smtc.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /* Copyright (C) 2004 Mips Technologies, Inc */
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/cpumask.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/module.h>
  7. #include <asm/cpu.h>
  8. #include <asm/processor.h>
  9. #include <asm/atomic.h>
  10. #include <asm/system.h>
  11. #include <asm/hardirq.h>
  12. #include <asm/hazards.h>
  13. #include <asm/mmu_context.h>
  14. #include <asm/smp.h>
  15. #include <asm/mipsregs.h>
  16. #include <asm/cacheflush.h>
  17. #include <asm/time.h>
  18. #include <asm/addrspace.h>
  19. #include <asm/smtc.h>
  20. #include <asm/smtc_ipi.h>
  21. #include <asm/smtc_proc.h>
  22. /*
  23. * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
  24. */
  25. #define MIPS_CPU_IPI_IRQ 1
  26. #define LOCK_MT_PRA() \
  27. local_irq_save(flags); \
  28. mtflags = dmt()
  29. #define UNLOCK_MT_PRA() \
  30. emt(mtflags); \
  31. local_irq_restore(flags)
  32. #define LOCK_CORE_PRA() \
  33. local_irq_save(flags); \
  34. mtflags = dvpe()
  35. #define UNLOCK_CORE_PRA() \
  36. evpe(mtflags); \
  37. local_irq_restore(flags)
  38. /*
  39. * Data structures purely associated with SMTC parallelism
  40. */
  41. /*
  42. * Table for tracking ASIDs whose lifetime is prolonged.
  43. */
  44. asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
  45. /*
  46. * Clock interrupt "latch" buffers, per "CPU"
  47. */
  48. unsigned int ipi_timer_latch[NR_CPUS];
  49. /*
  50. * Number of InterProcessor Interupt (IPI) message buffers to allocate
  51. */
  52. #define IPIBUF_PER_CPU 4
  53. static struct smtc_ipi_q IPIQ[NR_CPUS];
  54. static struct smtc_ipi_q freeIPIq;
  55. /* Forward declarations */
  56. void ipi_decode(struct smtc_ipi *);
  57. static void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
  58. static void setup_cross_vpe_interrupts(void);
  59. void init_smtc_stats(void);
  60. /* Global SMTC Status */
  61. unsigned int smtc_status = 0;
  62. /* Boot command line configuration overrides */
  63. static int vpelimit = 0;
  64. static int tclimit = 0;
  65. static int ipibuffers = 0;
  66. static int nostlb = 0;
  67. static int asidmask = 0;
  68. unsigned long smtc_asid_mask = 0xff;
  69. static int __init maxvpes(char *str)
  70. {
  71. get_option(&str, &vpelimit);
  72. return 1;
  73. }
  74. static int __init maxtcs(char *str)
  75. {
  76. get_option(&str, &tclimit);
  77. return 1;
  78. }
  79. static int __init ipibufs(char *str)
  80. {
  81. get_option(&str, &ipibuffers);
  82. return 1;
  83. }
  84. static int __init stlb_disable(char *s)
  85. {
  86. nostlb = 1;
  87. return 1;
  88. }
  89. static int __init asidmask_set(char *str)
  90. {
  91. get_option(&str, &asidmask);
  92. switch (asidmask) {
  93. case 0x1:
  94. case 0x3:
  95. case 0x7:
  96. case 0xf:
  97. case 0x1f:
  98. case 0x3f:
  99. case 0x7f:
  100. case 0xff:
  101. smtc_asid_mask = (unsigned long)asidmask;
  102. break;
  103. default:
  104. printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
  105. }
  106. return 1;
  107. }
  108. __setup("maxvpes=", maxvpes);
  109. __setup("maxtcs=", maxtcs);
  110. __setup("ipibufs=", ipibufs);
  111. __setup("nostlb", stlb_disable);
  112. __setup("asidmask=", asidmask_set);
  113. /* Enable additional debug checks before going into CPU idle loop */
  114. #define SMTC_IDLE_HOOK_DEBUG
  115. #ifdef SMTC_IDLE_HOOK_DEBUG
  116. static int hang_trig = 0;
  117. static int __init hangtrig_enable(char *s)
  118. {
  119. hang_trig = 1;
  120. return 1;
  121. }
  122. __setup("hangtrig", hangtrig_enable);
  123. #define DEFAULT_BLOCKED_IPI_LIMIT 32
  124. static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
  125. static int __init tintq(char *str)
  126. {
  127. get_option(&str, &timerq_limit);
  128. return 1;
  129. }
  130. __setup("tintq=", tintq);
  131. int imstuckcount[2][8];
  132. /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
  133. int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
  134. int tcnoprog[NR_CPUS];
  135. static atomic_t idle_hook_initialized = {0};
  136. static int clock_hang_reported[NR_CPUS];
  137. #endif /* SMTC_IDLE_HOOK_DEBUG */
  138. /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
  139. void __init sanitize_tlb_entries(void)
  140. {
  141. printk("Deprecated sanitize_tlb_entries() invoked\n");
  142. }
  143. /*
  144. * Configure shared TLB - VPC configuration bit must be set by caller
  145. */
  146. static void smtc_configure_tlb(void)
  147. {
  148. int i,tlbsiz,vpes;
  149. unsigned long mvpconf0;
  150. unsigned long config1val;
  151. /* Set up ASID preservation table */
  152. for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
  153. for(i = 0; i < MAX_SMTC_ASIDS; i++) {
  154. smtc_live_asid[vpes][i] = 0;
  155. }
  156. }
  157. mvpconf0 = read_c0_mvpconf0();
  158. if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
  159. >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
  160. /* If we have multiple VPEs, try to share the TLB */
  161. if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
  162. /*
  163. * If TLB sizing is programmable, shared TLB
  164. * size is the total available complement.
