dmabounce.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673
  1. /*
  2. * arch/arm/common/dmabounce.c
  3. *
  4. * Special dma_{map/unmap/dma_sync}_* routines for systems that have
  5. * limited DMA windows. These functions utilize bounce buffers to
  6. * copy data to/from buffers located outside the DMA region. This
  7. * only works for systems in which DMA memory is at the bottom of
  8. * RAM, the remainder of memory is at the top and the DMA memory
  9. * can be marked as ZONE_DMA. Anything beyond that such as discontigous
  10. * DMA windows will require custom implementations that reserve memory
  11. * areas at early bootup.
  12. *
  13. * Original version by Brad Parker (brad@heeltoe.com)
  14. * Re-written by Christopher Hoover <ch@murgatroid.com>
  15. * Made generic by Deepak Saxena <dsaxena@plexity.net>
  16. *
  17. * Copyright (C) 2002 Hewlett Packard Company.
  18. * Copyright (C) 2004 MontaVista Software, Inc.
  19. *
  20. * This program is free software; you can redistribute it and/or
  21. * modify it under the terms of the GNU General Public License
  22. * version 2 as published by the Free Software Foundation.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/init.h>
  26. #include <linux/slab.h>
  27. #include <linux/device.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/dmapool.h>
  30. #include <linux/list.h>
  31. #include <asm/cacheflush.h>
  32. #undef DEBUG
  33. #undef STATS
  34. #ifdef STATS
  35. #define DO_STATS(X) do { X ; } while (0)
  36. #else
  37. #define DO_STATS(X) do { } while (0)
  38. #endif
  39. /* ************************************************** */
  40. struct safe_buffer {
  41. struct list_head node;
  42. /* original request */
  43. void *ptr;
  44. size_t size;
  45. int direction;
  46. /* safe buffer info */
  47. struct dmabounce_pool *pool;
  48. void *safe;
  49. dma_addr_t safe_dma_addr;
  50. };
  51. struct dmabounce_pool {
  52. unsigned long size;
  53. struct dma_pool *pool;
  54. #ifdef STATS
  55. unsigned long allocs;
  56. #endif
  57. };
  58. struct dmabounce_device_info {
  59. struct list_head node;
  60. struct device *dev;
  61. struct list_head safe_buffers;
  62. #ifdef STATS
  63. unsigned long total_allocs;
  64. unsigned long map_op_count;
  65. unsigned long bounce_count;
  66. #endif
  67. struct dmabounce_pool small;
  68. struct dmabounce_pool large;
  69. rwlock_t lock;
  70. };
  71. static LIST_HEAD(dmabounce_devs);
  72. #ifdef STATS
  73. static void print_alloc_stats(struct dmabounce_device_info *device_info)
  74. {
  75. printk(KERN_INFO
  76. "%s: dmabounce: sbp: %lu, lbp: %lu, other: %lu, total: %lu\n",
  77. device_info->dev->bus_id,
  78. device_info->small.allocs, device_info->large.allocs,
  79. device_info->total_allocs - device_info->small.allocs -
  80. device_info->large.allocs,
  81. device_info->total_allocs);
  82. }
  83. #endif
  84. /* find the given device in the dmabounce device list */
  85. static inline struct dmabounce_device_info *
  86. find_dmabounce_dev(struct device *dev)
  87. {
  88. struct dmabounce_device_info *d;
  89. list_for_each_entry(d, &dmabounce_devs, node)
  90. if (d->dev == dev)
  91. return d;
  92. return NULL;
  93. }
  94. /* allocate a 'safe' buffer and keep track of it */
  95. static inline struct safe_buffer *
  96. alloc_safe_buffer(struct dmabounce_device_info *device_info, void *ptr,
  97. size_t size, enum dma_data_direction dir)
  98. {
  99. struct safe_buffer *buf;
  100. struct dmabounce_pool *pool;
  101. struct device *dev = device_info->dev;
  102. unsigned long flags;
