posix-timers.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033
  1. /*
  2. * linux/kernel/posix-timers.c
  3. *
  4. *
  5. * 2002-10-15 Posix Clocks & timers
  6. * by George Anzinger george@mvista.com
  7. *
  8. * Copyright (C) 2002 2003 by MontaVista Software.
  9. *
  10. * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11. * Copyright (C) 2004 Boris Hu
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or (at
  16. * your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful, but
  19. * WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21. * General Public License for more details.
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. *
  26. * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  27. */
  28. /* These are all the functions necessary to implement
  29. * POSIX clocks & timers
  30. */
  31. #include <linux/mm.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/slab.h>
  34. #include <linux/time.h>
  35. #include <linux/mutex.h>
  36. #include <asm/uaccess.h>
  37. #include <linux/list.h>
  38. #include <linux/init.h>
  39. #include <linux/compiler.h>
  40. #include <linux/idr.h>
  41. #include <linux/posix-timers.h>
  42. #include <linux/syscalls.h>
  43. #include <linux/wait.h>
  44. #include <linux/workqueue.h>
  45. #include <linux/module.h>
  46. /*
  47. * Management arrays for POSIX timers. Timers are kept in slab memory
  48. * Timer ids are allocated by an external routine that keeps track of the
  49. * id and the timer. The external interface is:
  50. *
  51. * void *idr_find(struct idr *idp, int id); to find timer_id <id>
  52. * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
  53. * related it to <ptr>
  54. * void idr_remove(struct idr *idp, int id); to release <id>
  55. * void idr_init(struct idr *idp); to initialize <idp>
  56. * which we supply.
  57. * The idr_get_new *may* call slab for more memory so it must not be
  58. * called under a spin lock. Likewise idr_remore may release memory
  59. * (but it may be ok to do this under a lock...).
  60. * idr_find is just a memory look up and is quite fast. A -1 return
  61. * indicates that the requested id does not exist.
  62. */
  63. /*
  64. * Lets keep our timers in a slab cache :-)
  65. */
  66. static struct kmem_cache *posix_timers_cache;
  67. static struct idr posix_timers_id;
  68. static DEFINE_SPINLOCK(idr_lock);
  69. /*
  70. * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  71. * SIGEV values. Here we put out an error if this assumption fails.
  72. */
  73. #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  74. ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  75. #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  76. #endif
  77. /*
  78. * parisc wants ENOTSUP instead of EOPNOTSUPP
  79. */
  80. #ifndef ENOTSUP
  81. # define ENANOSLEEP_NOTSUP EOPNOTSUPP
  82. #else
  83. # define ENANOSLEEP_NOTSUP ENOTSUP
  84. #endif
  85. /*
  86. * The timer ID is turned into a timer address by idr_find().
  87. * Verifying a valid ID consists of:
  88. *
  89. * a) checking that idr_find() returns other than -1.
  90. * b) checking that the timer id matches the one in the timer itself.
  91. * c) that the timer owner is in the callers thread group.
  92. */
  93. /*
  94. * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  95. * to implement others. This structure defines the various
  96. * clocks and allows the possibility of adding others. We
  97. * provide an interface to add clocks to the table and expect
  98. * the "arch" code to add at least one clock that is high
  99. * resolution. Here we define the standard CLOCK_REALTIME as a
  100. * 1/HZ resolution clock.
  101. *
  102. * RESOLUTION: Clock resolution is used to round up timer and interval
  103. * times, NOT to report clock times, which are reported with as
  104. * much resolution as the system can muster. In some cases this
  105. * resolution may depend on the underlying clock hardware and
  106. * may not be quantifiable until run time, and only then is the
  107. * necessary code is written. The standard says we should say
  108. * something about this issue in the documentation...
  109. *
  110. * FUNCTIONS: The CLOCKs structure defines possible functions to handle
  111. * various clock functions. For clocks that use the standard
  112. * system timer code these entries should be NULL. This will
  113. * allow dispatch without the overhead of indirect function
  114. * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
  115. * must supply functions here, even if the function just returns
  116. * ENOSYS. The standard POSIX timer management code assumes the
  117. * following: 1.) The k_itimer struct (sched.h) is used for the
  118. * timer. 2.) The list, it_lock, it_clock, it_id and it_pid
  119. * fields are not modified by timer code.
