setup.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 1995 Linus Torvalds
  7. * Copyright (C) 1995 Waldorf Electronics
  8. * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
  9. * Copyright (C) 1996 Stoned Elipot
  10. * Copyright (C) 1999 Silicon Graphics, Inc.
  11. * Copyright (C) 2000 2001, 2002 Maciej W. Rozycki
  12. */
  13. #include <linux/init.h>
  14. #include <linux/ioport.h>
  15. #include <linux/module.h>
  16. #include <linux/screen_info.h>
  17. #include <linux/bootmem.h>
  18. #include <linux/initrd.h>
  19. #include <linux/root_dev.h>
  20. #include <linux/highmem.h>
  21. #include <linux/console.h>
  22. #include <linux/pfn.h>
  23. #include <asm/addrspace.h>
  24. #include <asm/bootinfo.h>
  25. #include <asm/cache.h>
  26. #include <asm/cpu.h>
  27. #include <asm/sections.h>
  28. #include <asm/setup.h>
  29. #include <asm/system.h>
  30. struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
  31. EXPORT_SYMBOL(cpu_data);
  32. #ifdef CONFIG_VT
  33. struct screen_info screen_info;
  34. #endif
  35. /*
  36. * Despite it's name this variable is even if we don't have PCI
  37. */
  38. unsigned int PCI_DMA_BUS_IS_PHYS;
  39. EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
  40. /*
  41. * Setup information
  42. *
  43. * These are initialized so they are in the .data section
  44. */
  45. unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
  46. unsigned long mips_machgroup __read_mostly = MACH_GROUP_UNKNOWN;
  47. EXPORT_SYMBOL(mips_machtype);
  48. EXPORT_SYMBOL(mips_machgroup);
  49. struct boot_mem_map boot_mem_map;
  50. static char command_line[CL_SIZE];
  51. char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
  52. /*
  53. * mips_io_port_base is the begin of the address space to which x86 style
  54. * I/O ports are mapped.
  55. */
  56. const unsigned long mips_io_port_base __read_mostly = -1;
  57. EXPORT_SYMBOL(mips_io_port_base);
  58. /*
  59. * isa_slot_offset is the address where E(ISA) busaddress 0 is mapped
  60. * for the processor.
  61. */
  62. unsigned long isa_slot_offset;
  63. EXPORT_SYMBOL(isa_slot_offset);
  64. static struct resource code_resource = { .name = "Kernel code", };
  65. static struct resource data_resource = { .name = "Kernel data", };
  66. void __init add_memory_region(phys_t start, phys_t size, long type)
  67. {
  68. int x = boot_mem_map.nr_map;
  69. struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
  70. /* Sanity check */
  71. if (start + size < start) {
  72. printk("Trying to add an invalid memory region, skipped\n");
  73. return;
  74. }
  75. /*
  76. * Try to merge with previous entry if any. This is far less than
  77. * perfect but is sufficient for most real world cases.
  78. */
  79. if (x && prev->addr + prev->size == start && prev->type == type) {
  80. prev->size += size;
  81. return;
  82. }
  83. if (x == BOOT_MEM_MAP_MAX) {
  84. printk("Ooops! Too many entries in the memory map!\n");
  85. return;
  86. }
  87. boot_mem_map.map[x].addr = start;
  88. boot_mem_map.map[x].size = size;
  89. boot_mem_map.map[x].type = type;
  90. boot_mem_map.nr_map++;
  91. }
  92. static void __init print_memory_map(void)
  93. {
  94. int i;
  95. const int field = 2 * sizeof(unsigned long);
  96. for (i = 0; i < boot_mem_map.nr_map; i++) {
  97. printk(" memory: %0*Lx @ %0*Lx ",
  98. field, (unsigned long long) boot_mem_map.map[i].size,
  99. field, (unsigned long long) boot_mem_map.map[i].addr);
  100. switch (boot_mem_map.map[i].type) {
  101. case BOOT_MEM_RAM:
  102. printk("(usable)\n");
  103. break;
  104. case BOOT_MEM_ROM_DATA:
  105. printk("(ROM data)\n");
  106. break;
  107. case BOOT_MEM_RESERVED:
  108. printk("(reserved)\n");
  109. break;
  110. default:
  111. printk("type %lu\n", boot_mem_map.map[i].type);
  112. break;
  113. }
  114. }
  115. }
  116. /*
  117. * Manage initrd
  118. */
  119. #ifdef CONFIG_BLK_DEV_INITRD
  120. static int __init rd_start_early(char *p)
  121. {
  122. unsigned long start = memparse(p, &p);
  123. #ifdef CONFIG_64BIT
  124. /* Guess if the sign extension was forgotten by bootloader */
  125. if (start < XKPHYS)
  126. start = (int)start;
  127. #endif
  128. initrd_start = start;
  129. initrd_end += start;
  130. return 0;
  131. }
  132. early_param("rd_start", rd_start_early);
  133. static int __init rd_size_early(char *p)
  134. {
  135. initrd_end += memparse(p, &p);
  136. return 0;
  137. }
  138. early_param("rd_size", rd_size_early);
  139. /* it returns the next free pfn after initrd */
  140. static unsigned long __init init_initrd(void)
  141. {
  142. unsigned long end;
  143. u32 *initrd_header;
  144. /*
  145. * Board specific code or command line parser should have
  146. * already set up initrd_start and initrd_end. In these cases
  147. * perfom sanity checks and use them if all looks good.
