123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462 |
- /*
- * Copyright 2001 MontaVista Software Inc.
- * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
- * Copyright (c) 2003, 2004 Maciej W. Rozycki
- *
- * Common time service routines for MIPS machines. See
- * Documentation/mips/time.README.
- *
- * This program is free software; you can redistribute it and/or modify it
- * under the terms of the GNU General Public License as published by the
- * Free Software Foundation; either version 2 of the License, or (at your
- * option) any later version.
- */
- #include <linux/types.h>
- #include <linux/kernel.h>
- #include <linux/init.h>
- #include <linux/sched.h>
- #include <linux/param.h>
- #include <linux/time.h>
- #include <linux/timex.h>
- #include <linux/smp.h>
- #include <linux/kernel_stat.h>
- #include <linux/spinlock.h>
- #include <linux/interrupt.h>
- #include <linux/module.h>
- #include <asm/bootinfo.h>
- #include <asm/cache.h>
- #include <asm/compiler.h>
- #include <asm/cpu.h>
- #include <asm/cpu-features.h>
- #include <asm/div64.h>
- #include <asm/sections.h>
- #include <asm/time.h>
- /*
- * The integer part of the number of usecs per jiffy is taken from tick,
- * but the fractional part is not recorded, so we calculate it using the
- * initial value of HZ. This aids systems where tick isn't really an
- * integer (e.g. for HZ = 128).
- */
- #define USECS_PER_JIFFY TICK_SIZE
- #define USECS_PER_JIFFY_FRAC ((unsigned long)(u32)((1000000ULL << 32) / HZ))
- #define TICK_SIZE (tick_nsec / 1000)
- /*
- * forward reference
- */
- DEFINE_SPINLOCK(rtc_lock);
- /*
- * By default we provide the null RTC ops
- */
- static unsigned long null_rtc_get_time(void)
- {
- return mktime(2000, 1, 1, 0, 0, 0);
- }
- static int null_rtc_set_time(unsigned long sec)
- {
- return 0;
- }
- unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
- int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
- int (*rtc_mips_set_mmss)(unsigned long);
- /* how many counter cycles in a jiffy */
- static unsigned long cycles_per_jiffy __read_mostly;
- /* expirelo is the count value for next CPU timer interrupt */
- static unsigned int expirelo;
- /*
- * Null timer ack for systems not needing one (e.g. i8254).
- */
- static void null_timer_ack(void) { /* nothing */ }
- /*
- * Null high precision timer functions for systems lacking one.
- */
- static cycle_t null_hpt_read(void)
- {
- return 0;
- }
- /*
- * Timer ack for an R4k-compatible timer of a known frequency.
- */
- static void c0_timer_ack(void)
- {
- unsigned int count;
- /* Ack this timer interrupt and set the next one. */
- expirelo += cycles_per_jiffy;
- write_c0_compare(expirelo);
- /* Check to see if we have missed any timer interrupts. */
- while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
- /* missed_timer_count++; */
- expirelo = count + cycles_per_jiffy;
- write_c0_compare(expirelo);
- }
- }
- /*
- * High precision timer functions for a R4k-compatible timer.
- */
- static cycle_t c0_hpt_read(void)
- {
- return read_c0_count();
- }
- /* For use both as a high precision timer and an interrupt source. */
- static void __init c0_hpt_timer_init(void)
- {
- expirelo = read_c0_count() + cycles_per_jiffy;
- write_c0_compare(expirelo);
- }
- int (*mips_timer_state)(void);
- void (*mips_timer_ack)(void);
- /* last time when xtime and rtc are sync'ed up */
- static long last_rtc_update;
- /*
- * local_timer_interrupt() does profiling and process accounting
- * on a per-CPU basis.
- *
- * In UP mode, it is invoked from the (global) timer_interrupt.
- *
- * In SMP mode, it might invoked by per-CPU timer interrupt, or
- * a broadcasted inter-processor interrupt which itself is triggered
- * by the global timer interrupt.
- */
- void local_timer_interrupt(int irq, void *dev_id)
- {
- profile_tick(CPU_PROFILING);
- update_process_times(user_mode(get_irq_regs()));
- }
- /*
- * High-level timer interrupt service routines. This function
- * is set as irqaction->handler and is invoked through do_IRQ.
- */
- irqreturn_t timer_interrupt(int irq, void *dev_id)
- {
- write_seqlock(&xtime_lock);
- mips_timer_ack();
- /*
- * call the generic timer interrupt handling
- */
- do_timer(1);
- /*
- * If we have an externally synchronized Linux clock, then update
- * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
- * called as close as possible to 500 ms before the new second starts.