  103. dev_dbg(dev, "%s(ptr=%p, size=%d, dir=%d)\n",
  104. __func__, ptr, size, dir);
  105. if (size <= device_info->small.size) {
  106. pool = &device_info->small;
  107. } else if (size <= device_info->large.size) {
  108. pool = &device_info->large;
  109. } else {
  110. pool = NULL;
  111. }
  112. buf = kmalloc(sizeof(struct safe_buffer), GFP_ATOMIC);
  113. if (buf == NULL) {
  114. dev_warn(dev, "%s: kmalloc failed\n", __func__);
  115. return NULL;
  116. }
  117. buf->ptr = ptr;
  118. buf->size = size;
  119. buf->direction = dir;
  120. buf->pool = pool;
  121. if (pool) {
  122. buf->safe = dma_pool_alloc(pool->pool, GFP_ATOMIC,
  123. &buf->safe_dma_addr);
  124. } else {
  125. buf->safe = dma_alloc_coherent(dev, size, &buf->safe_dma_addr,
  126. GFP_ATOMIC);
  127. }
  128. if (buf->safe == NULL) {
  129. dev_warn(dev,
  130. "%s: could not alloc dma memory (size=%d)\n",
  131. __func__, size);
  132. kfree(buf);
  133. return NULL;
  134. }
  135. #ifdef STATS
  136. if (pool)
  137. pool->allocs++;
  138. device_info->total_allocs++;
  139. if (device_info->total_allocs % 1000 == 0)
  140. print_alloc_stats(device_info);
  141. #endif
  142. write_lock_irqsave(&device_info->lock, flags);
  143. list_add(&buf->node, &device_info->safe_buffers);
  144. write_unlock_irqrestore(&device_info->lock, flags);
  145. return buf;
  146. }
  147. /* determine if a buffer is from our "safe" pool */
  148. static inline struct safe_buffer *
  149. find_safe_buffer(struct dmabounce_device_info *device_info, dma_addr_t safe_dma_addr)
  150. {
  151. struct safe_buffer *b, *rb = NULL;
  152. unsigned long flags;
  153. read_lock_irqsave(&device_info->lock, flags);
  154. list_for_each_entry(b, &device_info->safe_buffers, node)
  155. if (b->safe_dma_addr == safe_dma_addr) {
  156. rb = b;
  157. break;
  158. }
  159. read_unlock_irqrestore(&device_info->lock, flags);
  160. return rb;
  161. }
  162. static inline void
  163. free_safe_buffer(struct dmabounce_device_info *device_info, struct safe_buffer *buf)
  164. {
  165. unsigned long flags;
  166. dev_dbg(device_info->dev, "%s(buf=%p)\n", __func__, buf);
  167. write_lock_irqsave(&device_info->lock, flags);
  168. list_del(&buf->node);
  169. write_unlock_irqrestore(&device_info->lock, flags);
  170. if (buf->pool)
  171. dma_pool_free(buf->pool->pool, buf->safe, buf->safe_dma_addr);
  172. else
  173. dma_free_coherent(device_info->dev, buf->size, buf->safe,
  174. buf->safe_dma_addr);
  175. kfree(buf);
  176. }
  177. /* ************************************************** */
  178. #ifdef STATS
  179. static void print_map_stats(struct dmabounce_device_info *device_info)
  180. {
  181. dev_info(device_info->dev,
  182. "dmabounce: map_op_count=%lu, bounce_count=%lu\n",
  183. device_info->map_op_count, device_info->bounce_count);
  184. }
  185. #endif
  186. static inline dma_addr_t
  187. map_single(struct device *dev, void *ptr, size_t size,
  188. enum dma_data_direction dir)
  189. {
  190. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  191. dma_addr_t dma_addr;
  192. int needs_bounce = 0;
  193. if (device_info)
  194. DO_STATS ( device_info->map_op_count++ );
  195. dma_addr = virt_to_dma(dev, ptr);
  196. if (dev->dma_mask) {
  197. unsigned long mask = *dev->dma_mask;
  198. unsigned long limit;
  199. limit = (mask + 1) & ~mask;
  200. if (limit && size > limit) {
  201. dev_err(dev, "DMA mapping too big (requested %#x "
  202. "mask %#Lx)\n", size, *dev->dma_mask);
  203. return ~0;
  204. }
  205. /*
  206. * Figure out if we need to bounce from the DMA mask.