  120. *
  121. * At this time all functions EXCEPT clock_nanosleep can be
  122. * redirected by the CLOCKS structure. Clock_nanosleep is in
  123. * there, but the code ignores it.
  124. *
  125. * Permissions: It is assumed that the clock_settime() function defined
  126. * for each clock will take care of permission checks. Some
  127. * clocks may be set able by any user (i.e. local process
  128. * clocks) others not. Currently the only set able clock we
  129. * have is CLOCK_REALTIME and its high res counter part, both of
  130. * which we beg off on and pass to do_sys_settimeofday().
  131. */
  132. static struct k_clock posix_clocks[MAX_CLOCKS];
  133. /*
  134. * These ones are defined below.
  135. */
  136. static int common_nsleep(const clockid_t, int flags, struct timespec *t,
  137. struct timespec __user *rmtp);
  138. static int common_timer_create(struct k_itimer *new_timer);
  139. static void common_timer_get(struct k_itimer *, struct itimerspec *);
  140. static int common_timer_set(struct k_itimer *, int,
  141. struct itimerspec *, struct itimerspec *);
  142. static int common_timer_del(struct k_itimer *timer);
  143. static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
  144. static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
  145. #define lock_timer(tid, flags) \
  146. ({ struct k_itimer *__timr; \
  147. __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
  148. __timr; \
  149. })
  150. static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
  151. {
  152. spin_unlock_irqrestore(&timr->it_lock, flags);
  153. }
  154. /*
  155. * Call the k_clock hook function if non-null, or the default function.
  156. */
  157. #define CLOCK_DISPATCH(clock, call, arglist) \
  158. ((clock) < 0 ? posix_cpu_##call arglist : \
  159. (posix_clocks[clock].call != NULL \
  160. ? (*posix_clocks[clock].call) arglist : common_##call arglist))
  161. /*
  162. * Return nonzero if we know a priori this clockid_t value is bogus.
  163. */
  164. static inline int invalid_clockid(const clockid_t which_clock)
  165. {
  166. if (which_clock < 0) /* CPU clock, posix_cpu_* will check it */
  167. return 0;
  168. if ((unsigned) which_clock >= MAX_CLOCKS)
  169. return 1;
  170. if (posix_clocks[which_clock].clock_getres != NULL)
  171. return 0;
  172. return 1;
  173. }
  174. /* Get clock_realtime */
  175. static int posix_clock_realtime_get(clockid_t which_clock, struct timespec *tp)
  176. {
  177. ktime_get_real_ts(tp);
  178. return 0;
  179. }
  180. /* Set clock_realtime */
  181. static int posix_clock_realtime_set(const clockid_t which_clock,
  182. const struct timespec *tp)
  183. {
  184. return do_sys_settimeofday(tp, NULL);
  185. }
  186. /*
  187. * Get monotonic time for posix timers
  188. */
  189. static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
  190. {
  191. ktime_get_ts(tp);
  192. return 0;
  193. }
  194. /*
  195. * Get monotonic time for posix timers
  196. */
  197. static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec *tp)
  198. {
  199. getrawmonotonic(tp);
  200. return 0;
  201. }
  202. static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec *tp)
  203. {
  204. *tp = current_kernel_time();
  205. return 0;
  206. }
  207. static int posix_get_monotonic_coarse(clockid_t which_clock,
  208. struct timespec *tp)
  209. {
  210. *tp = get_monotonic_coarse();
  211. return 0;
  212. }
  213. static int posix_get_coarse_res(const clockid_t which_clock, struct timespec *tp)
  214. {
  215. *tp = ktime_to_timespec(KTIME_LOW_RES);
  216. return 0;
  217. }
  218. /*
  219. * Initialize everything, well, just everything in Posix clocks/timers ;)
  220. */
  221. static __init int init_posix_timers(void)
  222. {