  165. * Otherwise, we have to take the sum of all
  166. * static VPE TLB entries.
  167. */
  168. if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
  169. >> MVPCONF0_PTLBE_SHIFT)) == 0) {
  170. /*
  171. * If there's more than one VPE, there had better
  172. * be more than one TC, because we need one to bind
  173. * to each VPE in turn to be able to read
  174. * its configuration state!
  175. */
  176. settc(1);
  177. /* Stop the TC from doing anything foolish */
  178. write_tc_c0_tchalt(TCHALT_H);
  179. mips_ihb();
  180. /* No need to un-Halt - that happens later anyway */
  181. for (i=0; i < vpes; i++) {
  182. write_tc_c0_tcbind(i);
  183. /*
  184. * To be 100% sure we're really getting the right
  185. * information, we exit the configuration state
  186. * and do an IHB after each rebinding.
  187. */
  188. write_c0_mvpcontrol(
  189. read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
  190. mips_ihb();
  191. /*
  192. * Only count if the MMU Type indicated is TLB
  193. */
  194. if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
  195. config1val = read_vpe_c0_config1();
  196. tlbsiz += ((config1val >> 25) & 0x3f) + 1;
  197. }
  198. /* Put core back in configuration state */
  199. write_c0_mvpcontrol(
  200. read_c0_mvpcontrol() | MVPCONTROL_VPC );
  201. mips_ihb();
  202. }
  203. }
  204. write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
  205. ehb();
  206. /*
  207. * Setup kernel data structures to use software total,
  208. * rather than read the per-VPE Config1 value. The values
  209. * for "CPU 0" gets copied to all the other CPUs as part
  210. * of their initialization in smtc_cpu_setup().
  211. */
  212. /* MIPS32 limits TLB indices to 64 */
  213. if (tlbsiz > 64)
  214. tlbsiz = 64;
  215. cpu_data[0].tlbsize = current_cpu_data.tlbsize = tlbsiz;
  216. smtc_status |= SMTC_TLB_SHARED;
  217. local_flush_tlb_all();
  218. printk("TLB of %d entry pairs shared by %d VPEs\n",
  219. tlbsiz, vpes);
  220. } else {
  221. printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
  222. }
  223. }
  224. }
  225. /*
  226. * Incrementally build the CPU map out of constituent MIPS MT cores,
  227. * using the specified available VPEs and TCs. Plaform code needs
  228. * to ensure that each MIPS MT core invokes this routine on reset,
  229. * one at a time(!).
  230. *
  231. * This version of the build_cpu_map and prepare_cpus routines assumes
  232. * that *all* TCs of a MIPS MT core will be used for Linux, and that
  233. * they will be spread across *all* available VPEs (to minimise the
  234. * loss of efficiency due to exception service serialization).
  235. * An improved version would pick up configuration information and
  236. * possibly leave some TCs/VPEs as "slave" processors.
  237. *
  238. * Use c0_MVPConf0 to find out how many TCs are available, setting up
  239. * phys_cpu_present_map and the logical/physical mappings.
  240. */
  241. int __init mipsmt_build_cpu_map(int start_cpu_slot)
  242. {
  243. int i, ntcs;
  244. /*
  245. * The CPU map isn't actually used for anything at this point,
  246. * so it's not clear what else we should do apart from set
  247. * everything up so that "logical" = "physical".
  248. */
  249. ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  250. for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
  251. cpu_set(i, phys_cpu_present_map);
  252. __cpu_number_map[i] = i;
  253. __cpu_logical_map[i] = i;
  254. }
  255. /* Initialize map of CPUs with FPUs */
  256. cpus_clear(mt_fpu_cpumask);
  257. /* One of those TC's is the one booting, and not a secondary... */
  258. printk("%i available secondary CPU TC(s)\n", i - 1);
  259. return i;
  260. }
  261. /*
  262. * Common setup before any secondaries are started
  263. * Make sure all CPU's are in a sensible state before we boot any of the
  264. * secondaries.
  265. *
  266. * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
  267. * as possible across the available VPEs.
  268. */
  269. static void smtc_tc_setup(int vpe, int tc, int cpu)
  270. {
  271. settc(tc);
  272. write_tc_c0_tchalt(TCHALT_H);
  273. mips_ihb();
  274. write_tc_c0_tcstatus((read_tc_c0_tcstatus()
  275. & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
  276. | TCSTATUS_A);
  277. write_tc_c0_tccontext(0);
  278. /* Bind tc to vpe */
  279. write_tc_c0_tcbind(vpe);
  280. /* In general, all TCs should have the same cpu_data indications */
  281. memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
  282. /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
  283. if (cpu_data[0].cputype == CPU_34K)
  284. cpu_data[cpu].options &= ~MIPS_CPU_FPU;
  285. cpu_data[cpu].vpe_id = vpe;
  286. cpu_data[cpu].tc_id = tc;
  287. }
  288. void mipsmt_prepare_cpus(void)
  289. {
  290. int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
  291. unsigned long flags;
  292. unsigned long val;
  293. int nipi;
  294. struct smtc_ipi *pipi;
  295. /* disable interrupts so we can disable MT */
  296. local_irq_save(flags);
  297. /* disable MT so we can configure */
  298. dvpe();
  299. dmt();
  300. spin_lock_init(&freeIPIq.lock);
  301. /*
  302. * We probably don't have as many VPEs as we do SMP "CPUs",
  303. * but it's possible - and in any case we'll never use more!
