writeback.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. /*
  2. * background writeback - scan btree for dirty data and write it to the backing
  3. * device
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "writeback.h"
  12. #include <trace/events/bcache.h>
  13. static struct workqueue_struct *dirty_wq;
  14. static void read_dirty(struct closure *);
  15. struct dirty_io {
  16. struct closure cl;
  17. struct cached_dev *dc;
  18. struct bio bio;
  19. };
  20. /* Rate limiting */
  21. static void __update_writeback_rate(struct cached_dev *dc)
  22. {
  23. struct cache_set *c = dc->disk.c;
  24. uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
  25. uint64_t cache_dirty_target =
  26. div_u64(cache_sectors * dc->writeback_percent, 100);
  27. int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
  28. c->cached_dev_sectors);
  29. /* PD controller */
  30. int change = 0;
  31. int64_t error;
  32. int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
  33. int64_t derivative = dirty - dc->disk.sectors_dirty_last;
  34. dc->disk.sectors_dirty_last = dirty;
  35. derivative *= dc->writeback_rate_d_term;
  36. derivative = clamp(derivative, -dirty, dirty);
  37. derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
  38. dc->writeback_rate_d_smooth, 0);
  39. /* Avoid divide by zero */
  40. if (!target)
  41. goto out;
  42. error = div64_s64((dirty + derivative - target) << 8, target);
  43. change = div_s64((dc->writeback_rate.rate * error) >> 8,
  44. dc->writeback_rate_p_term_inverse);
  45. /* Don't increase writeback rate if the device isn't keeping up */
  46. if (change > 0 &&
  47. time_after64(local_clock(),
  48. dc->writeback_rate.next + 10 * NSEC_PER_MSEC))
  49. change = 0;
  50. dc->writeback_rate.rate =
  51. clamp_t(int64_t, dc->writeback_rate.rate + change,
  52. 1, NSEC_PER_MSEC);
  53. out:
  54. dc->writeback_rate_derivative = derivative;
  55. dc->writeback_rate_change = change;
  56. dc->writeback_rate_target = target;
  57. schedule_delayed_work(&dc->writeback_rate_update,
  58. dc->writeback_rate_update_seconds * HZ);
  59. }
  60. static void update_writeback_rate(struct work_struct *work)
  61. {
  62. struct cached_dev *dc = container_of(to_delayed_work(work),
  63. struct cached_dev,
  64. writeback_rate_update);
  65. down_read(&dc->writeback_lock);
  66. if (atomic_read(&dc->has_dirty) &&
  67. dc->writeback_percent)
  68. __update_writeback_rate(dc);
  69. up_read(&dc->writeback_lock);
  70. }
  71. static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
  72. {
  73. if (atomic_read(&dc->disk.detaching) ||
  74. !dc->writeback_percent)
  75. return 0;
  76. return bch_next_delay(&dc->writeback_rate, sectors * 10000000ULL);
  77. }
  78. /* Background writeback */
  79. static bool dirty_pred(struct keybuf *buf, struct bkey *k)
  80. {
  81. return KEY_DIRTY(k);
  82. }
  83. static void dirty_init(struct keybuf_key *w)
  84. {
  85. struct dirty_io *io = w->private;
  86. struct bio *bio = &io->bio;
  87. bio_init(bio);
  88. if (!io->dc->writeback_percent)
  89. bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
  90. bio->bi_size = KEY_SIZE(&w->key) << 9;
  91. bio->bi_max_vecs = DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS);
  92. bio->bi_private = w;
  93. bio->bi_io_vec = bio->bi_inline_vecs;
  94. bch_bio_map(bio, NULL);
  95. }
  96. static void refill_dirty(struct closure *cl)
  97. {
  98. struct cached_dev *dc = container_of(cl, struct cached_dev,
  99. writeback.cl);
  100. struct keybuf *buf = &dc->writeback_keys;
  101. bool searched_from_start = false;
  102. struct bkey end = MAX_KEY;
  103. SET_KEY_INODE(&end, dc->disk.id);
  104. if (!atomic_read(&dc->disk.detaching) &&
  105. !dc->writeback_running)
  106. closure_return(cl);
  107. down_write(&dc->writeback_lock);
  108. if (!atomic_read(&dc->has_dirty)) {
  109. SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
  110. bch_write_bdev_super(dc, NULL);
  111. up_write(&dc->writeback_lock);
  112. closure_return(cl);
  113. }
  114. if (bkey_cmp(&buf->last_scanned, &end) >= 0) {
  115. buf->last_scanned = KEY(dc->disk.id, 0, 0);
  116. searched_from_start = true;
  117. }
  118. bch_refill_keybuf(dc->disk.c, buf, &end);
  119. if (bkey_cmp(&buf->last_scanned, &end) >= 0 && searched_from_start) {
  120. /* Searched the entire btree - delay awhile */
  121. if (RB_EMPTY_ROOT(&buf->keys)) {
  122. atomic_set(&dc->has_dirty, 0);
  123. cached_dev_put(dc);
  124. }
  125. if (!atomic_read(&dc->disk.detaching))
  126. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  127. }
  128. up_write(&dc->writeback_lock);
  129. ratelimit_reset(&dc->writeback_rate);
  130. /* Punt to workqueue only so we don't recurse and blow the stack */