  223. struct k_clock clock_realtime = {
  224. .clock_getres = hrtimer_get_res,
  225. .clock_get = posix_clock_realtime_get,
  226. .clock_set = posix_clock_realtime_set,
  227. .nsleep = common_nsleep,
  228. .nsleep_restart = hrtimer_nanosleep_restart,
  229. .timer_create = common_timer_create,
  230. .timer_set = common_timer_set,
  231. };
  232. struct k_clock clock_monotonic = {
  233. .clock_getres = hrtimer_get_res,
  234. .clock_get = posix_ktime_get_ts,
  235. .nsleep = common_nsleep,
  236. .nsleep_restart = hrtimer_nanosleep_restart,
  237. .timer_create = common_timer_create,
  238. .timer_set = common_timer_set,
  239. };
  240. struct k_clock clock_monotonic_raw = {
  241. .clock_getres = hrtimer_get_res,
  242. .clock_get = posix_get_monotonic_raw,
  243. };
  244. struct k_clock clock_realtime_coarse = {
  245. .clock_getres = posix_get_coarse_res,
  246. .clock_get = posix_get_realtime_coarse,
  247. };
  248. struct k_clock clock_monotonic_coarse = {
  249. .clock_getres = posix_get_coarse_res,
  250. .clock_get = posix_get_monotonic_coarse,
  251. };
  252. register_posix_clock(CLOCK_REALTIME, &clock_realtime);
  253. register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
  254. register_posix_clock(CLOCK_MONOTONIC_RAW, &clock_monotonic_raw);
  255. register_posix_clock(CLOCK_REALTIME_COARSE, &clock_realtime_coarse);
  256. register_posix_clock(CLOCK_MONOTONIC_COARSE, &clock_monotonic_coarse);
  257. posix_timers_cache = kmem_cache_create("posix_timers_cache",
  258. sizeof (struct k_itimer), 0, SLAB_PANIC,
  259. NULL);
  260. idr_init(&posix_timers_id);
  261. return 0;
  262. }
  263. __initcall(init_posix_timers);
  264. static void schedule_next_timer(struct k_itimer *timr)
  265. {
  266. struct hrtimer *timer = &timr->it.real.timer;
  267. if (timr->it.real.interval.tv64 == 0)
  268. return;
  269. timr->it_overrun += (unsigned int) hrtimer_forward(timer,
  270. timer->base->get_time(),
  271. timr->it.real.interval);
  272. timr->it_overrun_last = timr->it_overrun;
  273. timr->it_overrun = -1;
  274. ++timr->it_requeue_pending;
  275. hrtimer_restart(timer);
  276. }
  277. /*
  278. * This function is exported for use by the signal deliver code. It is
  279. * called just prior to the info block being released and passes that
  280. * block to us. It's function is to update the overrun entry AND to
  281. * restart the timer. It should only be called if the timer is to be
  282. * restarted (i.e. we have flagged this in the sys_private entry of the
  283. * info block).
  284. *
  285. * To protect aginst the timer going away while the interrupt is queued,
  286. * we require that the it_requeue_pending flag be set.
  287. */
  288. void do_schedule_next_timer(struct siginfo *info)
  289. {
  290. struct k_itimer *timr;
  291. unsigned long flags;
  292. timr = lock_timer(info->si_tid, &flags);
  293. if (timr && timr->it_requeue_pending == info->si_sys_private) {
  294. if (timr->it_clock < 0)
  295. posix_cpu_timer_schedule(timr);
  296. else
  297. schedule_next_timer(timr);
  298. info->si_overrun += timr->it_overrun_last;
  299. }
  300. if (timr)
  301. unlock_timer(timr, flags);
  302. }
  303. int posix_timer_event(struct k_itimer *timr, int si_private)
  304. {
  305. struct task_struct *task;
  306. int shared, ret = -1;
  307. /*
  308. * FIXME: if ->sigq is queued we can race with
  309. * dequeue_signal()->do_schedule_next_timer().
  310. *
  311. * If dequeue_signal() sees the "right" value of
  312. * si_sys_private it calls do_schedule_next_timer().
  313. * We re-queue ->sigq and drop ->it_lock().
  314. * do_schedule_next_timer() locks the timer
  315. * and re-schedules it while ->sigq is pending.
  316. * Not really bad, but not that we want.