  304. */
  305. for (i=0; i<NR_CPUS; i++) {
  306. IPIQ[i].head = IPIQ[i].tail = NULL;
  307. spin_lock_init(&IPIQ[i].lock);
  308. IPIQ[i].depth = 0;
  309. ipi_timer_latch[i] = 0;
  310. }
  311. /* cpu_data index starts at zero */
  312. cpu = 0;
  313. cpu_data[cpu].vpe_id = 0;
  314. cpu_data[cpu].tc_id = 0;
  315. cpu++;
  316. /* Report on boot-time options */
  317. mips_mt_set_cpuoptions ();
  318. if (vpelimit > 0)
  319. printk("Limit of %d VPEs set\n", vpelimit);
  320. if (tclimit > 0)
  321. printk("Limit of %d TCs set\n", tclimit);
  322. if (nostlb) {
  323. printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
  324. }
  325. if (asidmask)
  326. printk("ASID mask value override to 0x%x\n", asidmask);
  327. /* Temporary */
  328. #ifdef SMTC_IDLE_HOOK_DEBUG
  329. if (hang_trig)
  330. printk("Logic Analyser Trigger on suspected TC hang\n");
  331. #endif /* SMTC_IDLE_HOOK_DEBUG */
  332. /* Put MVPE's into 'configuration state' */
  333. write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
  334. val = read_c0_mvpconf0();
  335. nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
  336. if (vpelimit > 0 && nvpe > vpelimit)
  337. nvpe = vpelimit;
  338. ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  339. if (ntc > NR_CPUS)
  340. ntc = NR_CPUS;
  341. if (tclimit > 0 && ntc > tclimit)
  342. ntc = tclimit;
  343. tcpervpe = ntc / nvpe;
  344. slop = ntc % nvpe; /* Residual TCs, < NVPE */
  345. /* Set up shared TLB */
  346. smtc_configure_tlb();
  347. for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
  348. /*
  349. * Set the MVP bits.
  350. */
  351. settc(tc);
  352. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
  353. if (vpe != 0)
  354. printk(", ");
  355. printk("VPE %d: TC", vpe);
  356. for (i = 0; i < tcpervpe; i++) {
  357. /*
  358. * TC 0 is bound to VPE 0 at reset,
  359. * and is presumably executing this
  360. * code. Leave it alone!
  361. */
  362. if (tc != 0) {
  363. smtc_tc_setup(vpe,tc, cpu);
  364. cpu++;
  365. }
  366. printk(" %d", tc);
  367. tc++;
  368. }
  369. if (slop) {
  370. if (tc != 0) {
  371. smtc_tc_setup(vpe,tc, cpu);
  372. cpu++;
  373. }
  374. printk(" %d", tc);
  375. tc++;
  376. slop--;
  377. }
  378. if (vpe != 0) {
  379. /*
  380. * Clear any stale software interrupts from VPE's Cause
  381. */
  382. write_vpe_c0_cause(0);
  383. /*
  384. * Clear ERL/EXL of VPEs other than 0
  385. * and set restricted interrupt enable/mask.
  386. */
  387. write_vpe_c0_status((read_vpe_c0_status()
  388. & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
  389. | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
  390. | ST0_IE));
  391. /*
  392. * set config to be the same as vpe0,
  393. * particularly kseg0 coherency alg
  394. */
  395. write_vpe_c0_config(read_c0_config());
  396. /* Clear any pending timer interrupt */
  397. write_vpe_c0_compare(0);
  398. /* Propagate Config7 */
  399. write_vpe_c0_config7(read_c0_config7());
  400. write_vpe_c0_count(read_c0_count());
  401. }
  402. /* enable multi-threading within VPE */
  403. write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
  404. /* enable the VPE */
  405. write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
  406. }
  407. /*
  408. * Pull any physically present but unused TCs out of circulation.
  409. */
  410. while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
  411. cpu_clear(tc, phys_cpu_present_map);
  412. cpu_clear(tc, cpu_present_map);
  413. tc++;
  414. }
  415. /* release config state */
  416. write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
  417. printk("\n");
  418. /* Set up coprocessor affinity CPU mask(s) */
  419. for (tc = 0; tc < ntc; tc++) {
  420. if (cpu_data[tc].options & MIPS_CPU_FPU)
  421. cpu_set(tc, mt_fpu_cpumask);
  422. }
  423. /* set up ipi interrupts... */
  424. /* If we have multiple VPEs running, set up the cross-VPE interrupt */
  425. if (nvpe > 1)
  426. setup_cross_vpe_interrupts();
  427. /* Set up queue of free IPI "messages". */
  428. nipi = NR_CPUS * IPIBUF_PER_CPU;
  429. if (ipibuffers > 0)
  430. nipi = ipibuffers;
  431. pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
  432. if (pipi == NULL)
  433. panic("kmalloc of IPI message buffers failed\n");
  434. else
  435. printk("IPI buffer pool of %d buffers\n", nipi);
  436. for (i = 0; i < nipi; i++) {
  437. smtc_ipi_nq(&freeIPIq, pipi);
  438. pipi++;
  439. }
  440. /* Arm multithreading and enable other VPEs - but all TCs are Halted */
  441. emt(EMT_ENABLE);
  442. evpe(EVPE_ENABLE);
  443. local_irq_restore(flags);
  444. /* Initialize SMTC /proc statistics/diagnostics */
  445. init_smtc_stats();
  446. }
  447. /*
  448. * Setup the PC, SP, and GP of a secondary processor and start it
  449. * running!