- */
- if (ntp_synced() &&
- xtime.tv_sec > last_rtc_update + 660 &&
- (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
- (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
- if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
- last_rtc_update = xtime.tv_sec;
- } else {
- /* do it again in 60 s */
- last_rtc_update = xtime.tv_sec - 600;
- }
- }
- write_sequnlock(&xtime_lock);
- /*
- * In UP mode, we call local_timer_interrupt() to do profiling
- * and process accouting.
- *
- * In SMP mode, local_timer_interrupt() is invoked by appropriate
- * low-level local timer interrupt handler.
- */
- local_timer_interrupt(irq, dev_id);
- return IRQ_HANDLED;
- }
- int null_perf_irq(void)
- {
- return 0;
- }
- int (*perf_irq)(void) = null_perf_irq;
- EXPORT_SYMBOL(null_perf_irq);
- EXPORT_SYMBOL(perf_irq);
- asmlinkage void ll_timer_interrupt(int irq)
- {
- int r2 = cpu_has_mips_r2;
- irq_enter();
- kstat_this_cpu.irqs[irq]++;
- /*
- * Suckage alert:
- * Before R2 of the architecture there was no way to see if a
- * performance counter interrupt was pending, so we have to run the
- * performance counter interrupt handler anyway.
- */
- if (!r2 || (read_c0_cause() & (1 << 26)))
- if (perf_irq())
- goto out;
- /* we keep interrupt disabled all the time */
- if (!r2 || (read_c0_cause() & (1 << 30)))
- timer_interrupt(irq, NULL);
- out:
- irq_exit();
- }
- asmlinkage void ll_local_timer_interrupt(int irq)
- {
- irq_enter();
- if (smp_processor_id() != 0)
- kstat_this_cpu.irqs[irq]++;
- /* we keep interrupt disabled all the time */
- local_timer_interrupt(irq, NULL);
- irq_exit();
- }
- /*
- * time_init() - it does the following things.
- *
- * 1) board_time_init() -
- * a) (optional) set up RTC routines,
- * b) (optional) calibrate and set the mips_hpt_frequency
- * (only needed if you intended to use cpu counter as timer interrupt
- * source)
- * 2) setup xtime based on rtc_mips_get_time().
- * 3) calculate a couple of cached variables for later usage
- * 4) plat_timer_setup() -
- * a) (optional) over-write any choices made above by time_init().
- * b) machine specific code should setup the timer irqaction.
- * c) enable the timer interrupt
- */
- void (*board_time_init)(void);
- unsigned int mips_hpt_frequency;
- static struct irqaction timer_irqaction = {
- .handler = timer_interrupt,
- .flags = IRQF_DISABLED,
- .name = "timer",
- };
- static unsigned int __init calibrate_hpt(void)
- {
- cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;
- const int loops = HZ / 10;
- int log_2_loops = 0;
- int i;
- /*
- * We want to calibrate for 0.1s, but to avoid a 64-bit
- * division we round the number of loops up to the nearest
- * power of 2.
- */
- while (loops > 1 << log_2_loops)
- log_2_loops++;
- i = 1 << log_2_loops;
- /*
- * Wait for a rising edge of the timer interrupt.
- */
- while (mips_timer_state());
- while (!mips_timer_state());
- /*
- * Now see how many high precision timer ticks happen
- * during the calculated number of periods between timer
- * interrupts.