  148. */
  149. if (initrd_start && initrd_end > initrd_start)
  150. goto sanitize;
  151. /*
  152. * See if initrd has been added to the kernel image by
  153. * arch/mips/boot/addinitrd.c. In that case a header is
  154. * prepended to initrd and is made up by 8 bytes. The fisrt
  155. * word is a magic number and the second one is the size of
  156. * initrd. Initrd start must be page aligned in any cases.
  157. */
  158. initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
  159. if (initrd_header[0] != 0x494E5244)
  160. goto disable;
  161. initrd_start = (unsigned long)(initrd_header + 2);
  162. initrd_end = initrd_start + initrd_header[1];
  163. sanitize:
  164. if (initrd_start & ~PAGE_MASK) {
  165. printk(KERN_ERR "initrd start must be page aligned\n");
  166. goto disable;
  167. }
  168. if (initrd_start < PAGE_OFFSET) {
  169. printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
  170. goto disable;
  171. }
  172. /*
  173. * Sanitize initrd addresses. For example firmware
  174. * can't guess if they need to pass them through
  175. * 64-bits values if the kernel has been built in pure
  176. * 32-bit. We need also to switch from KSEG0 to XKPHYS
  177. * addresses now, so the code can now safely use __pa().
  178. */
  179. end = __pa(initrd_end);
  180. initrd_end = (unsigned long)__va(end);
  181. initrd_start = (unsigned long)__va(__pa(initrd_start));
  182. ROOT_DEV = Root_RAM0;
  183. return PFN_UP(end);
  184. disable:
  185. initrd_start = 0;
  186. initrd_end = 0;
  187. return 0;
  188. }
  189. static void __init finalize_initrd(void)
  190. {
  191. unsigned long size = initrd_end - initrd_start;
  192. if (size == 0) {
  193. printk(KERN_INFO "Initrd not found or empty");
  194. goto disable;
  195. }
  196. if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
  197. printk("Initrd extends beyond end of memory");
  198. goto disable;
  199. }
  200. reserve_bootmem(__pa(initrd_start), size);
  201. initrd_below_start_ok = 1;
  202. printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
  203. initrd_start, size);
  204. return;
  205. disable:
  206. printk(" - disabling initrd\n");
  207. initrd_start = 0;
  208. initrd_end = 0;
  209. }
  210. #else /* !CONFIG_BLK_DEV_INITRD */
  211. static unsigned long __init init_initrd(void)
  212. {
  213. return 0;
  214. }
  215. #define finalize_initrd() do {} while (0)
  216. #endif
  217. /*
  218. * Initialize the bootmem allocator. It also setup initrd related data
  219. * if needed.
  220. */
  221. #ifdef CONFIG_SGI_IP27
  222. static void __init bootmem_init(void)
  223. {
  224. init_initrd();
  225. finalize_initrd();
  226. }
  227. #else /* !CONFIG_SGI_IP27 */
  228. static void __init bootmem_init(void)
  229. {
  230. unsigned long reserved_end;
  231. unsigned long mapstart = ~0UL;
  232. unsigned long bootmap_size;
  233. int i;
  234. /*
  235. * Init any data related to initrd. It's a nop if INITRD is
  236. * not selected. Once that done we can determine the low bound
  237. * of usable memory.