  450. * smp_bootstrap is the place to resume from
  451. * __KSTK_TOS(idle) is apparently the stack pointer
  452. * (unsigned long)idle->thread_info the gp
  453. *
  454. */
  455. void smtc_boot_secondary(int cpu, struct task_struct *idle)
  456. {
  457. extern u32 kernelsp[NR_CPUS];
  458. long flags;
  459. int mtflags;
  460. LOCK_MT_PRA();
  461. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  462. dvpe();
  463. }
  464. settc(cpu_data[cpu].tc_id);
  465. /* pc */
  466. write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
  467. /* stack pointer */
  468. kernelsp[cpu] = __KSTK_TOS(idle);
  469. write_tc_gpr_sp(__KSTK_TOS(idle));
  470. /* global pointer */
  471. write_tc_gpr_gp((unsigned long)idle->thread_info);
  472. smtc_status |= SMTC_MTC_ACTIVE;
  473. write_tc_c0_tchalt(0);
  474. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  475. evpe(EVPE_ENABLE);
  476. }
  477. UNLOCK_MT_PRA();
  478. }
  479. void smtc_init_secondary(void)
  480. {
  481. /*
  482. * Start timer on secondary VPEs if necessary.
  483. * plat_timer_setup has already have been invoked by init/main
  484. * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
  485. * SMTC init code assigns TCs consdecutively and in ascending order
  486. * to across available VPEs.
  487. */
  488. if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
  489. ((read_c0_tcbind() & TCBIND_CURVPE)
  490. != cpu_data[smp_processor_id() - 1].vpe_id)){
  491. write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
  492. }
  493. local_irq_enable();
  494. }
  495. void smtc_smp_finish(void)
  496. {
  497. printk("TC %d going on-line as CPU %d\n",
  498. cpu_data[smp_processor_id()].tc_id, smp_processor_id());
  499. }
  500. void smtc_cpus_done(void)
  501. {
  502. }
  503. /*
  504. * Support for SMTC-optimized driver IRQ registration
  505. */
  506. /*
  507. * SMTC Kernel needs to manipulate low-level CPU interrupt mask
  508. * in do_IRQ. These are passed in setup_irq_smtc() and stored
  509. * in this table.
  510. */
  511. int setup_irq_smtc(unsigned int irq, struct irqaction * new,
  512. unsigned long hwmask)
  513. {
  514. irq_hwmask[irq] = hwmask;
  515. return setup_irq(irq, new);
  516. }
  517. /*
  518. * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
  519. * Within a VPE one TC can interrupt another by different approaches.
  520. * The easiest to get right would probably be to make all TCs except
  521. * the target IXMT and set a software interrupt, but an IXMT-based
  522. * scheme requires that a handler must run before a new IPI could
  523. * be sent, which would break the "broadcast" loops in MIPS MT.
  524. * A more gonzo approach within a VPE is to halt the TC, extract
  525. * its Restart, Status, and a couple of GPRs, and program the Restart
  526. * address to emulate an interrupt.
  527. *
  528. * Within a VPE, one can be confident that the target TC isn't in
  529. * a critical EXL state when halted, since the write to the Halt
  530. * register could not have issued on the writing thread if the
  531. * halting thread had EXL set. So k0 and k1 of the target TC
  532. * can be used by the injection code. Across VPEs, one can't
  533. * be certain that the target TC isn't in a critical exception
  534. * state. So we try a two-step process of sending a software
  535. * interrupt to the target VPE, which either handles the event
  536. * itself (if it was the target) or injects the event within
  537. * the VPE.
  538. */
  539. static void smtc_ipi_qdump(void)
  540. {
  541. int i;
  542. for (i = 0; i < NR_CPUS ;i++) {
  543. printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
  544. i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
  545. IPIQ[i].depth);
  546. }
  547. }
  548. /*
  549. * The standard atomic.h primitives don't quite do what we want
  550. * here: We need an atomic add-and-return-previous-value (which
  551. * could be done with atomic_add_return and a decrement) and an
  552. * atomic set/zero-and-return-previous-value (which can't really
  553. * be done with the atomic.h primitives). And since this is
  554. * MIPS MT, we can assume that we have LL/SC.
  555. */
  556. static __inline__ int atomic_postincrement(unsigned int *pv)
  557. {
  558. unsigned long result;
  559. unsigned long temp;
  560. __asm__ __volatile__(
  561. "1: ll %0, %2 \n"
  562. " addu %1, %0, 1 \n"
  563. " sc %1, %2 \n"
  564. " beqz %1, 1b \n"
  565. " sync \n"
  566. : "=&r" (result), "=&r" (temp), "=m" (*pv)
  567. : "m" (*pv)
  568. : "memory");
  569. return result;
  570. }
  571. void smtc_send_ipi(int cpu, int type, unsigned int action)
  572. {
  573. int tcstatus;
  574. struct smtc_ipi *pipi;
  575. long flags;
  576. int mtflags;
  577. if (cpu == smp_processor_id()) {
  578. printk("Cannot Send IPI to self!\n");
  579. return;
  580. }
  581. /* Set up a descriptor, to be delivered either promptly or queued */
  582. pipi = smtc_ipi_dq(&freeIPIq);
  583. if (pipi == NULL) {
  584. bust_spinlocks(1);
  585. mips_mt_regdump(dvpe());
  586. panic("IPI Msg. Buffers Depleted\n");
  587. }
  588. pipi->type = type;
  589. pipi->arg = (void *)action;
  590. pipi->dest = cpu;
  591. if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
  592. /* If not on same VPE, enqueue and send cross-VPE interupt */
  593. smtc_ipi_nq(&IPIQ[cpu], pipi);
  594. LOCK_CORE_PRA();
  595. settc(cpu_data[cpu].tc_id);
  596. write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
  597. UNLOCK_CORE_PRA();
  598. } else {
  599. /*
  600. * Not sufficient to do a LOCK_MT_PRA (dmt) here,
  601. * since ASID shootdown on the other VPE may
  602. * collide with this operation.