  317. */
  318. timr->sigq->info.si_sys_private = si_private;
  319. rcu_read_lock();
  320. task = pid_task(timr->it_pid, PIDTYPE_PID);
  321. if (task) {
  322. shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
  323. ret = send_sigqueue(timr->sigq, task, shared);
  324. }
  325. rcu_read_unlock();
  326. /* If we failed to send the signal the timer stops. */
  327. return ret > 0;
  328. }
  329. EXPORT_SYMBOL_GPL(posix_timer_event);
  330. /*
  331. * This function gets called when a POSIX.1b interval timer expires. It
  332. * is used as a callback from the kernel internal timer. The
  333. * run_timer_list code ALWAYS calls with interrupts on.
  334. * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
  335. */
  336. static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
  337. {
  338. struct k_itimer *timr;
  339. unsigned long flags;
  340. int si_private = 0;
  341. enum hrtimer_restart ret = HRTIMER_NORESTART;
  342. timr = container_of(timer, struct k_itimer, it.real.timer);
  343. spin_lock_irqsave(&timr->it_lock, flags);
  344. if (timr->it.real.interval.tv64 != 0)
  345. si_private = ++timr->it_requeue_pending;
  346. if (posix_timer_event(timr, si_private)) {
  347. /*
  348. * signal was not sent because of sig_ignor
  349. * we will not get a call back to restart it AND
  350. * it should be restarted.
  351. */
  352. if (timr->it.real.interval.tv64 != 0) {
  353. ktime_t now = hrtimer_cb_get_time(timer);
  354. /*
  355. * FIXME: What we really want, is to stop this
  356. * timer completely and restart it in case the
  357. * SIG_IGN is removed. This is a non trivial
  358. * change which involves sighand locking
  359. * (sigh !), which we don't want to do late in
  360. * the release cycle.
  361. *
  362. * For now we just let timers with an interval
  363. * less than a jiffie expire every jiffie to
  364. * avoid softirq starvation in case of SIG_IGN
  365. * and a very small interval, which would put
  366. * the timer right back on the softirq pending
  367. * list. By moving now ahead of time we trick
  368. * hrtimer_forward() to expire the timer
  369. * later, while we still maintain the overrun
  370. * accuracy, but have some inconsistency in
  371. * the timer_gettime() case. This is at least
  372. * better than a starved softirq. A more
  373. * complex fix which solves also another related
  374. * inconsistency is already in the pipeline.
  375. */
  376. #ifdef CONFIG_HIGH_RES_TIMERS
  377. {
  378. ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
  379. if (timr->it.real.interval.tv64 < kj.tv64)
  380. now = ktime_add(now, kj);
  381. }
  382. #endif
  383. timr->it_overrun += (unsigned int)
  384. hrtimer_forward(timer, now,
  385. timr->it.real.interval);
  386. ret = HRTIMER_RESTART;
  387. ++timr->it_requeue_pending;
  388. }
  389. }
  390. unlock_timer(timr, flags);
  391. return ret;
  392. }
  393. static struct pid *good_sigevent(sigevent_t * event)
  394. {
  395. struct task_struct *rtn = current->group_leader;
  396. if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
  397. (!(rtn = find_task_by_vpid(event->sigev_notify_thread_id)) ||
  398. !same_thread_group(rtn, current) ||
  399. (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
  400. return NULL;
  401. if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
  402. ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
  403. return NULL;
  404. return task_pid(rtn);
  405. }
  406. void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
  407. {
  408. if ((unsigned) clock_id >= MAX_CLOCKS) {
  409. printk(KERN_WARNING "POSIX clock register failed for clock_id %d\n",
  410. clock_id);
  411. return;
  412. }
  413. if (!new_clock->clock_get) {
  414. printk(KERN_WARNING "POSIX clock id %d lacks clock_get()\n",
  415. clock_id);
  416. return;
  417. }
  418. if (!new_clock->clock_getres) {
  419. printk(KERN_WARNING "POSIX clock id %d lacks clock_getres()\n",
  420. clock_id);
  421. return;
  422. }
  423. posix_clocks[clock_id] = *new_clock;
  424. }
  425. EXPORT_SYMBOL_GPL(register_posix_clock);