  238. */
  239. reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
  240. /*
  241. * max_low_pfn is not a number of pages. The number of pages
  242. * of the system is given by 'max_low_pfn - min_low_pfn'.
  243. */
  244. min_low_pfn = ~0UL;
  245. max_low_pfn = 0;
  246. /*
  247. * Find the highest page frame number we have available.
  248. */
  249. for (i = 0; i < boot_mem_map.nr_map; i++) {
  250. unsigned long start, end;
  251. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  252. continue;
  253. start = PFN_UP(boot_mem_map.map[i].addr);
  254. end = PFN_DOWN(boot_mem_map.map[i].addr
  255. + boot_mem_map.map[i].size);
  256. if (end > max_low_pfn)
  257. max_low_pfn = end;
  258. if (start < min_low_pfn)
  259. min_low_pfn = start;
  260. if (end <= reserved_end)
  261. continue;
  262. if (start >= mapstart)
  263. continue;
  264. mapstart = max(reserved_end, start);
  265. }
  266. if (min_low_pfn >= max_low_pfn)
  267. panic("Incorrect memory mapping !!!");
  268. if (min_low_pfn > ARCH_PFN_OFFSET) {
  269. printk(KERN_INFO
  270. "Wasting %lu bytes for tracking %lu unused pages\n",
  271. (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
  272. min_low_pfn - ARCH_PFN_OFFSET);
  273. } else if (min_low_pfn < ARCH_PFN_OFFSET) {
  274. printk(KERN_INFO
  275. "%lu free pages won't be used\n",
  276. ARCH_PFN_OFFSET - min_low_pfn);
  277. }
  278. min_low_pfn = ARCH_PFN_OFFSET;
  279. /*
  280. * Determine low and high memory ranges
  281. */
  282. if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
  283. #ifdef CONFIG_HIGHMEM
  284. highstart_pfn = PFN_DOWN(HIGHMEM_START);
  285. highend_pfn = max_low_pfn;
  286. #endif
  287. max_low_pfn = PFN_DOWN(HIGHMEM_START);
  288. }
  289. /*
  290. * Initialize the boot-time allocator with low memory only.
  291. */
  292. bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
  293. min_low_pfn, max_low_pfn);
  294. /*
  295. * Register fully available low RAM pages with the bootmem allocator.
  296. */
  297. for (i = 0; i < boot_mem_map.nr_map; i++) {
  298. unsigned long start, end, size;
  299. /*
  300. * Reserve usable memory.
  301. */
  302. if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
  303. continue;
  304. start = PFN_UP(boot_mem_map.map[i].addr);
  305. end = PFN_DOWN(boot_mem_map.map[i].addr
  306. + boot_mem_map.map[i].size);
  307. /*
  308. * We are rounding up the start address of usable memory
  309. * and at the end of the usable range downwards.
  310. */
  311. if (start >= max_low_pfn)
  312. continue;
  313. if (start < reserved_end)
  314. start = reserved_end;
  315. if (end > max_low_pfn)
  316. end = max_low_pfn;
  317. /*
  318. * ... finally, is the area going away?
  319. */
  320. if (end <= start)
  321. continue;
  322. size = end - start;
  323. /* Register lowmem ranges */
  324. free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
  325. memory_present(0, start, end);
  326. }
  327. /*
  328. * Reserve the bootmap memory.
  329. */
  330. reserve_bootmem(PFN_PHYS(mapstart), bootmap_size);
  331. /*
  332. * Reserve initrd memory if needed.
  333. */
  334. finalize_initrd();
  335. }
  336. #endif /* CONFIG_SGI_IP27 */
  337. /*
  338. * arch_mem_init - initialize memory managment subsystem
  339. *
  340. * o plat_mem_setup() detects the memory configuration and will record detected
  341. * memory areas using add_memory_region.
  342. *
  343. * At this stage the memory configuration of the system is known to the
  344. * kernel but generic memory managment system is still entirely uninitialized.
  345. *
  346. * o bootmem_init()
  347. * o sparse_init()
  348. * o paging_init()
  349. *
  350. * At this stage the bootmem allocator is ready to use.
  351. *
  352. * NOTE: historically plat_mem_setup did the entire platform initialization.