  207. */
  208. needs_bounce = (dma_addr | (dma_addr + size - 1)) & ~mask;
  209. }
  210. if (device_info && (needs_bounce || dma_needs_bounce(dev, dma_addr, size))) {
  211. struct safe_buffer *buf;
  212. buf = alloc_safe_buffer(device_info, ptr, size, dir);
  213. if (buf == 0) {
  214. dev_err(dev, "%s: unable to map unsafe buffer %p!\n",
  215. __func__, ptr);
  216. return 0;
  217. }
  218. dev_dbg(dev,
  219. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  220. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  221. buf->safe, (void *) buf->safe_dma_addr);
  222. if ((dir == DMA_TO_DEVICE) ||
  223. (dir == DMA_BIDIRECTIONAL)) {
  224. dev_dbg(dev, "%s: copy unsafe %p to safe %p, size %d\n",
  225. __func__, ptr, buf->safe, size);
  226. memcpy(buf->safe, ptr, size);
  227. }
  228. ptr = buf->safe;
  229. dma_addr = buf->safe_dma_addr;
  230. }
  231. consistent_sync(ptr, size, dir);
  232. return dma_addr;
  233. }
  234. static inline void
  235. unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  236. enum dma_data_direction dir)
  237. {
  238. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  239. struct safe_buffer *buf = NULL;
  240. /*
  241. * Trying to unmap an invalid mapping
  242. */
  243. if (dma_mapping_error(dma_addr)) {
  244. dev_err(dev, "Trying to unmap invalid mapping\n");
  245. return;
  246. }
  247. if (device_info)
  248. buf = find_safe_buffer(device_info, dma_addr);
  249. if (buf) {
  250. BUG_ON(buf->size != size);
  251. dev_dbg(dev,
  252. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  253. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  254. buf->safe, (void *) buf->safe_dma_addr);
  255. DO_STATS ( device_info->bounce_count++ );
  256. if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL) {
  257. unsigned long ptr;
  258. dev_dbg(dev,
  259. "%s: copy back safe %p to unsafe %p size %d\n",
  260. __func__, buf->safe, buf->ptr, size);
  261. memcpy(buf->ptr, buf->safe, size);
  262. /*
  263. * DMA buffers must have the same cache properties
  264. * as if they were really used for DMA - which means
  265. * data must be written back to RAM. Note that
  266. * we don't use dmac_flush_range() here for the
  267. * bidirectional case because we know the cache
  268. * lines will be coherent with the data written.
  269. */
  270. ptr = (unsigned long)buf->ptr;
  271. dmac_clean_range(ptr, ptr + size);
  272. }
  273. free_safe_buffer(device_info, buf);
  274. }
  275. }
  276. static inline void
  277. sync_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  278. enum dma_data_direction dir)
  279. {
  280. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  281. struct safe_buffer *buf = NULL;
  282. if (device_info)
  283. buf = find_safe_buffer(device_info, dma_addr);
  284. if (buf) {
  285. /*
  286. * Both of these checks from original code need to be
  287. * commented out b/c some drivers rely on the following:
  288. *
  289. * 1) Drivers may map a large chunk of memory into DMA space
  290. * but only sync a small portion of it. Good example is
  291. * allocating a large buffer, mapping it, and then
  292. * breaking it up into small descriptors. No point
  293. * in syncing the whole buffer if you only have to
  294. * touch one descriptor.
  295. *
  296. * 2) Buffers that are mapped as DMA_BIDIRECTIONAL are
  297. * usually only synced in one dir at a time.
  298. *
  299. * See drivers/net/eepro100.c for examples of both cases.
  300. *
  301. * -ds
  302. *
  303. * BUG_ON(buf->size != size);
  304. * BUG_ON(buf->direction != dir);
  305. */
  306. dev_dbg(dev,
  307. "%s: unsafe buffer %p (phy=%p) mapped to %p (phy=%p)\n",
  308. __func__, buf->ptr, (void *) virt_to_dma(dev, buf->ptr),
  309. buf->safe, (void *) buf->safe_dma_addr);
  310. DO_STATS ( device_info->bounce_count++ );
  311. switch (dir) {
  312. case DMA_FROM_DEVICE:
  313. dev_dbg(dev,
  314. "%s: copy back safe %p to unsafe %p size %d\n",
  315. __func__, buf->safe, buf->ptr, size);
  316. memcpy(buf->ptr, buf->safe, size);
  317. break;
  318. case DMA_TO_DEVICE:
  319. dev_dbg(dev,
  320. "%s: copy out unsafe %p to safe %p, size %d\n",
  321. __func__,buf->ptr, buf->safe, size);
  322. memcpy(buf->safe, buf->ptr, size);
  323. break;
  324. case DMA_BIDIRECTIONAL:
  325. BUG(); /* is this allowed? what does it mean? */
  326. default:
  327. BUG();
  328. }
  329. consistent_sync(buf->safe, size, dir);
  330. } else {
  331. consistent_sync(dma_to_virt(dev, dma_addr), size, dir);
  332. }
  333. }
  334. /* ************************************************** */
  335. /*
  336. * see if a buffer address is in an 'unsafe' range. if it is
  337. * allocate a 'safe' buffer and copy the unsafe buffer into it.