- */
- hpt_start = clocksource_mips.read();
- do {
- while (mips_timer_state());
- while (!mips_timer_state());
- } while (--i);
- hpt_end = clocksource_mips.read();
- hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
- hz = HZ;
- frequency = hpt_count * hz;
- return frequency >> log_2_loops;
- }
- struct clocksource clocksource_mips = {
- .name = "MIPS",
- .mask = 0xffffffff,
- .is_continuous = 1,
- };
- static void __init init_mips_clocksource(void)
- {
- u64 temp;
- u32 shift;
- if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
- return;
- /* Calclate a somewhat reasonable rating value */
- clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
- /* Find a shift value */
- for (shift = 32; shift > 0; shift--) {
- temp = (u64) NSEC_PER_SEC << shift;
- do_div(temp, mips_hpt_frequency);
- if ((temp >> 32) == 0)
- break;
- }
- clocksource_mips.shift = shift;
- clocksource_mips.mult = (u32)temp;
- clocksource_register(&clocksource_mips);
- }
- void __init time_init(void)
- {
- if (board_time_init)
- board_time_init();
- if (!rtc_mips_set_mmss)
- rtc_mips_set_mmss = rtc_mips_set_time;
- xtime.tv_sec = rtc_mips_get_time();
- xtime.tv_nsec = 0;
- set_normalized_timespec(&wall_to_monotonic,
- -xtime.tv_sec, -xtime.tv_nsec);
- /* Choose appropriate high precision timer routines. */
- if (!cpu_has_counter && !clocksource_mips.read)
- /* No high precision timer -- sorry. */
- clocksource_mips.read = null_hpt_read;
- else if (!mips_hpt_frequency && !mips_timer_state) {
- /* A high precision timer of unknown frequency. */
- if (!clocksource_mips.read)
- /* No external high precision timer -- use R4k. */
- clocksource_mips.read = c0_hpt_read;
- } else {
- /* We know counter frequency. Or we can get it. */
- if (!clocksource_mips.read) {
- /* No external high precision timer -- use R4k. */
- clocksource_mips.read = c0_hpt_read;
- if (!mips_timer_state) {
- /* No external timer interrupt -- use R4k. */
- mips_timer_ack = c0_timer_ack;
- /* Calculate cache parameters. */
- cycles_per_jiffy =
- (mips_hpt_frequency + HZ / 2) / HZ;
- /*
- * This sets up the high precision
- * timer for the first interrupt.
- */
- c0_hpt_timer_init();
- }
- }
- if (!mips_hpt_frequency)
- mips_hpt_frequency = calibrate_hpt();
- /* Report the high precision timer rate for a reference. */
- printk("Using %u.%03u MHz high precision timer.\n",
- ((mips_hpt_frequency + 500) / 1000) / 1000,
- ((mips_hpt_frequency + 500) / 1000) % 1000);
- }
- if (!mips_timer_ack)
- /* No timer interrupt ack (e.g. i8254). */
- mips_timer_ack = null_timer_ack;
- /*
- * Call board specific timer interrupt setup.
- *
- * this pointer must be setup in machine setup routine.
- *
- * Even if a machine chooses to use a low-level timer interrupt,
- * it still needs to setup the timer_irqaction.
- * In that case, it might be better to set timer_irqaction.handler
- * to be NULL function so that we are sure the high-level code
- * is not invoked accidentally.
- */
- plat_timer_setup(&timer_irqaction);
- init_mips_clocksource();
- }
- #define FEBRUARY 2
- #define STARTOFTIME 1970
- #define SECDAY 86400L
- #define SECYR (SECDAY * 365)
- #define leapyear(y) ((!((y) % 4) && ((y) % 100)) || !((y) % 400))
- #define days_in_year(y) (leapyear(y) ? 366 : 365)
- #define days_in_month(m) (month_days[(m) - 1])
- static int month_days[12] = {
- 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
- };
- void to_tm(unsigned long tim, struct rtc_time *tm)
- {
- long hms, day, gday;
- int i;
- gday = day = tim / SECDAY;
- hms = tim % SECDAY;
- /* Hours, minutes, seconds are easy */
- tm->tm_hour = hms / 3600;
- tm->tm_min = (hms % 3600) / 60;
- tm->tm_sec = (hms % 3600) % 60;
- /* Number of years in days */
- for (i = STARTOFTIME; day >= days_in_year(i); i++)
- day -= days_in_year(i);
- tm->tm_year = i;
- /* Number of months in days left */
- if (leapyear(tm->tm_year))
- days_in_month(FEBRUARY) = 29;
- for (i = 1; day >= days_in_month(i); i++)
- day -= days_in_month(i);
- days_in_month(FEBRUARY) = 28;
- tm->tm_mon = i - 1; /* tm_mon starts from 0 to 11 */
- /* Days are what is left over (+1) from all that. */
- tm->tm_mday = day + 1;
- /*
- * Determine the day of week
- */
- tm->tm_wday = (gday + 4) % 7; /* 1970/1/1 was Thursday */
- }
- EXPORT_SYMBOL(rtc_lock);
- EXPORT_SYMBOL(to_tm);
- EXPORT_SYMBOL(rtc_mips_set_time);
- EXPORT_SYMBOL(rtc_mips_get_time);
- unsigned long long sched_clock(void)
- {
- return (unsigned long long)jiffies*(1000000000/HZ);
- }
|