  603. */
  604. LOCK_CORE_PRA();
  605. settc(cpu_data[cpu].tc_id);
  606. /* Halt the targeted TC */
  607. write_tc_c0_tchalt(TCHALT_H);
  608. mips_ihb();
  609. /*
  610. * Inspect TCStatus - if IXMT is set, we have to queue
  611. * a message. Otherwise, we set up the "interrupt"
  612. * of the other TC
  613. */
  614. tcstatus = read_tc_c0_tcstatus();
  615. if ((tcstatus & TCSTATUS_IXMT) != 0) {
  616. /*
  617. * Spin-waiting here can deadlock,
  618. * so we queue the message for the target TC.
  619. */
  620. write_tc_c0_tchalt(0);
  621. UNLOCK_CORE_PRA();
  622. /* Try to reduce redundant timer interrupt messages */
  623. if (type == SMTC_CLOCK_TICK) {
  624. if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
  625. smtc_ipi_nq(&freeIPIq, pipi);
  626. return;
  627. }
  628. }
  629. smtc_ipi_nq(&IPIQ[cpu], pipi);
  630. } else {
  631. post_direct_ipi(cpu, pipi);
  632. write_tc_c0_tchalt(0);
  633. UNLOCK_CORE_PRA();
  634. }
  635. }
  636. }
  637. /*
  638. * Send IPI message to Halted TC, TargTC/TargVPE already having been set
  639. */
  640. static void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
  641. {
  642. struct pt_regs *kstack;
  643. unsigned long tcstatus;
  644. unsigned long tcrestart;
  645. extern u32 kernelsp[NR_CPUS];
  646. extern void __smtc_ipi_vector(void);
  647. /* Extract Status, EPC from halted TC */
  648. tcstatus = read_tc_c0_tcstatus();
  649. tcrestart = read_tc_c0_tcrestart();
  650. /* If TCRestart indicates a WAIT instruction, advance the PC */
  651. if ((tcrestart & 0x80000000)
  652. && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
  653. tcrestart += 4;
  654. }
  655. /*
  656. * Save on TC's future kernel stack
  657. *
  658. * CU bit of Status is indicator that TC was
  659. * already running on a kernel stack...
  660. */
  661. if (tcstatus & ST0_CU0) {
  662. /* Note that this "- 1" is pointer arithmetic */
  663. kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
  664. } else {
  665. kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
  666. }
  667. kstack->cp0_epc = (long)tcrestart;
  668. /* Save TCStatus */
  669. kstack->cp0_tcstatus = tcstatus;
  670. /* Pass token of operation to be performed kernel stack pad area */
  671. kstack->pad0[4] = (unsigned long)pipi;
  672. /* Pass address of function to be called likewise */
  673. kstack->pad0[5] = (unsigned long)&ipi_decode;
  674. /* Set interrupt exempt and kernel mode */
  675. tcstatus |= TCSTATUS_IXMT;
  676. tcstatus &= ~TCSTATUS_TKSU;
  677. write_tc_c0_tcstatus(tcstatus);
  678. ehb();
  679. /* Set TC Restart address to be SMTC IPI vector */
  680. write_tc_c0_tcrestart(__smtc_ipi_vector);
  681. }
  682. static void ipi_resched_interrupt(void)
  683. {
  684. /* Return from interrupt should be enough to cause scheduler check */
  685. }
  686. static void ipi_call_interrupt(void)
  687. {
  688. /* Invoke generic function invocation code in smp.c */
  689. smp_call_function_interrupt();
  690. }
  691. void ipi_decode(struct smtc_ipi *pipi)
  692. {
  693. void *arg_copy = pipi->arg;
  694. int type_copy = pipi->type;
  695. int dest_copy = pipi->dest;
  696. smtc_ipi_nq(&freeIPIq, pipi);
  697. switch (type_copy) {
  698. case SMTC_CLOCK_TICK:
  699. /* Invoke Clock "Interrupt" */
  700. ipi_timer_latch[dest_copy] = 0;
  701. #ifdef SMTC_IDLE_HOOK_DEBUG
  702. clock_hang_reported[dest_copy] = 0;
  703. #endif /* SMTC_IDLE_HOOK_DEBUG */
  704. local_timer_interrupt(0, NULL);
  705. break;
  706. case LINUX_SMP_IPI:
  707. switch ((int)arg_copy) {
  708. case SMP_RESCHEDULE_YOURSELF:
  709. ipi_resched_interrupt();
  710. break;
  711. case SMP_CALL_FUNCTION:
  712. ipi_call_interrupt();
  713. break;
  714. default:
  715. printk("Impossible SMTC IPI Argument 0x%x\n",
  716. (int)arg_copy);
  717. break;
  718. }
  719. break;
  720. default:
  721. printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
  722. break;
  723. }
  724. }
  725. void deferred_smtc_ipi(void)
  726. {
  727. struct smtc_ipi *pipi;
  728. unsigned long flags;
  729. /* DEBUG */
  730. int q = smp_processor_id();
  731. /*
  732. * Test is not atomic, but much faster than a dequeue,
  733. * and the vast majority of invocations will have a null queue.