  338. * substitute the safe buffer for the unsafe one.
  339. * (basically move the buffer from an unsafe area to a safe one)
  340. */
  341. dma_addr_t
  342. dma_map_single(struct device *dev, void *ptr, size_t size,
  343. enum dma_data_direction dir)
  344. {
  345. dma_addr_t dma_addr;
  346. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  347. __func__, ptr, size, dir);
  348. BUG_ON(dir == DMA_NONE);
  349. dma_addr = map_single(dev, ptr, size, dir);
  350. return dma_addr;
  351. }
  352. /*
  353. * see if a mapped address was really a "safe" buffer and if so, copy
  354. * the data from the safe buffer back to the unsafe buffer and free up
  355. * the safe buffer. (basically return things back to the way they
  356. * should be)
  357. */
  358. void
  359. dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
  360. enum dma_data_direction dir)
  361. {
  362. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  363. __func__, (void *) dma_addr, size, dir);
  364. BUG_ON(dir == DMA_NONE);
  365. unmap_single(dev, dma_addr, size, dir);
  366. }
  367. int
  368. dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
  369. enum dma_data_direction dir)
  370. {
  371. int i;
  372. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  373. __func__, sg, nents, dir);
  374. BUG_ON(dir == DMA_NONE);
  375. for (i = 0; i < nents; i++, sg++) {
  376. struct page *page = sg->page;
  377. unsigned int offset = sg->offset;
  378. unsigned int length = sg->length;
  379. void *ptr = page_address(page) + offset;
  380. sg->dma_address =
  381. map_single(dev, ptr, length, dir);
  382. }
  383. return nents;
  384. }
  385. void
  386. dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
  387. enum dma_data_direction dir)
  388. {
  389. int i;
  390. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  391. __func__, sg, nents, dir);
  392. BUG_ON(dir == DMA_NONE);
  393. for (i = 0; i < nents; i++, sg++) {
  394. dma_addr_t dma_addr = sg->dma_address;
  395. unsigned int length = sg->length;
  396. unmap_single(dev, dma_addr, length, dir);
  397. }
  398. }
  399. void
  400. dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_addr, size_t size,
  401. enum dma_data_direction dir)
  402. {
  403. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  404. __func__, (void *) dma_addr, size, dir);
  405. sync_single(dev, dma_addr, size, dir);
  406. }
  407. void
  408. dma_sync_single_for_device(struct device *dev, dma_addr_t dma_addr, size_t size,
  409. enum dma_data_direction dir)
  410. {
  411. dev_dbg(dev, "%s(ptr=%p,size=%d,dir=%x)\n",
  412. __func__, (void *) dma_addr, size, dir);
  413. sync_single(dev, dma_addr, size, dir);
  414. }
  415. void
  416. dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nents,
  417. enum dma_data_direction dir)
  418. {
  419. int i;
  420. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  421. __func__, sg, nents, dir);
  422. BUG_ON(dir == DMA_NONE);
  423. for (i = 0; i < nents; i++, sg++) {
  424. dma_addr_t dma_addr = sg->dma_address;
  425. unsigned int length = sg->length;
  426. sync_single(dev, dma_addr, length, dir);
  427. }
  428. }
  429. void
  430. dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nents,
  431. enum dma_data_direction dir)
  432. {
  433. int i;
  434. dev_dbg(dev, "%s(sg=%p,nents=%d,dir=%x)\n",
  435. __func__, sg, nents, dir);
  436. BUG_ON(dir == DMA_NONE);
  437. for (i = 0; i < nents; i++, sg++) {
  438. dma_addr_t dma_addr = sg->dma_address;
  439. unsigned int length = sg->length;
  440. sync_single(dev, dma_addr, length, dir);
  441. }