  426. static struct k_itimer * alloc_posix_timer(void)
  427. {
  428. struct k_itimer *tmr;
  429. tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
  430. if (!tmr)
  431. return tmr;
  432. if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
  433. kmem_cache_free(posix_timers_cache, tmr);
  434. return NULL;
  435. }
  436. memset(&tmr->sigq->info, 0, sizeof(siginfo_t));
  437. return tmr;
  438. }
  439. #define IT_ID_SET 1
  440. #define IT_ID_NOT_SET 0
  441. static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
  442. {
  443. if (it_id_set) {
  444. unsigned long flags;
  445. spin_lock_irqsave(&idr_lock, flags);
  446. idr_remove(&posix_timers_id, tmr->it_id);
  447. spin_unlock_irqrestore(&idr_lock, flags);
  448. }
  449. put_pid(tmr->it_pid);
  450. sigqueue_free(tmr->sigq);
  451. kmem_cache_free(posix_timers_cache, tmr);
  452. }
  453. static struct k_clock *clockid_to_kclock(const clockid_t id)
  454. {
  455. if (id < 0)
  456. return &clock_posix_cpu;
  457. if (id >= MAX_CLOCKS || !posix_clocks[id].clock_getres)
  458. return NULL;
  459. return &posix_clocks[id];
  460. }
  461. static int common_timer_create(struct k_itimer *new_timer)
  462. {
  463. hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
  464. return 0;
  465. }
  466. /* Create a POSIX.1b interval timer. */
  467. SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
  468. struct sigevent __user *, timer_event_spec,
  469. timer_t __user *, created_timer_id)
  470. {
  471. struct k_clock *kc = clockid_to_kclock(which_clock);
  472. struct k_itimer *new_timer;
  473. int error, new_timer_id;
  474. sigevent_t event;
  475. int it_id_set = IT_ID_NOT_SET;
  476. if (!kc)
  477. return -EINVAL;
  478. if (!kc->timer_create)
  479. return -EOPNOTSUPP;
  480. new_timer = alloc_posix_timer();
  481. if (unlikely(!new_timer))
  482. return -EAGAIN;
  483. spin_lock_init(&new_timer->it_lock);
  484. retry:
  485. if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
  486. error = -EAGAIN;
  487. goto out;
  488. }
  489. spin_lock_irq(&idr_lock);
  490. error = idr_get_new(&posix_timers_id, new_timer, &new_timer_id);
  491. spin_unlock_irq(&idr_lock);
  492. if (error) {
  493. if (error == -EAGAIN)
  494. goto retry;
  495. /*
  496. * Weird looking, but we return EAGAIN if the IDR is
  497. * full (proper POSIX return value for this)
  498. */
  499. error = -EAGAIN;
  500. goto out;
  501. }
  502. it_id_set = IT_ID_SET;
  503. new_timer->it_id = (timer_t) new_timer_id;
  504. new_timer->it_clock = which_clock;
  505. new_timer->it_overrun = -1;
  506. if (timer_event_spec) {
  507. if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
  508. error = -EFAULT;
  509. goto out;
  510. }
  511. rcu_read_lock();
  512. new_timer->it_pid = get_pid(good_sigevent(&event));
  513. rcu_read_unlock();
  514. if (!new_timer->it_pid) {
  515. error = -EINVAL;
  516. goto out;
  517. }
  518. } else {
  519. event.sigev_notify = SIGEV_SIGNAL;
  520. event.sigev_signo = SIGALRM;
  521. event.sigev_value.sival_int = new_timer->it_id;
  522. new_timer->it_pid = get_pid(task_tgid(current));
  523. }
  524. new_timer->it_sigev_notify = event.sigev_notify;
  525. new_timer->sigq->info.si_signo = event.sigev_signo;
  526. new_timer->sigq->info.si_value = event.sigev_value;
  527. new_timer->sigq->info.si_tid = new_timer->it_id;
  528. new_timer->sigq->info.si_code = SI_TIMER;
  529. if (copy_to_user(created_timer_id,
  530. &new_timer_id, sizeof (new_timer_id))) {
  531. error = -EFAULT;
  532. goto out;
  533. }
  534. error = kc->timer_create(new_timer);
  535. if (error)
  536. goto out;
  537. spin_lock_irq(&current->sighand->siglock);
  538. new_timer->it_signal = current->signal;
  539. list_add(&new_timer->list, &current->signal->posix_timers);
  540. spin_unlock_irq(&current->sighand->siglock);
  541. return 0;
  542. /*
  543. * In the case of the timer belonging to another task, after
  544. * the task is unlocked, the timer is owned by the other task
  545. * and may cease to exist at any time. Don't use or modify
  546. * new_timer after the unlock call.