  734. */
  735. if (IPIQ[q].head != NULL) {
  736. while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
  737. /* ipi_decode() should be called with interrupts off */
  738. local_irq_save(flags);
  739. ipi_decode(pipi);
  740. local_irq_restore(flags);
  741. }
  742. }
  743. }
  744. /*
  745. * Send clock tick to all TCs except the one executing the funtion
  746. */
  747. void smtc_timer_broadcast(int vpe)
  748. {
  749. int cpu;
  750. int myTC = cpu_data[smp_processor_id()].tc_id;
  751. int myVPE = cpu_data[smp_processor_id()].vpe_id;
  752. smtc_cpu_stats[smp_processor_id()].timerints++;
  753. for_each_online_cpu(cpu) {
  754. if (cpu_data[cpu].vpe_id == myVPE &&
  755. cpu_data[cpu].tc_id != myTC)
  756. smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
  757. }
  758. }
  759. /*
  760. * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
  761. * set via cross-VPE MTTR manipulation of the Cause register. It would be
  762. * in some regards preferable to have external logic for "doorbell" hardware
  763. * interrupts.
  764. */
  765. static int cpu_ipi_irq = MIPS_CPU_IRQ_BASE + MIPS_CPU_IPI_IRQ;
  766. static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
  767. {
  768. int my_vpe = cpu_data[smp_processor_id()].vpe_id;
  769. int my_tc = cpu_data[smp_processor_id()].tc_id;
  770. int cpu;
  771. struct smtc_ipi *pipi;
  772. unsigned long tcstatus;
  773. int sent;
  774. long flags;
  775. unsigned int mtflags;
  776. unsigned int vpflags;
  777. /*
  778. * So long as cross-VPE interrupts are done via
  779. * MFTR/MTTR read-modify-writes of Cause, we need
  780. * to stop other VPEs whenever the local VPE does
  781. * anything similar.
  782. */
  783. local_irq_save(flags);
  784. vpflags = dvpe();
  785. clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
  786. set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
  787. irq_enable_hazard();
  788. evpe(vpflags);
  789. local_irq_restore(flags);
  790. /*
  791. * Cross-VPE Interrupt handler: Try to directly deliver IPIs
  792. * queued for TCs on this VPE other than the current one.
  793. * Return-from-interrupt should cause us to drain the queue
  794. * for the current TC, so we ought not to have to do it explicitly here.
  795. */
  796. for_each_online_cpu(cpu) {
  797. if (cpu_data[cpu].vpe_id != my_vpe)
  798. continue;
  799. pipi = smtc_ipi_dq(&IPIQ[cpu]);
  800. if (pipi != NULL) {
  801. if (cpu_data[cpu].tc_id != my_tc) {
  802. sent = 0;
  803. LOCK_MT_PRA();
  804. settc(cpu_data[cpu].tc_id);
  805. write_tc_c0_tchalt(TCHALT_H);
  806. mips_ihb();
  807. tcstatus = read_tc_c0_tcstatus();
  808. if ((tcstatus & TCSTATUS_IXMT) == 0) {
  809. post_direct_ipi(cpu, pipi);
  810. sent = 1;
  811. }
  812. write_tc_c0_tchalt(0);
  813. UNLOCK_MT_PRA();
  814. if (!sent) {
  815. smtc_ipi_req(&IPIQ[cpu], pipi);
  816. }
  817. } else {
  818. /*
  819. * ipi_decode() should be called
  820. * with interrupts off
  821. */
  822. local_irq_save(flags);
  823. ipi_decode(pipi);
  824. local_irq_restore(flags);
  825. }
  826. }
  827. }
  828. return IRQ_HANDLED;
  829. }
  830. static void ipi_irq_dispatch(void)
  831. {
  832. do_IRQ(cpu_ipi_irq);
  833. }
  834. static struct irqaction irq_ipi;
  835. static void setup_cross_vpe_interrupts(void)
  836. {
  837. if (!cpu_has_vint)
  838. panic("SMTC Kernel requires Vectored Interupt support");
  839. set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
  840. irq_ipi.handler = ipi_interrupt;
  841. irq_ipi.flags = IRQF_DISABLED;
  842. irq_ipi.name = "SMTC_IPI";
  843. setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
  844. irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
  845. set_irq_handler(cpu_ipi_irq, handle_percpu_irq);
  846. }
  847. /*
  848. * SMTC-specific hacks invoked from elsewhere in the kernel.
  849. */
  850. void smtc_ipi_replay(void)
  851. {
  852. /*
  853. * To the extent that we've ever turned interrupts off,
  854. * we may have accumulated deferred IPIs. This is subtle.
  855. * If we use the smtc_ipi_qdepth() macro, we'll get an
  856. * exact number - but we'll also disable interrupts
  857. * and create a window of failure where a new IPI gets
  858. * queued after we test the depth but before we re-enable
  859. * interrupts. So long as IXMT never gets set, however,
  860. * we should be OK: If we pick up something and dispatch
  861. * it here, that's great. If we see nothing, but concurrent
  862. * with this operation, another TC sends us an IPI, IXMT
  863. * is clear, and we'll handle it as a real pseudo-interrupt
  864. * and not a pseudo-pseudo interrupt.