  442. }
  443. static int
  444. dmabounce_init_pool(struct dmabounce_pool *pool, struct device *dev, const char *name,
  445. unsigned long size)
  446. {
  447. pool->size = size;
  448. DO_STATS(pool->allocs = 0);
  449. pool->pool = dma_pool_create(name, dev, size,
  450. 0 /* byte alignment */,
  451. 0 /* no page-crossing issues */);
  452. return pool->pool ? 0 : -ENOMEM;
  453. }
  454. int
  455. dmabounce_register_dev(struct device *dev, unsigned long small_buffer_size,
  456. unsigned long large_buffer_size)
  457. {
  458. struct dmabounce_device_info *device_info;
  459. int ret;
  460. device_info = kmalloc(sizeof(struct dmabounce_device_info), GFP_ATOMIC);
  461. if (!device_info) {
  462. printk(KERN_ERR
  463. "Could not allocated dmabounce_device_info for %s",
  464. dev->bus_id);
  465. return -ENOMEM;
  466. }
  467. ret = dmabounce_init_pool(&device_info->small, dev,
  468. "small_dmabounce_pool", small_buffer_size);
  469. if (ret) {
  470. dev_err(dev,
  471. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  472. small_buffer_size);
  473. goto err_free;
  474. }
  475. if (large_buffer_size) {
  476. ret = dmabounce_init_pool(&device_info->large, dev,
  477. "large_dmabounce_pool",
  478. large_buffer_size);
  479. if (ret) {
  480. dev_err(dev,
  481. "dmabounce: could not allocate DMA pool for %ld byte objects\n",
  482. large_buffer_size);
  483. goto err_destroy;
  484. }
  485. }
  486. device_info->dev = dev;
  487. INIT_LIST_HEAD(&device_info->safe_buffers);
  488. rwlock_init(&device_info->lock);
  489. #ifdef STATS
  490. device_info->total_allocs = 0;
  491. device_info->map_op_count = 0;
  492. device_info->bounce_count = 0;
  493. #endif
  494. list_add(&device_info->node, &dmabounce_devs);
  495. printk(KERN_INFO "dmabounce: registered device %s on %s bus\n",
  496. dev->bus_id, dev->bus->name);
  497. return 0;
  498. err_destroy:
  499. dma_pool_destroy(device_info->small.pool);
  500. err_free:
  501. kfree(device_info);
  502. return ret;
  503. }
  504. void
  505. dmabounce_unregister_dev(struct device *dev)
  506. {
  507. struct dmabounce_device_info *device_info = find_dmabounce_dev(dev);
  508. if (!device_info) {
  509. printk(KERN_WARNING
  510. "%s: Never registered with dmabounce but attempting" \
  511. "to unregister!\n", dev->bus_id);
  512. return;
  513. }
  514. if (!list_empty(&device_info->safe_buffers)) {
  515. printk(KERN_ERR
  516. "%s: Removing from dmabounce with pending buffers!\n",
  517. dev->bus_id);
  518. BUG();
  519. }
  520. if (device_info->small.pool)
  521. dma_pool_destroy(device_info->small.pool);
  522. if (device_info->large.pool)
  523. dma_pool_destroy(device_info->large.pool);
  524. #ifdef STATS
  525. print_alloc_stats(device_info);
  526. print_map_stats(device_info);
  527. #endif
  528. list_del(&device_info->node);
  529. kfree(device_info);
  530. printk(KERN_INFO "dmabounce: device %s on %s bus unregistered\n",
  531. dev->bus_id, dev->bus->name);
  532. }
  533. EXPORT_SYMBOL(dma_map_single);
  534. EXPORT_SYMBOL(dma_unmap_single);
  535. EXPORT_SYMBOL(dma_map_sg);
  536. EXPORT_SYMBOL(dma_unmap_sg);
  537. EXPORT_SYMBOL(dma_sync_single_for_cpu);
  538. EXPORT_SYMBOL(dma_sync_single_for_device);
  539. EXPORT_SYMBOL(dma_sync_sg);
  540. EXPORT_SYMBOL(dmabounce_register_dev);
  541. EXPORT_SYMBOL(dmabounce_unregister_dev);
  542. MODULE_AUTHOR("Christopher Hoover <ch@hpl.hp.com>, Deepak Saxena <dsaxena@plexity.net>");
  543. MODULE_DESCRIPTION("Special dma_{map/unmap/dma_sync}_* routines for systems with limited DMA windows");
  544. MODULE_LICENSE("GPL");