  131. continue_at(cl, read_dirty, dirty_wq);
  132. }
  133. void bch_writeback_queue(struct cached_dev *dc)
  134. {
  135. if (closure_trylock(&dc->writeback.cl, &dc->disk.cl)) {
  136. if (!atomic_read(&dc->disk.detaching))
  137. closure_delay(&dc->writeback, dc->writeback_delay * HZ);
  138. continue_at(&dc->writeback.cl, refill_dirty, dirty_wq);
  139. }
  140. }
  141. void bch_writeback_add(struct cached_dev *dc)
  142. {
  143. if (!atomic_read(&dc->has_dirty) &&
  144. !atomic_xchg(&dc->has_dirty, 1)) {
  145. atomic_inc(&dc->count);
  146. if (BDEV_STATE(&dc->sb) != BDEV_STATE_DIRTY) {
  147. SET_BDEV_STATE(&dc->sb, BDEV_STATE_DIRTY);
  148. /* XXX: should do this synchronously */
  149. bch_write_bdev_super(dc, NULL);
  150. }
  151. bch_writeback_queue(dc);
  152. if (dc->writeback_percent)
  153. schedule_delayed_work(&dc->writeback_rate_update,
  154. dc->writeback_rate_update_seconds * HZ);
  155. }
  156. }
  157. void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
  158. uint64_t offset, int nr_sectors)
  159. {
  160. struct bcache_device *d = c->devices[inode];
  161. unsigned stripe_size, stripe_offset;
  162. uint64_t stripe;
  163. if (!d)
  164. return;
  165. stripe_size = 1 << d->stripe_size_bits;
  166. stripe = offset >> d->stripe_size_bits;
  167. stripe_offset = offset & (stripe_size - 1);
  168. while (nr_sectors) {
  169. int s = min_t(unsigned, abs(nr_sectors),
  170. stripe_size - stripe_offset);
  171. if (nr_sectors < 0)
  172. s = -s;
  173. atomic_add(s, d->stripe_sectors_dirty + stripe);
  174. nr_sectors -= s;
  175. stripe_offset = 0;
  176. stripe++;
  177. }
  178. }
  179. /* Background writeback - IO loop */
  180. static void dirty_io_destructor(struct closure *cl)
  181. {
  182. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  183. kfree(io);
  184. }
  185. static void write_dirty_finish(struct closure *cl)
  186. {
  187. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  188. struct keybuf_key *w = io->bio.bi_private;
  189. struct cached_dev *dc = io->dc;
  190. struct bio_vec *bv = bio_iovec_idx(&io->bio, io->bio.bi_vcnt);
  191. while (bv-- != io->bio.bi_io_vec)
  192. __free_page(bv->bv_page);
  193. /* This is kind of a dumb way of signalling errors. */
  194. if (KEY_DIRTY(&w->key)) {
  195. unsigned i;
  196. struct btree_op op;
  197. bch_btree_op_init_stack(&op);
  198. op.type = BTREE_REPLACE;
  199. bkey_copy(&op.replace, &w->key);
  200. SET_KEY_DIRTY(&w->key, false);
  201. bch_keylist_add(&op.keys, &w->key);
  202. for (i = 0; i < KEY_PTRS(&w->key); i++)
  203. atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
  204. bch_btree_insert(&op, dc->disk.c);
  205. closure_sync(&op.cl);
  206. if (op.insert_collision)
  207. trace_bcache_writeback_collision(&w->key);
  208. atomic_long_inc(op.insert_collision
  209. ? &dc->disk.c->writeback_keys_failed
  210. : &dc->disk.c->writeback_keys_done);
  211. }
  212. bch_keybuf_del(&dc->writeback_keys, w);
  213. atomic_dec_bug(&dc->in_flight);
  214. closure_wake_up(&dc->writeback_wait);
  215. closure_return_with_destructor(cl, dirty_io_destructor);
  216. }
  217. static void dirty_endio(struct bio *bio, int error)
  218. {
  219. struct keybuf_key *w = bio->bi_private;
  220. struct dirty_io *io = w->private;
  221. if (error)
  222. SET_KEY_DIRTY(&w->key, false);
  223. closure_put(&io->cl);
  224. }
  225. static void write_dirty(struct closure *cl)
  226. {
  227. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  228. struct keybuf_key *w = io->bio.bi_private;
  229. dirty_init(w);
  230. io->bio.bi_rw = WRITE;
  231. io->bio.bi_sector = KEY_START(&w->key);
  232. io->bio.bi_bdev = io->dc->bdev;
  233. io->bio.bi_end_io = dirty_endio;
  234. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  235. continue_at(cl, write_dirty_finish, dirty_wq);
  236. }
  237. static void read_dirty_endio(struct bio *bio, int error)
  238. {
  239. struct keybuf_key *w = bio->bi_private;
  240. struct dirty_io *io = w->private;
  241. bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
  242. error, "reading dirty data from cache");
  243. dirty_endio(bio, error);
  244. }
  245. static void read_dirty_submit(struct closure *cl)
  246. {
  247. struct dirty_io *io = container_of(cl, struct dirty_io, cl);
  248. closure_bio_submit(&io->bio, cl, &io->dc->disk);
  249. continue_at(cl, write_dirty, dirty_wq);
  250. }
  251. static void read_dirty(struct closure *cl)
  252. {
  253. struct cached_dev *dc = container_of(cl, struct cached_dev,
  254. writeback.cl);
  255. unsigned delay = writeback_delay(dc, 0);
  256. struct keybuf_key *w;
  257. struct dirty_io *io;
  258. /*
  259. * XXX: if we error, background writeback just spins. Should use some
  260. * mempools.