  865. */
  866. if (IPIQ[smp_processor_id()].depth > 0) {
  867. struct smtc_ipi *pipi;
  868. extern void self_ipi(struct smtc_ipi *);
  869. while ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()]))) {
  870. self_ipi(pipi);
  871. smtc_cpu_stats[smp_processor_id()].selfipis++;
  872. }
  873. }
  874. }
  875. EXPORT_SYMBOL(smtc_ipi_replay);
  876. void smtc_idle_loop_hook(void)
  877. {
  878. #ifdef SMTC_IDLE_HOOK_DEBUG
  879. int im;
  880. int flags;
  881. int mtflags;
  882. int bit;
  883. int vpe;
  884. int tc;
  885. int hook_ntcs;
  886. /*
  887. * printk within DMT-protected regions can deadlock,
  888. * so buffer diagnostic messages for later output.
  889. */
  890. char *pdb_msg;
  891. char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
  892. if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
  893. if (atomic_add_return(1, &idle_hook_initialized) == 1) {
  894. int mvpconf0;
  895. /* Tedious stuff to just do once */
  896. mvpconf0 = read_c0_mvpconf0();
  897. hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
  898. if (hook_ntcs > NR_CPUS)
  899. hook_ntcs = NR_CPUS;
  900. for (tc = 0; tc < hook_ntcs; tc++) {
  901. tcnoprog[tc] = 0;
  902. clock_hang_reported[tc] = 0;
  903. }
  904. for (vpe = 0; vpe < 2; vpe++)
  905. for (im = 0; im < 8; im++)
  906. imstuckcount[vpe][im] = 0;
  907. printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
  908. atomic_set(&idle_hook_initialized, 1000);
  909. } else {
  910. /* Someone else is initializing in parallel - let 'em finish */
  911. while (atomic_read(&idle_hook_initialized) < 1000)
  912. ;
  913. }
  914. }
  915. /* Have we stupidly left IXMT set somewhere? */
  916. if (read_c0_tcstatus() & 0x400) {
  917. write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
  918. ehb();
  919. printk("Dangling IXMT in cpu_idle()\n");
  920. }
  921. /* Have we stupidly left an IM bit turned off? */
  922. #define IM_LIMIT 2000
  923. local_irq_save(flags);
  924. mtflags = dmt();
  925. pdb_msg = &id_ho_db_msg[0];
  926. im = read_c0_status();
  927. vpe = cpu_data[smp_processor_id()].vpe_id;
  928. for (bit = 0; bit < 8; bit++) {
  929. /*
  930. * In current prototype, I/O interrupts
  931. * are masked for VPE > 0
  932. */
  933. if (vpemask[vpe][bit]) {
  934. if (!(im & (0x100 << bit)))
  935. imstuckcount[vpe][bit]++;
  936. else
  937. imstuckcount[vpe][bit] = 0;
  938. if (imstuckcount[vpe][bit] > IM_LIMIT) {
  939. set_c0_status(0x100 << bit);
  940. ehb();
  941. imstuckcount[vpe][bit] = 0;
  942. pdb_msg += sprintf(pdb_msg,
  943. "Dangling IM %d fixed for VPE %d\n", bit,
  944. vpe);
  945. }
  946. }
  947. }
  948. /*
  949. * Now that we limit outstanding timer IPIs, check for hung TC
  950. */
  951. for (tc = 0; tc < NR_CPUS; tc++) {
  952. /* Don't check ourself - we'll dequeue IPIs just below */
  953. if ((tc != smp_processor_id()) &&
  954. ipi_timer_latch[tc] > timerq_limit) {
  955. if (clock_hang_reported[tc] == 0) {
  956. pdb_msg += sprintf(pdb_msg,
  957. "TC %d looks hung with timer latch at %d\n",
  958. tc, ipi_timer_latch[tc]);
  959. clock_hang_reported[tc]++;
  960. }
  961. }
  962. }
  963. emt(mtflags);
  964. local_irq_restore(flags);
  965. if (pdb_msg != &id_ho_db_msg[0])
  966. printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
  967. #endif /* SMTC_IDLE_HOOK_DEBUG */
  968. /*
  969. * Replay any accumulated deferred IPIs. If "Instant Replay"
  970. * is in use, there should never be any.
  971. */
  972. #ifndef CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY
  973. smtc_ipi_replay();
  974. #endif /* CONFIG_MIPS_MT_SMTC_INSTANT_REPLAY */
  975. }
  976. void smtc_soft_dump(void)
  977. {
  978. int i;
  979. printk("Counter Interrupts taken per CPU (TC)\n");
  980. for (i=0; i < NR_CPUS; i++) {
  981. printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
  982. }
  983. printk("Self-IPI invocations:\n");
  984. for (i=0; i < NR_CPUS; i++) {
  985. printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
  986. }
  987. smtc_ipi_qdump();
  988. printk("Timer IPI Backlogs:\n");
  989. for (i=0; i < NR_CPUS; i++) {
  990. printk("%d: %d\n", i, ipi_timer_latch[i]);
  991. }
  992. printk("%d Recoveries of \"stolen\" FPU\n",
  993. atomic_read(&smtc_fpu_recoveries));
  994. }
  995. /*
  996. * TLB management routines special to SMTC
  997. */
  998. void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
  999. {
  1000. unsigned long flags, mtflags, tcstat, prevhalt, asid;
  1001. int tlb, i;
  1002. /*
  1003. * It would be nice to be able to use a spinlock here,
  1004. * but this is invoked from within TLB flush routines
  1005. * that protect themselves with DVPE, so if a lock is
  1006. * held by another TC, it'll never be freed.