  353. * This was rather impractical because it meant plat_mem_setup had to
  354. * get away without any kind of memory allocator. To keep old code from
  355. * breaking plat_setup was just renamed to plat_setup and a second platform
  356. * initialization hook for anything else was introduced.
  357. */
  358. static int usermem __initdata = 0;
  359. static int __init early_parse_mem(char *p)
  360. {
  361. unsigned long start, size;
  362. /*
  363. * If a user specifies memory size, we
  364. * blow away any automatically generated
  365. * size.
  366. */
  367. if (usermem == 0) {
  368. boot_mem_map.nr_map = 0;
  369. usermem = 1;
  370. }
  371. start = 0;
  372. size = memparse(p, &p);
  373. if (*p == '@')
  374. start = memparse(p + 1, &p);
  375. add_memory_region(start, size, BOOT_MEM_RAM);
  376. return 0;
  377. }
  378. early_param("mem", early_parse_mem);
  379. static void __init arch_mem_init(char **cmdline_p)
  380. {
  381. extern void plat_mem_setup(void);
  382. /* call board setup routine */
  383. plat_mem_setup();
  384. printk("Determined physical RAM map:\n");
  385. print_memory_map();
  386. strlcpy(command_line, arcs_cmdline, sizeof(command_line));
  387. strlcpy(saved_command_line, command_line, COMMAND_LINE_SIZE);
  388. *cmdline_p = command_line;
  389. parse_early_param();
  390. if (usermem) {
  391. printk("User-defined physical RAM map:\n");
  392. print_memory_map();
  393. }
  394. bootmem_init();
  395. sparse_init();
  396. paging_init();
  397. }
  398. static void __init resource_init(void)
  399. {
  400. int i;
  401. if (UNCAC_BASE != IO_BASE)
  402. return;
  403. code_resource.start = __pa_symbol(&_text);
  404. code_resource.end = __pa_symbol(&_etext) - 1;
  405. data_resource.start = __pa_symbol(&_etext);
  406. data_resource.end = __pa_symbol(&_edata) - 1;
  407. /*
  408. * Request address space for all standard RAM.
  409. */
  410. for (i = 0; i < boot_mem_map.nr_map; i++) {
  411. struct resource *res;
  412. unsigned long start, end;
  413. start = boot_mem_map.map[i].addr;
  414. end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
  415. if (start >= HIGHMEM_START)
  416. continue;
  417. if (end >= HIGHMEM_START)
  418. end = HIGHMEM_START - 1;
  419. res = alloc_bootmem(sizeof(struct resource));
  420. switch (boot_mem_map.map[i].type) {
  421. case BOOT_MEM_RAM:
  422. case BOOT_MEM_ROM_DATA:
  423. res->name = "System RAM";
  424. break;
  425. case BOOT_MEM_RESERVED:
  426. default:
  427. res->name = "reserved";
  428. }
  429. res->start = start;
  430. res->end = end;
  431. res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
  432. request_resource(&iomem_resource, res);
  433. /*
  434. * We don't know which RAM region contains kernel data,
  435. * so we try it repeatedly and let the resource manager
  436. * test it.
  437. */
  438. request_resource(res, &code_resource);
  439. request_resource(res, &data_resource);
  440. }
  441. }
  442. void __init setup_arch(char **cmdline_p)
  443. {
  444. cpu_probe();
  445. prom_init();
  446. cpu_report();
  447. #if defined(CONFIG_VT)
  448. #if defined(CONFIG_VGA_CONSOLE)
  449. conswitchp = &vga_con;
  450. #elif defined(CONFIG_DUMMY_CONSOLE)
  451. conswitchp = &dummy_con;
  452. #endif
  453. #endif
  454. arch_mem_init(cmdline_p);
  455. resource_init();
  456. #ifdef CONFIG_SMP
  457. plat_smp_setup();
  458. #endif
  459. }
  460. int __init fpu_disable(char *s)
  461. {
  462. int i;
  463. for (i = 0; i < NR_CPUS; i++)
  464. cpu_data[i].options &= ~MIPS_CPU_FPU;
  465. return 1;
  466. }
  467. __setup("nofpu", fpu_disable);
  468. int __init dsp_disable(char *s)
  469. {
  470. cpu_data[0].ases &= ~MIPS_ASE_DSP;
  471. return 1;
  472. }
  473. __setup("nodsp", dsp_disable);
  474. unsigned long kernelsp[NR_CPUS];
  475. unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;