  547. */
  548. out:
  549. release_posix_timer(new_timer, it_id_set);
  550. return error;
  551. }
  552. /*
  553. * Locking issues: We need to protect the result of the id look up until
  554. * we get the timer locked down so it is not deleted under us. The
  555. * removal is done under the idr spinlock so we use that here to bridge
  556. * the find to the timer lock. To avoid a dead lock, the timer id MUST
  557. * be release with out holding the timer lock.
  558. */
  559. static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
  560. {
  561. struct k_itimer *timr;
  562. /*
  563. * Watch out here. We do a irqsave on the idr_lock and pass the
  564. * flags part over to the timer lock. Must not let interrupts in
  565. * while we are moving the lock.
  566. */
  567. spin_lock_irqsave(&idr_lock, *flags);
  568. timr = idr_find(&posix_timers_id, (int)timer_id);
  569. if (timr) {
  570. spin_lock(&timr->it_lock);
  571. if (timr->it_signal == current->signal) {
  572. spin_unlock(&idr_lock);
  573. return timr;
  574. }
  575. spin_unlock(&timr->it_lock);
  576. }
  577. spin_unlock_irqrestore(&idr_lock, *flags);
  578. return NULL;
  579. }
  580. /*
  581. * Get the time remaining on a POSIX.1b interval timer. This function
  582. * is ALWAYS called with spin_lock_irq on the timer, thus it must not
  583. * mess with irq.
  584. *
  585. * We have a couple of messes to clean up here. First there is the case
  586. * of a timer that has a requeue pending. These timers should appear to
  587. * be in the timer list with an expiry as if we were to requeue them
  588. * now.
  589. *
  590. * The second issue is the SIGEV_NONE timer which may be active but is
  591. * not really ever put in the timer list (to save system resources).
  592. * This timer may be expired, and if so, we will do it here. Otherwise
  593. * it is the same as a requeue pending timer WRT to what we should
  594. * report.
  595. */
  596. static void
  597. common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
  598. {
  599. ktime_t now, remaining, iv;
  600. struct hrtimer *timer = &timr->it.real.timer;
  601. memset(cur_setting, 0, sizeof(struct itimerspec));
  602. iv = timr->it.real.interval;
  603. /* interval timer ? */
  604. if (iv.tv64)
  605. cur_setting->it_interval = ktime_to_timespec(iv);
  606. else if (!hrtimer_active(timer) &&
  607. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  608. return;
  609. now = timer->base->get_time();
  610. /*
  611. * When a requeue is pending or this is a SIGEV_NONE
  612. * timer move the expiry time forward by intervals, so
  613. * expiry is > now.
  614. */
  615. if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
  616. (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
  617. timr->it_overrun += (unsigned int) hrtimer_forward(timer, now, iv);
  618. remaining = ktime_sub(hrtimer_get_expires(timer), now);
  619. /* Return 0 only, when the timer is expired and not pending */
  620. if (remaining.tv64 <= 0) {
  621. /*
  622. * A single shot SIGEV_NONE timer must return 0, when
  623. * it is expired !
  624. */
  625. if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
  626. cur_setting->it_value.tv_nsec = 1;
  627. } else
  628. cur_setting->it_value = ktime_to_timespec(remaining);
  629. }
  630. /* Get the time remaining on a POSIX.1b interval timer. */
  631. SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
  632. struct itimerspec __user *, setting)
  633. {
  634. struct k_itimer *timr;
  635. struct itimerspec cur_setting;
  636. unsigned long flags;
  637. timr = lock_timer(timer_id, &flags);
  638. if (!timr)
  639. return -EINVAL;
  640. CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
  641. unlock_timer(timr, flags);
  642. if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
  643. return -EFAULT;
  644. return 0;
  645. }
  646. /*
  647. * Get the number of overruns of a POSIX.1b interval timer. This is to
  648. * be the overrun of the timer last delivered. At the same time we are
  649. * accumulating overruns on the next timer. The overrun is frozen when
  650. * the signal is delivered, either at the notify time (if the info block
  651. * is not queued) or at the actual delivery time (as we are informed by
  652. * the call back to do_schedule_next_timer(). So all we need to do is
  653. * to pick up the frozen overrun.