  1007. *
  1008. * DVPE/DMT must not be done with interrupts enabled,
  1009. * so even so most callers will already have disabled
  1010. * them, let's be really careful...
  1011. */
  1012. local_irq_save(flags);
  1013. if (smtc_status & SMTC_TLB_SHARED) {
  1014. mtflags = dvpe();
  1015. tlb = 0;
  1016. } else {
  1017. mtflags = dmt();
  1018. tlb = cpu_data[cpu].vpe_id;
  1019. }
  1020. asid = asid_cache(cpu);
  1021. do {
  1022. if (!((asid += ASID_INC) & ASID_MASK) ) {
  1023. if (cpu_has_vtag_icache)
  1024. flush_icache_all();
  1025. /* Traverse all online CPUs (hack requires contigous range) */
  1026. for (i = 0; i < num_online_cpus(); i++) {
  1027. /*
  1028. * We don't need to worry about our own CPU, nor those of
  1029. * CPUs who don't share our TLB.
  1030. */
  1031. if ((i != smp_processor_id()) &&
  1032. ((smtc_status & SMTC_TLB_SHARED) ||
  1033. (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
  1034. settc(cpu_data[i].tc_id);
  1035. prevhalt = read_tc_c0_tchalt() & TCHALT_H;
  1036. if (!prevhalt) {
  1037. write_tc_c0_tchalt(TCHALT_H);
  1038. mips_ihb();
  1039. }
  1040. tcstat = read_tc_c0_tcstatus();
  1041. smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
  1042. if (!prevhalt)
  1043. write_tc_c0_tchalt(0);
  1044. }
  1045. }
  1046. if (!asid) /* fix version if needed */
  1047. asid = ASID_FIRST_VERSION;
  1048. local_flush_tlb_all(); /* start new asid cycle */
  1049. }
  1050. } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
  1051. /*
  1052. * SMTC shares the TLB within VPEs and possibly across all VPEs.
  1053. */
  1054. for (i = 0; i < num_online_cpus(); i++) {
  1055. if ((smtc_status & SMTC_TLB_SHARED) ||
  1056. (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
  1057. cpu_context(i, mm) = asid_cache(i) = asid;
  1058. }
  1059. if (smtc_status & SMTC_TLB_SHARED)
  1060. evpe(mtflags);
  1061. else
  1062. emt(mtflags);
  1063. local_irq_restore(flags);
  1064. }
  1065. /*
  1066. * Invoked from macros defined in mmu_context.h
  1067. * which must already have disabled interrupts
  1068. * and done a DVPE or DMT as appropriate.
  1069. */
  1070. void smtc_flush_tlb_asid(unsigned long asid)
  1071. {
  1072. int entry;
  1073. unsigned long ehi;
  1074. entry = read_c0_wired();
  1075. /* Traverse all non-wired entries */
  1076. while (entry < current_cpu_data.tlbsize) {
  1077. write_c0_index(entry);
  1078. ehb();
  1079. tlb_read();
  1080. ehb();
  1081. ehi = read_c0_entryhi();
  1082. if ((ehi & ASID_MASK) == asid) {
  1083. /*
  1084. * Invalidate only entries with specified ASID,
  1085. * makiing sure all entries differ.
  1086. */
  1087. write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
  1088. write_c0_entrylo0(0);
  1089. write_c0_entrylo1(0);
  1090. mtc0_tlbw_hazard();
  1091. tlb_write_indexed();
  1092. }
  1093. entry++;
  1094. }
  1095. write_c0_index(PARKED_INDEX);
  1096. tlbw_use_hazard();
  1097. }
  1098. /*
  1099. * Support for single-threading cache flush operations.
  1100. */
  1101. static int halt_state_save[NR_CPUS];
  1102. /*
  1103. * To really, really be sure that nothing is being done
  1104. * by other TCs, halt them all. This code assumes that
  1105. * a DVPE has already been done, so while their Halted
  1106. * state is theoretically architecturally unstable, in
  1107. * practice, it's not going to change while we're looking
  1108. * at it.
  1109. */
  1110. void smtc_cflush_lockdown(void)
  1111. {
  1112. int cpu;
  1113. for_each_online_cpu(cpu) {
  1114. if (cpu != smp_processor_id()) {
  1115. settc(cpu_data[cpu].tc_id);
  1116. halt_state_save[cpu] = read_tc_c0_tchalt();
  1117. write_tc_c0_tchalt(TCHALT_H);
  1118. }
  1119. }
  1120. mips_ihb();
  1121. }
  1122. /* It would be cheating to change the cpu_online states during a flush! */
  1123. void smtc_cflush_release(void)
  1124. {
  1125. int cpu;
  1126. /*
  1127. * Start with a hazard barrier to ensure
  1128. * that all CACHE ops have played through.
  1129. */
  1130. mips_ihb();
  1131. for_each_online_cpu(cpu) {
  1132. if (cpu != smp_processor_id()) {
  1133. settc(cpu_data[cpu].tc_id);
  1134. write_tc_c0_tchalt(halt_state_save[cpu]);
  1135. }
  1136. }
  1137. mips_ihb();
  1138. }