  261. */
  262. while (1) {
  263. w = bch_keybuf_next(&dc->writeback_keys);
  264. if (!w)
  265. break;
  266. BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
  267. if (delay > 0 &&
  268. (KEY_START(&w->key) != dc->last_read ||
  269. jiffies_to_msecs(delay) > 50)) {
  270. w->private = NULL;
  271. closure_delay(&dc->writeback, delay);
  272. continue_at(cl, read_dirty, dirty_wq);
  273. }
  274. dc->last_read = KEY_OFFSET(&w->key);
  275. io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
  276. * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
  277. GFP_KERNEL);
  278. if (!io)
  279. goto err;
  280. w->private = io;
  281. io->dc = dc;
  282. dirty_init(w);
  283. io->bio.bi_sector = PTR_OFFSET(&w->key, 0);
  284. io->bio.bi_bdev = PTR_CACHE(dc->disk.c,
  285. &w->key, 0)->bdev;
  286. io->bio.bi_rw = READ;
  287. io->bio.bi_end_io = read_dirty_endio;
  288. if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
  289. goto err_free;
  290. trace_bcache_writeback(&w->key);
  291. closure_call(&io->cl, read_dirty_submit, NULL, &dc->disk.cl);
  292. delay = writeback_delay(dc, KEY_SIZE(&w->key));
  293. atomic_inc(&dc->in_flight);
  294. if (!closure_wait_event(&dc->writeback_wait, cl,
  295. atomic_read(&dc->in_flight) < 64))
  296. continue_at(cl, read_dirty, dirty_wq);
  297. }
  298. if (0) {
  299. err_free:
  300. kfree(w->private);
  301. err:
  302. bch_keybuf_del(&dc->writeback_keys, w);
  303. }
  304. refill_dirty(cl);
  305. }
  306. /* Init */
  307. static int bch_btree_sectors_dirty_init(struct btree *b, struct btree_op *op,
  308. struct cached_dev *dc)
  309. {
  310. struct bkey *k;
  311. struct btree_iter iter;
  312. bch_btree_iter_init(b, &iter, &KEY(dc->disk.id, 0, 0));
  313. while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad)))
  314. if (!b->level) {
  315. if (KEY_INODE(k) > dc->disk.id)
  316. break;
  317. if (KEY_DIRTY(k))
  318. bcache_dev_sectors_dirty_add(b->c, dc->disk.id,
  319. KEY_START(k),
  320. KEY_SIZE(k));
  321. } else {
  322. btree(sectors_dirty_init, k, b, op, dc);
  323. if (KEY_INODE(k) > dc->disk.id)
  324. break;
  325. cond_resched();
  326. }
  327. return 0;
  328. }
  329. void bch_sectors_dirty_init(struct cached_dev *dc)
  330. {
  331. struct btree_op op;
  332. bch_btree_op_init_stack(&op);
  333. btree_root(sectors_dirty_init, dc->disk.c, &op, dc);
  334. }
  335. void bch_cached_dev_writeback_init(struct cached_dev *dc)
  336. {
  337. closure_init_unlocked(&dc->writeback);
  338. init_rwsem(&dc->writeback_lock);
  339. bch_keybuf_init(&dc->writeback_keys, dirty_pred);
  340. dc->writeback_metadata = true;
  341. dc->writeback_running = true;
  342. dc->writeback_percent = 10;
  343. dc->writeback_delay = 30;
  344. dc->writeback_rate.rate = 1024;
  345. dc->writeback_rate_update_seconds = 30;
  346. dc->writeback_rate_d_term = 16;
  347. dc->writeback_rate_p_term_inverse = 64;
  348. dc->writeback_rate_d_smooth = 8;
  349. INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
  350. schedule_delayed_work(&dc->writeback_rate_update,
  351. dc->writeback_rate_update_seconds * HZ);
  352. }
  353. void bch_writeback_exit(void)
  354. {
  355. if (dirty_wq)
  356. destroy_workqueue(dirty_wq);
  357. }
  358. int __init bch_writeback_init(void)
  359. {
  360. dirty_wq = create_singlethread_workqueue("bcache_writeback");
  361. if (!dirty_wq)
  362. return -ENOMEM;
  363. return 0;
  364. }