  654. */
  655. SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
  656. {
  657. struct k_itimer *timr;
  658. int overrun;
  659. unsigned long flags;
  660. timr = lock_timer(timer_id, &flags);
  661. if (!timr)
  662. return -EINVAL;
  663. overrun = timr->it_overrun_last;
  664. unlock_timer(timr, flags);
  665. return overrun;
  666. }
  667. /* Set a POSIX.1b interval timer. */
  668. /* timr->it_lock is taken. */
  669. static int
  670. common_timer_set(struct k_itimer *timr, int flags,
  671. struct itimerspec *new_setting, struct itimerspec *old_setting)
  672. {
  673. struct hrtimer *timer = &timr->it.real.timer;
  674. enum hrtimer_mode mode;
  675. if (old_setting)
  676. common_timer_get(timr, old_setting);
  677. /* disable the timer */
  678. timr->it.real.interval.tv64 = 0;
  679. /*
  680. * careful here. If smp we could be in the "fire" routine which will
  681. * be spinning as we hold the lock. But this is ONLY an SMP issue.
  682. */
  683. if (hrtimer_try_to_cancel(timer) < 0)
  684. return TIMER_RETRY;
  685. timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
  686. ~REQUEUE_PENDING;
  687. timr->it_overrun_last = 0;
  688. /* switch off the timer when it_value is zero */
  689. if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
  690. return 0;
  691. mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
  692. hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
  693. timr->it.real.timer.function = posix_timer_fn;
  694. hrtimer_set_expires(timer, timespec_to_ktime(new_setting->it_value));
  695. /* Convert interval */
  696. timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
  697. /* SIGEV_NONE timers are not queued ! See common_timer_get */
  698. if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
  699. /* Setup correct expiry time for relative timers */
  700. if (mode == HRTIMER_MODE_REL) {
  701. hrtimer_add_expires(timer, timer->base->get_time());
  702. }
  703. return 0;
  704. }
  705. hrtimer_start_expires(timer, mode);
  706. return 0;
  707. }
  708. /* Set a POSIX.1b interval timer */
  709. SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
  710. const struct itimerspec __user *, new_setting,
  711. struct itimerspec __user *, old_setting)
  712. {
  713. struct k_itimer *timr;
  714. struct itimerspec new_spec, old_spec;
  715. int error = 0;
  716. unsigned long flag;
  717. struct itimerspec *rtn = old_setting ? &old_spec : NULL;
  718. struct k_clock *kc;
  719. if (!new_setting)
  720. return -EINVAL;
  721. if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
  722. return -EFAULT;
  723. if (!timespec_valid(&new_spec.it_interval) ||
  724. !timespec_valid(&new_spec.it_value))
  725. return -EINVAL;
  726. retry:
  727. timr = lock_timer(timer_id, &flag);
  728. if (!timr)
  729. return -EINVAL;
  730. kc = clockid_to_kclock(timr->it_clock);
  731. if (WARN_ON_ONCE(!kc || !kc->timer_set))
  732. error = -EINVAL;
  733. else
  734. error = kc->timer_set(timr, flags, &new_spec, rtn);
  735. unlock_timer(timr, flag);
  736. if (error == TIMER_RETRY) {
  737. rtn = NULL; // We already got the old time...
  738. goto retry;
  739. }
  740. if (old_setting && !error &&
  741. copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
  742. error = -EFAULT;
  743. return error;
  744. }
  745. static inline int common_timer_del(struct k_itimer *timer)
  746. {
  747. timer->it.real.interval.tv64 = 0;
  748. if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
  749. return TIMER_RETRY;
  750. return 0;
  751. }
  752. static inline int timer_delete_hook(struct k_itimer *timer)
  753. {
  754. return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
  755. }
  756. /* Delete a POSIX.1b interval timer. */
  757. SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
  758. {
  759. struct k_itimer *timer;
  760. unsigned long flags;
  761. retry_delete:
  762. timer = lock_timer(timer_id, &flags);
  763. if (!timer)
  764. return -EINVAL;
  765. if (timer_delete_hook(timer) == TIMER_RETRY) {
  766. unlock_timer(timer, flags);
  767. goto retry_delete;
  768. }
  769. spin_lock(&current->sighand->siglock);
  770. list_del(&timer->list);
  771. spin_unlock(&current->sighand->siglock);
  772. /*
  773. * This keeps any tasks waiting on the spin lock from thinking
  774. * they got something (see the lock code above).
