC) {
  1169. #endif /* CONFIG_MIPS_MT_SMTC */
  1170. /*
  1171. * Interrupt handling.
  1172. */
  1173. if (cpu_has_veic || cpu_has_vint) {
  1174. write_c0_ebase (ebase);
  1175. /* Setting vector spacing enables EI/VI mode */
  1176. change_c0_intctl (0x3e0, VECTORSPACING);
  1177. }
  1178. if (cpu_has_divec) {
  1179. if (cpu_has_mipsmt) {
  1180. unsigned int vpflags = dvpe();
  1181. set_c0_cause(CAUSEF_IV);
  1182. evpe(vpflags);
  1183. } else
  1184. set_c0_cause(CAUSEF_IV);
  1185. }
  1186. #ifdef CONFIG_MIPS_MT_SMTC
  1187. }
  1188. #endif /* CONFIG_MIPS_MT_SMTC */
  1189. cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
  1190. TLBMISS_HANDLER_SETUP();
  1191. atomic_inc(&init_mm.mm_count);
  1192. current->active_mm = &init_mm;
  1193. BUG_ON(current->mm);
  1194. enter_lazy_tlb(&init_mm, current);
  1195. #ifdef CONFIG_MIPS_MT_SMTC
  1196. if (bootTC) {
  1197. #endif /* CONFIG_MIPS_MT_SMTC */
  1198. cpu_cache_init();
  1199. tlb_init();
  1200. #ifdef CONFIG_MIPS_MT_SMTC
  1201. }
  1202. #endif /* CONFIG_MIPS_MT_SMTC */
  1203. }
  1204. /* Install CPU exception handler */
  1205. void __init set_handler (unsigned long offset, void *addr, unsigned long size)
  1206. {
  1207. memcpy((void *)(ebase + offset), addr, size);
  1208. flush_icache_range(ebase + offset, ebase + offset + size);
  1209. }
  1210. /* Install uncached CPU exception handler */
  1211. void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
  1212. {
  1213. #ifdef CONFIG_32BIT
  1214. unsigned long uncached_ebase = KSEG1ADDR(ebase);
  1215. #endif
  1216. #ifdef CONFIG_64BIT
  1217. unsigned long uncached_ebase = TO_UNCAC(ebase);
  1218. #endif
  1219. memcpy((void *)(uncached_ebase + offset), addr, size);
  1220. }
  1221. static int __initdata rdhwr_noopt;
  1222. static int __init set_rdhwr_noopt(char *str)
  1223. {
  1224. rdhwr_noopt = 1;
  1225. return 1;
  1226. }
  1227. __setup("rdhwr_noopt", set_rdhwr_noopt);
  1228. void __init trap_init(void)
  1229. {
  1230. extern char except_vec3_generic, except_vec3_r4000;
  1231. extern char except_vec4;
  1232. unsigned long i;
  1233. if (cpu_has_veic || cpu_has_vint)
  1234. ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
  1235. else
  1236. ebase = CAC_BASE;
  1237. mips_srs_init();
  1238. per_cpu_trap_init();
  1239. /*
  1240. * Copy the generic exception handlers to their final destination.
  1241. * This will be overriden later as suitable for a particular
  1242. * configuration.
  1243. */
  1244. set_handler(0x180, &except_vec3_generic, 0x80);
  1245. /*
  1246. * Setup default vectors
  1247. */
  1248. for (i = 0; i <= 31; i++)
  1249. set_except_vector(i, handle_reserved);
  1250. /*
  1251. * Copy the EJTAG debug exception vector handler code to it's final
  1252. * destination.
  1253. */
  1254. if (cpu_has_ejtag && board_ejtag_handler_setup)
  1255. board_ejtag_handler_setup ();
  1256. /*
  1257. * Only some CPUs have the watch exceptions.
  1258. */
  1259. if (cpu_has_watch)
  1260. set_except_vector(23, handle_watch);
  1261. /*
  1262. * Initialise interrupt handlers
  1263. */
  1264. if (cpu_has_veic || cpu_has_vint) {
  1265. int nvec = cpu_has_veic ? 64 : 8;
  1266. for (i = 0; i < nvec; i++)
  1267. set_vi_handler(i, NULL);
  1268. }
  1269. else if (cpu_has_divec)
  1270. set_handler(0x200, &except_vec4, 0x8);
  1271. /*
  1272. * Some CPUs can enable/disable for cache parity detection, but does
  1273. * it different ways.
  1274. */
  1275. parity_protection_init();
  1276. /*
  1277. * The Data Bus Errors / Instruction Bus Errors are signaled
  1278. * by external hardware. Therefore these two exceptions
  1279. * may have board specific handlers.
  1280. */
  1281. if (board_be_init)
  1282. board_be_init();
  1283. set_except_vector(0, handle_int);
  1284. set_except_vector(1, handle_tlbm);
  1285. set_except_vector(2, handle_tlbl);
  1286. set_except_vector(3, handle_tlbs);
  1287. set_except_vector(4, handle_adel);
  1288. set_except_vector(5, handle_ades);
  1289. set_except_vector(6, handle_ibe);
  1290. set_except_vector(7, handle_dbe);
  1291. set_except_vector(8, handle_sys);
  1292. set_except_vector(9, handle_bp);
  1293. set_except_vector(10, rdhwr_noopt ? handle_ri :
  1294. (cpu_has_vtag_icache ?
  1295. handle_ri_rdhwr_vivt : handle_ri_rdhwr));
  1296. set_except_vector(11, handle_cpu);
  1297. set_except_vector(12, handle_ov);
  1298. set_except_vector(13, handle_tr);
  1299. if (current_cpu_data.cputype == CPU_R6000 ||
  1300. current_cpu_data.cputype == CPU_R6000A) {
  1301. /*
  1302. * The R6000 is the only R-series CPU that features a machine
  1303. * check exception (similar to the R4000 cache error) and
  1304. * unaligned ldc1/sdc1 exception. The handlers have not been
  1305. * written yet. Well, anyway there is no R6000 machine on the
  1306. * current list of targets for Linux/MIPS.
  1307. * (Duh, crap, there is someone with a triple R6k machine)
  1308. */
  1309. //set_except_vector(14, handle_mc);
  1310. //set_except_vector(15, handle_ndc);
  1311. }
  1312. if (board_nmi_handler_setup)
  1313. board_nmi_handler_setup();
  1314. if (cpu_has_fpu && !cpu_has_nofpuex)
  1315. set_except_vector(15, handle_fpe);
  1316. set_except_vector(22, handle_mdmx);
  1317. if (cpu_has_mcheck)
  1318. set_except_vector(24, handle_mcheck);
  1319. if (cpu_has_mipsmt)
  1320. set_except_vector(25, handle_mt);
  1321. if (cpu_has_dsp)
  1322. set_except_vector(26, handle_dsp);
  1323. if (cpu_has_vce)
  1324. /* Special exception: R4[04]00 uses also the divec space. */
  1325. memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
  1326. else if (cpu_has_4kex)
  1327. memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
  1328. else
  1329. memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
  1330. signal_init();
  1331. #ifdef CONFIG_MIPS32_COMPAT
  1332. signal32_init();
  1333. #endif
  1334. flush_icache_range(ebase, ebase + 0x400);
  1335. flush_tlb_handlers();
  1336. }