  775. */
  776. timer->it_signal = NULL;
  777. unlock_timer(timer, flags);
  778. release_posix_timer(timer, IT_ID_SET);
  779. return 0;
  780. }
  781. /*
  782. * return timer owned by the process, used by exit_itimers
  783. */
  784. static void itimer_delete(struct k_itimer *timer)
  785. {
  786. unsigned long flags;
  787. retry_delete:
  788. spin_lock_irqsave(&timer->it_lock, flags);
  789. if (timer_delete_hook(timer) == TIMER_RETRY) {
  790. unlock_timer(timer, flags);
  791. goto retry_delete;
  792. }
  793. list_del(&timer->list);
  794. /*
  795. * This keeps any tasks waiting on the spin lock from thinking
  796. * they got something (see the lock code above).
  797. */
  798. timer->it_signal = NULL;
  799. unlock_timer(timer, flags);
  800. release_posix_timer(timer, IT_ID_SET);
  801. }
  802. /*
  803. * This is called by do_exit or de_thread, only when there are no more
  804. * references to the shared signal_struct.
  805. */
  806. void exit_itimers(struct signal_struct *sig)
  807. {
  808. struct k_itimer *tmr;
  809. while (!list_empty(&sig->posix_timers)) {
  810. tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
  811. itimer_delete(tmr);
  812. }
  813. }
  814. SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
  815. const struct timespec __user *, tp)
  816. {
  817. struct k_clock *kc = clockid_to_kclock(which_clock);
  818. struct timespec new_tp;
  819. if (!kc || !kc->clock_set)
  820. return -EINVAL;
  821. if (copy_from_user(&new_tp, tp, sizeof (*tp)))
  822. return -EFAULT;
  823. return kc->clock_set(which_clock, &new_tp);
  824. }
  825. SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
  826. struct timespec __user *,tp)
  827. {
  828. struct k_clock *kc = clockid_to_kclock(which_clock);
  829. struct timespec kernel_tp;
  830. int error;
  831. if (!kc)
  832. return -EINVAL;
  833. error = kc->clock_get(which_clock, &kernel_tp);
  834. if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
  835. error = -EFAULT;
  836. return error;
  837. }
  838. SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
  839. struct timespec __user *, tp)
  840. {
  841. struct k_clock *kc = clockid_to_kclock(which_clock);
  842. struct timespec rtn_tp;
  843. int error;
  844. if (!kc)
  845. return -EINVAL;
  846. error = kc->clock_getres(which_clock, &rtn_tp);
  847. if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp)))
  848. error = -EFAULT;
  849. return error;
  850. }
  851. /*
  852. * nanosleep for monotonic and realtime clocks
  853. */
  854. static int common_nsleep(const clockid_t which_clock, int flags,
  855. struct timespec *tsave, struct timespec __user *rmtp)
  856. {
  857. return hrtimer_nanosleep(tsave, rmtp, flags & TIMER_ABSTIME ?
  858. HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
  859. which_clock);
  860. }
  861. SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
  862. const struct timespec __user *, rqtp,
  863. struct timespec __user *, rmtp)
  864. {
  865. struct k_clock *kc = clockid_to_kclock(which_clock);
  866. struct timespec t;
  867. if (!kc)
  868. return -EINVAL;
  869. if (!kc->nsleep)
  870. return -ENANOSLEEP_NOTSUP;
  871. if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
  872. return -EFAULT;
  873. if (!timespec_valid(&t))
  874. return -EINVAL;
  875. return kc->nsleep(which_clock, flags, &t, rmtp);
  876. }
  877. /*
  878. * This will restart clock_nanosleep. This is required only by
  879. * compat_clock_nanosleep_restart for now.
  880. */
  881. long clock_nanosleep_restart(struct restart_block *restart_block)
  882. {
  883. clockid_t which_clock = restart_block->nanosleep.index;
  884. struct k_clock *kc = clockid_to_kclock(which_clock);
  885. if (WARN_ON_ONCE(!kc || !kc->nsleep_restart))
  886. return -EINVAL;
  887. return kc->nsleep_restart(restart_block);
  888. }